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Special cases are already deep and difficult.

e ' = {e} --- non-commutative harmonic analysis on L>(G/H)
Gelfand, Harish-Chandra, T. Oshima, Delorme, ...

e H compact --- automorphic forms
Siegel, Selberg, Piateski-Shapiro, Langlands, Arthur, Sarnak, Muller, ...

e G = R”1 (abelian, but non-Riemannian), I' = Z7*7
Oppenheim conjecture, Dani—-Margulis, Ratner, ...
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New challenge: Initiate spectral analysis of A on I'\G/H
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

* (geometry) existence of good geometry I'\G/H?
study of “local to global” beyond Riemannian setting

e (analysis) Laplacian is no more elliptic.

e (representation theory) vol(I'\G) = oo even when I'\G/H is
compact




Spectral analysis on I'\G/H beyond Riemannian setting
r C G D> H
discrete subgp Lie group subgroup
G

e N
NG G/H

NG/H

New challenge: Initiate spectral analysis of A on I'\G/H
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise
~» need to change methods for the study!
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Eigenvalue of Laplacian (3-dim’l case)

9? 9? 9?
=—|—=+-—+—=| onR3
(8)62 dy? 812)

Definition  f(x,y,z) is an eigenfunction of A
= A fxy, 9= 1] fxy,2)

eigenvalue

This is the Helmholtz equation
VA : wavenumber
f(x,y,z) : amplitude
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Spectrum of Lzaplacian (1-dim’l case)

A =—-— on R (realline)

dx?

Definition  f(x) is an eigenfunction of A

S A fx)|=4

f(x)

Example f(x) = sinmx
= f’(x) = mcosmx

f(x) = —m? sinmx = —mzf(x)




Spectrum of Lzaplacian (1-dim’l case)

A =——— on R (realline
s ( )

= A

Definition  f(x) is an eigenfunction of A

f(x)

=41

J(x)

Example f(x) = sinmx

= f’(x) = mcosmx

f(x) = —m2sinmx = —mzf(x)

SAf=m’f

Namely, {

f(x) = sinmx : eigenfunction of A
m? : eigenvalue (m : wavenumber)
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A= e on R (real line)

Definition  f(x) is an eigenfunction of A
A f(0)|=1]f(x)

Examgle f(x) =sinmx (meZ)
SAf=m’f
LR RSO 4
e XL Ty, XL NS,

Periodic function For m € Z, f(x) = sin mx satisfies
Af =m>f
f(x+2n) = f(x) period2x




Spectrum of Laplacian (1-dim’l case)

A= ) on R (real line)

Definition  f(x) is an eigenfunction of A
S A f0)| = f(0)

Examgle f(x) =sinmx (m € Z)
SAf=m’f
mﬁ%\ mm /
Ton "X ARA DA \ KA DA,

Periodic function For m € Z, f(x) = sin pmx satisfies
Af = p*m*f
2n ., 2
f(x+ —)=f(x) period—
0 0
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Loosely, balls with radius R (> 0) are defined at every point.



Riemannian geometry

Loosely, balls with radius R (> 0) are defined at every point.

A little more precisely, the ‘distance’ is integrated from the
‘infinitesimal distance.
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Quick course on pseudo-Riemannian geometry

pseudo-Riemannian geometry

Lorentzian
geometry

Riemannian
geometry

Minkowski
geometry

Euclidean
geometry
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Euclidean space R?



Riemannian = Lorentzian = pseudo-Riemannian

Euclidean space R> Minkowski space R!! RP4
\/
~> ~>
27 TN
P q9
¥ +y?<R? Ix2 — y?| < R? D= <R
i=1 7=




Riemannian = Lorentzian = pseudo-Riemannian

Euclidean space R*>  Minkowski space R!! RP4

Q- X -

Ix* —y* < R?

Riemannian manifold  Lorentzian manifold pseudo-Riemannian




Riemannian = Lorentzian = pseudo-Riemannian

Euclidean space R> Minkowski space R}! RP4
~> ~>
)4 q9
x2+y2SR2 |X2—y2|SR2 x?_zying
=1 =1

In higher dimensional case
generalize
R” X240+ Xt + X2 = Riemannian geometry
RYLBL 2 4 x02 4o+ 22— X2 = Lorentzian geometry
RP x4+ xp2 = xpP = — Xpe” = pseudo-Riemannian geometry
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Introduction to Laplacian A

Laplacian A
-+ ‘Intrinsic’ differential operator in Riemannian geometry

or more generally

in pseudo-Riemannian geometry

Goal: give an elementary definition of Laplacian A
-+ - for undergraduate students
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Laplacian in pseudo-Riemannian geometry
X Riemannian manifold
f(x) : function on X
fe(x) : average of f in the ball with radius ¢ centered at x.

Obviously f.(x) = f(x)ase -0

Ex X=E fw=o [ four




Laplacian in pseudo-Riemannian geometry
X Riemannian manifold
f(x) : function on X
fe(x) : average of f in the ball with radius ¢ centered at x.

Obviously f.(x) — f(x)ase —> 0

X+E

Ex. X=R f(y= ig Floydr

An easy computation shows 11rr(1) w 1f”( ) = —Af(x)




Laplacian in pseudo-Riemannian geometry
X Riemannian manifold
f(x) : function on X
fe(x) : average of f in the ball with radius ¢ centered at x.

Obviously f.(x) —» f(x)ase — 0

X+E

Ex. X=R fe<x>=i8 Foydr
CRW-f) 1

An easy computation shows hm — = f”( ) = —Af(x)
E

£—0

Def (Laplacian) Af(x) := ~6 lim é( £o(x) = f(x)) = —divograd f I




Laplacian in pseudo-Riemannian geometry
X Riemannian manifold
f(x) : function on X
fe(x) : average of f in the ball with radius ¢ centered at x.

Def (Laplacian) Af(x) := ~6lim é( £(x) — f(x)) = —divograd f I

Ex. A= —(5’; + 6‘3;2 + 63 aﬂ) for X = R* (Euclidean space)




Laplacian in pseudo-Riemannian geometry
X (pseudo-)Riemannian manifold
f(x) : function on X
fe(x) : average of f in the ball with radius ¢ centered at x.

X

Def (Laplacian) ~ Af(x) := =6 lim é( £o(x) = f(x)) = —divograd f I

Ex. A= (;’; + 6‘3;2 + (;92 + mz)forX R* (Euclidean space)

A = (;; + % + % - W) for X = R>! (Minkowski space)




Laplacian in pseudo-Riemannian geometry
X (pseudo-)Riemannian manifold

f(x) : function on X
fe(x) : average of f in the ball with radius ¢ centered at x.

X

Def (Laplacian) ~ Af(x) := =6 lim é( £o(x) = f(x)) = —divograd f I

Ex. A= (;’; + 6‘3;2 + (;92 + mz)forX R* (Euclidean space)

A=-— ;;2 + % + % - ﬁ) for X = R>! (Minkowski space)

& & Vi i

- (& L& _ R22
A=-|3n oy~ o2 aﬂ)forX_R
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Construction of eigenfunctions of Laplacian

How can we construct eigenfunctions [ ?

Af = Af.

We shall explain its idea in the following case with 1 = 0:

Example X =R??
= R* endowed with pseudo-Riemannian str.
dp? +dg* — dr* — ds?
9? 9? 9? 9’

AsAgo=-—ae L 2 2
R op?  0q*> orr  0s?
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Integral geometry
Idea of computer tomography (try to ‘see’ the inside)

X = {points}, Y = {lines}

R:T(X) = I(Y), fH(Rf)(l)=flf(X)|

Find the inversion R~! < ‘see’ the inside



Geometric construction of eigenfunctions

X=R3
Y = {lines in R3} = R*



Geometric construction of eigenfunctions

X=R3
Y = {lines in R3} = R*

Generic lines in R is given as
lapea :={t,at+b,ct +d): t €R}
with parameter (a, b, ¢, d) € R*.




Geometric construction of eigenfunctions

X=R3
Y = {lines in R3} = R*

Generic lines in R is given as
lapea :={t,at+b,ct +d): t €R}
with parameter (a, b, ¢, d) € R*.

fx,y,2) function on X = R3
H

(Rf)a,b,c,d) :=f f(t,at + b, ct + d)dt
function on ¥ = R* 5 (a,b,c,d)




Geometric construction of eigenfunctions

f(x,v,2) &> Rf(a,b,c,d) = foo f(@t,at + b, ct + d)dt

d? d?
= (m - abac)Rf =0 forany f(x,y,z)




Geometric construction of eigenfunctions

f(x,y,2) = Rf(a,b,c,d) = f f(t,at + b, ct + d)dt
” & h
- (aaad " bac

)Rf =0 for any f(x,y,z)

Proof.
(65;1 55; )Rf(a b,c,d)
:Iz (% B 6;9;C)f(t,at + b, ct + d)dt
=£:t{aayzgz(t,at+b,ct+d) azg (t,at + b, ct+d)}

=0



Geometric construction of eigenfunctions

=
f(x,y,z)HRf(a,b,c,d):f f(t,at + b, ct + d)dt
(& PE -

dadd Obdc

)Rf =0 for any f(x,y,z)

1 change of variables
a=p+s,b=r+q,c=r-q,d=p-s

0 0° 0 &
Czzor]

Rf(a,b,c,d) is an eigenfunction of the Laplacian Ag2. with 0
eigenvalue for any function f(x, y, 2).



Geometric construction of eigenfunctions

=
f(x,y,z)HRf(a,b,c,d):f f(t,at + b, ct + d)dt
(& PE -

dadd Obdc

)Rf =0 for any f(x,y,z)

1 change of variables
a=p+s,b=r+q,c=r-q,d=p-s

0 0° 0 &
Czzor]

Rf(a,b,c,d) is an eigenfunction of the Laplacian Ag2. with 0
eigenvalue for any function f(x, y, 2).

F. John (1938): Use the Radon transform to construct a solution
Aga2h =0
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Periodic function and quotient space

Periodic function f(x) on R
S =flx+ 1D =fx+2)=fx+3
=fx-D=f(x-2)=f(x-3

=... period1
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Periodic function and quotient space

Periodic function f(x) on R
f) = f(x+1) period 1
< f(x) is a function of the decimal part of x
< f(x)is a function of x € R/Z (= real numbers/integers)
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Periodic function f(x) on R
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Periodic function and quotient space

Periodic function f(x) on R

f) = fx+1)

period 1

< f(x) is a function of the decimal part of x

& f(x)is afunctionof x e R/Z =~ S

visualize ?

¢

Minutes

R/60Z ~ %

30

15~ §1circle




Periodic function and quotient space

Periodic function F(x,y) on R?
F(x,y) = F(x+a,y)

double Eeriod
{F(x,y) = F(x,y +b)
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Periodic function F(x,y) on R?

. | F(x,y) =F(x+a,y)
double Eerlod {F(x, )= Flay 4 b)

& F(x,y) is a function of (x,y) € R*/Z(§) + Z(g)




Periodic function and quotient space

Periodic function F(x,y) on R?

. JF(xy) =F(x+a,y)
double period {F(x, )= Flay 4 b)

& F(x,y) is a function of (x,y) € R?/Z(§) + Z(g)




Periodic function and quotient space

Periodic function F(x,y) on R?

. JF(xy) =F(x+a,y)
double period {F(x, )= Flay 4 b)

& F(x,y) is a function of (x,y) € R?/Z(§) + Z(g)




Periodic function and quotient space

Periodic function F(x,y) on R?

. JF(xy) =F(x+a,y)
double period {F(x, )= Flay 4 b)

& F(x,y) is a function of (x,y) € R?/Z(§) + Z(g)

torus




Periodic function and quotient space

Periodic function F(x,y) on R?

. JF(xy) =F(x+a,y)
double period {F(x, )= Flay 4 b)

& F(x,y) is a function of (x,y) € R?/Z(§) + Z(g)

R/aZxR/VZ ~ S' x §!

circle circle

torus




Periodic function and quotient space

Periodic function F(x,y) on R?

double Eeriod {

F(x,y) = F(x+a,y)
F(x,y) = F(x,y + )

& F(x,y) is a function of (x,y) € R*/Z(§) + Z(g)

R/aZxR/VZ ~ S' x §!

circle circle

S

torus

torus
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Model space and quotients

Model space

R

(Euclidean) R?

(Riemannian) v

hyperbolic space

Quotients

cxe O

~ R2/Z2~ =D

hyperbolic manifold



Model space and quotients

Model space Quotients

(Euclidean) R2 ~ RYZ2~ =D
>2
(Riemannian) v ~ (g =2)

hyperbolic space hyperbolic manifold

| Periodic functions

= functions on quotients
on model space




Model space and quotients

Model space Quotients

(Euclidean) R . RYZ2~ @

(Riemannian) v — (g=>2)

hyperbolic space hyperbolic manifold

A A
Laplacian Laplacian
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Model space and quotients

Model space Quotients

(Euclidean) R2 ~ R2/Z2~ @

(Riemannian) v ~ (g22)

hyperbolic space hyperbolic manifold

?
(Lorentzian) AdS" ~

anti-de Sitter space anti-de Sitter manifold



Most round shape (locally)

(M, g): pseudo-Riemannian mfd,
geodesically complete

Def. (M, g) is a space form

< sectional curvature « is constant




Space forms (examples)

Space form - - -
Signature (p, g) of pseudo-Riemannian metric g
Curvature « € {+,0, -}

E.g. ¢ =0 (Riemannian mfd)
sphere §” R" hyperbolic sp
k>0 k=0 k<0




Space forms (examples)

Space form - - -
Signature (p, g) of pseudo-Riemannian metric g
Curvature « € {+,0, -}

E.g. ¢ =0 (Riemannian mfd)
sphere §" R” hyperbolic sp
k>0 k=0 k<0

E.g. ¢ =1 (Lorentz mfd)
de Sitter sp  Minkowski sp  anti-de Sitter sp
k>0 k=0 k<0




Global nature of most round objects

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p, ¢), curvature « € {+,0, —}

U

Global Results
e Do compact models exist?

e What groups can arise as their fundamental groups?




Global nature of most round objects

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p, ¢), curvature « € {+,0, —}

U

Global Results
e Do compact models exist?
Is the universe closed?
e What groups can arise as their fundamental groups?
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Riemannian case

Compact space forms always exist:
e x>0 §"

e k=0 RYZ"

e « <0 hyperbolic space

< Cocompact discrete subgps of O(n, 1) (uniform lattice) exist
(Siegel, Borel, Makarov, Vinberg, Johnson—Millson, Gromov—Piateski-Shapiro - - -)

arithmetic non-arithmetic



Existence problem of compact space forms

Riemannian case

Compact space forms always exist:
e x>0 §"

e k=0 R"'/Z"

e « <0 hyperbolic space

< Cocompact discrete subgps of O(n, 1) (uniform lattice) exist
(Siegel, Borel, Makarov, Vinberg, Johnson—Millson, Gromov—Piateski-Shapiro - - -)

arithmetic non-arithmetic

Lorentzian case

n dimensional compact space forms

e k> 0 (de Sitter mfd) NOT exist (Calabi-Markus phenomenon)
e k=0 ALWAYS exist

o « <0 (anti-de Sitter mfd) exist © n is odd




Space forms (examples)

Space form - - -
Signature (p, g) of pseudo-Riemannian metric g
Curvature « € {+,0, -}

E.g. ¢ =0 (Riemannian mfd)
sphere S" R” hyperbolic sp
k>0 k=0 k<0

E.g. ¢ =1 (Lorentz mfd)
de Sitter sp  Minkowski sp  anti-de Sitter sp
k>0 k=0 k<0

More general case ? I
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Theorem Compact space forms of negative curvature « exist if
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Proof (1950-)
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¢ For pseudo-Riemannian manifold of signature (p, ¢)

Theorem Compact space forms of negative curvature « exist if
Dgany,p=0 (& k>0)

@ g =0,pany (hyperbolic sp)

®@g=1,p=0 mod2 (anti-de Sitter space)

Proof (1950-)
@@ (Riemmanian) @ (Lorentzian)



Existence problem of compact space forms

¢ For pseudo-Riemannian manifold of signature (p, ¢)

Theorem Compact space forms of negative curvature « exist if
Dgany,p=0 (& k>0)

@ g =0,pany (hyperbolic sp)

®@g=1,p=0 mod2 (anti-de Sitter space)

@qg=3,p=0 mod 4

Proof (1950-)

D@ (Riemmanian) @ (Lorentzian) @ (more general)



Existence problem of compact space forms

¢ For pseudo-Riemannian manifold of signature (p, ¢)

Theorem Compact space forms of negative curvature « exist if
Dgany,p=0 (& k>0)

@ g =0,pany (hyperbolic sp)

®@¢g=1,p=0 mod 2 (anti-de Sitter space)

@qg=3,p=0 mod 4} (pseudo-Riemannian)

®qg=7,p=8

Proof (1950-)
(@@ (Riemmanian); @@® (pseudo-Riemannian) Kulkarni 81, K—'94 )


http://www.ms.u-tokyo.ac.jp/~toshi/pub/33.html

Existence problem of compact space forms

¢ For pseudo-Riemannian manifold of signature (p, ¢)

Theorem Compact space forms of negative curvature « exist if
Dgany,p=0 (& k>0)

@ g =0,pany (hyperbolic sp)

®@¢g=1,p=0 mod 2 (anti-de Sitter space)

@qg=3,p=0 mod 4} (pseudo-Riemannian)

®q¢g=7,p=8

Proof (1950-)
(@@ (Riemmanian); @@® (pseudo-Riemannian) Kulkarni 81, K—'94 )
Obstruction:
Compact space forms of x < 0 do not exist if
p < g (Calabi-Markus, Wolf '62, K- '89),
or pq is odd (generalized Hirzebruch’s proportionality principle, K-Ono)


http://www.ms.u-tokyo.ac.jp/~toshi/pub/33.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/9.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/14.html

Compact manifolds modelled on SL(n)/SL(m)?

Problem: Does there exist compact Hausdorff quotients of
SL(n,F)/SL(m,F) (n>m, F=R,C,H)
by discrete subgps of SL(n,F)?




Compact quotients for SL(n)/SL(m)

Conijecture (non-existence of compact forms) has been proved for:

A
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Conijecture (non-existence of compact forms) has been proved for:
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Compact quotients for SL(n)/SL(m)

Conijecture (non-existence of compact forms) has been proved for:
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Compact quotients for SL(n)/SL(m)

Conijecture (non-existence of compact forms) has been proved for:

t A Labourie-Zimmer (Mat Res Let '95)
m
8 T S ONO),
7+ .« o A A B®G®
6 1 B ORORORONY
51 - - AP ®E®®
47 - OPOR®®®®
37 - O OI®O®®®
2 /@@@@@@@@@@@
T K (Proc LakeKawaguchl 90) . Q .K_(PUK(?Ma.th '92)

12345678910111213n

X Zimmer (Jour. AMS '94)
A Labourie-Mozes—Zimmer (GAFA '95)



Compact quotients for SL(n)/SL(m)

Conijecture (non-existence of compact forms) has been proved for:
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Compact quotients for SL(n)/SL(m)

Conijecture (non-existence of compact forms) has been proved for:
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Compact quotients for SL(n)/SL(m)

Conjecture (non-existence of compact forms) has been proved for:

3
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—

t A Labourie-Zimmer (Mat Res Let '95)
O Benoist (Ann Math '96)

| Margulis
g\@ . 00®®®
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O k- (bu > Math '92)
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Methods for non-existence of compact forms

Conjecture SL(n)/SL(m) (n > m > 1)
has no cocompact discontinuous group.

K- criterion of proper actions % > [241]
Zimmer  orbit closure thm (Ratner) n > 2m
Labourier—-Mozes—Zimmer

ergodic action n>2m
Benoist  criterion of proper actions n=m+ 1, meven
Margulis  unitary representation n=5m=2)

Shalom unitary representation n>4,m=2
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Geometric and analytic questions —locally symmetric spaces

Shorter strings produce a higher pitch than
longer strings.

Thinner strings produce a higher pitch than
thicker strings.

Geometric Question
Do compact locally symmetric spaces M exist?
Rigidity / Deformation ?

Analytic Question
Does point spectrum of the Laplacian A,; exist? ﬁ
If so, construct L?-eigenfunctions.
Stability of eigenvalues ?




Deformation v.s. rigidity
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Deformation v.s. rigidity

C O H
discrete  simple Lie gp

G

NG G/H

N v
I'G/H compact Hausdorff

» Riemannian case (H: compact) - - - Rigid in most cases
Rigidity theorem (Selberg, Weil, Mostow, Margulis, Zimmer, .. .)

Inon-trivial deformation < I'\G/H =

(Teichmdller space - - - deformation)

e pseudo-Riemannian case (H: non-compact) - - - “quite flexible”
Deformation (Goldman, Ghys, K-, Kassel, ...)



http://www.ms.u-tokyo.ac.jp/~toshi/pub/49.html

Eigenvalues and deformation of periods (1 dim’l case)
Fixp>0  Xp:= R/%’TZ

2n
= .
Spec(Xr, A) := {4 ~f # 0 of period - st.
Af = Af




Eigenvalues and deformation of periods (1 dim’l case)
Fixp>0  Xp:= R/%’TZ

2n
= .
Spec(Xr, A) := {4 ~f # 0 of period - s.t.
Af = Af

f(x) =sinpmx, cospmx (m=0,x1,%£2,...)

are such eigenfunctions. Therefore

| Spec(Xr, A) = (p*m? - m € 7) |




Eigenvalues and deformation of periods (1 dim’l case)
Fixp>0  Xp:= R/%’TZ

2n
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Spec(Xr, A) := A:7f # 0 of period — s.t.
Af =Af

f(x) =sinpmx, cospmx (m=0,x1,%£2,...)

are such eigenfunctions. Therefore
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Xr = R/%”Z Spec(Xr, A)
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p=2 @ (0,4, 16, 36, 64, 100, . . .}



Eigenvalues and deformation of periods (1 dim’l case)
Fixp>0  Xp:= R/%’TZ

2
.3 .
Spec(Xt, A) := A: 7 f # 0 of period — s.t.
Af = Af

f(x) =sinpmx, cospmx (m=0,x1,%£2,...)
are such eigenfunctions. Therefore

| Spec(Xr, A) = {p*m? : m € Z) |

Xr = R/%’TZ Spec(Xr, A)
p=1 {0,1,4,9,16,25,...}
—————
lstable lvaries
lvaries

p=2 @ (0,4, 16, 36, 64, 100, . . .}
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Deformation of torus (flat case)

e :=2x(1,0), & :=2n(0,1)

Spec(A)
R2/Zé; + Zé5 @ (m* +n%:m,n e
2r
$
2 - 1 -
R°/Zel +Z—é3
0
27mp
9’ 9?



Deformation of torus (flat case)

e :=2x(1,0), & :=2n(0,1)

Spec(A)
R2/Zé; + Zé5 @ (m* +n%:m,n e
2n
3 $ Spectrum varies
1
RZ/Ze_i +7Z—é5 © {m2 +p2n2 tm,n € 7}
0
27mp
L &
C o oy

ds? = dx* + dy?



Eigenvalues vary on deformation space

@ (flat)

1

TZ

Observation (flat case) Any non-zero eigenvalue
of the Laplacian on T? varies on the
deformation space.




Eigenvalues vary on deformation space

T? ~ @ (flat)

Observation (flat case) Any non-zero eigenvalue
of the Laplacian on T? varies on the
deformation space.

g (curvature = —1)

Fact (Wolpert, 1994) Any non-zero eigenvalue
of the Laplacian on the compact hyperbolic manifold X, varies
on the Teichmliller space.

--- Spectrum is unstable
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Quick course on pseudo-Riemannian manifold

pseudo-Riemannian manifold

Lorentzian
manifold

Riemannian
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space

Euclidean
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O @
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hyperbolic anti de Sitter
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3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

ﬁ Lorentz manifold with sectional curvature = —1
e

Cf. Hyperbolic manifold

ﬁ Riemannian manifold with sectional curvature = —1
e



3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

ﬁ Lorentz manifold with sectional curvature = —1
e

In the previous examples (flat case, hyperbolic manifold), any
eigenvalue A of the Laplacian varies except for A = 0 (constant
functions are obviously eigenfunctions). However,



3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold
ﬁ Lorentz manifold with sectional curvature = -1
e

In the previous examples, any eigenvalue A of the Laplacian varies
except for 1 = 0 (constant functions are obviously eigenfunctions).
However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)
There exists infinitely many
‘stable’ eigenvalues of the Laplacian O
on 3-dimensional compact anti-de Sitter manifold.



http://arxiv.org/abs/1209.4075

3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

ﬁ Lorentz manifold with sectional curvature = —1
e

In the previous examples, any eigenvalue A of the Laplacian varies
except for 1 = 0 (constant functions are obviously eigenfunctions).
However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)
There exists infinitely many
‘stable’ eigenvalues of the Laplacian O
on 3-dimensional compact anti-de Sitter manifold.

Remark X Riemannian — Laplacian A is elliptic
Lorentzian = O hyperbolic


http://arxiv.org/abs/1209.4075

3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

ﬁ Lorentz manifold with sectional curvature = —1
e

In the previous examples, any eigenvalue A of the Laplacian varies
except for 4 = 0 (constant functions are obviously eigenfunctions).
However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)
There exists infinitely many
‘stable’ eigenvalues of the Laplacian o
on 3-dimensional compact anti-de Sitter manifold.

eigenvalues --- L?-eigenfunctions
(Note: eigenfunctions are not always real analytic)


http://arxiv.org/abs/1209.4075

3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold
ﬁ Lorentz manifold with sectional curvature = —1
e

In the previous examples, any eigenvalue A of the Laplacian varies
except for 1 = 0 (constant functions are obviously eigenfunctions).
However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)
There exists infinitely many
‘stable’ eigenvalues of the Laplacian O
on 3-dimensional compact anti-de Sitter manifold.

‘stable’ = ‘does NOT vary under deformation’
de' of anti-de Sitter structure

The deformation space (modulo conjugation) has
dimension 12g — 12


http://arxiv.org/abs/1209.4075

‘Universal sound’ for anti-de Sitter manifolds

Usually,

Shorter strings produce a higher pitch
than longer strings.

Thinner strings produce a higher pitch
than thicker strings.




‘Universal sound’ for anti-de Sitter manifolds

Usually,

Shorter strings produce a higher pitch
than longer strings.

Thinner strings produce a higher pitch
than thicker strings.

However,

for some locally symmetric spaces
such as 3-dim’l anti-de Sitter manifolds,
there exist countably many stable L>-eigenvalues.




Spectral analysis on I'\G/H beyond Riemannian setting

) r C G D> H SL(2,Z) c SL(2,R) D SO(2)
discrete subgp Lie group subgroup
G SL(2,R)
/ N / N
G/T G/H R\ (R L
N / \ /
I"\G/H
-10 1

New challenge: Initiate spectral analysis of A on I'\G/H
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

* (geometry) existence of good geometry I'N\G/H?
study of “local to global” beyond Riemannian setting

e (analysis) Laplacian is no more elliptic.

o (representation theory) volume (I'\G) = o even when I'\G/H
is compact




Geometric and analytic questions —locally symmetric spaces

Shorter strings produce a higher pitch than
longer strings.

Thinner strings produce a higher pitch than
thicker strings.

Geometric Question
Do compact locally symmetric spaces M exist?
Rigidity / Deformation ?

Analytic Question
Does point spectrum of the Laplacian A,; exist? ﬁ
If so, construct L?-eigenfunctions.
Stability of eigenvalues ?




Construction of stable L*-spectrum of Laplacian on I'\G/H

Af=Af on T\G/H

Step 1 Construction of (non-periodic) eigenfunctions
Step 2 Existence/Construction of I

Step 3 Construction of periodic eigenfunctions (Poincaré series)
e Geometric estimate

e Analytic estimate



Geometric construction of eigenfunctions

Idea of computer tomography (try to ‘see’ the inside)




Construction of stable L*-spectrum of Laplacian on I'\G/H

Af=Af on T\G/H

Step 1 Construction of (non-periodic) eigenfunctions

Step 2 Existence/Construction of I

Step 3 Construction of periodic eigenfunctions (Poincaré series)
e Geometric estimate

e Analytic estimate



Model space and quotients

Model space Quotients

(Euclidean) R2 ~ R2/Z2~ @

(Riemannian) v ~ (g22)

hyperbolic space hyperbolic manifold

?
(Lorentzian) AdS" ~

anti-de Sitter space anti-de Sitter manifold



Construction of stable L>-spectrum of Laplacian on I'\G/H

Af=Aaf on I'\G/H

Step 1 Construction of (non-periodic) eigenfunctions
(integral geometry, Poisson transform)

Step 2 Existence/Construction of I' (local to global)
Step 3 Construction of periodic eigenfunctions (Poincaré series)
non-periodic eigenfunction — periodic eigenfunctions

J) = X f(y-x)
yell

e Geometric estimate for proper actions T~ G/H
(Kazhdan—Margulis, K—, Benoist, Kassel, . ..)
o Analytic estimate of eigenfunctions on G/H

(systems of PDEs, micro-local analysis)
(Sato—Kashiwara—Kawai, Oshima, . ..)



Construction of stable L>-spectrum of Laplacian on I'\G/H

Af=Aaf on I'\G/H

Step 1 Construction of (non-periodic) eigenfunctions
(integral geometry, Poisson transform)

Step 2 Existence/Construction of I' (local to global)
Step 3 Construction of periodic eigenfunctions (Poincaré series)
non-periodic eigenfunction — periodic eigenfunctions

J) = X f(y-x)
yell

e Geometric estimate for proper actions '~ G/H
(Kazhdan—Margulis, K—, Benoist, Kassel, . ..)
o Analytic estimate of eigenfunctions on G/H

(systems of PDEs, micro-local analysis)
(Sato—Kashiwara—Kawai, Oshima, . ..)
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Idea: Use the theory of unitary representations
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with continuous spectrum (usual)
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more differential equations!
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Thank you very much!



