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• Γ = {e} · · · non-commutative harmonic analysis on L2(G/H)

Gelfand, Harish-Chandra, T. Oshima, Delorme, . . .

• H compact · · · automorphic forms

Siegel, Selberg, Piateski-Shapiro, Langlands, Arthur, Sarnak, Müller, . . .

• G = Rp,q (abelian, but non-Riemannian), Γ = Zp+q

Oppenheim conjecture, Dani–Margulis, Ratner, . . .
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study of “local to global” beyond Riemannian setting
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New challenge: Initiate spectral analysis of ∆ on Γ\G/H
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

{ need to change methods for the study!
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∆ = −
(
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+
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)

on R3

Definition f (x, y, z) is an eigenfunction of ∆

⇐⇒ ∆ f (x, y, z) = λ f (x, y, z)

eigenvalue

This is the Helmholtz equation√
λ : wavenumber

f (x, y, z) : amplitude
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Spectrum of Laplacian (1-dim’l case)

∆ = −
d2

dx2
on R (real line)

Definition f (x) is an eigenfunction of ∆

⇐⇒ ∆ f (x) = λ f (x)

Example f (x) = sin mx

=⇒ f ′(x) = m cos mx

f ′′(x) = −m2 sin mx = −m2 f (x)

∴ ∆ f = m2 f

Namely,






f (x) = sin mx : eigenfunction of ∆

m2 : eigenvalue (m : wavenumber)
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Spectrum of Laplacian (1-dim’l case)

∆ = −
d2

dx2
on R (real line)

Definition f (x) is an eigenfunction of ∆

⇐⇒ ∆ f (x) = λ f (x)

Example f (x) = sin mx (m ∈ Z)

∴ ∆ f = m2 f
m = 1 m = 2m = 3

0 π 2π−π−2π

Periodic function For m ∈ Z, f (x) = sin ρmx satisfies

∆ f = ρ2m2 f

f (x +
2π

ρ
) = f (x) period

2π

ρ
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frequency

{

higher

period

2π

{
2π
ρ

shorter (ρ > 1)

Eigenvalues of ∆ : {m2π2 : m = 1, 2, 3, . . . } ⇒ {ρ2m2π2 : m = 1, 2, 3, . . . }

Shorter strings produce a higher pitch
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Riemannian geometry

Loosely, balls with radius R (> 0) are defined at every point.

A little more precisely, the ‘distance’ is integrated from the

‘infinitesimal distance.’
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Riemannian manifold Lorentzian manifold pseudo-Riemannian
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i=1

x2
i −

q∑

j=1

y2
j

∣
∣
∣
∣
∣
∣
∣

≤ R2

In higher dimensional case
generalize

R
n x1

2
+ x2

2
+ · · · + xn−1

2
+ xn

2
=⇒ Riemannian geometry

R
n−1,1 x1

2
+ x2

2
+ · · · + xn−1

2 − xn
2

=⇒ Lorentzian geometry

R
p,q x1

2
+ · · · + xp

2 − xp+1
2 − · · · − xp+q

2
=⇒ pseudo-Riemannian geometry
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Introduction to Laplacian ∆

Laplacian ∆

· · · ‘Intrinsic’ differential operator in Riemannian geometry

or more generally

in pseudo-Riemannian geometry

Goal: give an elementary definition of Laplacian ∆

· · · for undergraduate students
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X (pseudo-)Riemannian manifold

f (x) : function on X

fε(x) : average of f in the ball with radius ε centered at x.

ε
x { {

Def (Laplacian) ∆ f (x) := −6 lim
ε→0

1
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Ex. ∆ = −
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 +
∂2

∂t2

)

for X = R4 (Euclidean space)

∆ = −
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 − ∂
2

∂t2

)

for X = R3,1 (Minkowski space)



Laplacian in pseudo-Riemannian geometry

X (pseudo-)Riemannian manifold

f (x) : function on X

fε(x) : average of f in the ball with radius ε centered at x.

ε
x { {

Def (Laplacian) ∆ f (x) := −6 lim
ε→0

1

ε2
( fε(x) − f (x)) = − div ◦ grad f

Ex. ∆ = −
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 +
∂2

∂t2

)

for X = R4 (Euclidean space)

∆ = −
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 − ∂
2

∂t2

)

for X = R3,1 (Minkowski space)

∆ = −
(

∂2

∂x2 +
∂2

∂y2 − ∂
2

∂z2 − ∂
2

∂t2

)

for X = R2,2
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Construction of eigenfunctions of Laplacian

How can we construct eigenfunctions f ?

∆ f = λ f .

We shall explain its idea in the following case with λ = 0:

Example X = R2,2

= R
4 endowed with pseudo-Riemannian str.

dp2
+ dq2 − dr2 − ds2

∆ ≡ ∆R2,2 = −
∂2

∂p2
−
∂2

∂q2
+
∂2

∂r2
+
∂2

∂s2
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Integral geometry

Idea of computer tomography (try to ‘see’ the inside)

X = {points}, Y = {lines}

R : Γ(X)→ Γ(Y), f 7→ (R f )(l) =

∫

l

f (x)

Find the inversion R−1 ⇐⇒ ‘see’ the inside
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Geometric construction of eigenfunctions

X = R3

Y = {lines in R3} + R4

Generic lines in R3 is given as

la,b,c,d := {(t, at + b, ct + d) : t ∈ R}
with parameter (a, b, c, d) ∈ R4.

f (x, y, z) function on X = R3

7→

(R f )(a, b, c, d) :=

∫ ∞

−∞
f (t, at + b, ct + d)dt

function on Y + R4 ∋ (a, b, c, d)
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Geometric construction of eigenfunctions

f (x, y, z) 7→ R f (a, b, c, d) =

∫ ∞

−∞
f (t, at + b, ct + d)dt

=⇒
(

∂2

∂a ∂d
− ∂2

∂b ∂c

)

R f = 0 for any f (x, y, z)

Proof.

(

∂2

∂a ∂d
− ∂2

∂b ∂c

)

R f (a, b, c, d)

=

∫ ∞

−∞

(

∂2

∂a ∂d
− ∂2

∂b ∂c

)

f (t, at + b, ct + d)dt

=

∫ ∞

−∞
t

{

∂2 f

∂y ∂z
(t, at + b, ct + d) −

∂2 f

∂y ∂z
(t, at + b, ct + d)

}

dt

= 0
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f (t, at + b, ct + d)dt

=⇒
(

∂2
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)
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(

∂2

∂p2
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)

R f = 0

R f (a, b, c, d) is an eigenfunction of the Laplacian ∆R2,2 with 0

eigenvalue for any function f (x, y, z).



Geometric construction of eigenfunctions

f (x, y, z) 7→ R f (a, b, c, d) =

∫ ∞

−∞
f (t, at + b, ct + d)dt

=⇒
(

∂2

∂a ∂d
− ∂2

∂b ∂c

)

R f = 0 for any f (x, y, z)

⇓ change of variables

a = p + s, b = r + q, c = r − q, d = p − s

(

∂2

∂p2
+
∂2

∂q2
−
∂2

∂r2
−
∂2

∂s2

)

R f = 0

R f (a, b, c, d) is an eigenfunction of the Laplacian ∆R2,2 with 0

eigenvalue for any function f (x, y, z).

F. John (1938): Use the Radon transform to construct a solution

∆R2,2 h = 0
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Periodic function and quotient space

Periodic function f (x) on R

f (x) = f (x + 1) period 1

⇐⇒ f (x) is a function of the decimal part of x

⇐⇒ f (x) is a function of x ∈ R/Z ≃ S 1

{

visualize ?

Minutes

R/60Z ≃ 15

0

45

30

≃ S 1 circle
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double period
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
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F(x, y) = F(x, y + b)
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Model space and quotients

Model space Quotients

R { R/Z ≃

(Euclidean) R
2

{ R
2/Z2≃

(Riemannian)

hyperbolic space

{

1 2 · · · g
(g ≥ 2)

hyperbolic manifold

(Lorentzian) AdSn

anti-de Sitter space
{

?

anti-de Sitter manifold



Most round shape (locally)

(M, g) : pseudo-Riemannian mfd,

geodesically complete

Def. (M, g) is a space form

⇐⇒ sectional curvature κ is constant
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Space form · · ·





Signature (p, q) of pseudo-Riemannian metric g

Curvature κ ∈ {+, 0,−}

E.g. q = 0 (Riemannian mfd)

sphere S n
R

n hyperbolic sp

κ > 0 κ = 0 κ < 0

E.g. q = 1 (Lorentz mfd)

de Sitter sp Minkowski sp anti-de Sitter sp

κ > 0 κ = 0 κ < 0
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Global nature of most round objects

Space form problem for pseudo-Riemannian mfds

Local Assumption

signature (p, q), curvature κ ∈ {+, 0,−}

⇓

Global Results

• Do compact models exist?

Is the universe closed?

• What groups can arise as their fundamental groups?
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Existence problem of compact space forms

Riemannian case

Compact space forms always exist:

• κ > 0 S n

• κ = 0 R
n/Zn

• κ < 0 hyperbolic space

⇐⇒ Cocompact discrete subgps of O(n, 1) (uniform lattice) exist

(Siegel, Borel
︸          ︷︷          ︸

arithmetic

, Makarov, Vinberg, Johnson–Millson, Gromov–Piateski-Shapiro
︸                                                                                   ︷︷                                                                                   ︸

non-arithmetic

· · · )

Lorentzian case

n dimensional compact space forms

• κ > 0 (de Sitter mfd) NOT exist (Calabi–Markus phenomenon)

• κ = 0 ALWAYS exist

• κ < 0 (anti-de Sitter mfd) exist⇔ n is odd



Space forms (examples)

Space form · · ·





Signature (p, q) of pseudo-Riemannian metric g

Curvature κ ∈ {+, 0,−}

E.g. q = 0 (Riemannian mfd)

sphere S n
R

n hyperbolic sp

κ > 0 κ = 0 κ < 0

E.g. q = 1 (Lorentz mfd)

de Sitter sp Minkowski sp anti-de Sitter sp

κ > 0 κ = 0 κ < 0

More general case ?
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• For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

1© q any, p = 0 (↔ κ > 0)

2© q = 0, p any (hyperbolic sp)

3© q = 1, p ≡ 0 mod 2 (anti-de Sitter space)

4© q = 3, p ≡ 0 mod 4

Proof (1950– )

1©2© (Riemmanian) 3© (Lorentzian) 4© (more general)



Existence problem of compact space forms

• For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

1© q any, p = 0 (↔ κ > 0)

2© q = 0, p any (hyperbolic sp)

3© q = 1, p ≡ 0 mod 2 (anti-de Sitter space)

4© q = 3, p ≡ 0 mod 4

︷
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(pseudo-Riemannian)

5© q = 7, p = 8

Proof (1950– )

( 1©2© (Riemmanian); 3© 4© 5© (pseudo-Riemannian) Kulkarni ’81, K– ’94 )

http://www.ms.u-tokyo.ac.jp/~toshi/pub/33.html


Existence problem of compact space forms

• For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

1© q any, p = 0 (↔ κ > 0)

2© q = 0, p any (hyperbolic sp)

3© q = 1, p ≡ 0 mod 2 (anti-de Sitter space)

4© q = 3, p ≡ 0 mod 4

︷
 
 ︸
︸

 
 ︷

(pseudo-Riemannian)

5© q = 7, p = 8

Proof (1950– )

( 1©2© (Riemmanian); 3© 4© 5© (pseudo-Riemannian) Kulkarni ’81, K– ’94 )

Obstruction:

Compact space forms of κ < 0 do not exist if

p ≤ q (Calabi–Markus, Wolf ’62, K– ’89),

or pq is odd (generalized Hirzebruch’s proportionality principle, K–Ono)

http://www.ms.u-tokyo.ac.jp/~toshi/pub/33.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/9.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/14.html


Compact manifolds modelled on SL(n)/SL(m)?

Problem: Does there exist compact Hausdorff quotients of

SL(n, F)/SL(m, F) (n > m, F = R,C,H)

by discrete subgps of SL(n, F)?

n

n

m

m
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Compact quotients for SL(n)/SL(m)

Conjecture (non-existence of compact forms) has been proved for:

✲

✻

1 2 3 4 5 6 7 8 9 10 11 12 13 n

1
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6
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8

m
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• • • • • • • • • •

• • • • • • • • •
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✁✁✕
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❤ ❤ ❤ ❤ ❤

❤ ❤ ❤ ❤ ❤

❤ ❤

❤ ❤

❤
K– (Duke Math ’92)

× × × × × × × × ×
× × × × × × ×

× × × × ×
× × ×

×

× Zimmer (Jour. AMS ’94)

△

△

△

△ Labourie–Mozes–Zimmer (GAFA ’95)

△ △ △ △ △ △ △ △ △
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△ △ △ △ △ △
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△ △ △
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❡

❡

❡

❡
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△
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❆
❆❯

Shalom (Ann Math 2000)✻



Methods for non-existence of compact forms

Conjecture SL(n)/SL(m) (n > m > 1)

has no cocompact discontinuous group.

K– criterion of proper actions n
3
> [m+1

2
]

Zimmer orbit closure thm (Ratner) n > 2m

Labourier–Mozes–Zimmer

ergodic action n ≥ 2m

Benoist criterion of proper actions n = m + 1, m even

Margulis unitary representation (n ≥ 5,m = 2)

Shalom unitary representation n ≥ 4,m = 2
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Geometric and analytic questions — locally symmetric spaces

Shorter strings produce a higher pitch than

longer strings.

Thinner strings produce a higher pitch than

thicker strings.

Geometric Question

Do compact locally symmetric spaces M exist?

Rigidity / Deformation ?

Analytic Question

Does point spectrum of the Laplacian ∆M exist?

If so, construct L2-eigenfunctions.

Stability of eigenvalues ?
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Deformation v.s. rigidity

Γ
discrete

⊂ G
simple Lie gp

⊃ H

G

ւ ց
Γ\G G/H

ց ւ
Γ\G/H compact Hausdorff

• Riemannian case (H: compact) · · · Rigid in most cases

Rigidity theorem (Selberg, Weil, Mostow, Margulis, Zimmer, . . . )

∃non-trivial deformation⇐⇒ Γ\G/H = � � �

(Teichmüller space · · · deformation)

• pseudo-Riemannian case (H: non-compact) · · · “quite flexible”

Deformation (Goldman, Ghys, K– , Kassel, . . . )

http://www.ms.u-tokyo.ac.jp/~toshi/pub/49.html
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Eigenvalues and deformation of periods (1 dim’l case)

Fix ρ > 0 XΓ := R/2π
ρ
Z

Spec(XΓ,∆) :=






λ : ∃ f , 0 of period
2π

ρ
s.t.

∆ f = λ f






f (x) = sin ρmx, cos ρmx (m = 0,±1,±2, . . . )

are such eigenfunctions. Therefore

Spec(XΓ,∆) = {ρ2m2 : m ∈ Z}

XΓ = R/
2π
ρ Z Spec(XΓ,∆)

ρ = 1 1 {0, 1, 4, 9, 16, 25, . . .
︸               ︷︷               ︸

}

↓varies

↓stable ↓varies

ρ = 2 1
2 {0,

︷                    ︸︸                    ︷

4, 16, 36, 64, 100, . . .}
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Deformation of torus (flat case)

~e1 := 2π(1, 0), ~e2 := 2π(0, 1)

Spec(∆)

R
2/Z~e1 + Z~e2

2π

{m2
+ n2 : m, n ∈ Z}

f
R

2/Z~e1 + Z
1

ρ
~e2

2πρ

∆ = −
∂2

∂x2
−
∂2

∂y2



Deformation of torus (flat case)

~e1 := 2π(1, 0), ~e2 := 2π(0, 1)

Spec(∆)

R
2/Z~e1 + Z~e2

2π

{m2
+ n2 : m, n ∈ Z}

f f Spectrum varies

R
2/Z~e1 + Z

1

ρ
~e2

2πρ

{m2
+ ρ2n2 : m, n ∈ Z}

∆ = −
∂2

∂x2
−
∂2

∂y2

ds2
= dx2

+ dy2
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Eigenvalues vary on deformation space

T
2 ≃ (flat)

Observation (flat case) Any non-zero eigenvalue

of the Laplacian on T2 varies on the

deformation space.

Σg ≃ � � � (curvature ≡ −1)

Fact (Wolpert, 1994) Any non-zero eigenvalue

of the Laplacian on the compact hyperbolic manifold Σg varies

on the Teichmüller space.

· · · Spectrum is unstable
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3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

⇐⇒
def

Lorentz manifold with sectional curvature ≡ −1

Cf. Hyperbolic manifold

⇐⇒
def

Riemannian manifold with sectional curvature ≡ −1
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Def M: anti-de Sitter manifold

⇐⇒
def

Lorentz manifold with sectional curvature ≡ −1

In the previous examples, any eigenvalue λ of the Laplacian varies

except for λ = 0 (constant functions are obviously eigenfunctions).

However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)

There exists infinitely many

‘stable’ eigenvalues of the Laplacian �

on 3-dimensional compact anti-de Sitter manifold.

Remark X Riemannian =⇒ Laplacian ∆ is elliptic

Lorentzian =⇒ � hyperbolic
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3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

⇐⇒
def

Lorentz manifold with sectional curvature ≡ −1

In the previous examples, any eigenvalue λ of the Laplacian varies

except for λ = 0 (constant functions are obviously eigenfunctions).

However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)

There exists infinitely many

‘stable’ eigenvalues of the Laplacian �

on 3-dimensional compact anti-de Sitter manifold.

eigenvalues · · · L2-eigenfunctions

(Note: eigenfunctions are not always real analytic)

http://arxiv.org/abs/1209.4075


3-dim’l compact anti-de Sitter manifold

Def M: anti-de Sitter manifold

⇐⇒
def

Lorentz manifold with sectional curvature ≡ −1

In the previous examples, any eigenvalue λ of the Laplacian varies

except for λ = 0 (constant functions are obviously eigenfunctions).

However,

Theorem (joint with F. Kassel, arXiv: 1209.4075, 141 pages)

There exists infinitely many

‘stable’ eigenvalues of the Laplacian �

on 3-dimensional compact anti-de Sitter manifold.

‘stable’ =
def

‘does NOT vary under deformation’

of anti-de Sitter structure

The deformation space (modulo conjugation) has

dimension 12g − 12

http://arxiv.org/abs/1209.4075
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‘Universal sound’ for anti-de Sitter manifolds

Usually,

Shorter strings produce a higher pitch

than longer strings.

Thinner strings produce a higher pitch

than thicker strings.

However,

for some locally symmetric spaces

such as 3-dim’l anti-de Sitter manifolds,

there exist countably many stable L2-eigenvalues.



Spectral analysis on Γ\G/H beyond Riemannian setting

Γ
discrete subgp

⊂ G
Lie group

⊃ H
subgroup

SL(2,Z) ⊂ SL(2,R) ⊃ SO(2)

G

ւ ց
G/Γ G/H

ց ւ
Γ\G/H

SL(2,R)

ւ ց
R

3\

ց ւ

−1 0 1

New challenge: Initiate spectral analysis of ∆ on Γ\G/H
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

• (geometry) existence of good geometry Γ\G/H?

study of “local to global” beyond Riemannian setting

• (analysis) Laplacian is no more elliptic.

• (representation theory) volume (Γ\G) = ∞ even when Γ\G/H
is compact



Geometric and analytic questions — locally symmetric spaces

Shorter strings produce a higher pitch than
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Geometric Question

Do compact locally symmetric spaces M exist?

Rigidity / Deformation ?

Analytic Question

Does point spectrum of the Laplacian ∆M exist?

If so, construct L2-eigenfunctions.

Stability of eigenvalues ?



Construction of stable L2-spectrum of Laplacian on Γ\G/H

∆ f = λ f on Γ\G/H

Step 1 Construction of (non-periodic) eigenfunctions

Step 2 Existence/Construction of Γ

Step 3 Construction of periodic eigenfunctions (Poincaré series)

• Geometric estimate

• Analytic estimate



Geometric construction of eigenfunctions

Idea of computer tomography (try to ‘see’ the inside)



Construction of stable L2-spectrum of Laplacian on Γ\G/H

∆ f = λ f on Γ\G/H

Step 1 Construction of (non-periodic) eigenfunctions

Step 2 Existence/Construction of Γ

Step 3 Construction of periodic eigenfunctions (Poincaré series)

• Geometric estimate

• Analytic estimate



Model space and quotients

Model space Quotients

R { R/Z ≃

(Euclidean) R
2

{ R
2/Z2≃

(Riemannian)

hyperbolic space

{

1 2 · · · g
(g ≥ 2)

hyperbolic manifold

(Lorentzian) AdSn

anti-de Sitter space
{

?

anti-de Sitter manifold



Construction of stable L2-spectrum of Laplacian on Γ\G/H
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Further approach to analysis on Γ\G/H
Capture unstable eigenvalues · · · work in progress

Idea: Use the theory of unitary representations

G

irreducible x

Hilbert space

⊃
subgroup

L = Zariski closure of Γ

“decomposes”
−−−−−−−−−−−−→ +

with continuous spectrum (usual)

“decomposes”

−−−−−−−−−−−−−−−−→ · · ·

“discretely decomposable
branching law” (occasional)

larger symmetries {
symmetry breaking

smaller symmetries

7→
more differential equations!
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Thank you very much!


