

Global Geometry and Analysis on Locally Symmetric Spaces with Indefinite-metric

Toshiyuki Kobayashi

The Graduate School of Math. Sci. and Kavli IPMU (WPI)
the University of Tokyo
<http://www.ms.u-tokyo.ac.jp/~toshi/>

Lie Theory and Its Applications in Physics (LT-11)
Varna, Bulgaria
June 15–21, 2015

References

(Geometry)

[1] K- and T. Yoshino,
Compact Clifford–Klein forms of symmetric spaces—revisited,
Pure and Appl. Math. Quarterly 1 (2005), 603-684, Special
Issue: In Memory of Armand Borel,

(Analysis)

[2] K- ,
Hidden symmetries and spectrum of the Laplacian on an
indefinite Riemannian manifold, Spectral Analysis in
Geometry and Number Theory Contemp. Math., 484, Amer.
Math. Soc., 2009. Special Issue: in honor of T. Sunada

[3] F. Kassel and K- ,
Poincaré series for non-Riemannian locally symmetric spaces,
arXiv: 1209.4075.

[4] work in progress

Shorter strings produce a higher pitch than longer strings.

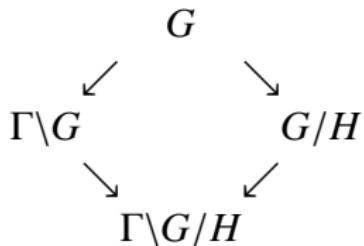
Thinner strings produce a higher pitch than thicker strings.

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\begin{array}{ccccc} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & & \text{Lie group} & & \text{subgroup} \end{array}$$

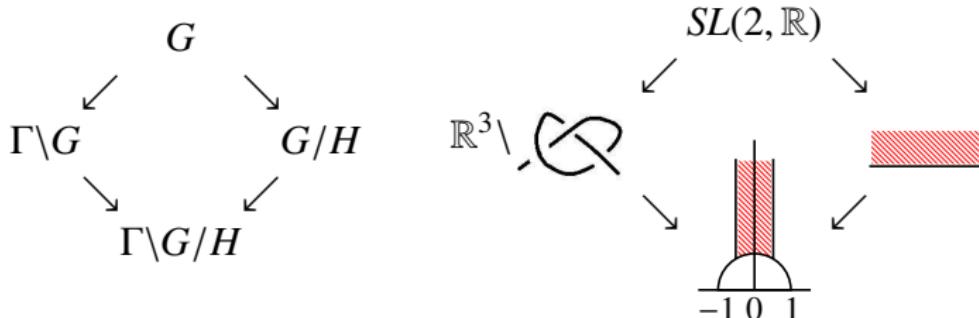
Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$\Gamma \subset G \supset H$
discrete subgp Lie group subgroup



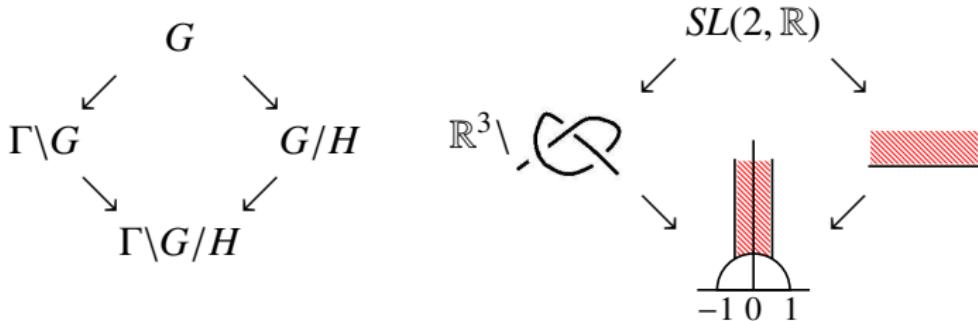
Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\text{discrete subgp} \quad \Gamma \subset \text{Lie group} \quad G \supset H \quad \text{subgroup} \quad SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R}) \supset SO(2)$$



Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\begin{array}{ccc} \Gamma & \subset & G \supset H \\ \text{discrete subgp} & \text{Lie group} & \text{subgroup} \end{array} \quad SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R}) \supset SO(2)$$

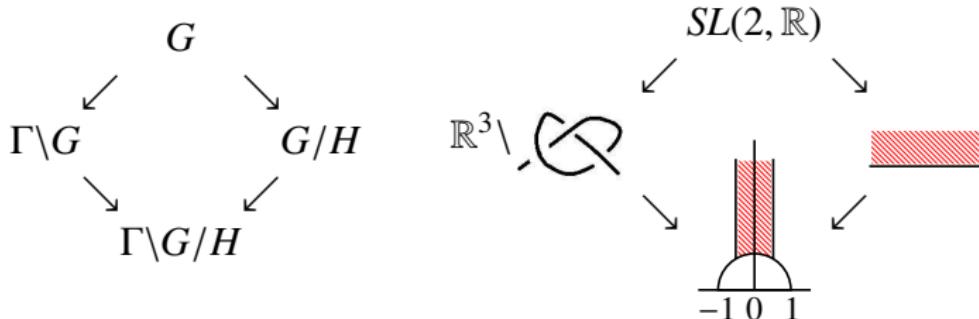


Special cases are already deep and difficult.

- $\Gamma = \{e\}$
- H compact
- $G = \mathbb{R}^{p,q}$

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\text{discrete subgp} \subset \text{Lie group} \supset \text{subgroup} \quad SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R}) \supset SO(2)$$

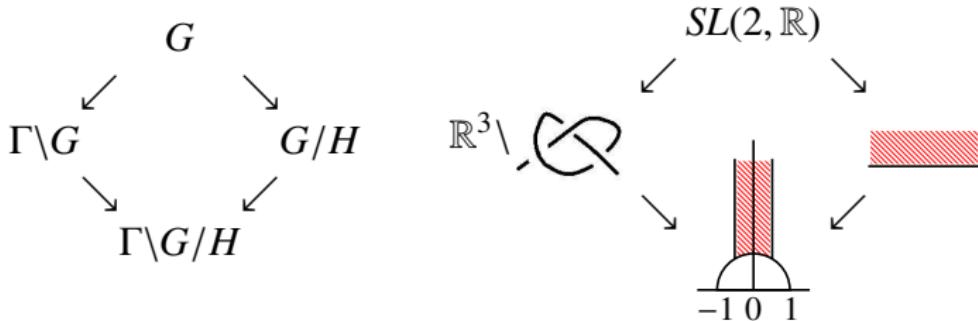


Special cases are already deep and difficult.

- $\Gamma = \{e\} \cdots$ non-commutative harmonic analysis on $L^2(G/H)$
Gelfand, Harish-Chandra, T. Oshima, Delorme, ...
- H compact
- $G = \mathbb{R}^{p,q}$

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\begin{array}{ccc} \Gamma & \subset & G \supset H \\ \text{discrete subgp} & \text{Lie group} & \text{subgroup} \end{array} \quad SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R}) \supset SO(2)$$

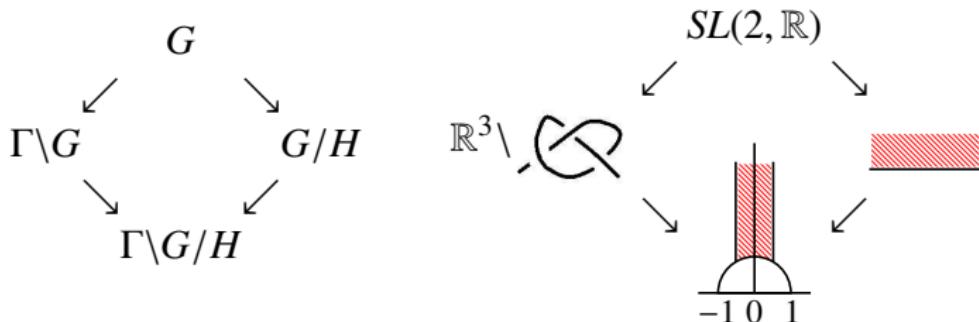


Special cases are already deep and difficult.

- $\Gamma = \{e\} \cdots$ non-commutative harmonic analysis on $L^2(G/H)$
Gelfand, Harish-Chandra, T. Oshima, Delorme, ...
- H compact \cdots automorphic forms
Siegel, Selberg, Piatetski-Shapiro, Langlands, Arthur, Sarnak, Müller, ...
- $G = \mathbb{R}^{p,q}$

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\text{discrete subgp} \quad \Gamma \subset \text{Lie group} \quad G \supset H \quad \text{subgroup} \quad SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R}) \supset SO(2)$$

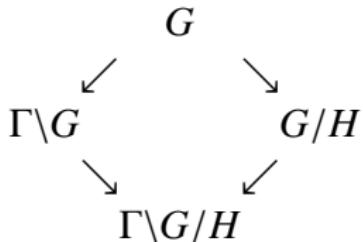


Special cases are already deep and difficult.

- $\Gamma = \{e\} \cdots$ non-commutative harmonic analysis on $L^2(G/H)$
Gelfand, Harish-Chandra, T. Oshima, Delorme, ...
- H compact \cdots automorphic forms
Siegel, Selberg, Piatetski-Shapiro, Langlands, Arthur, Sarnak, Müller, ...
- $G = \mathbb{R}^{p,q}$ (abelian, but non-Riemannian), $\Gamma = \mathbb{Z}^{p+q}$
Oppenheim conjecture, Dani–Margulis, Ratner, ...

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

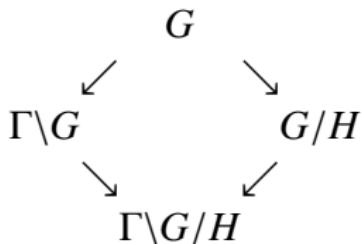
$\Gamma \subset G \supset H$
discrete subgp Lie group subgroup



New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$
in a more general setting (non-abelian G and non-compact H).

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

Γ discrete subgp \subset Lie group \supset subgroup H



New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$ in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

- (geometry)
- (analysis)
- (representation theory)

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

Γ discrete subgp \subset Lie group \supset subgroup H

$$\begin{array}{ccc} & G & \\ \swarrow & & \searrow \\ \Gamma \backslash G & & G/H \\ \searrow & & \swarrow \\ & \Gamma \backslash G/H & \end{array}$$

New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$ in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

- (geometry) existence of good geometry $\Gamma \backslash G/H$?
study of “local to global” beyond Riemannian setting
- (analysis)
- (representation theory)

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$\Gamma \subset G \supset H$
discrete subgp Lie group subgroup

$$\begin{array}{ccc} G & & \\ \swarrow & & \searrow \\ \Gamma \backslash G & & G/H \\ \searrow & \swarrow & \\ & \Gamma \backslash G/H & \end{array}$$

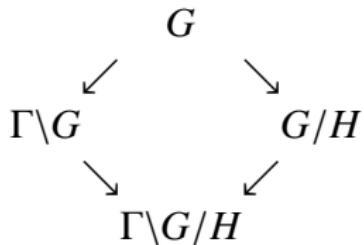
New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

- (geometry) existence of good geometry $\Gamma \backslash G/H$?
study of “local to global” beyond Riemannian setting
- (analysis) Laplacian is no more elliptic.
- (representation theory)

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$\Gamma \subset G \supset H$
discrete subgp Lie group subgroup



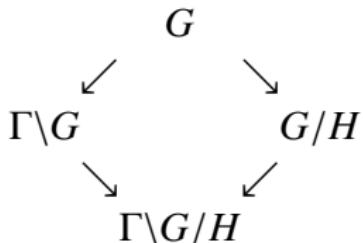
New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

- (geometry) existence of good geometry $\Gamma \backslash G/H$?
study of “local to global” beyond Riemannian setting
- (analysis) Laplacian is no more elliptic.
- (representation theory) $\text{vol}(\Gamma \backslash G) = \infty$ even when $\Gamma \backslash G/H$ is compact

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

Γ discrete subgp \subset Lie group \supset subgroup H



New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$
in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

~ need to change methods for the study!

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

Table of contents

0. Introduction
1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Table of contents

0. Introduction
1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Eigenvalue of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Eigenvalue of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

eigenvalue

Eigenvalue of Laplacian (3-dim'l case)

$$\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \text{ on } \mathbb{R}^3$$

Definition $f(x, y, z)$ is an eigenfunction of Δ

$$\iff \Delta [f(x, y, z)] = \lambda [f(x, y, z)]$$

eigenvalue

Eigenvalue of Laplacian (3-dim'l case)

$$\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \text{ on } \mathbb{R}^3$$

Definition $f(x, y, z)$ is an eigenfunction of Δ

$$\iff \Delta [f(x, y, z)] = \lambda [f(x, y, z)]$$

eigenvalue

This is the Helmholtz equation

$\sqrt{\lambda}$: wavenumber

$f(x, y, z)$: amplitude

Spectrum of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

$$\iff -f''(x) = \lambda f(x)$$

Spectrum of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$

Spectrum of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$

$$\implies f'(x) = m \cos mx$$

Spectrum of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$

$$\implies f'(x) = m \cos mx$$

$$f''(x) = -m^2 \sin mx = -m^2 f(x)$$

Spectrum of Laplacian (1-dim'l case)

$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$

$$\implies f'(x) = m \cos mx$$

$$f''(x) = -m^2 \sin mx = -m^2 f(x)$$

$$\therefore \Delta f = m^2 f$$

Namely, $\begin{cases} f(x) = \sin mx : \text{eigenfunction of } \Delta \\ m^2 : \text{eigenvalue } (m : \text{wavenumber}) \end{cases}$

Spectrum of Laplacian (1-dim'l case)

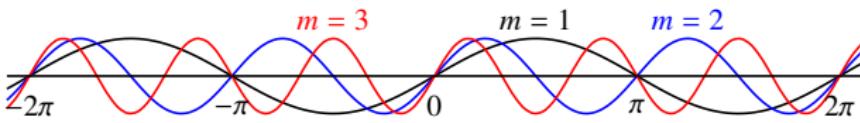
$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$ ($m \in \mathbb{Z}$)

$$\therefore \Delta f = m^2 f$$



Spectrum of Laplacian (1-dim'l case)

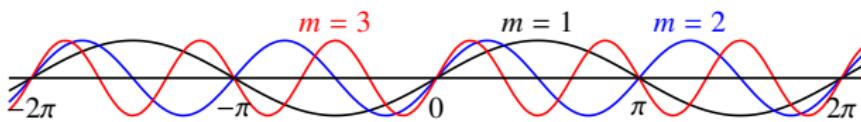
$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$ ($m \in \mathbb{Z}$)

$$\therefore \Delta f = m^2 f$$



Periodic function For $m \in \mathbb{Z}$, $f(x) = \sin mx$ satisfies

$$\Delta f = m^2 f$$

$$f(x + 2\pi) = f(x) \quad \text{period } 2\pi$$

Spectrum of Laplacian (1-dim'l case)

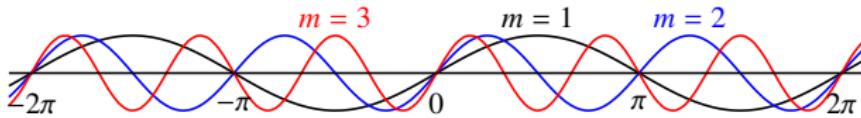
$$\Delta = -\frac{d^2}{dx^2} \text{ on } \mathbb{R} \text{ (real line)}$$

Definition $f(x)$ is an eigenfunction of Δ

$$\iff \Delta [f(x)] = \lambda [f(x)]$$

Example $f(x) = \sin mx$ ($m \in \mathbb{Z}$)

$$\therefore \Delta f = m^2 f$$

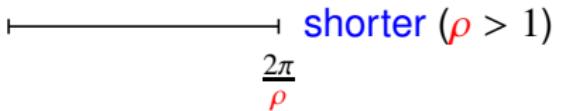


Periodic function For $m \in \mathbb{Z}$, $f(x) = \sin \rho mx$ satisfies

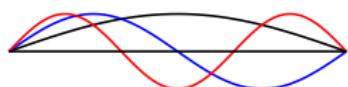
$$\Delta f = \rho^2 m^2 f$$

$$f(x + \frac{2\pi}{\rho}) = f(x) \quad \text{period } \frac{2\pi}{\rho}$$

Shorter strings produce a higher pitch
period

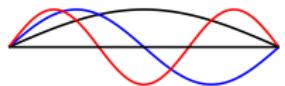


Shorter strings produce a higher pitch



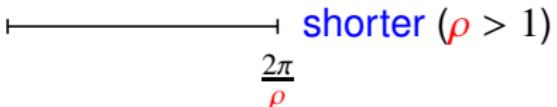
2

2π



higher

2



shorter ($\rho > 1$)

$$\frac{2\pi}{\rho}$$

$$\text{Eigenvalues of } \Delta : \{m^2\pi^2 : m = 1, 2, 3, \dots\} \Rightarrow \{\cancel{\rho}^2 m^2 \pi^2 : m = 1, 2, 3, \dots\}$$

Shorter strings produce a higher pitch

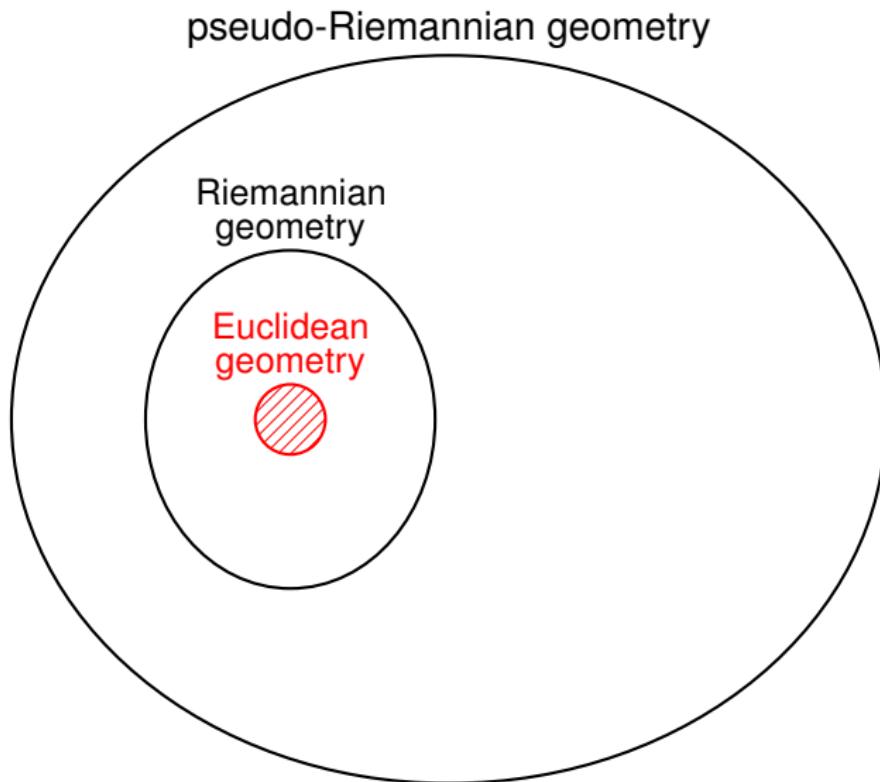
Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Table of contents

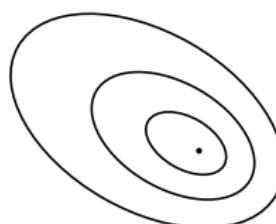
1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Introduction to pseudo-Riemannian geometry



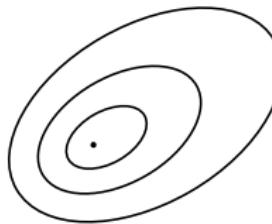
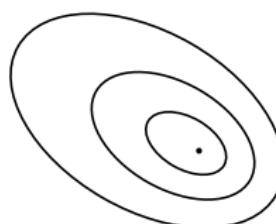
Riemannian geometry

Loosely, balls with radius R (> 0) are defined at every point.



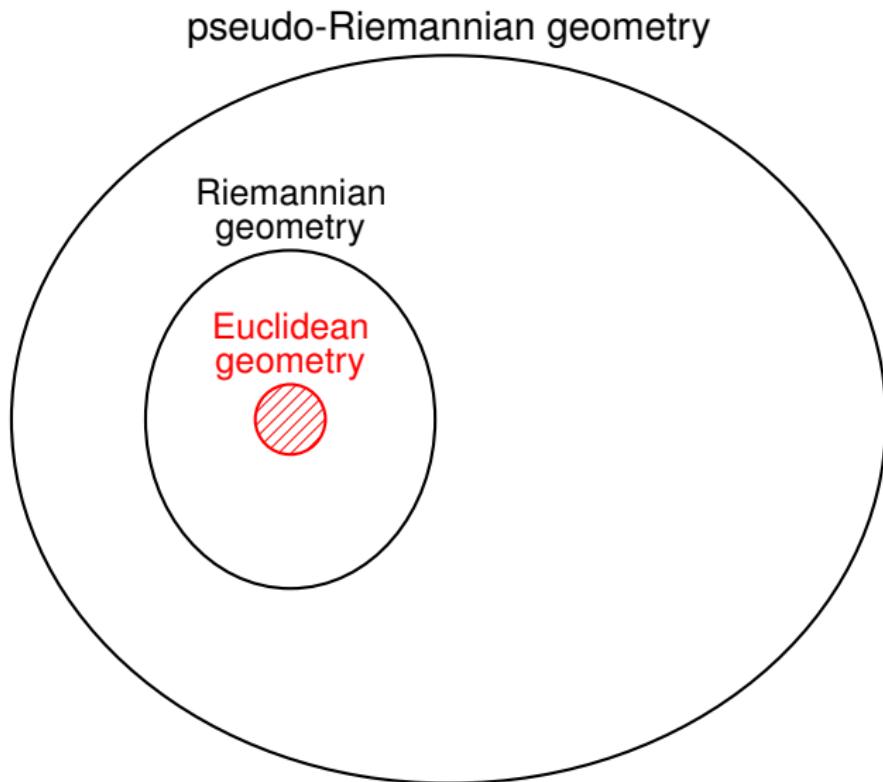
Riemannian geometry

Loosely, balls with radius R (> 0) are defined at every point.

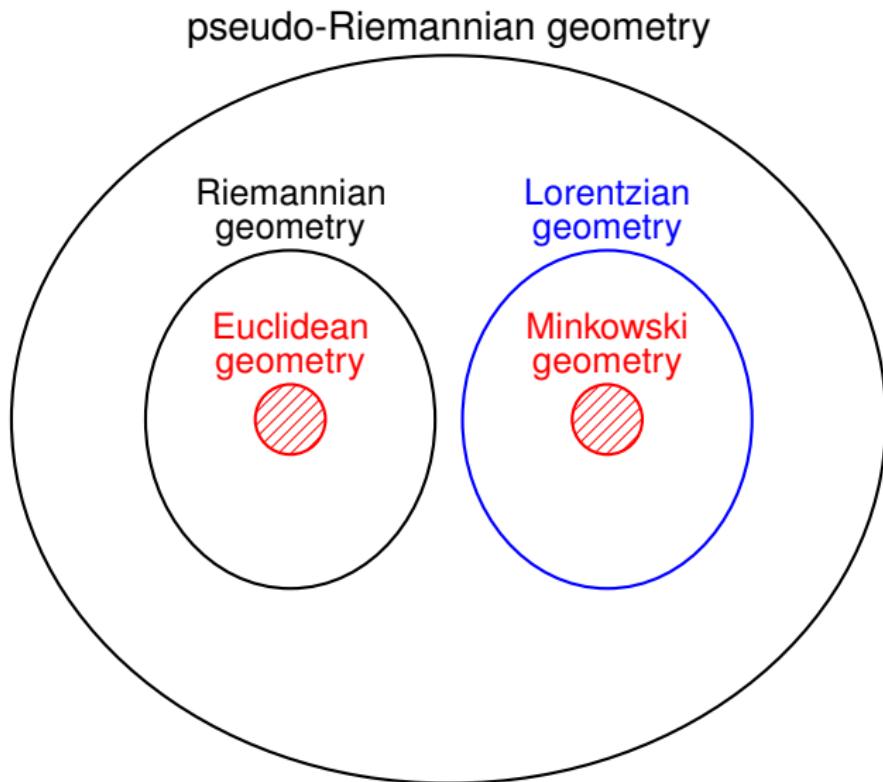


A little more precisely, the ‘distance’ is integrated from the ‘infinitesimal distance.’

Quick course on pseudo-Riemannian geometry

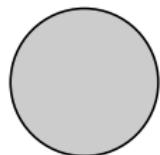


Quick course on pseudo-Riemannian geometry



Riemannian \Rightarrow Lorentzian \Rightarrow pseudo-Riemannian

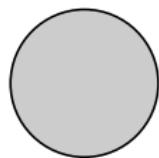
Euclidean space \mathbb{R}^2



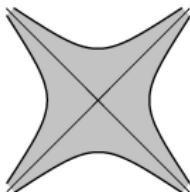
$$x^2 + y^2 \leq R^2$$

Riemannian \Rightarrow Lorentzian \Rightarrow pseudo-Riemannian

Euclidean space \mathbb{R}^2



Minkowski space $\mathbb{R}^{1,1}$



$\mathbb{R}^{p,q}$

$\leadsto \dots$

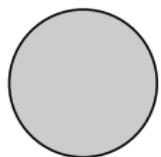
$$x^2 + y^2 \leq R^2$$

$$|x^2 - y^2| \leq R^2$$

$$\left| \sum_{i=1}^p x_i^2 - \sum_{j=1}^q y_j^2 \right| \leq R^2$$

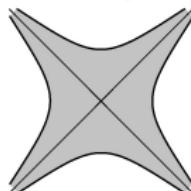
Riemannian \Rightarrow Lorentzian \Rightarrow pseudo-Riemannian

Euclidean space \mathbb{R}^2



\leadsto

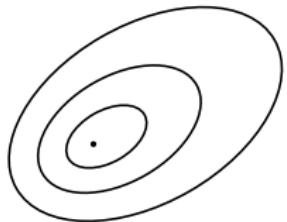
Minkowski space $\mathbb{R}^{1,1}$



$\leadsto \dots$

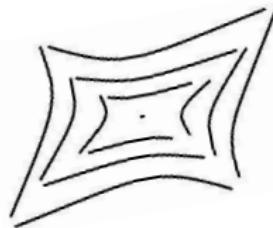
$$x^2 + y^2 \leq R^2$$

\curvearrowleft



\leadsto

Lorentzian manifold



$\leadsto \dots$

$\mathbb{R}^{p,q}$

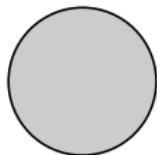
$$\left| \sum_{i=1}^p x_i^2 - \sum_{j=1}^q y_j^2 \right| \leq R^2$$

\curvearrowleft

pseudo-Riemannian

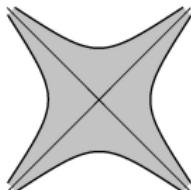
Riemannian \Rightarrow Lorentzian \Rightarrow pseudo-Riemannian

Euclidean space \mathbb{R}^2



\leadsto

Minkowski space $\mathbb{R}^{1,1}$



$\mathbb{R}^{p,q}$

$\leadsto \dots$

$$x^2 + y^2 \leq R^2$$

$$|x^2 - y^2| \leq R^2$$

$$\left| \sum_{i=1}^p x_i^2 - \sum_{j=1}^q y_j^2 \right| \leq R^2$$

In higher dimensional case

generalize

$$\mathbb{R}^n \quad x_1^2 + x_2^2 + \dots + x_{n-1}^2 + x_n^2 \quad \Rightarrow \text{Riemannian geometry}$$

$$\mathbb{R}^{n-1,1} \quad x_1^2 + x_2^2 + \dots + x_{n-1}^2 - x_n^2 \quad \Rightarrow \text{Lorentzian geometry}$$

$$\mathbb{R}^{p,q} \quad x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2 \quad \Rightarrow \text{pseudo-Riemannian geometry}$$

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Introduction to Laplacian Δ

Laplacian Δ

... 'Intrinsic' differential operator in Riemannian geometry

or more generally

in pseudo-Riemannian geometry

Goal: give an elementary definition of Laplacian Δ

... for undergraduate students

Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

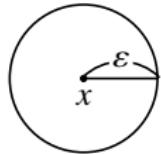
$f(x)$: function on X

Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .

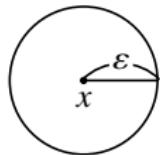


Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



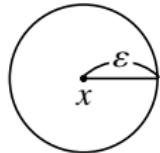
Obviously $f_\varepsilon(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$

Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



Obviously $f_\varepsilon(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$

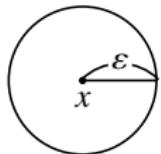
Ex. $X = \mathbb{R}$ $f_\varepsilon(x) = \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(t)dt$

Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



Obviously $f_\varepsilon(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$

Ex. $X = \mathbb{R}$ $f_\varepsilon(x) = \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(t)dt$

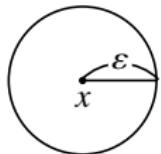
An easy computation shows $\lim_{\varepsilon \rightarrow 0} \frac{f_\varepsilon(x) - f(x)}{\varepsilon^2} = \frac{1}{6} f''(x) = \frac{-1}{6} \Delta f(x)$

Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



Obviously $f_\varepsilon(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$

Ex. $X = \mathbb{R}$ $f_\varepsilon(x) = \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(t)dt$

An easy computation shows $\lim_{\varepsilon \rightarrow 0} \frac{f_\varepsilon(x) - f(x)}{\varepsilon^2} = \frac{1}{6} f''(x) = \frac{-1}{6} \Delta f(x)$

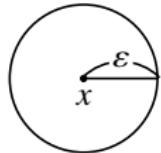
Def (Laplacian) $\Delta f(x) := -6 \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} (f_\varepsilon(x) - f(x)) = -\operatorname{div} \circ \operatorname{grad} f$

Laplacian in pseudo-Riemannian geometry

X Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



Def (Laplacian) $\Delta f(x) := -6 \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} (f_\varepsilon(x) - f(x)) = -\operatorname{div} \circ \operatorname{grad} f$

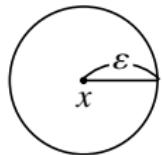
Ex. $\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial t^2}\right)$ for $X = \mathbb{R}^4$ (Euclidean space)

Laplacian in pseudo-Riemannian geometry

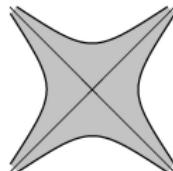
X (pseudo-)Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



~



~

Def (Laplacian) $\Delta f(x) := -6 \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} (f_\varepsilon(x) - f(x)) = -\operatorname{div} \circ \operatorname{grad} f$

Ex. $\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial t^2}\right)$ for $X = \mathbb{R}^4$ (Euclidean space)

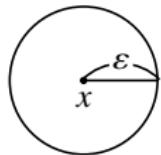
$\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial t^2}\right)$ for $X = \mathbb{R}^{3,1}$ (Minkowski space)

Laplacian in pseudo-Riemannian geometry

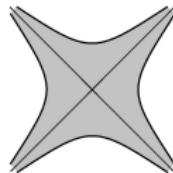
X (pseudo-)Riemannian manifold

$f(x)$: function on X

$f_\varepsilon(x)$: average of f in the ball with radius ε centered at x .



~



~

Def (Laplacian) $\Delta f(x) := -6 \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} (f_\varepsilon(x) - f(x)) = -\operatorname{div} \circ \operatorname{grad} f$

Ex. $\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial t^2}\right)$ for $X = \mathbb{R}^4$ (Euclidean space)

$\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial t^2}\right)$ for $X = \mathbb{R}^{3,1}$ (Minkowski space)

$\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial t^2}\right)$ for $X = \mathbb{R}^{2,2}$

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Construction of eigenfunctions of Laplacian

How can we construct eigenfunctions f ?

$$\Delta f = \lambda f.$$

Construction of eigenfunctions of Laplacian

How can we construct eigenfunctions f ?

$$\Delta f = \lambda f.$$

We shall explain its idea in the following case with $\lambda = 0$:

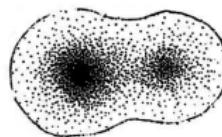
Example $X = \mathbb{R}^{2,2}$
 $= \mathbb{R}^4$ endowed with pseudo-Riemannian str.
$$\Delta \equiv \Delta_{\mathbb{R}^{2,2}} = -\frac{\partial^2}{\partial p^2} - \frac{\partial^2}{\partial q^2} + \frac{\partial^2}{\partial r^2} + \frac{\partial^2}{\partial s^2}$$

Integral geometry

Idea of computer tomography (try to 'see' the inside)

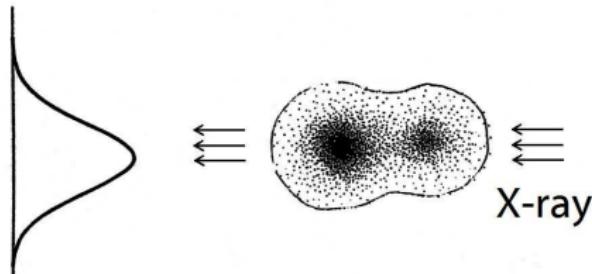
Integral geometry

Idea of computer tomography (try to 'see' the inside)



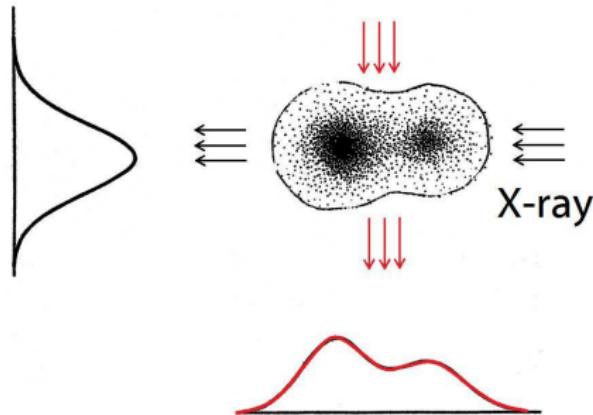
Integral geometry

Idea of computer tomography (try to 'see' the inside)



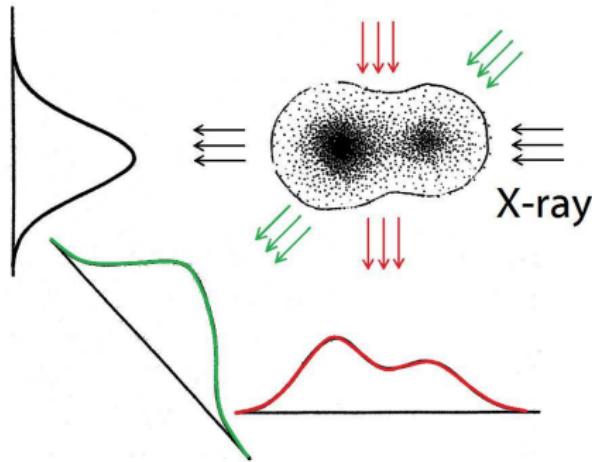
Integral geometry

Idea of computer tomography (try to 'see' the inside)



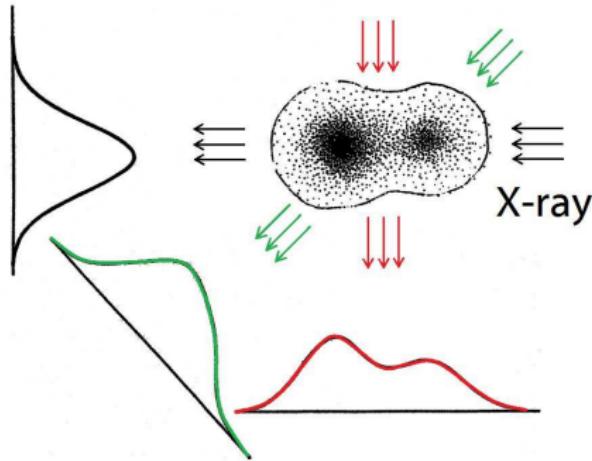
Integral geometry

Idea of computer tomography (try to 'see' the inside)



Integral geometry

Idea of computer tomography (try to 'see' the inside)

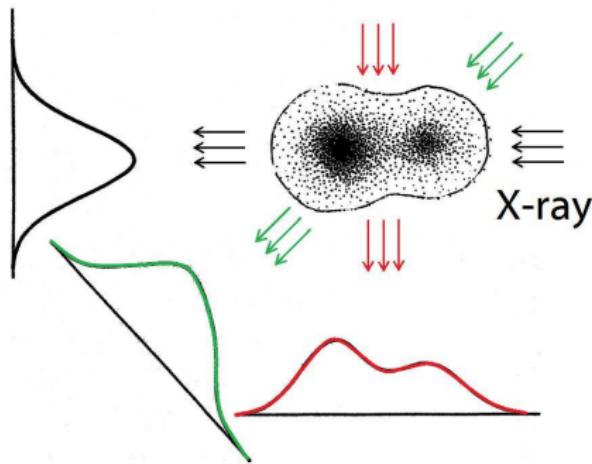


$X = \{\text{points}\}, \quad Y = \{\text{lines}\}$

$$R : \Gamma(X) \rightarrow \Gamma(Y), \quad f \mapsto (Rf)(l) = \int_l f(x)$$

Integral geometry

Idea of computer tomography (try to 'see' the inside)



$X = \{\text{points}\}, \quad Y = \{\text{lines}\}$

$$R : \Gamma(X) \rightarrow \Gamma(Y), \quad f \mapsto (Rf)(l) = \int_l f(x)$$

Find the inversion $R^{-1} \iff \text{'see' the inside}$

Geometric construction of eigenfunctions

$$X = \mathbb{R}^3$$

$$Y = \{\text{lines in } \mathbb{R}^3\} \div \mathbb{R}^4$$

Geometric construction of eigenfunctions

$$X = \mathbb{R}^3$$

$$Y = \{\text{lines in } \mathbb{R}^3\} \div \mathbb{R}^4$$

Generic lines in \mathbb{R}^3 is given as

$$l_{a,b,c,d} := \{(t, at + b, ct + d) : t \in \mathbb{R}\}$$

with parameter $(a, b, c, d) \in \mathbb{R}^4$.

Geometric construction of eigenfunctions

$$X = \mathbb{R}^3$$

$$Y = \{\text{lines in } \mathbb{R}^3\} \doteq \mathbb{R}^4$$

Generic lines in \mathbb{R}^3 is given as

$$l_{a,b,c,d} := \{(t, at + b, ct + d) : t \in \mathbb{R}\}$$

with parameter $(a, b, c, d) \in \mathbb{R}^4$.

$$f(x, y, z) \quad \text{function on } X = \mathbb{R}^3$$

↪

$$(Rf)(a, b, c, d) := \int_{-\infty}^{\infty} f(t, at + b, ct + d) dt$$

function on $Y \doteq \mathbb{R}^4 \ni (a, b, c, d)$

Geometric construction of eigenfunctions

$$\begin{aligned} f(x, y, z) \mapsto Rf(a, b, c, d) &= \int_{-\infty}^{\infty} f(t, at + b, ct + d) dt \\ \Rightarrow \left(\frac{\partial^2}{\partial a \partial d} - \frac{\partial^2}{\partial b \partial c} \right) Rf &= 0 \text{ for any } f(x, y, z) \end{aligned}$$

Geometric construction of eigenfunctions

$$\begin{aligned} f(x, y, z) \mapsto Rf(a, b, c, d) &= \int_{-\infty}^{\infty} f(t, at + b, ct + d) dt \\ \implies \left(\frac{\partial^2}{\partial a \partial d} - \frac{\partial^2}{\partial b \partial c} \right) Rf &= 0 \text{ for any } f(x, y, z) \end{aligned}$$

Proof.

$$\begin{aligned} & \left(\frac{\partial^2}{\partial a \partial d} - \frac{\partial^2}{\partial b \partial c} \right) Rf(a, b, c, d) \\ &= \int_{-\infty}^{\infty} \left(\frac{\partial^2}{\partial a \partial d} - \frac{\partial^2}{\partial b \partial c} \right) f(t, at + b, ct + d) dt \\ &= \int_{-\infty}^{\infty} t \left\{ \frac{\partial^2 f}{\partial y \partial z}(t, at + b, ct + d) - \frac{\partial^2 f}{\partial y \partial z}(t, at + b, ct + d) \right\} dt \\ &= 0 \end{aligned}$$

Geometric construction of eigenfunctions

$$\begin{aligned} f(x, y, z) &\mapsto Rf(a, b, c, d) = \int_{-\infty}^{\infty} f(t, at + b, ct + d) dt \\ &\implies \left(\frac{\partial^2}{\partial a \partial d} - \frac{\partial^2}{\partial b \partial c} \right) Rf = 0 \text{ for any } f(x, y, z) \end{aligned}$$

⇓ change of variables
 $a = p + s, b = r + q, c = r - q, d = p - s$

$$\left(\frac{\partial^2}{\partial p^2} + \frac{\partial^2}{\partial q^2} - \frac{\partial^2}{\partial r^2} - \frac{\partial^2}{\partial s^2} \right) Rf = 0$$

$Rf(a, b, c, d)$ is an eigenfunction of the Laplacian $\Delta_{\mathbb{R}^{2,2}}$ with 0 eigenvalue for any function $f(x, y, z)$.

Geometric construction of eigenfunctions

$$\begin{aligned} f(x, y, z) &\mapsto Rf(a, b, c, d) = \int_{-\infty}^{\infty} f(t, at + b, ct + d) dt \\ &\implies \left(\frac{\partial^2}{\partial a \partial d} - \frac{\partial^2}{\partial b \partial c} \right) Rf = 0 \text{ for any } f(x, y, z) \end{aligned}$$

⇓ change of variables
 $a = p + s, b = r + q, c = r - q, d = p - s$

$$\left(\frac{\partial^2}{\partial p^2} + \frac{\partial^2}{\partial q^2} - \frac{\partial^2}{\partial r^2} - \frac{\partial^2}{\partial s^2} \right) Rf = 0$$

$Rf(a, b, c, d)$ is an eigenfunction of the Laplacian $\Delta_{\mathbb{R}^{2,2}}$ with 0 eigenvalue for any function $f(x, y, z)$.

F. John (1938): Use the Radon transform to construct a solution
 $\Delta_{\mathbb{R}^{2,2}} h = 0$

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1) \quad \text{period 1}$$

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1) = f(x + 2) = f(x + 3) = \dots \quad \text{period 1}$$

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$\begin{aligned}f(x) &= f(x + 1) = f(x + 2) = f(x + 3) = \dots && \text{period 1} \\&= f(x - 1) = f(x - 2) = f(x - 3) = \dots\end{aligned}$$

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1) \quad \text{period 1}$$

$\iff f(x)$ is a function of the **decimal part** of x

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1) \quad \text{period 1}$$

\iff $f(x)$ is a function of the **decimal part** of x

\iff $f(x)$ is a function of $x \in \mathbb{R}/\mathbb{Z}$ (= real numbers/integers)

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1) \quad \text{period 1}$$

\iff $f(x)$ is a function of the **decimal part** of x

\iff $f(x)$ is a function of $x \in \mathbb{R}/\mathbb{Z}$

visualize ?

Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1)$$

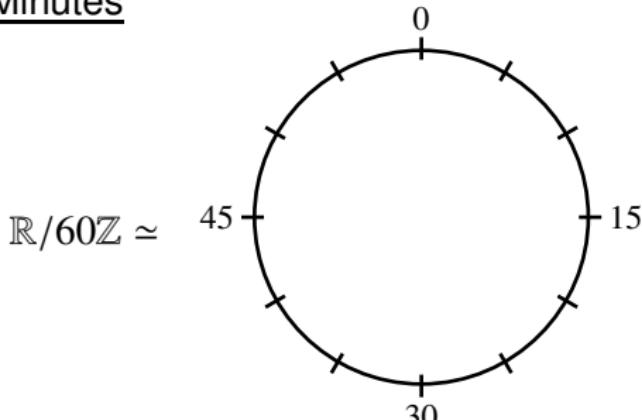
period 1

\iff $f(x)$ is a function of the decimal part of x

\iff $f(x)$ is a function of $x \in \mathbb{R}/\mathbb{Z}$

visualize ?

Minutes



Periodic function and quotient space

Periodic function $f(x)$ on \mathbb{R}

$$f(x) = f(x + 1)$$

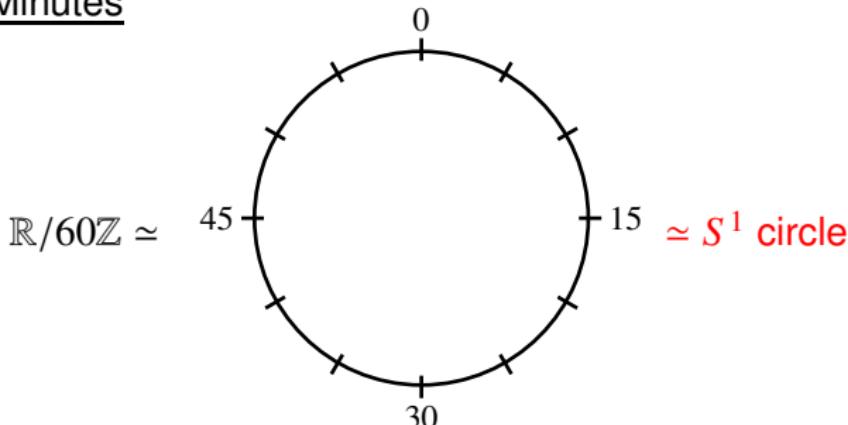
period 1

$\iff f(x)$ is a function of the decimal part of x

$\iff f(x)$ is a function of $x \in \mathbb{R}/\mathbb{Z} \simeq S^1$

visualize ?

Minutes



Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

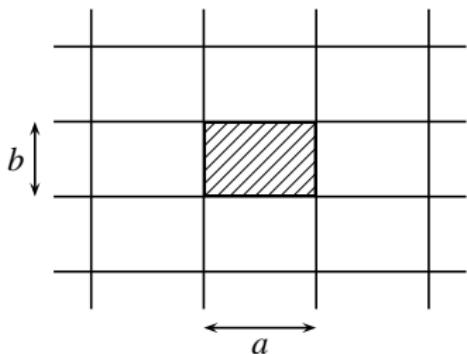
$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$

Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$

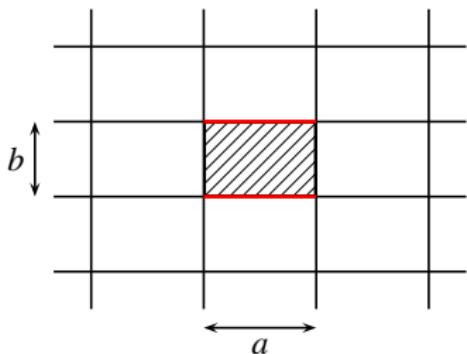
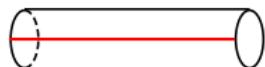


Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$

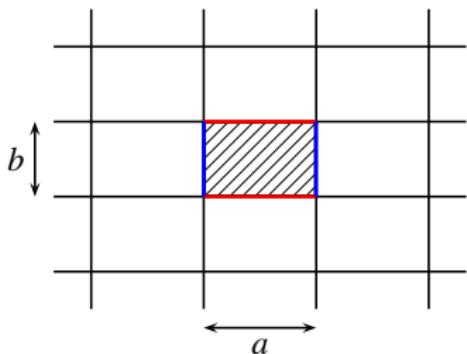


Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$

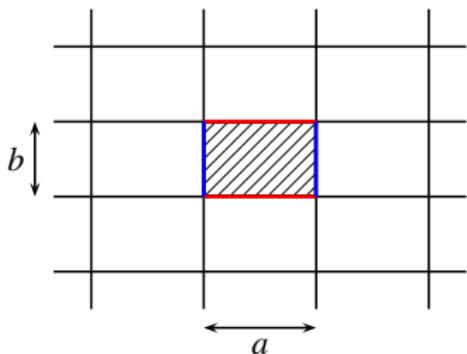
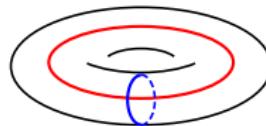


Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$



torus

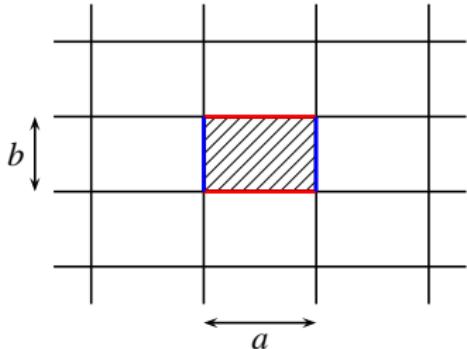
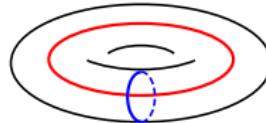
Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$

$$\mathbb{R}/a\mathbb{Z} \times \mathbb{R}/b\mathbb{Z} \simeq \begin{matrix} S^1 \\ \text{circle} \end{matrix} \times \begin{matrix} S^1 \\ \text{circle} \end{matrix}$$



torus

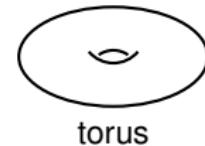
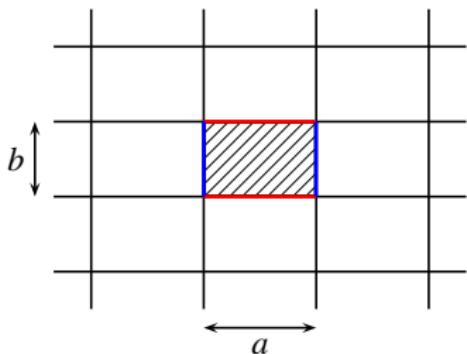
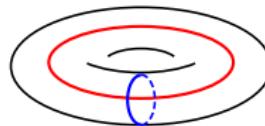
Periodic function and quotient space

Periodic function $F(x, y)$ on \mathbb{R}^2

double period $\begin{cases} F(x, y) = F(x + a, y) \\ F(x, y) = F(x, y + b) \end{cases}$

$\iff F(x, y)$ is a function of $(x, y) \in \mathbb{R}^2 / \mathbb{Z} \begin{pmatrix} a \\ 0 \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ b \end{pmatrix}$

$$\mathbb{R}/a\mathbb{Z} \times \mathbb{R}/b\mathbb{Z} \simeq \begin{matrix} S^1 \\ \text{circle} \end{matrix} \times \begin{matrix} S^1 \\ \text{circle} \end{matrix} \simeq$$



torus

Model space and quotients

Model space

(Euclidean)

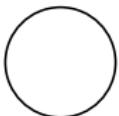
$$\mathbb{R}$$

$$\mathbb{R}^2$$

$$\leadsto \mathbb{R}/\mathbb{Z} \simeq$$

$$\mathbb{R}^2/\mathbb{Z}^2 \simeq$$

Quotients



Model space and quotients

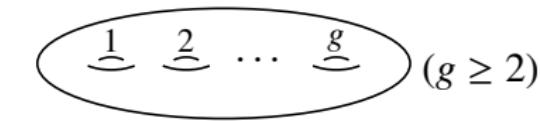
Model space

(Euclidean)

(Riemannian)

 \mathbb{R} \mathbb{R}^2

hyperbolic space

 $\sim \mathbb{R}/\mathbb{Z} \simeq$ $\sim \mathbb{R}^2/\mathbb{Z}^2 \simeq$ 

hyperbolic manifold

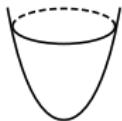
Quotients

Model space and quotients

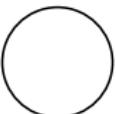
Model space

(Euclidean)

(Riemannian)

 \mathbb{R} \mathbb{R}^2 

hyperbolic space

 $\sim \mathbb{R}/\mathbb{Z} \simeq$ $\sim \mathbb{R}^2/\mathbb{Z}^2 \simeq$  $\frac{1}{\text{---}} \quad \frac{2}{\text{---}} \quad \dots \quad \frac{g}{\text{---}}$ $(g \geq 2)$ \sim

hyperbolic manifold

Periodic functions
on model space

 $=$

functions on quotients

Model space and quotients

Model space

(Euclidean)

(Riemannian)

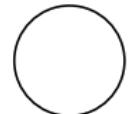
$$\mathbb{R}$$

$$\mathbb{R}^2$$

hyperbolic space

$$\rightarrow \mathbb{R}/\mathbb{Z} \simeq$$

$$\rightarrow \mathbb{R}^2/\mathbb{Z}^2 \simeq$$



Quotients

hyperbolic manifold

Δ
Laplacian

Δ
Laplacian

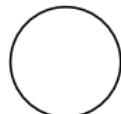
Model space and quotients

Model space

R

$$\sim \mathbb{R}/\mathbb{Z} \approx$$

Quotients

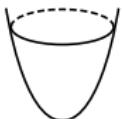


(Euclidean)

\mathbb{R}^2

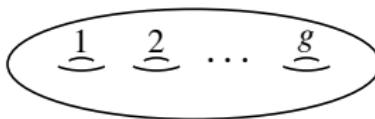
$$\sim \mathbb{R}^2 / \mathbb{Z}^2 \simeq$$

(Riemannian)



hyperbolic space

~



hyperbolic manifold

($g \geq 2$)

Model space and quotients

Model space

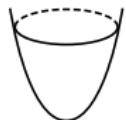
(Euclidean)

(Riemannian)

(Lorentzian)

$$\mathbb{R}$$

$$\mathbb{R}^2$$



hyperbolic space

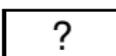
AdS^n
anti-de Sitter space

$$\sim \mathbb{R}/\mathbb{Z} \simeq$$

$$\sim \mathbb{R}^2/\mathbb{Z}^2 \simeq$$

$$\frac{1}{\text{---}} \quad \frac{2}{\text{---}} \quad \dots \quad \frac{g}{\text{---}}$$

hyperbolic manifold



anti-de Sitter manifold

Most round shape (locally)

(M, g) : pseudo-Riemannian mfd,
geodesically complete

Def. (M, g) is a space form
 \iff sectional curvature κ is constant

Space forms (examples)

Space form ...

$\begin{cases} \text{Signature } (p, q) \text{ of pseudo-Riemannian metric } g \\ \text{Curvature } \kappa \in \{+, 0, -\} \end{cases}$

E.g. $q = 0$ (Riemannian mfd)

sphere S^n

$\kappa > 0$

\mathbb{R}^n

$\kappa = 0$

hyperbolic sp

$\kappa < 0$

Space forms (examples)

Space form ...

$\begin{cases} \text{Signature } (p, q) \text{ of pseudo-Riemannian metric } g \\ \text{Curvature } \kappa \in \{+, 0, -\} \end{cases}$

E.g. $q = 0$ (Riemannian mfd)

sphere S^n	\mathbb{R}^n	hyperbolic sp
$\kappa > 0$	$\kappa = 0$	$\kappa < 0$

E.g. $q = 1$ (Lorentz mfd)

de Sitter sp	Minkowski sp	anti-de Sitter sp
$\kappa > 0$	$\kappa = 0$	$\kappa < 0$

Global nature of most round objects

Space form problem for pseudo-Riemannian mfds

Local Assumption

signature (p, q) , curvature $\kappa \in \{+, 0, -\}$

Global Results

- Do compact models exist?
- What groups can arise as their fundamental groups?

Global nature of most round objects

Space form problem for pseudo-Riemannian mfds

Local Assumption

signature (p, q) , curvature $\kappa \in \{+, 0, -\}$

Global Results

- Do compact models exist?
Is the universe closed?
- What groups can arise as their fundamental groups?

Existence problem of compact space forms

Riemannian case

Compact space forms always exist:

- $\kappa > 0$ S^n
- $\kappa = 0$ $\mathbb{R}^n / \mathbb{Z}^n$
- $\kappa < 0$ hyperbolic space

Existence problem of compact space forms

Riemannian case

Compact space forms always exist:

- $\kappa > 0$ S^n
- $\kappa = 0$ $\mathbb{R}^n / \mathbb{Z}^n$
- $\kappa < 0$ hyperbolic space

\iff Cocompact discrete subgps of $O(n, 1)$ (uniform lattice) exist

$\underbrace{(\text{Siegel, Borel, Makarov, Vinberg, Johnson–Millson, Gromov–Piatetskii-Shapiro \dots})}_{\text{arithmetic}}$ $\underbrace{\text{non-arithmetic}}$

Existence problem of compact space forms

Riemannian case

Compact space forms always exist:

- $\kappa > 0$ S^n
- $\kappa = 0$ $\mathbb{R}^n / \mathbb{Z}^n$
- $\kappa < 0$ hyperbolic space

\iff Cocompact discrete subgps of $O(n, 1)$ (uniform lattice) exist

$\underbrace{(\text{Siegel, Borel, Makarov, Vinberg, Johnson–Millson, Gromov–Piatetskii-Shapiro \dots})}_{\text{arithmetic}}$ $\underbrace{\text{non-arithmetic}}$

Lorentzian case

n dimensional compact space forms

- $\kappa > 0$ (de Sitter mfd) NOT exist (Calabi–Markus phenomenon)
- $\kappa = 0$ ALWAYS exist
- $\kappa < 0$ (anti-de Sitter mfd) exist $\Leftrightarrow n$ is odd

Space forms (examples)

Space form ...

$\begin{cases} \text{Signature } (p, q) \text{ of pseudo-Riemannian metric } g \\ \text{Curvature } \kappa \in \{+, 0, -\} \end{cases}$

E.g. $q = 0$ (Riemannian mfd)

sphere S^n

$\kappa > 0$

\mathbb{R}^n

$\kappa = 0$

hyperbolic sp

$\kappa < 0$

E.g. $q = 1$ (Lorentz mfd)

de Sitter sp Minkowski sp

$\kappa > 0$

anti-de Sitter sp

$\kappa = 0$

$\kappa < 0$

More general case ?

Existence problem of compact space forms

- For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

Existence problem of compact space forms

- For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

① q any, $p = 0$	$(\leftrightarrow \kappa > 0)$
② $q = 0, p$ any	(hyperbolic sp)

Proof (1950–)

①② (Riemannian)

Existence problem of compact space forms

- For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

- ① q any, $p = 0$ $(\leftrightarrow \kappa > 0)$
- ② $q = 0, p$ any (hyperbolic sp)
- ③ $q = 1, p \equiv 0 \pmod{2}$ $(\text{anti-de Sitter space})$

Proof (1950–)

①② (Riemannian) ③ (Lorentzian)

Existence problem of compact space forms

- For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

- ① q any, $p = 0$ $(\leftrightarrow \kappa > 0)$
- ② $q = 0, p$ any (hyperbolic sp)
- ③ $q = 1, p \equiv 0 \pmod{2}$ $(\text{anti-de Sitter space})$
- ④ $q = 3, p \equiv 0 \pmod{4}$

Proof (1950–)

①② (Riemannian) ③ (Lorentzian) ④ (more general)

Existence problem of compact space forms

- For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

① q any, $p = 0$	$(\leftrightarrow \kappa > 0)$
② $q = 0, p$ any	(hyperbolic sp)
③ $q = 1, p \equiv 0 \pmod{2}$	(anti-de Sitter space)
④ $q = 3, p \equiv 0 \pmod{4}$	
⑤ $q = 7, p = 8$	

Proof (1950–)

(①② (Riemannian); ③④⑤ (pseudo-Riemannian) Kulkarni '81, [K-'94](#))

Existence problem of compact space forms

- For pseudo-Riemannian manifold of signature (p, q)

Theorem Compact space forms of negative curvature κ exist if

① q any, $p = 0$	$(\leftrightarrow \kappa > 0)$
② $q = 0, p$ any	(hyperbolic sp)
③ $q = 1, p \equiv 0 \pmod{2}$	(anti-de Sitter space)
④ $q = 3, p \equiv 0 \pmod{4}$	
⑤ $q = 7, p = 8$	

Proof (1950–)

(①② (Riemannian); ③④⑤ (pseudo-Riemannian) Kulkarni '81, [K-'94](#))

Obstruction:

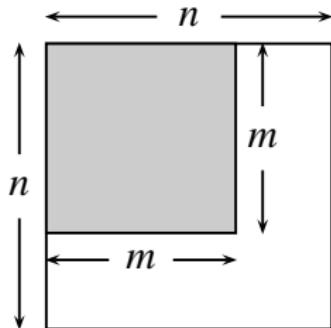
Compact space forms of $\kappa < 0$ do not exist if

$p \leq q$ (Calabi–Markus, Wolf '62, [K-'89](#)),

or pq is odd (generalized Hirzebruch's proportionality principle, [K-Ono](#))

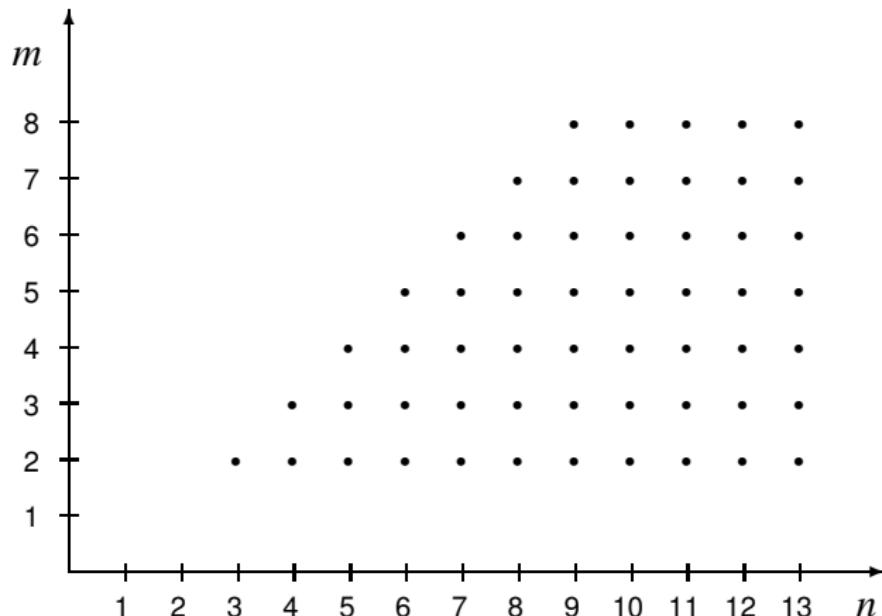
Compact manifolds modelled on $SL(n)/SL(m)$?

Problem: Does there exist compact Hausdorff quotients of
 $SL(n, \mathbb{F})/SL(m, \mathbb{F})$ ($n > m$, $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$)
by discrete subgps of $SL(n, \mathbb{F})$?



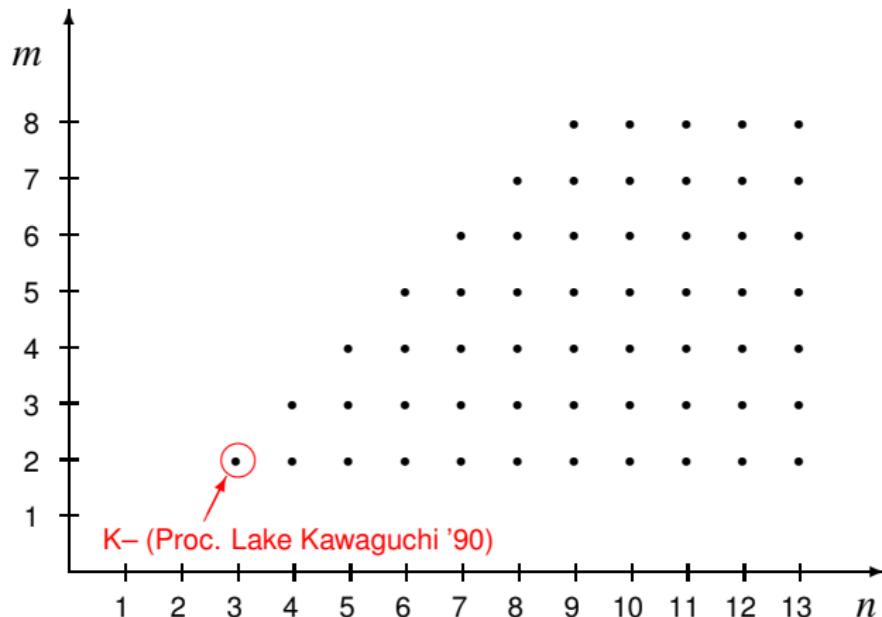
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



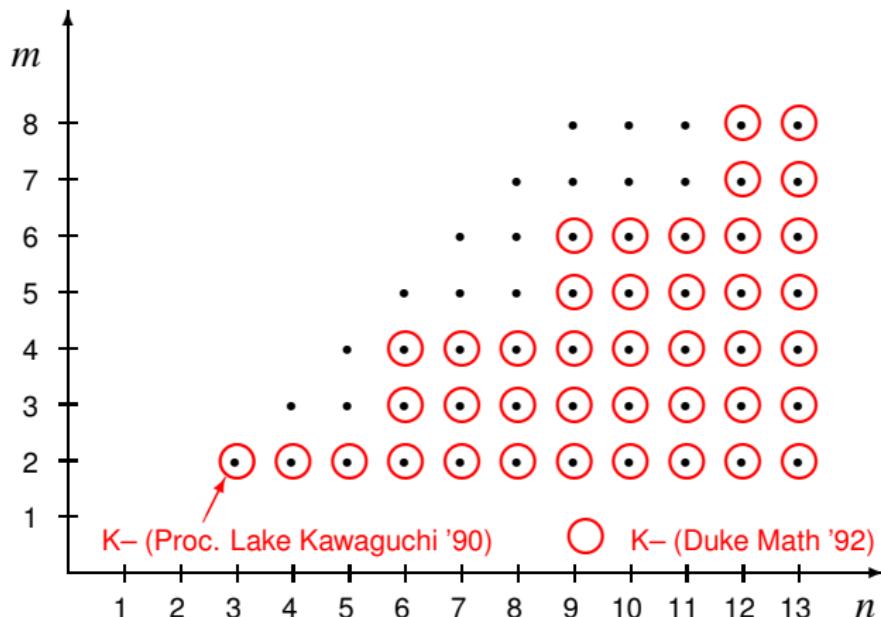
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



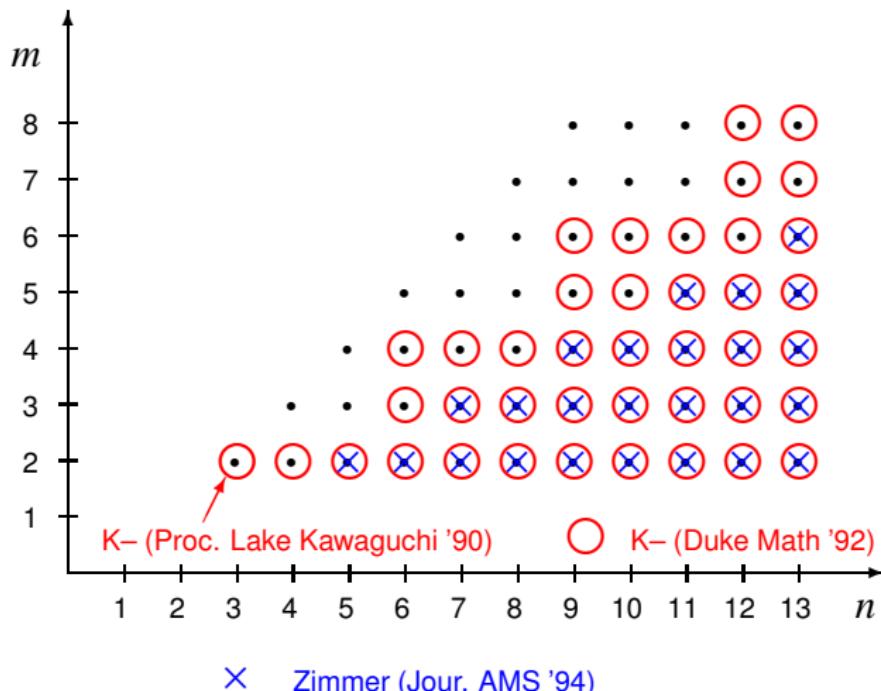
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



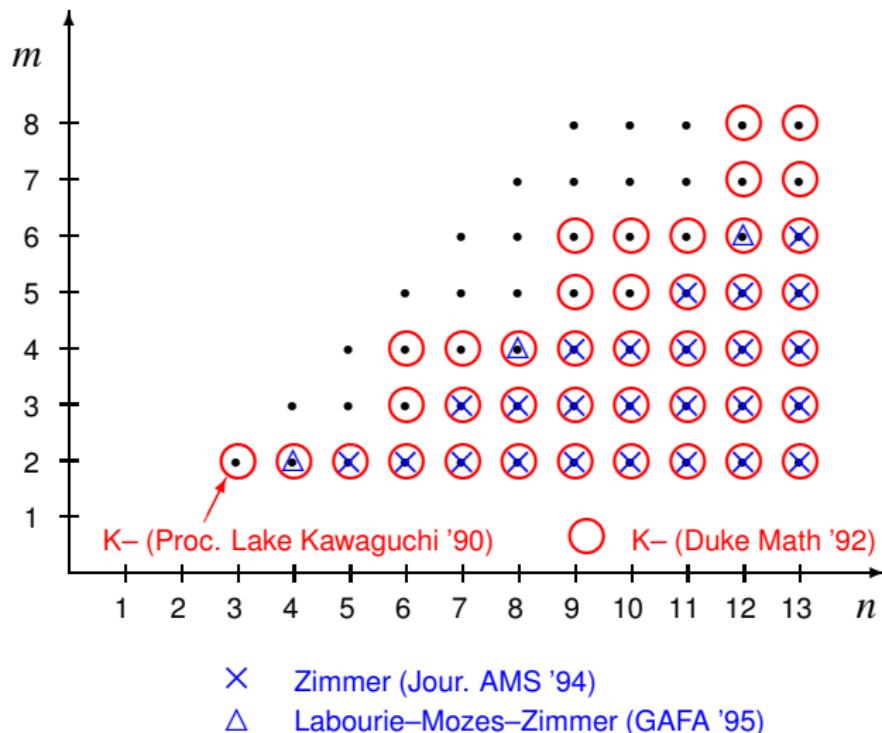
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



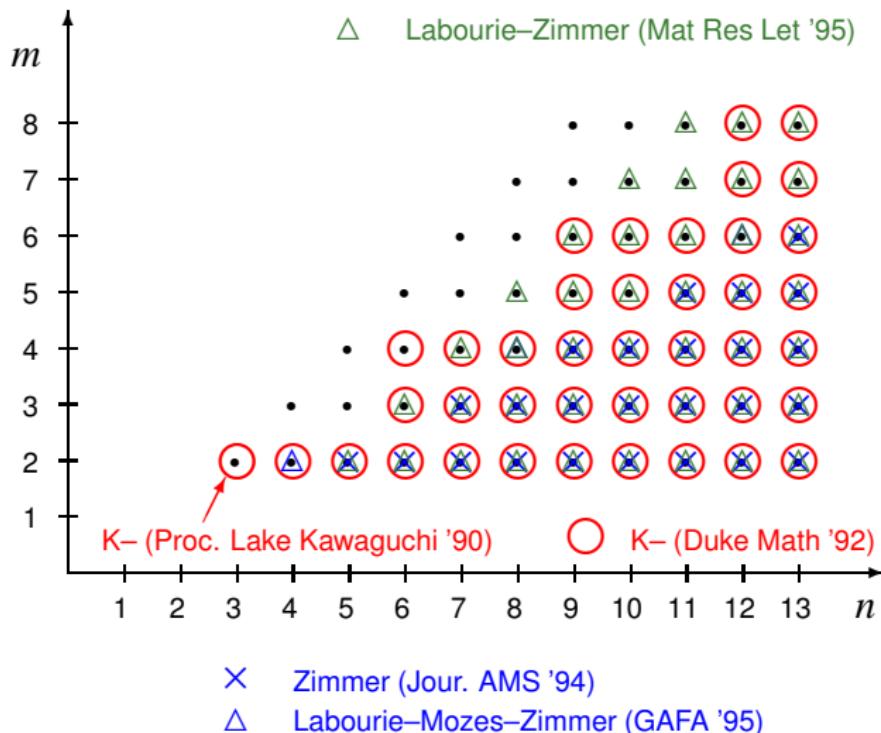
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



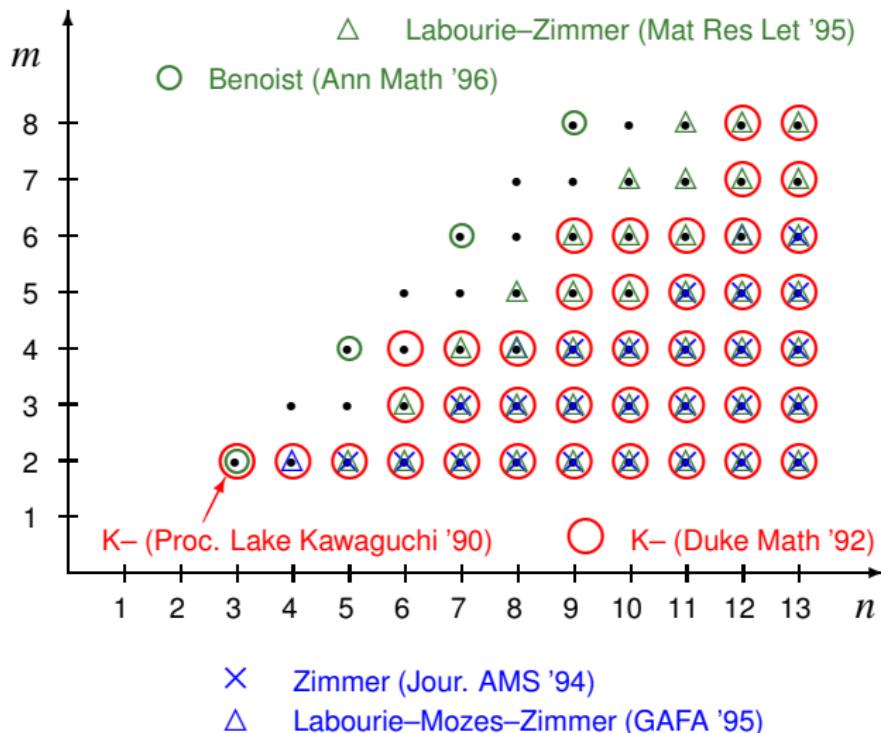
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



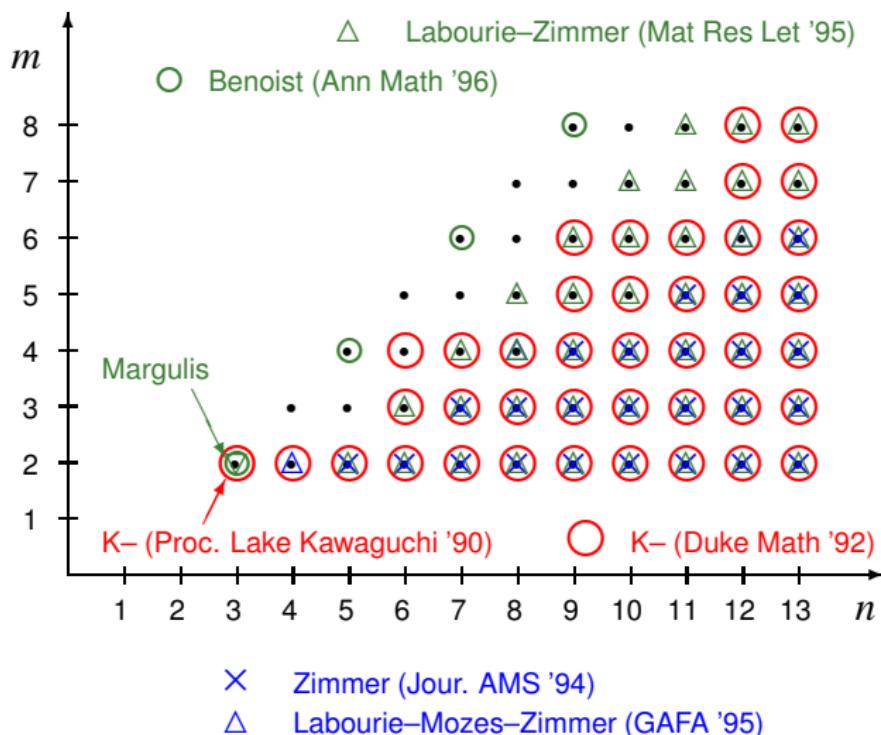
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



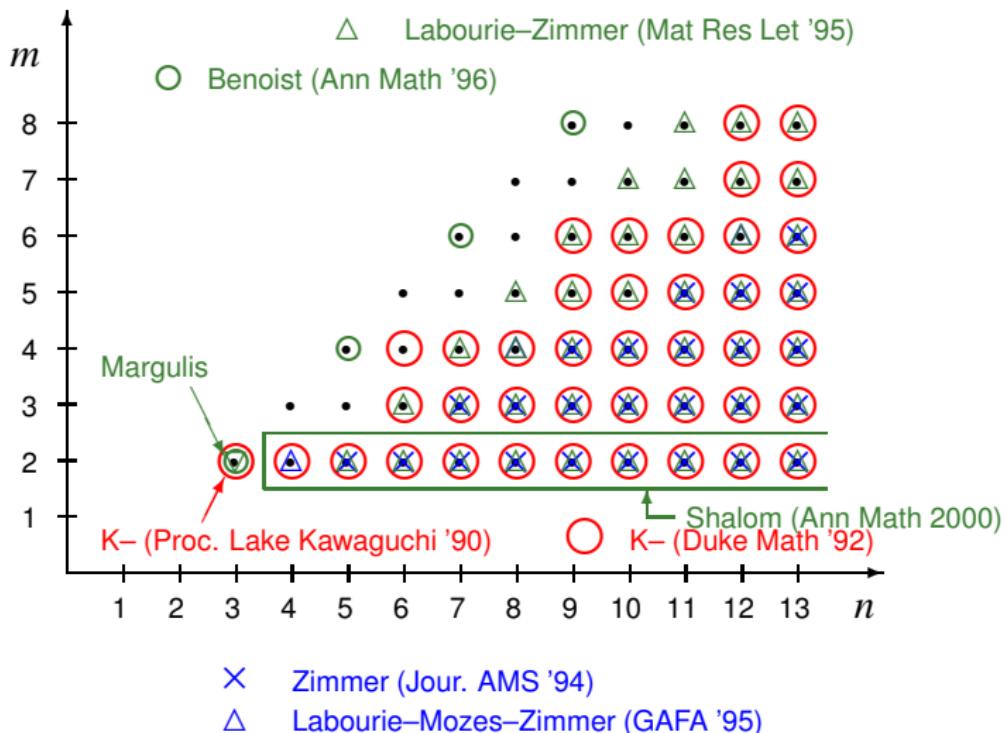
Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



Compact quotients for $SL(n)/SL(m)$

Conjecture (non-existence of compact forms) has been proved for:



Methods for non-existence of compact forms

Conjecture $SL(n)/SL(m)$ ($n > m > 1$)
has no cocompact discontinuous group.

K–	criterion of proper actions	$\frac{n}{3} > \left[\frac{m+1}{2}\right]$
Zimmer	orbit closure thm (Ratner)	$n > 2m$
Labourier–Mozes–Zimmer	ergodic action	$n \geq 2m$
Benoist	criterion of proper actions	$n = m + 1, m$ even
Margulis	unitary representation	$(n \geq 5, m = 2)$
Shalom	unitary representation	$n \geq 4, m = 2$

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Geometric and analytic questions—locally symmetric spaces

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

Geometric and analytic questions—locally symmetric spaces

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

Geometric Question

Do compact locally symmetric spaces M exist?

Geometric and analytic questions—locally symmetric spaces

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

Geometric Question

Do compact locally symmetric spaces M exist?

Analytic Question

Does point spectrum of the Laplacian Δ_M exist?
If so, construct L^2 -eigenfunctions.

Geometric and analytic questions—locally symmetric spaces

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

Geometric Question

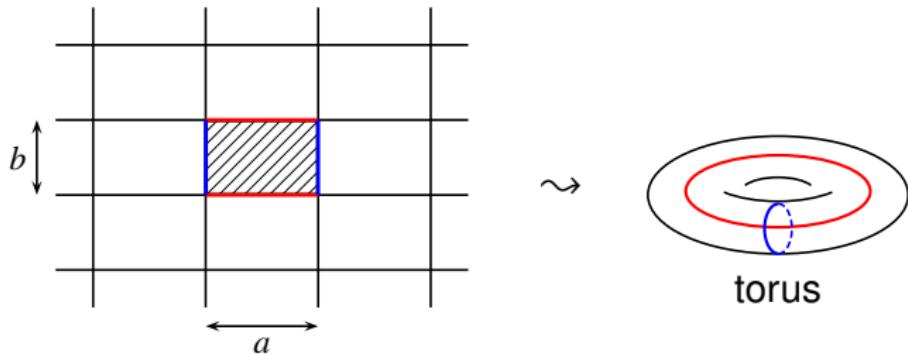
Do compact locally symmetric spaces M exist?
Rigidity / Deformation ?

Analytic Question

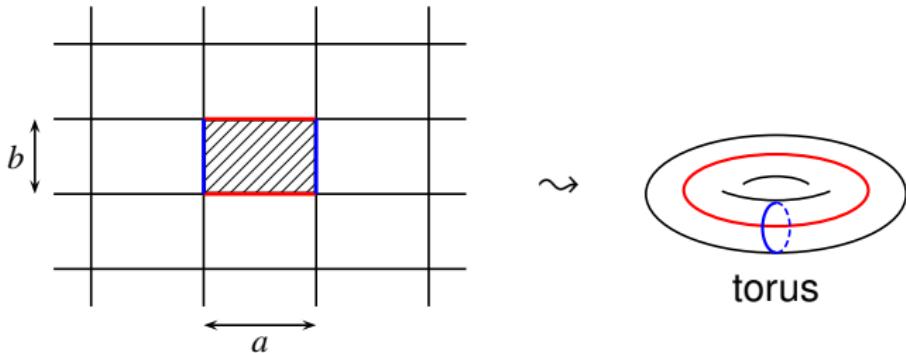
Does point spectrum of the Laplacian Δ_M exist?
If so, construct L^2 -eigenfunctions.

Stability of eigenvalues ?

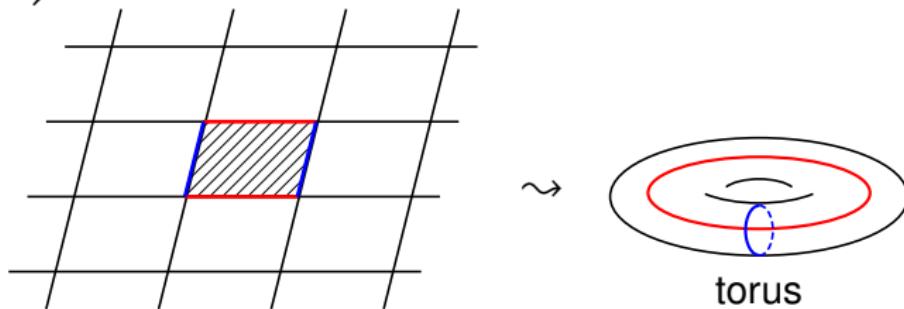
Deformation v.s. rigidity



Deformation v.s. rigidity



deform ζ



Deformation v.s. rigidity

$$\begin{array}{c} \Gamma \\ \text{discrete} \end{array} \subset \begin{array}{c} G \\ \text{simple Lie gp} \end{array} \supset H$$

$$\begin{array}{ccc} G & & \\ \swarrow & & \searrow \\ \Gamma \backslash G & & G/H \\ \searrow & & \swarrow \\ \Gamma \backslash G/H & & \text{compact Hausdorff} \end{array}$$

Deformation v.s. rigidity

$$\text{discrete } \Gamma \subset \text{simple Lie gp } G \supset H$$

$$\begin{array}{ccc} & G & \\ \swarrow & & \searrow \\ \Gamma \backslash G & & G/H \\ \searrow & & \swarrow \\ & \Gamma \backslash G/H & \text{compact Hausdorff} \end{array}$$

- Riemannian case (H : compact) \cdots Rigid in most cases

- pseudo-Riemannian case (H : non-compact) \cdots “quite flexible”

Deformation v.s. rigidity

$$\text{discrete } \Gamma \subset \text{simple Lie gp } G \supset H$$

$$\begin{array}{ccc} G & & \\ \swarrow & & \searrow \\ \Gamma \backslash G & & G/H \\ \searrow & \swarrow & \\ \Gamma \backslash G/H & & \text{compact Hausdorff} \end{array}$$

- Riemannian case (H : compact) ... Rigid in most cases
Rigidity theorem (Selberg, Weil, Mostow, Margulis, Zimmer, ...)
 \exists non-trivial deformation $\iff \Gamma \backslash G/H =$
(Teichmüller space ... deformation)

- pseudo-Riemannian case (H : non-compact) ... “quite flexible”

Deformation v.s. rigidity

$$\text{discrete } \Gamma \subset \text{simple Lie gp } G \supset H$$

$$\begin{array}{ccc} G & & \\ \swarrow & & \searrow \\ \Gamma \backslash G & & G/H \\ \searrow & \swarrow & \\ \Gamma \backslash G/H & & \text{compact Hausdorff} \end{array}$$

- Riemannian case (H : compact) \cdots Rigid in most cases
Rigidity theorem (Selberg, Weil, Mostow, Margulis, Zimmer, ...)

\exists non-trivial deformation $\Longleftrightarrow \Gamma \backslash G/H =$

(Teichmüller space \cdots deformation)

- pseudo-Riemannian case (H : non-compact) \cdots “quite flexible”
Deformation (Goldman, Ghys, K-, Kassel, ...)

Eigenvalues and deformation of periods (1 dim'l case)

Fix $\rho > 0$ $X_\Gamma := \mathbb{R}/\frac{2\pi}{\rho}\mathbb{Z}$

$$\text{Spec}(X_\Gamma, \Delta) := \left\{ \lambda : \begin{array}{l} \exists f \neq 0 \text{ of period } \frac{2\pi}{\rho} \text{ s.t.} \\ \Delta f = \lambda f \end{array} \right\}$$

Eigenvalues and deformation of periods (1 dim'l case)

$$\text{Fix } \rho > 0 \quad X_\Gamma := \mathbb{R} / \frac{2\pi}{\rho} \mathbb{Z}$$

$$\text{Spec}(X_\Gamma, \Delta) := \left\{ \lambda : \begin{array}{l} \exists f \neq 0 \text{ of period } \frac{2\pi}{\rho} \text{ s.t.} \\ \Delta f = \lambda f \end{array} \right\}$$

$$f(x) = \sin \rho mx, \cos \rho mx \quad (m = 0, \pm 1, \pm 2, \dots)$$

are such eigenfunctions. Therefore

$$\text{Spec}(X_\Gamma, \Delta) = \{\rho^2 m^2 : m \in \mathbb{Z}\}$$

Eigenvalues and deformation of periods (1 dim'l case)

$$\text{Fix } \rho > 0 \quad X_\Gamma := \mathbb{R}/\frac{2\pi}{\rho}\mathbb{Z}$$

$$\text{Spec}(X_\Gamma, \Delta) := \left\{ \lambda : \begin{array}{l} \exists f \neq 0 \text{ of period } \frac{2\pi}{\rho} \text{ s.t.} \\ \Delta f = \lambda f \end{array} \right\}$$

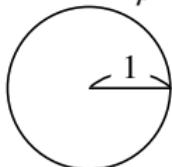
$$f(x) = \sin \rho mx, \cos \rho mx \quad (m = 0, \pm 1, \pm 2, \dots)$$

are such eigenfunctions. Therefore

$$\text{Spec}(X_\Gamma, \Delta) = \{\rho^2 m^2 : m \in \mathbb{Z}\}$$

$$X_\Gamma = \mathbb{R}/\frac{2\pi}{\rho}\mathbb{Z} \quad \text{Spec}(X_\Gamma, \Delta)$$

$$\rho = 1$$



$$\{0, 1, 4, 9, 16, 25, \dots\}$$

$$\rho = 2$$

$$\{0, 4, 16, 36, 64, 100, \dots\}$$

Eigenvalues and deformation of periods (1 dim'l case)

$$\text{Fix } \rho > 0 \quad X_\Gamma := \mathbb{R}/\frac{2\pi}{\rho}\mathbb{Z}$$

$$\text{Spec}(X_\Gamma, \Delta) := \left\{ \lambda : \exists f \neq 0 \text{ of period } \frac{2\pi}{\rho} \text{ s.t. } \Delta f = \lambda f \right\}$$

$$f(x) = \sin \rho mx, \cos \rho mx \quad (m = 0, \pm 1, \pm 2, \dots)$$

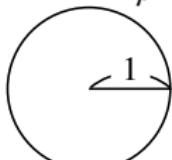
are such eigenfunctions. Therefore

$$\text{Spec}(X_\Gamma, \Delta) = \{\rho^2 m^2 : m \in \mathbb{Z}\}$$

$$X_\Gamma = \mathbb{R}/\frac{2\pi}{\rho}\mathbb{Z}$$

$$\text{Spec}(X_\Gamma, \Delta)$$

$$\rho = 1$$



$$\{0, \underbrace{1, 4, 9, 16, 25, \dots}_{\text{varies}}\}$$

stable

varies

$$\rho = 2$$

$$\{0, \underbrace{4, 16, 36, 64, 100, \dots}_{\text{varies}}\}$$

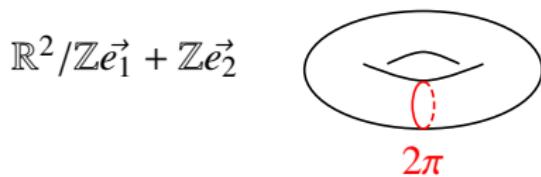
Deformation of torus (flat case)

$$\vec{e_1} := 2\pi(1, 0), \quad \vec{e_2} := 2\pi(0, 1)$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\vec{e_2}$$

Deformation of torus (flat case)

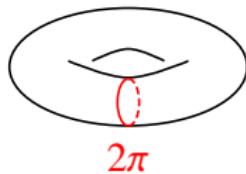
$$\vec{e_1} := 2\pi(1, 0), \quad \vec{e_2} := 2\pi(0, 1)$$



Deformation of torus (flat case)

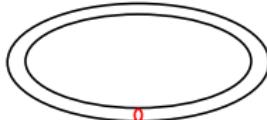
$$\vec{e_1} := 2\pi(1, 0), \quad \vec{e_2} := 2\pi(0, 1)$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\vec{e_2}$$



$$2\pi$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\frac{1}{\rho}\vec{e_2}$$



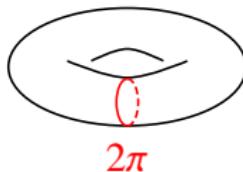
$$2\pi\rho$$

Deformation of torus (flat case)

$$\vec{e_1} := 2\pi(1, 0), \quad \vec{e_2} := 2\pi(0, 1)$$

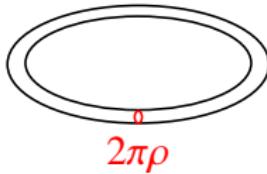
$$\text{Spec}(\Delta)$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\vec{e_2}$$



$$\{m^2 + n^2 : m, n \in \mathbb{Z}\}$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\frac{1}{\rho}\vec{e_2}$$



$$\Delta = -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}$$

Deformation of torus (flat case)

$$\vec{e_1} := 2\pi(1, 0), \quad \vec{e_2} := 2\pi(0, 1)$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\vec{e_2} \quad \text{Spec}(\Delta) \quad \{m^2 + n^2 : m, n \in \mathbb{Z}\}$$

$$\mathbb{R}^2 / \mathbb{Z}\vec{e_1} + \mathbb{Z}\vec{e_2}$$

$$\{m^2 + n^2 : m, n \in \mathbb{Z}\}$$

$$\mathbb{R}^2 / \mathbb{Z} \vec{e}_1 + \mathbb{Z} \frac{1}{\rho} \vec{e}_2 \quad \begin{array}{c} \Downarrow \\ \text{An ellipse with center } \vec{0} \text{ and major axis } 2\pi\rho \end{array} \quad \begin{array}{c} \Downarrow \\ \text{Spectrum varies} \end{array}$$

$$\Delta = -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}$$

$$ds^2 = dx^2 + dy^2$$

Eigenvalues vary on deformation space

Observation (flat case) Any non-zero eigenvalue of the Laplacian on \mathbb{T}^2 varies on the *deformation space*.

Eigenvalues vary on deformation space

Observation (flat case) Any non-zero eigenvalue of the Laplacian on \mathbb{T}^2 varies on the *deformation space*.

Fact (Wolpert, 1994) Any non-zero eigenvalue of the Laplacian on the compact hyperbolic manifold Σ_g varies on the *Teichmüller space*.

... Spectrum is unstable

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

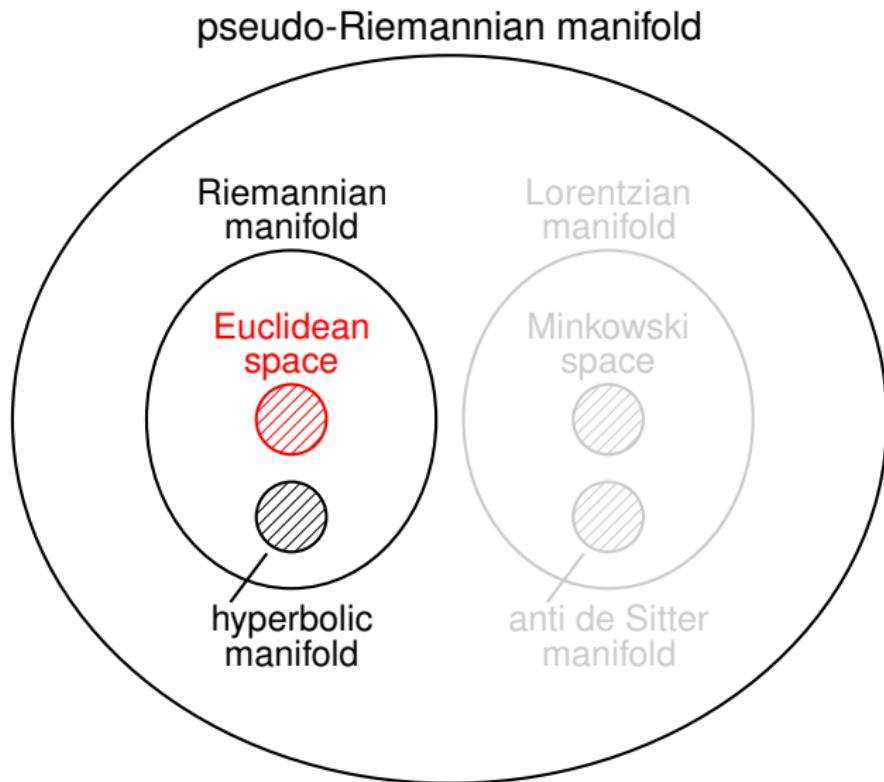
Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

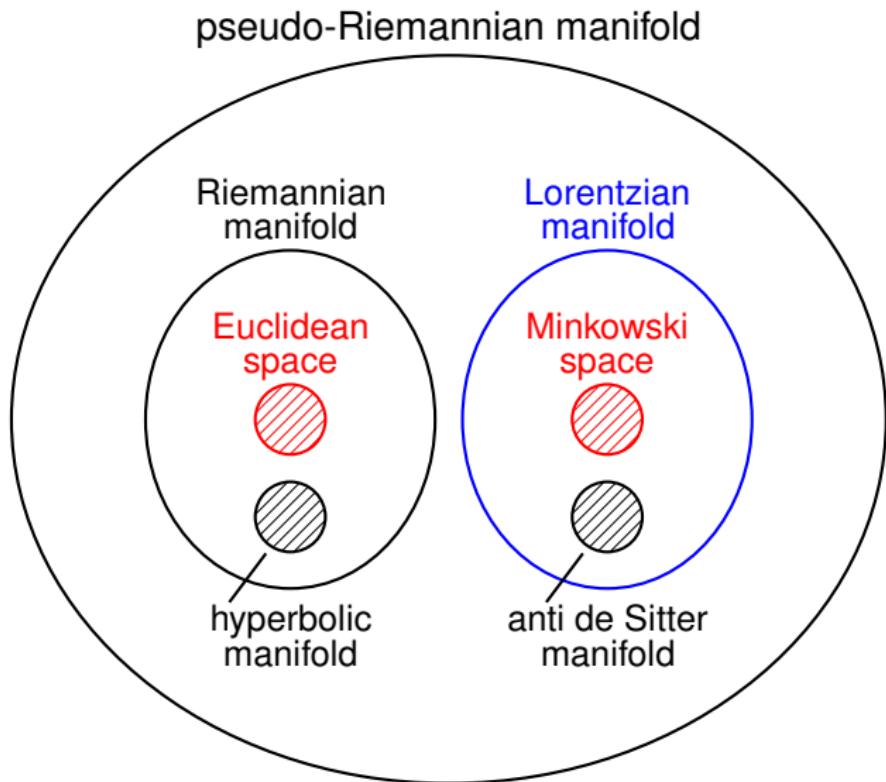
Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Quick course on pseudo-Riemannian manifold



Quick course on pseudo-Riemannian manifold



3-dim'l compact anti-de Sitter manifold

Def M : anti-de Sitter manifold

\iff Lorentz manifold with sectional curvature $\equiv -1$
def

Cf. Hyperbolic manifold

\iff Riemannian manifold with sectional curvature $\equiv -1$
def

3-dim'l compact anti-de Sitter manifold

Def M : anti-de Sitter manifold

\iff Lorentz manifold with sectional curvature $\equiv -1$
def

In the previous examples (flat case, hyperbolic manifold), any eigenvalue λ of the Laplacian **varies** except for $\lambda = 0$ (constant functions are obviously eigenfunctions). However,

3-dim'l compact anti-de Sitter manifold

Def M : anti-de Sitter manifold

\iff Lorentz manifold with sectional curvature $\equiv -1$
def

In the previous examples, any eigenvalue λ of the Laplacian **varies** except for $\lambda = 0$ (constant functions are obviously eigenfunctions). However,

Theorem (joint with F. Kassel, [arXiv: 1209.4075](https://arxiv.org/abs/1209.4075), 141 pages)

There exists infinitely many
'stable' eigenvalues of the Laplacian \square
on 3-dimensional compact anti-de Sitter manifold.

3-dim'l compact anti-de Sitter manifold

Def M : anti-de Sitter manifold

\iff Lorentz manifold with sectional curvature $\equiv -1$
def

In the previous examples, any eigenvalue λ of the Laplacian **varies** except for $\lambda = 0$ (constant functions are obviously eigenfunctions). However,

Theorem (joint with F. Kassel, [arXiv: 1209.4075](https://arxiv.org/abs/1209.4075), 141 pages)

There exists infinitely many

'stable' eigenvalues of the Laplacian \square

on 3-dimensional compact anti-de Sitter manifold.

Remark X Riemannian \implies Laplacian Δ is elliptic
Lorentzian \implies \square hyperbolic

3-dim'l compact anti-de Sitter manifold

Def M : anti-de Sitter manifold

\iff Lorentz manifold with sectional curvature $\equiv -1$
def

In the previous examples, any eigenvalue λ of the Laplacian **varies** except for $\lambda = 0$ (constant functions are obviously eigenfunctions). However,

Theorem (joint with F. Kassel, [arXiv: 1209.4075](https://arxiv.org/abs/1209.4075), 141 pages)

There exists infinitely many

'stable' **eigenvalues** of the Laplacian \square

on 3-dimensional compact anti-de Sitter manifold.

eigenvalues $\cdots L^2$ -eigenfunctions

(Note: eigenfunctions are not always real analytic)

3-dim'l compact anti-de Sitter manifold

Def M : anti-de Sitter manifold

\iff Lorentz manifold with sectional curvature $\equiv -1$
def

In the previous examples, any eigenvalue λ of the Laplacian **varies** except for $\lambda = 0$ (constant functions are obviously eigenfunctions). However,

Theorem (joint with F. Kassel, [arXiv: 1209.4075](https://arxiv.org/abs/1209.4075), 141 pages)

There exists infinitely many

'stable' eigenvalues of the Laplacian \square

on 3-dimensional compact anti-de Sitter manifold.

'stable' $\stackrel{\text{def}}{=}$ 'does NOT vary under deformation'
of anti-de Sitter structure

The deformation space (modulo conjugation) has dimension $12g - 12$

'Universal sound' for anti-de Sitter manifolds

Usually,

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

'Universal sound' for anti-de Sitter manifolds

Usually,

Shorter strings produce a higher pitch than longer strings.

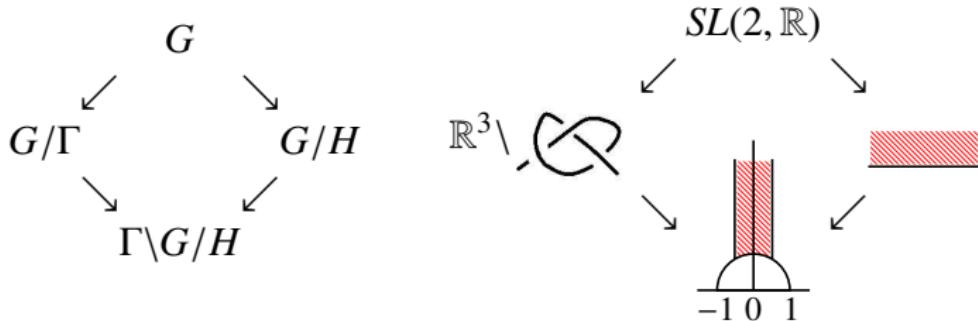
Thinner strings produce a higher pitch than thicker strings.

However,

for some locally symmetric spaces
such as 3-dim'l anti-de Sitter manifolds,
there exist countably many L^2 -eigenvalues.

Spectral analysis on $\Gamma \backslash G/H$ beyond Riemannian setting

$$\begin{array}{ccccc} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & & \text{Lie group} & & \text{subgroup} \end{array} \quad SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R}) \supset SO(2)$$



New challenge: Initiate spectral analysis of Δ on $\Gamma \backslash G/H$ in a more general setting (non-abelian G and non-compact H).

Further difficulties arise

- (geometry) existence of good geometry $\Gamma \backslash G/H$?
study of “local to global” beyond Riemannian setting
- (analysis) Laplacian is no more elliptic.
- (representation theory) volume $(\Gamma \backslash G) = \infty$ even when $\Gamma \backslash G/H$ is compact

Geometric and analytic questions—locally symmetric spaces

Shorter strings produce a higher pitch than longer strings.

Thinner strings produce a higher pitch than thicker strings.

Geometric Question

Do compact locally symmetric spaces M exist?
Rigidity / Deformation ?

Analytic Question

Does point spectrum of the Laplacian Δ_M exist?
If so, construct L^2 -eigenfunctions.

Stability of eigenvalues ?

Construction of stable L^2 -spectrum of Laplacian on $\Gamma \backslash G/H$

$$\Delta f = \lambda f \quad \text{on} \quad \Gamma \backslash G/H$$

Step 1 Construction of non-periodic eigenfunctions

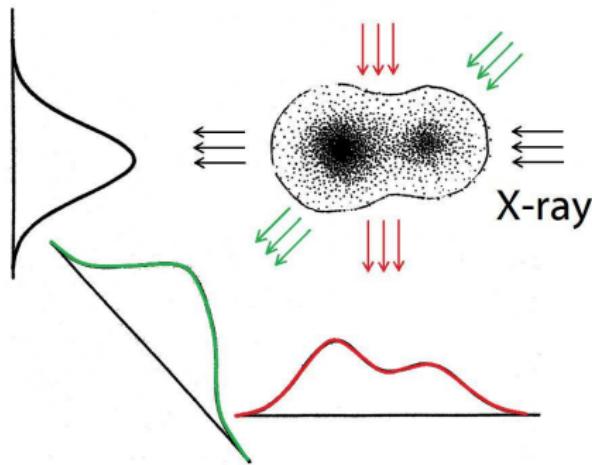
Step 2 Existence/Construction of Γ

Step 3 Construction of periodic eigenfunctions (Poincaré series)

- Geometric estimate
- Analytic estimate

Geometric construction of eigenfunctions

Idea of computer tomography (try to 'see' the inside)



Construction of stable L^2 -spectrum of Laplacian on $\Gamma \backslash G/H$

$$\Delta f = \lambda f \quad \text{on} \quad \Gamma \backslash G/H$$

Step 1 Construction of non-periodic eigenfunctions

Step 2 Existence/Construction of Γ

Step 3 Construction of periodic eigenfunctions (Poincaré series)

- Geometric estimate
- Analytic estimate

Model space and quotients

Model space

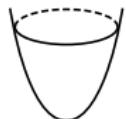
(Euclidean)

(Riemannian)

(Lorentzian)

$$\mathbb{R}$$

$$\mathbb{R}^2$$



hyperbolic space

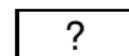
AdS^n
anti-de Sitter space

$$\sim \mathbb{R}/\mathbb{Z} \simeq$$

$$\sim \mathbb{R}^2/\mathbb{Z}^2 \simeq$$

$$\frac{1}{\text{---}} \quad \frac{2}{\text{---}} \quad \dots \quad \frac{g}{\text{---}}$$

hyperbolic manifold



anti-de Sitter manifold

Construction of stable L^2 -spectrum of Laplacian on $\Gamma \backslash G/H$

$$\Delta f = \lambda f \quad \text{on} \quad \Gamma \backslash G/H$$

Step 1 Construction of non-periodic eigenfunctions

(integral geometry, Poisson transform)

Step 2 Existence/Construction of Γ (local to global)

Step 3 Construction of periodic eigenfunctions (Poincaré series)
non-periodic eigenfunction \mapsto periodic eigenfunctions

$$f(x) \mapsto \sum_{\gamma \in \Gamma} f(\gamma \cdot x)$$

- Geometric estimate for proper actions $\Gamma \curvearrowright G/H$
(Kazhdan–Margulis, K–, Benoist, Kassel, ...)
- Analytic estimate of eigenfunctions on G/H
(systems of PDEs, micro-local analysis)
(Sato–Kashiwara–Kawai, Oshima, ...)

Construction of stable L^2 -spectrum of Laplacian on $\Gamma \backslash G/H$

$$\Delta f = \lambda f \quad \text{on} \quad \Gamma \backslash G/H$$

Step 1 Construction of non-periodic eigenfunctions

(integral geometry, Poisson transform)

Step 2 Existence/Construction of Γ (local to global)

Step 3 Construction of periodic eigenfunctions (Poincaré series)
non-periodic eigenfunction \mapsto periodic eigenfunctions

$$f(x) \mapsto \sum_{\gamma \in \Gamma} f(\gamma \cdot x)$$

- Geometric estimate for proper actions $\Gamma \curvearrowright G/H$

(Kazhdan–Margulis, K–, Benoist, Kassel, ...)

- Analytic estimate of eigenfunctions on G/H

(systems of PDEs, micro-local analysis)

(Sato–Kashiwara–Kawai, Oshima, ...)

Further approach to analysis on $\Gamma\backslash G/H$

Capture unstable eigenvalues ... work in progress

Further approach to analysis on $\Gamma \backslash G/H$

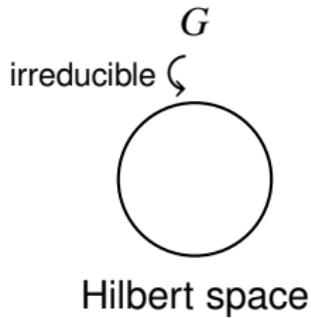
Capture unstable eigenvalues ... work in progress

Idea: Use the theory of unitary representations

Further approach to analysis on $\Gamma \backslash G/H$

Capture **unstable eigenvalues** ... work in progress

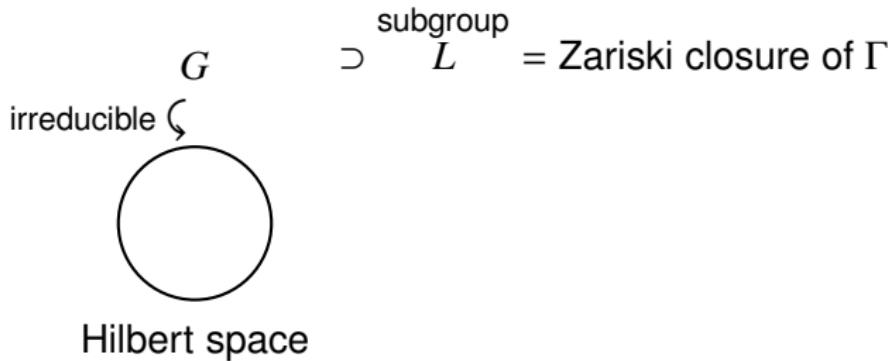
Idea: Use the theory of unitary representations



Further approach to analysis on $\Gamma \backslash G/H$

Capture **unstable eigenvalues** ... work in progress

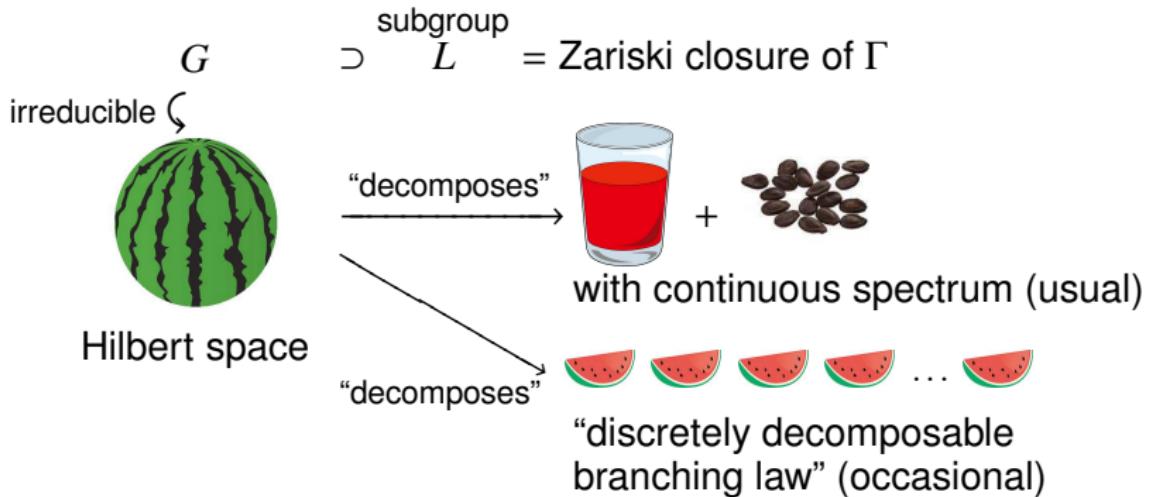
Idea: Use the theory of unitary representations



Further approach to analysis on $\Gamma \backslash G / H$

Capture **unstable eigenvalues** ... work in progress

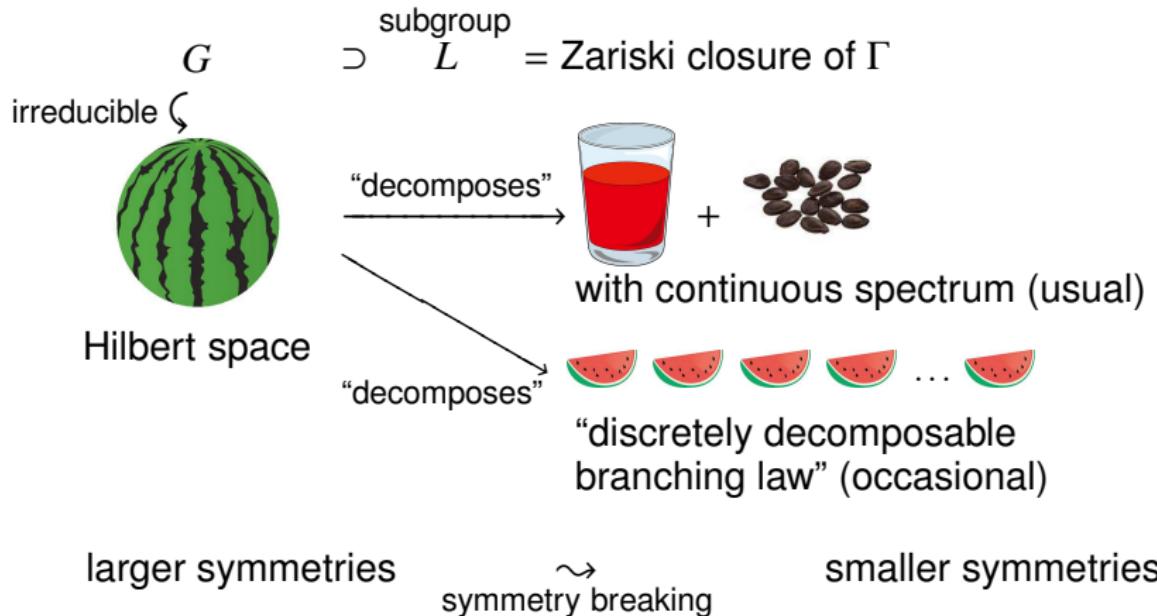
Idea: Use the theory of unitary representations



Further approach to analysis on $\Gamma \backslash G / H$

Capture **unstable eigenvalues** ... work in progress

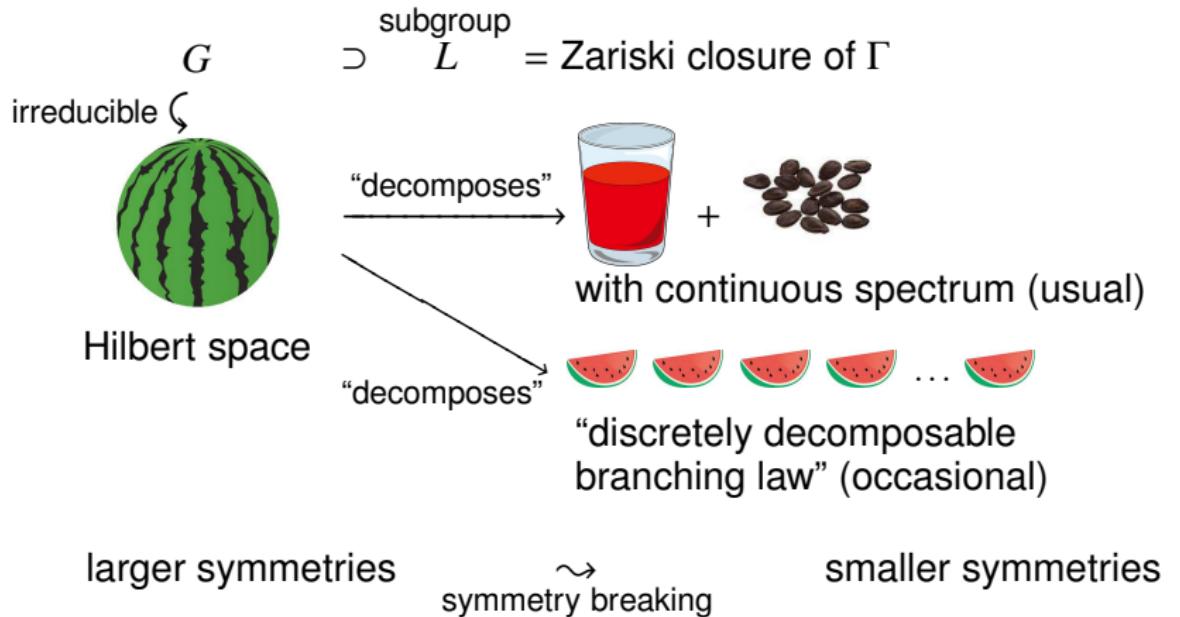
Idea: Use the theory of unitary representations



Further approach to analysis on $\Gamma \backslash G / H$

Capture **unstable eigenvalues** ... work in progress

Idea: Use the theory of unitary representations



↑
more differential equations!

Table of contents

1. Laplacian on \mathbb{R}
2. Quick course to Riemannian and Lorentzian geometry
3. Elementary definition of Laplacian Δ on pseudo-Riemannian manifold
4. Construction of eigenfunctions of Δ and integral geometry
5. Period and geometry of discontinuous groups
6. Deformation of geometry and stability of eigenvalues
7. Universal sound in anti-de Sitter manifolds

Thank you very much!