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1. INTRODUCTION

o A finite W-algebra is a certain associative algebra attached to a pair (g, ) where
g is a complex semi-simple Lie algebra or a classical Lie superalgebra and e € g is
an even nilpotent element.

e A finite W-algebra is a generalization of the universal enveloping algebra U(g).

e [t is a quantization of the Poisson algebra of functions on the Slodowy slice at e to the
orbit Ad(G)e, where g = Lie(G).

e Due to recent results of I. Losev, A. Premet and others, finite WW-algebras play a very
important role in description of primitive ideals.

e [inite W-algebras for semi-simple Lie algebras were introduced by A. Premet.

e Finite IW-algebras for Lie algebras and superalgebras have been extensively studied by
mathematicians and physicists: L. Fehér, C. Briot, E. Ragoucy, A. Premet, 1. Losev,
V. Ginzburg, W. L. Gan, J. Brundan, J. Brown, S. Goodwin, W. Wang, L. Zhao, Y. Zeng,
B. Shu.



2. FINITE W-ALGEBRAS FOR LIE SUPERALGEBRAS

Let g = gy @ g7 be a Lie superalgebra with reductive even part g,

X € g5 C g" be an even element in the coadjoint representation,

(5 be the algebraic reductive group of gg.

Definition. x is nilpotent if the closure of the Gg-orbit in g5 contains zero.

Let g* be the annihilator of y in g:

gt ={z e€g] x(r, g]) =0}

Definition. A good Z-grading for y is a Z-grading g = @ g;
jEZ
satistying the following two conditions:

(1) x(g;) = 01if j # -2,

(2) g belongs to Eng.

720



o x\([-,*]) : g-1 X g_1 — C is a non-degenerate (super)skew-symmetric

even bilinear form on g_;.

e Let [ be a maximal isotropic (Lagrangian) subspace with respect to this form.

Let m = (@ g;) @ . The restriction of x to m
J<-2

x:m— C

defines a one-dimensional representation C), =< v > of m.

Definition. The generalized Whittaker module

is the induced g-module

QX = U(Q) ®U(m) Cx = U(Q)/Ixa

where I, is the left ideal of U(g) generated by a — x(a) for all @ € m.



Definition. The finite W/ -algebra associated to the nilpotent element y is

WX = EndU(g)(QX)Op
o Let m: U(g) — U(g)/I, be the natural projection. Then

Wy, =(Q)" ={r(y) € U(g)/I, | ad(a)y € I, for all a € m}

The algebra structure on W, is given by

m(y1)7(y2) = m(Y1y2)
for y; € U(g) such that ad(a)y; € I, for all a € mand 7 = 1, 2.
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e As in the Lie algebra case, the superalgebras W, are all isomorphic for different choices
of good Z-gradings and maximal isotropic subspaces [.

e [f g admits an even non-degenerate invariant supersymmetric bilinear form, then
g ~ g" and x(z) = (e|x) for some nilpotent e € g.

e By the Jacobson—Morozov theorem e can be included in sl(2) =< e, h, f >.

The linear operator adh defines a Dynkin Z-grading g = @ g;, where
jEZ

g; =1{r €g|adh(z) = jz}.
Remark.
(1) The Dynkin Z-grading is good for Yy,
(2) € € go.



Example. Let y = 0. Then m = 0,

Qy=Ulg), W,=U(g).

Definition. A nilpotent x € gj is called regular if the Gg-orbit of x has maximal

dimension, i.e. the dimension of g%c is minimal.

Theorem. (B. Kostant, 1978)
For a regular nilpotent x and a reductive Lie algebra g the algebra W, is isomorphic

to the center of Ul(g).

e Theorem of Kostant does not hold for Lie superalgebras,

since W, must have a non-trivial odd part, and the center of U(g) is even.
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e J. Brown, J. Brundan and S. Goodwin proved that the finite 1V -algebra for the general
linear Lie superalgebra g = gl(l|k) associated to regular (principal) nilpotent element
is a certain truncation of a shifted version of the super-Yangian Y (gl(1]1)).

(Algebra Numb. Theory, 2013).

e We described the finite W-algebra for the queer Lie superalgebra (Q(n) associated to
regular nilpotent element as a quotient of the super-Yangian Y (Q(1)).
(To arrear in Adv. Math.)

Recall: For a finite-dimensional semi-simple Lie algebra g, the Yangian of g is an infinite-
dimensional Hopf algebra Y (g). It is a deformation of the universal enveloping algebra of
the Lie algebra of polynomial currents of g.



3. THE SUPER-YANGIAN OF gl(1|1)

gl(1]1) = {A = (%%) | a,b,c,de C}  [A,B]=AB — (—1)P“rBip4g

Definition. The super-Yangian Y = Y (gl(1]|1)) is an associative unital superalgebra
over C with a countable set of generators

1)

i; where 4,7 = 1,2, and r > 0.

The Zo-grading of Y is defined by
p(t\")) = p(i) + p(j)
We employ the formal series:
tij(u) = D 17 € Yi[u™])
r>0

e Relations in Y:

(w—v)[ti;(u), tri(v)] =

(_1)p(z)p(k’)+p(z)p(l)+p(k)p(l)((tkﬂ.(u)ti’l(v) — tp i (0)ti(w).
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4. PRINCIPAL W-ALGEBRA W

g = gl(l|k) is a general linear Lie superalgebra (assume that [ > k)

Definition. 7 is a two-rowed pyramid:
k is the number of boxes in the 1-st row,

[ 1s the number of boxes in the 2-nd row.

Example.
6 | 7
g=g9l(52) (1=5k=2) R EE
3
g=gl2() (=2 k=1 ]

e Pyramid 7 defines Z-grading on g:

g = Drezg(r) deg(e; ;) := col(j) — col (i), h = g(0)
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e The explicit principal nilpotent element e is
e = Z €ii € 90
i,

summing over all adjacent pairs of boxes in 7.

Example.

g = gl(5]2) T = L €=2E€12 T €231 €34+ €45+ €67

e [t is a good Z-grading for e:
e € g(1) and g° := Ker(ade) C ®,>og(r)

o Sct x(x) = (e|lx) forxeg

Remark. We double the degree to agree with the previous definition of a good Z-grading.
Definition. The principal WW-algebra W, associated to the pyramid =«

is defined as usual.
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0 51,2
52.1 0
s9.1 columns of hight one on its left side and
s1,2 columns of hight one on its right side,
orif k=0 and [l = sy; + s12.

Definition. Matrix o = is compatible with pyramid 7 if 7 has

Ol:]f—|—8172‘|‘82’1

Example.
6 7
1 2 3 4 5 01
g=gl(52),l=5k=2 = 02(20)
3
g=gl21), 1=2k=1 7=L_L1° J:<(1)8)

o O

g=gl(212),l=2,k=2 =L 1" o (

o O
N—
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Theorem. (Brown-Brundan-Goodwin, 2012)

The principal W-algebra W for gl(l|k) is isomorphic to the shifted super-Yangian
Y! of level 1.

Idea of Proof. Define the Miura transform:
e We — U(h) = U(gh) ' @ U(gl(1]1))™" @ U(gh) ™2,
where U(gly) := Cley 4].
{4 18 injective and
wWe) =Y, 2 Y, /I,
where Y, is the shifted super-Yangian (a subalgebra of Y'),
and I is a two-sided ideal.

o V! C U(gl)®21 @ U(gl(1|1))®F @ U(gl;)®*12 is the image of Y, under homomorphism
defined using the comultiplication on Y and the evaluation map Y — U(gl(1|1)).
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5. THE QUEER LIE SUPERALGEBRA g = Q(n)

Q(n) = {(%‘%) | A, B are n X n matrices}

e; j and f;; are standard bases in A and B respectively:

ei,j—< O]Ez'j)7 fz,;‘—(Eij O])

n .
z =) _,€;is a central element

Q(n) admits an odd nondegenerate g-invariant super symmetric bilinear form

(z|y) := otr(zy) for z,y € g,

where otr ( g i ) = trB.



Let sl(2)

n—1

e:Zei,Hl, h =diag(n —1,n —3,...

=< e, h, f >, where

1=1

e is a regular nilpotent element.

h defines an even Dynkin Z-grading of g whose degrees on the elementary matrices are

n—1
,3—n,1—n), f= E i(n —i)eir1.
1=1

( 0 2 m—2 0 2 2n—2\
—2 0 2n — 4| —2 0 2n — 4
DOy e .. 0 129—97 «-- ... 0
0 2 2n — 2 0 2 2n — 2
—2 0 2n —4| =2 0 2n —4
\Q_Qn ...... 0 129—-91 v ... 0 )

15



16

Replace e = 37 ey by E =307 fiis1 = Eis odd.

1=

Define x € g5 by x(z) = (z|E).

m = @92—23'-
j=2
It is generated by e;41, and fi11; wherei =1,...,n —1
x(€ir1i) =1, x(fir1:) =0

e The left ideal I, and W, are defined as usual.



7=0
is a parabolic subalgebra of g,
go is a Cartan subalgebra:
go=bh=<uwz,&|i=1,...,n>, wherez; = e;;, & = fi.

e Since the good Z-grading is even, then W, can be regarded as a subalgebra of U(p).

17
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6. THE HARISH-CHANDRA HOMOMORPHISM

Up)" = EPUp)

i>0
is a two sided ideal in U(p) and U(p)/U(p)* = U(go) = U(h).
o Let ¥ : U(p) — U(h) be the natural projection.

Theorem. (P-S) The restriction of ¥ on W, is injective:

9 W, — U(B).



e A. Sergeev defined by induction the elements e( and f belonging to U(Q(n)):

(m—1 m m—1
Zk leZkek] )+(_1) +1Zfi,kfk(;’j )7
m n m—1 m
f(]) = Y einfii ()™ firel

Theorem. (P-S)

W, has n even generators: 7r(e<n+k_1)) and n odd generators: W(f(n1+k_1)), k=1,...,

n,l n,

The images of these generators under the Harish-Chandra homomorphismare are the
following elements in U(h):

Ir(e TN =1 Y (w + (DM (i, — &) (@ + &) levens

11219221

I N =1 Y (DM (i, — G ) (@ &) odd.

i >i>... >y,

19
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7. The super-Yangian of Q(n)
e Super-Yangian Y (Q(n)) was studied by M. Nazarov and A. Sergeev.

e Y(Q(n)) is the associative unital superalgebra over C with the countable set of generators
t/) where 7 = 1,2,... and i,j = +£1,+2,...,%n

The Zs-grading of the algebra Y (Q(n)):

p(")) = p(i) + p(5), where p(i) = 0if i > 0 and p(i) = 1if i < 0



e We employ the formal series:

tg(u) = >t u™ e Y(Qn))[[u])

r>0

e The relations in Y/(Q(n))[[u™!, v™1]]:

(u? — [t (w), t(v)] - (—1)p@OpE)+pEpO+p(k)p()
= (u+v)(tr;(w)Tig(v) = tr;(v) T (u))
—(u = ) (g (W) Ti1(0) = b (0)T; y(w) - (=1)P 0

e We also have the relations
tij(—u) =t_i—j(u)

21
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e From now on we will use only Y (Q(1)).

o ={(51) labec)

Y (Q(1)) is generated by tgkl) (even) and t(_kl)’1 (odd) for k =1,2,...
The Main Theorem. (P-S) There exists a surjective homomorphism:

p:Y(Q(1) — W,

defined as follows:

ot ) = (—DFr(FEY) fork=1,2, ..



e Y(Q(1)) is a Hopf superalgebra with comultiplication given by the formula

At = 3 Z<_1)<p<z'>+p<k>><p<j>+p<k>>t§fk> @1
s=0 k

e The opposite comultiplication:

=

AT() =2 Dt @ h:
k
e Homomorphism of associative algebras:
AP Y(Q(1)) = Y(Q(1)™"

AP = AP oo AP o A%

n—1n

23
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e The evaluation homomorphism U : Y(Q(1)) — U(Q(1)):

e Identify U(h) C U(Q(n)) with U(Q(1))®" by setting

)= (—0rel), 1 e (<)

2 197 e11 ® 1@2‘—17 £ i 187~ & fi1® -1

e Obtain the homomorphism

(U 0 AT - Y(Q(1) — U(b),

(Um0 a) (el + 45 ) = (=1F D (e + ()G e, — & )+ )

112>219>... 210



Proof of the Main Theorem.

We use that the Harish-Chandra homomorphism ¢ : W, — U(h) is injective.

We also have that

(=m0 A) () = (~1)"(m(el V) (even)

n,l

n,

(=m0 a) (1% ) = (~1)"((£T V) (odd)

Hence

p:=19""o U o A%

is a surjective homomorphism ¢ : Y(Q(1)) — W,.
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Remark. The proof of above theorem uses the same method as in J. Brundan, A.
Kleshchev, Adv. Math., 2006, but we start with

U Y(Q(1)) = U(Q(1))

instead of the usual evaluation map

ev : Y(Q(1)) = U(Q(1))

given by
t%i = —€11, t(_lil —> —][1717 tl(i;) — 0 for r > 2

It is desirable to construct a homomorphism

Y(Q() — Wy

using the evaluation map, but at the moment we do not have suitable generators in W,.
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Conjecture. Let g be a basic classical Lie superalgebra and e be regular nilpotent. Then
it is possible to find a set of generators of W, such that even generators commute, and the
commutators of odd generators are in the center of Ul(g).

e We proved this conjecture for g = Q(n). The proof is based on the surjective homomor-
phism:
P - Y(Q<1)) — WX?

and the following relation in Y (Q(1)):

o If r + s is even, then

i, 1) = 0.
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8. THE CASE OF A REGULAR NILPOTENT Y

e If v is regular, then gy = b is the Cartan subalgebra of g.

h=<uz,&|i=1,...,n>, wherez; = €ii, §i = <_1)i+1fi,z’
x; lie in the center of U(h) and [&;, &] = 2u;.

e U(hg) = Clxy,...,x,] coincides with the center of U(h).



Theorem (P-S) Let M be a simple W,-module. Then

2 if nis even,

dim M < 2" where k = { 2

”T_l if n 1s odd.

The proof is based on the Amitsur—Levitzki theorem.

Theorem. (A-L)If Ay, ..., As, are n X n matrices, then
Z Sgﬂ(J)AU(D « o Ao(2n) = 0.

oESo,

Idea of Proof.

(1) U(h) satisfies Amitsur—Levitzki identity, i.e. for any uq, ..., uw+1 € U(h)
Z SGN(0)Ug(1) - - - Ugy(aht1y = 0.

0652/{5—1—1

(2) W, satisfies Amitsur-Levitzki identity, since W, = ¢(W,) C U(h).
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3) Consider M as a module over the associative algebra W, , forgetting the Zs-grading.
X

Then either M is simple or M is a direct sum of two non-homogeneous simple submodules
My & M.

(a) In the former case dim M < 2%,

Assume dim M > 2F. Let V be a subspace of dimension 2¥ 4+ 1. By density theorem for
any Xi,..., Xy € Ende(V) one can find uy, ..., ugs1 in W, such that (u;)y = X; for
all i = 1,...,2". Since Endc(V) does not satisfy (*) we obtain a contradiction.

(b) In the latter case, we can prove in the same way that dim M; < 2% and dim M, < 2F.
Therefore dim M < 21,
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Theorem. (P-S)

For a basic classical Lie superalgebra or Q(n) and a regular nilpotent y, all irreducible
representations of W, are finite-dimensional:

dim M < 2¢+!

Let d be the defect of g.
In other cases we set k=dor k=d + 1.

o kb =d, if gis of type I: g = sl(m|n), 0sp(2|2n),

or g is of type Il and dim(gy) is even: g = osp(2m + 1|2n) for m > n,
osp(2m|2n) for m < n, Gj.

o k=d+1, if gis of type Il and dim(gy) is odd:
g =o0sp(2m + 1|2n) for m < n, osp(2m|2n) form >n, D(2,1;«a), F}.
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Idea of Proof.

1) If the good Z-grading of g with respect to x is even,
then there is an injective homomorphism

9 WX — U(go)

2) If the good Z-grading is odd,
then there is an injective homomorphism

W, — W;,
where W; is “the finite W-algebra” of s:

s is the Levi subalgebra of a parabolic subalgebra p, such that n= C m C p~, where n™ is
the nilradical of the opposite parabolic p~.

W2 = (U(s) ®u(ms) C,)™, where m® = mN's, y is the restriction of ¥ on s.

3) One can show that if x is regular, then U(go) (correspondingly, W?) satisfies Amitsur—
Levitzki identity. Hence W, satisfies Amitsur—Levitzki identity.
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