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1. Introduction

• A finite W -algebra is a certain associative algebra attached to a pair (g, e) where
g is a complex semi-simple Lie algebra or a classical Lie superalgebra and e ∈ g is
an even nilpotent element.

• A finite W -algebra is a generalization of the universal enveloping algebra U(g).

• It is a quantization of the Poisson algebra of functions on the Slodowy slice at e to the
orbit Ad(G)e, where g = Lie(G).

• Due to recent results of I. Losev, A. Premet and others, finite W -algebras play a very
important role in description of primitive ideals.

• Finite W -algebras for semi-simple Lie algebras were introduced by A. Premet.

• Finite W -algebras for Lie algebras and superalgebras have been extensively studied by
mathematicians and physicists: L. Fehér, C. Briot, E. Ragoucy, A. Premet, I. Losev,
V. Ginzburg, W. L. Gan, J. Brundan, J. Brown, S. Goodwin, W. Wang, L. Zhao, Y. Zeng,
B. Shu.
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2. Finite W -algebras for Lie superalgebras

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra with reductive even part g0̄,

χ ∈ g∗0̄ ⊂ g∗ be an even element in the coadjoint representation,

G0̄ be the algebraic reductive group of g0̄.

Definition. χ is nilpotent if the closure of the G0̄-orbit in g∗0̄ contains zero.

Let gχ be the annihilator of χ in g:

gχ = {x ∈ g | χ([x, g]) = 0}

Definition. A good Z-grading for χ is a Z-grading g =
⊕
j∈Z

gj

satisfying the following two conditions:

(1) χ(gj) = 0 if j 6= −2,

(2) gχ belongs to
⊕
j≥0

gj.
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• χ([·, ·]) : g−1 × g−1 → C is a non-degenerate (super)skew-symmetric

even bilinear form on g−1.

• Let l be a maximal isotropic (Lagrangian) subspace with respect to this form.

Let m = (
⊕
j≤−2

gj)⊕ l. The restriction of χ to m

χ : m −→ C

defines a one-dimensional representation Cχ =< v > of m.

Definition. The generalized Whittaker module

is the induced g-module

Qχ := U(g)⊗U(m) Cχ ∼= U(g)/Iχ,

where Iχ is the left ideal of U(g) generated by a− χ(a) for all a ∈ m.
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Definition. The finite W -algebra associated to the nilpotent element χ is

Wχ := EndU(g)(Qχ)op

• Let π : U(g)→ U(g)/Iχ be the natural projection. Then

Wχ = (Qχ)m = {π(y) ∈ U(g)/Iχ | ad(a)y ∈ Iχ for all a ∈ m}

The algebra structure on Wχ is given by

π(y1)π(y2) = π(y1y2)

for yi ∈ U(g) such that ad(a)yi ∈ Iχ for all a ∈ m and i = 1, 2.
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• As in the Lie algebra case, the superalgebras Wχ are all isomorphic for different choices
of good Z-gradings and maximal isotropic subspaces l.

• If g admits an even non-degenerate invariant supersymmetric bilinear form, then
g ' g∗ and χ(x) = (e|x) for some nilpotent e ∈ g0̄.

• By the Jacobson–Morozov theorem e can be included in sl(2) =< e, h, f >.

The linear operator adh defines a Dynkin Z-grading g =
⊕
j∈Z

gj, where

gj = {x ∈ g | adh(x) = jx}.

Remark.

(1) The Dynkin Z-grading is good for χ,

(2) e ∈ g2.
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Example. Let χ = 0. Then m = 0,

Qχ = U(g), Wχ = U(g).

Definition. A nilpotent χ ∈ g∗0̄ is called regular if the G0̄-orbit of χ has maximal

dimension, i.e. the dimension of gχ
0̄

is minimal.

Theorem. (B. Kostant, 1978)

For a regular nilpotent χ and a reductive Lie algebra g the algebra Wχ is isomorphic

to the center of U(g).

• Theorem of Kostant does not hold for Lie superalgebras,

since Wχ must have a non-trivial odd part, and the center of U(g) is even.
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• J. Brown, J. Brundan and S. Goodwin proved that the finite W -algebra for the general
linear Lie superalgebra g = gl(l|k) associated to regular (principal) nilpotent element
is a certain truncation of a shifted version of the super-Yangian Y (gl(1|1)).
(Algebra Numb. Theory, 2013).

• We described the finite W -algebra for the queer Lie superalgebra Q(n) associated to
regular nilpotent element as a quotient of the super-Yangian Y (Q(1)).
(To arrear in Adv. Math.)

Recall: For a finite-dimensional semi-simple Lie algebra g, the Yangian of g is an infinite-
dimensional Hopf algebra Y (g). It is a deformation of the universal enveloping algebra of
the Lie algebra of polynomial currents of g.
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3. The super-Yangian of gl(1|1)

gl(1|1) = {A =

(
c b
c d

)
| a, b, c, d ∈ C} [A,B] = AB − (−1)p(A)p(B)BA

Definition. The super-Yangian Y = Y (gl(1|1)) is an associative unital superalgebra
over C with a countable set of generators

t
(r)
i,j where i, j = 1, 2, and r ≥ 0.

The Z2-grading of Y is defined by

p(t
(r)
i,j ) = p(i) + p(j).

We employ the formal series:

ti,j(u) =
∑
r≥0

t
(r)
i,j u

−r ∈ Y [[u−1]].

• Relations in Y :

(u− v)[ti,j(u), tk,l(v)] =

(−1)p(i)p(k)+p(i)p(l)+p(k)p(l)((tk,j(u)ti,l(v)− tk,j(v)ti,l(u)).
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4. Principal W -algebra Wπ

g = gl(l|k) is a general linear Lie superalgebra (assume that l ≥ k)

Definition. π is a two-rowed pyramid:

k is the number of boxes in the 1-st row,

l is the number of boxes in the 2-nd row.

Example.

g = gl(5|2) (l = 5, k = 2) π =

g = gl(2|1) (l = 2, k = 1) π =

• Pyramid π defines Z-grading on g:

g = ⊕r∈Zg(r) deg(ei,j) := col(j)− col(i), h := g(0)
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• The explicit principal nilpotent element e is

e :=
∑
i,j

ei,j ∈ g0̄

summing over all adjacent pairs of boxes in π.

Example.

g = gl(5|2) π = e = e1,2 + e2,3 + e3,4 + e4,5 + e6,7

• It is a good Z-grading for e:

e ∈ g(1) and ge := Ker(ade) ⊆ ⊕r≥0g(r)

• Set χ(x) := (e|x) for x ∈ g

Remark. We double the degree to agree with the previous definition of a good Z-grading.

Definition. The principal W -algebra Wπ associated to the pyramid π

is defined as usual.
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Definition. Matrix σ =

(
0 s1,2

s2,1 0

)
is compatible with pyramid π if π has

s2,1 columns of hight one on its left side and
s1,2 columns of hight one on its right side,
or if k = 0 and l = s2,1 + s1,2.

• l = k + s1,2 + s2,1

Example.

g = gl(5|2), l = 5, k = 2 π = σ =

(
0 1
2 0

)

g = gl(2|1), l = 2, k = 1 π = σ =

(
0 0
1 0

)

g = gl(2|2), l = 2, k = 2 π = σ =

(
0 0
0 0

)
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Theorem. (Brown-Brundan-Goodwin, 2012)

The principal W -algebra Wπ for gl(l|k) is isomorphic to the shifted super-Yangian

Y l
σ of level l.

Idea of Proof. Define the Miura transform:

µ : Wπ −→ U(h) ∼= U(gl1)⊗s2,1 ⊗ U(gl(1|1))⊗k ⊗ U(gl1)⊗s1,2,

where U(gl1) := C[e1,1].

µ is injective and

µ(Wπ) = Y l
σ
∼= Yσ/I

l
σ,

where Yσ is the shifted super-Yangian (a subalgebra of Y ),

and I lσ is a two-sided ideal.

• Y l
σ ⊂ U(gl1)⊗s2,1 ⊗ U(gl(1|1))⊗k ⊗ U(gl1)⊗s1,2 is the image of Yσ under homomorphism

defined using the comultiplication on Y and the evaluation map Y → U(gl(1|1)).
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5. The queer Lie superalgebra g = Q(n)

Q(n) = {
(
A B
B A

)
| A,B are n× n matrices}

ei,j and fi,j are standard bases in A and B respectively:

ei,j =

(
Eij 0
0 Eij

)
, fi,j =

(
0 Eij

Eij 0

)
z =

∑n
i=1 ei,i is a central element

Q(n) admits an odd nondegenerate g-invariant super symmetric bilinear form

(x|y) := otr(xy) for x, y ∈ g,

where otr

(
A B
B A

)
= trB.
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Let sl(2) =< e, h, f >, where

e =

n−1∑
i=1

ei,i+1, h = diag(n− 1, n− 3, . . . , 3− n, 1− n), f =

n−1∑
i=1

i(n− i)ei+1,i.

e is a regular nilpotent element.

h defines an even Dynkin Z-grading of g whose degrees on the elementary matrices are

0 2 · · · 2n− 2 0 2 · · · 2n− 2
−2 0 · · · 2n− 4 −2 0 · · · 2n− 4
· · · · · · · · · · · · · · · · · · · · · · · ·

2− 2n · · · · · · 0 2− 2n · · · · · · 0
0 2 · · · 2n− 2 0 2 · · · 2n− 2
−2 0 · · · 2n− 4 −2 0 · · · 2n− 4
· · · · · · · · · · · · · · · · · · · · · · · ·

2− 2n · · · · · · 0 2− 2n · · · · · · 0


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Replace e =
∑n−1

i=1 ei,i+1 by E =
∑n−1

i=1 fi,i+1 ⇒ E is odd.

Define χ ∈ g∗0̄ by χ(x) = (x|E).

m :=

n⊕
j=2

g2−2j.

It is generated by ei+1,i and fi+1,i where i = 1, . . . , n− 1

χ(ei+1,i) = 1, χ(fi+1,i) = 0

• The left ideal Iχ and Wχ are defined as usual.
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p :=

n−1⊕
j=0

g2j

is a parabolic subalgebra of g,

g0 is a Cartan subalgebra:

g0 = h =< xi, ξi | i = 1, . . . , n >, where xi = ei,i, ξi = fi,i

• Since the good Z-grading is even, then Wχ can be regarded as a subalgebra of U(p).
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6. The Harish-Chandra homomorphism

U(p)+ :=
⊕
i>0

U(p)i

is a two sided ideal in U(p) and U(p)/U(p)+ ∼= U(g0) = U(h).

• Let ϑ : U(p) −→ U(h) be the natural projection.

Theorem. (P–S) The restriction of ϑ on Wχ is injective:

ϑ : Wχ −→ U(h).
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• A. Sergeev defined by induction the elements e
(m)
i,j and f

(m)
i,j belonging to U(Q(n)):

e
(m)
i,j =

∑n
k=1 ei,ke

(m−1)
k,j + (−1)m+1

∑
fi,kf

(m−1)
k,j ,

f
(m)
i,j =

∑n
k=1 ei,kf

(m−1)
k,j + (−1)m+1

∑
fi,ke

(m−1)
k,j .

Theorem. (P–S)

Wχ has n even generators: π(e
(n+k−1)
n,1 ) and n odd generators: π(f

(n+k−1)
n,1 ), k = 1, . . . , n.

The images of these generators under the Harish-Chandra homomorphismare are the
following elements in U(h):

ϑ(π(e
(n+k−1)
n,1 )) = [

∑
i1≥i2≥...≥ik

(xi1 + (−1)k+1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik)]even,

ϑ(π(f
(n+k−1)
n,1 )) = [

∑
i1≥i2≥...≥ik

(xi1 + (−1)k+1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik)]odd.
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7. The super-Yangian of Q(n)

• Super-Yangian Y (Q(n)) was studied by M. Nazarov and A. Sergeev.

• Y (Q(n)) is the associative unital superalgebra over C with the countable set of generators

t
(r)
i,j where r = 1, 2, . . . and i, j = ±1,±2, . . . ,±n

The Z2-grading of the algebra Y (Q(n)):

p(t
(r)
i,j ) = p(i) + p(j), where p(i) = 0 if i > 0 and p(i) = 1 if i < 0
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• We employ the formal series:

ti,j(u) =
∑
r≥0

t
(r)
i,j u

−r ∈ Y (Q(n))[[u−1]].

• The relations in Y (Q(n))[[u−1, v−1]]:

(u2 − v2)[ti,j(u), tk,l(v)] · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l)

= (u + v)(tk,j(u)Ti,l(v)− tk,j(v)Ti,l(u))

−(u− v)(t−k,j(u)T−i,l(v)− tk,−j(v)Ti,−l(u)) · (−1)p(k)+p(l)

• We also have the relations
ti,j(−u) = t−i,−j(u)
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• From now on we will use only Y (Q(1)).

Q(1) = {
(
a b
b a

)
| a, b ∈ C}

Y (Q(1)) is generated by t
(k)
1,1 (even) and t

(k)
−1,1 (odd) for k = 1, 2, . . .

The Main Theorem. (P–S) There exists a surjective homomorphism:

ϕ : Y (Q(1)) −→ Wχ

defined as follows:

ϕ(t
(k)
1,1) = (−1)kπ(e

(n+k−1)
n,1 ),

ϕ(t
(k)
−1,1) = (−1)kπ(f

(n+k−1)
n,1 ), for k = 1, 2, . . .
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• Y (Q(1)) is a Hopf superalgebra with comultiplication given by the formula

∆(t
(r)
i,j ) =

r∑
s=0

∑
k

(−1)(p(i)+p(k))(p(j)+p(k))t
(s)
i,k ⊗ t

(r−s)
k,j .

• The opposite comultiplication:

∆op(t
(r)
i,j ) =

r∑
s=0

∑
k

t
(r−s)
k,j ⊗ t(s)i,k .

• Homomorphism of associative algebras:

∆op
n : Y (Q(1))→ Y (Q(1))⊗n

∆op
n := ∆op

n−1,n · · · ◦∆op
2,3 ◦∆op
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• The evaluation homomorphism U : Y (Q(1))→ U(Q(1)):

t
(r)
1,1 7→ (−1)re

(r)
1,1, t

(r)
−1,1 7→ (−1)rf

(r)
1,1 .

• Identify U(h) ⊂ U(Q(n)) with U(Q(1))⊗n by setting

xi 7→ 1⊗n−i ⊗ e1,1 ⊗ 1⊗i−1, ξi 7→ 1⊗n−i ⊗ f1,1 ⊗ 1⊗i−1.

• Obtain the homomorphism

(
U⊗n ◦∆op

n

)
: Y (Q(1)) −→ U(h),

where(
U⊗n ◦∆op

n

)
(t

(k)
1,1 + t

(k)
−1,1) = (−1)k

∑
i1≥i2≥...≥ik

(xi1 + (−1)k+1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik)
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Proof of the Main Theorem.

We use that the Harish-Chandra homomorphism ϑ : Wχ → U(h) is injective.

We also have that

(
U⊗n ◦∆op

n

)
(t

(k)
1,1) = (−1)kϑ(π(e

(n+k−1)
n,1 )) (even)(

U⊗n ◦∆op
n

)
(t

(k)
−1,1) = (−1)kϑ(π(f

(n+k−1)
n,1 )) (odd)

Hence

ϕ := ϑ−1 ◦ U⊗n ◦∆op
n

is a surjective homomorphism ϕ : Y (Q(1)) −→ Wχ.
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Remark. The proof of above theorem uses the same method as in J. Brundan, A.
Kleshchev, Adv. Math., 2006, but we start with

U : Y (Q(1))→ U(Q(1))

instead of the usual evaluation map

ev : Y (Q(1))→ U(Q(1))

given by

t
(1)
1,1 7→ −e1,1, t

(1)
−1,1 7→ −f1,1, t

(r)
i,j 7→ 0 for r ≥ 2

It is desirable to construct a homomorphism

Y (Q(1)) −→ Wχ

using the evaluation map, but at the moment we do not have suitable generators in Wχ.
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Conjecture. Let g be a basic classical Lie superalgebra and e be regular nilpotent. Then
it is possible to find a set of generators of Wχ such that even generators commute, and the
commutators of odd generators are in the center of U(g).

• We proved this conjecture for g = Q(n). The proof is based on the surjective homomor-
phism:

ϕ : Y (Q(1)) −→ Wχ,

and the following relation in Y (Q(1)):

• If r + s is even, then

[t
(r)
1,1, t

(s)
1,1] = 0.
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8. The case of a regular nilpotent χ

• If χ is regular, then g0 = h is the Cartan subalgebra of g.

h =< xi, ξi | i = 1, . . . , n >, where xi = ei,i, ξi = (−1)i+1fi,i

xi lie in the center of U(h) and [ξi, ξi] = 2xi.

• U(h0̄) = C[x1, . . . , xn] coincides with the center of U(h).
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Theorem (P–S) Let M be a simple Wχ-module. Then

dimM ≤ 2k+1, where k =

{
n
2 if n is even,

n−1
2 if n is odd.

The proof is based on the Amitsur–Levitzki theorem.

Theorem. (A–L) If A1, . . . , A2n are n× n matrices, then∑
σ∈S2n

sgn(σ)Aσ(1) . . . Aσ(2n) = 0.

Idea of Proof.

(1) U(h) satisfies Amitsur–Levitzki identity, i.e. for any u1, . . . , u2k+1 ∈ U(h)∑
σ∈S

2k+1

sgn(σ)uσ(1) . . . uσ(2k+1) = 0. (∗)

(2) Wχ satisfies Amitsur–Levitzki identity, since Wχ
∼= ϑ(Wχ) ⊂ U(h).
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(3) Consider M as a module over the associative algebra Wχ, forgetting the Z2-grading.
Then either M is simple or M is a direct sum of two non-homogeneous simple submodules
M1 ⊕M2.

(a) In the former case dimM ≤ 2k.

Assume dimM > 2k. Let V be a subspace of dimension 2k + 1. By density theorem for
any X1, . . . , X2k+1 ∈ EndC(V ) one can find u1, . . . , u2k+1 in Wχ such that (ui)|V = Xi for
all i = 1, . . . , 2k+1. Since EndC(V ) does not satisfy (*) we obtain a contradiction.

(b) In the latter case, we can prove in the same way that dimM1 ≤ 2k and dimM2 ≤ 2k.
Therefore dimM ≤ 2k+1.
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Theorem. (P–S)
For a basic classical Lie superalgebra or Q(n) and a regular nilpotent χ, all irreducible
representations of Wχ are finite-dimensional:

dimM ≤ 2k+1

Let d be the defect of g.

In other cases we set k = d or k = d + 1.

• k = d, if g is of type I: g = sl(m|n), osp(2|2n),

or g is of type II and dim(gχ
1̄
) is even: g = osp(2m + 1|2n) for m ≥ n,

osp(2m|2n) for m ≤ n, G3.

• k = d + 1, if g is of type II and dim(gχ
1̄
) is odd:

g = osp(2m + 1|2n) for m < n, osp(2m|2n) for m > n, D(2, 1;α), F4.
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Idea of Proof.

1) If the good Z-grading of g with respect to χ is even,
then there is an injective homomorphism

ϑ : Wχ −→ U(g0).

2) If the good Z-grading is odd,
then there is an injective homomorphism

ϑ : Wχ −→ W̄ s
χ,

where W̄ s
χ is “the finite W -algebra” of s:

s is the Levi subalgebra of a parabolic subalgebra p, such that n− ⊂ m ⊂ p−, where n− is
the nilradical of the opposite parabolic p−.

W̄ s
χ = (U(s)⊗U(ms) Cχ)m

s
, where ms = m ∩ s, χ is the restriction of χ on s.

3) One can show that if χ is regular, then U(g0) (correspondingly, W̄ s
χ) satisfies Amitsur–

Levitzki identity. Hence Wχ satisfies Amitsur–Levitzki identity.
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