Classifying A4(\) modules by their Dirac
cohomology

Pavle PandZi¢, University of Zagreb

LT 11, Varna, June 2015



Real reductive groups

G: a connected real reductive Lie group, with Cartan involution
6, such that K = G? is compact.



Real reductive groups

G: a connected real reductive Lie group, with Cartan involution
6, such that K = G? is compact.

Main examples: closed subgroups of GL(n, C), stable under
0(g) =&



Real reductive groups

G: a connected real reductive Lie group, with Cartan involution
6, such that K = G? is compact.

Main examples: closed subgroups of GL(n, C), stable under
0(g)="2""
For example, SL(n,R), U(p, q), Sp(2n,R), O(p, q)o.



Real reductive groups

G: a connected real reductive Lie group, with Cartan involution
6, such that K = G? is compact.

Main examples: closed subgroups of GL(n, C), stable under
0(g) =&

For example, SL(n,R), U(p, q), Sp(2n,R), O(p, q)o.

The corresponding K are SO(n) C SL(n,R);

U(p) x U(q) C U(p, q); U(n) C Sp(2n,R);

(O(p) x O(g))o < O(p, 9)o-
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Group representations are the main objects of harmonic analysis
and have many applications.

To study algebraic properties of representations, it is convenient to
introduce their algebraic analogs, (g, K)-modules.

For a representation V of G, let Vi be the space of K-finite
vectors in V.

Vik has an action of the Lie algebra go of G
(K-finite = smooth)

g = (go)c also acts
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(g, K)-modules

A (g, K)-module is a vector space M
with a Lie algebra action of g
and a locally finite action of K,

which are compatible
(i.e., induce the same action of
o = the Lie algebra of K.)
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M = @ mjEs.

sek

M is a Harish-Chandra module if it is finitely generated and all
mg < 00.
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The Lie algebra is g = sl(2, C) = 2x2 matrices of trace 0.

g has a basis

(%) =) ()

The possible irreducible modules are



K ki2 kid .. (1)
—k.—4 —k.—2 —.k (2)
AP ; ()
i:2 7 ijt2 (4)

where k > 0, n > 0 and / are integers.

A dot = a K-type = a 1-dim h-eigenspace. The numbers are the
h-eigenvalues.

e raises the eigenvalue by 2, f lowers by 2.
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Infinitesimal character

Let U(g) be the universal enveloping algebra of g, and let Z(g) be
the center of U(g).

All z € Z(g) act as scalars on irreducible modules. This defines the
infinitesimal character of M, xu : Z(g) — C.

Harish-Chandra proved that Z(g) = P(h*)", so infinitesimal
characters correspond to h*/W.

Here B is a Cartan subalgebra of g and W is the Weyl group of
(g, h).

The simplest nontrivial element of Z(g) is the Casimir element

Casy = Y bid;,

where b; and d; are dual bases of g with respect to the Killing form.



The Clifford algebra for G

Let g =t @ p be the Cartan decomposition.

(€ and p are the 1 eigenspaces of the Cartan involution. € is the
complexified Lie algebra of K.)



The Clifford algebra for G

Let g =t @ p be the Cartan decomposition.

(€ and p are the 1 eigenspaces of the Cartan involution. € is the
complexified Lie algebra of K.)

Let C(p) be the Clifford algebra of p with respect to B: the
associative algebra with 1, generated by p, with relations

xy +yx = —=2B(x, y).
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The Dirac operator for G

Let b; be any basis of p; let d; be the dual basis with respect to B.
Dirac operator:

D=) bod  €Ug)®Cp)

D is independent of b; and K-invariant.
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D? is the spin Laplacean (Parthasarathy):

D?=— Casy ®1 + Casg, + constant.

Here Casy, Casg, are the Casimir elements of U(g), U(ta);

£ is the diagonal copy of £ in U(g) ® C(p),
defined by ¢ — U(g) and € — so(p) — C(p).
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Dirac cohomology

M a (g, K)-module, S a spin module for C(p)
(S = ApT, p™ max isotropic subspace of p)

D actson M ® S.
Dirac cohomology of M:

Hp(M) = Ker D/Im D N Ker D

Hp(M) is a module for the spin double cover K of K.

If M is unitary, then D is self adjoint wrt an inner product. So
Hp(M) = Ker D = Ker D?,

and D? > 0 (Parthasarathy’s Dirac inequality).
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Example: G = SU(1,1) = SL(2,R)

The modules corresponding to pictures (1)-(3) have Hp # 0.
Hp(M) is equal to highest weight+1 and/or lowest weight-1.

The modules corresponding to picture (4) have Hp = 0.
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Vogan's conjecture

Let h = t ® a be a fundamental Cartan subalgebra of g. View
t* C b* via extension by 0 over a.
The following was conjectured by Vogan, proved by Huang-P.

Theorem
Assume M has infinitesimal character and Hp(M) contains a
K-type E, of highest weight y € t*.

Then the inf. character of M is v + pg up to Weyl group W.
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Motivation

Irreducible unitary M with Hp # 0 are interesting:

> discrete series - Parthasarathy;

» most of Aq(\) modules - Huang-Kang-P;

» unitary h.wt. modules (Huang-P.-Renard; Huang-P.-Protsak);
» some unipotent reps - Barbasch-P.

» also fd modules - Kostant, Huang-Kang-P.
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Further motivation

» unitarity (Dirac inequality and its improvements)

» irred. unitary M with Hp # 0 should form a nice part of the
unitary dual

> Hp is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

» Relations to n-cohomology in special cases (Huang-P.-Renard)
and to (g, K)-cohomology (Huang-Kang-P.; more details
below)

» Relations to characters and branching (Huang-P-Zhu)
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> Generalizations to other settings:
» quadratic subalgebras (Kostant),
» Lie superalgebras (Huang-P.),
» affine Lie algebras (Kac, Mdseneder-Frajria, Papi),

» graded affine Hecke algebras and p-adic groups
(Barbasch-Ciubotaru-Trapa),

» noncommutative equivariant cohomology
(Alekseev-Meinrenken, Kumar).

» Can construct reps with Hp # 0 via “algebraic Dirac
induction” (P.-Renard; Prli¢)

» There is a translation principle for the Euler characteristic of
Hp, i.e., the Dirac index (Mehdi-P.-Vogan).
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(g, K)-cohomology

Let X be a (g, K)-module with the same infinitesimal character as
a finite-dimensional module F.

The (twisted) (g, K)-cohomology of X is the space Ext; x(F, X).
If X is unitary, then

H(g, K; X) = Homg (Hp(F), Hp(X))-

(Or twice this if dimp is odd.)
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Aq(\) modules

Vogan and Zuckerman proved that every unitary module with
nonzero (g, K)-cohomology is an Aq(\) module.

Here ¢ = [ @ u is a f-stable parabolic subalgebra of g with Levi
subalgebra [ and nilradical u, and A is the p-shifted infinitesimal
character.

The Aq(\) modules are constructed by the so called cohomological
induction, starting from one-dimensional [-modules C,.

They can also be characterized by their infinitesimal characters and
the structure of K-types, which lie in a certain cone.
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Aq(\) modules

A4(X) has nonzero Dirac cohomology precisely when O\ = .

The formula is:

HD(Aq(/\)) = @ 2[dima/2] Ew()\er)fpe'
weW(,t)!

Recall that h = t @ a is a fundamental Cartan subalgebra of g; it is
contained in [.

Positive root systems for (g, h), (g,t), (¢ t) and ([, t) are chosen in
a compatible way. p and pg are the half sums of positive roots for
(g,b) respectively (£,1t).

W(1,t)! consists of the elements of the Weyl group W(I,t) which
take the dominant I-chamber into the dominant [ N £-chamber.
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Question

Is an Ag(\) module uniquely determined by its Dirac cohomology?

This question arises in the study of elliptic tempered characters
(Huang).

It is also a natural classification question.

Furthermore, it is related to Dirac induction and the issue of
reconstructing modules from their Dirac cohomology.
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Answer

Yes, unless the real form [y of [ has factors so(2n,1), sp(p, q) or
the nonsplit fa. (Huang-P., with help from Vogan.)

In particular, the answer is always yes if g is of type A, D, E or G.
It is also always yes if (g, €) is Hermitian.

The question boils down to the issue whether W(I, t)! generates
W(I,t). The answer involves the study of modifications of Vogan
diagrams by simple noncompact reflections.
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Example: go = s0(2n, 1)

For each k =1,...,n, there is a #-stable parabolic subalgebra q
with Levi factor modulo center equal to so(2k, 1).

The modules Ag, (0) are different, but they all have the same Dirac
cohomology, consisting of two K-types:

1 31 1 3 1

(n_i"”7§’§) and (n—=,...

(We also have two discrete series representations, each with a
single K-type in the Dirac cohomology.)



THANK YOU!



