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Real reductive groups

G : a connected real reductive Lie group, with Cartan involution
θ, such that K = G θ is compact.

Main examples: closed subgroups of GL(n,C), stable under
θ(g) =t ḡ−1.

For example, SL(n,R), U(p, q), Sp(2n,R), O(p, q)0.

The corresponding K are SO(n) ⊂ SL(n,R);
U(p)× U(q) ⊂ U(p, q); U(n) ⊂ Sp(2n,R);
(O(p)× O(q))0 ⊂ O(p, q)0.
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(g,K )-modules

A representation of G is a complex topological vector space V with
a continuous G -action by linear operators.

Group representations are the main objects of harmonic analysis
and have many applications.

To study algebraic properties of representations, it is convenient to
introduce their algebraic analogs, (g,K )-modules.

For a representation V of G , let VK be the space of K -finite
vectors in V .

VK has an action of the Lie algebra g0 of G
(K -finite ⇒ smooth)

g = (g0)C also acts
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(g,K )-modules

A (g,K )-module is a vector space M

with a Lie algebra action of g

and a locally finite action of K ,

which are compatible
(i.e., induce the same action of

k0 = the Lie algebra of K .)
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Such M can be decomposed under K as

M =
⊕
δ∈K̂

mδEδ.

M is a Harish-Chandra module if it is finitely generated and all
mδ <∞.
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Example: G = SU(1, 1) (∼= SL(2,R)).

The Lie algebra is g = sl(2,C) = 2x2 matrices of trace 0.

g has a basis

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

The possible irreducible modules are
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• • • . . .
k k + 2 k + 4 . . .

(1)

. . . • • •
. . . −k − 4 −k − 2 −k

(2)

• • . . . •
−n −n + 2 . . . n

(3)

. . . • • • . . .
. . . i − 2 i i + 2 . . .

(4)

where k > 0, n ≥ 0 and i are integers.

A dot = a K -type = a 1-dim h-eigenspace. The numbers are the
h-eigenvalues.

e raises the eigenvalue by 2, f lowers by 2.



Infinitesimal character

Let U(g) be the universal enveloping algebra of g, and let Z (g) be
the center of U(g).

All z ∈ Z (g) act as scalars on irreducible modules. This defines the
infinitesimal character of M, χM : Z (g)→ C.

Harish-Chandra proved that Z (g) ∼= P(h∗)W , so infinitesimal
characters correspond to h∗/W .

Here h is a Cartan subalgebra of g and W is the Weyl group of
(g, h).

The simplest nontrivial element of Z (g) is the Casimir element

Casg =
∑

bidi ,

where bi and di are dual bases of g with respect to the Killing form.
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The Clifford algebra for G

Let g = k⊕ p be the Cartan decomposition.

(k and p are the ±1 eigenspaces of the Cartan involution. k is the
complexified Lie algebra of K .)

Let C (p) be the Clifford algebra of p with respect to B: the
associative algebra with 1, generated by p, with relations

xy + yx = −2B(x , y).
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The Dirac operator for G

Let bi be any basis of p; let di be the dual basis with respect to B.

Dirac operator:

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C (p)

D is independent of bi and K -invariant.
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D2 is the spin Laplacean (Parthasarathy):

D2 = −Casg⊗1 + Cask∆
+ constant.

Here Casg, Cask∆
are the Casimir elements of U(g), U(k∆);

k∆ is the diagonal copy of k in U(g)⊗ C (p),
defined by k ↪→ U(g) and k→ so(p) ↪→ C (p).
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Dirac cohomology

M a (g,K )-module, S a spin module for C (p)
(S =

∧
p+, p+ max isotropic subspace of p)

D acts on M ⊗ S .

Dirac cohomology of M:

HD(M) = Ker D/ Im D ∩ Ker D

HD(M) is a module for the spin double cover K̃ of K .

If M is unitary, then D is self adjoint wrt an inner product. So

HD(M) = Ker D = Ker D2,

and D2 ≥ 0 (Parthasarathy’s Dirac inequality).
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HD(M) is equal to highest weight+1 and/or lowest weight-1.

The modules corresponding to picture (4) have HD = 0.
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Vogan’s conjecture

Let h = t⊕ a be a fundamental Cartan subalgebra of g. View
t∗ ⊂ h∗ via extension by 0 over a.

The following was conjectured by Vogan, proved by Huang-P.

Theorem
Assume M has infinitesimal character and HD(M) contains a
K̃ -type Eγ of highest weight γ ∈ t∗.

Then the inf. character of M is γ + ρk up to Weyl group Wg.
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Motivation

Irreducible unitary M with HD 6= 0 are interesting:

I discrete series - Parthasarathy;

I most of Aq(λ) modules - Huang-Kang-P.;

I unitary h.wt. modules (Huang-P.-Renard; Huang-P.-Protsak);

I some unipotent reps - Barbasch-P.

I also fd modules - Kostant, Huang-Kang-P.
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Further motivation

I unitarity (Dirac inequality and its improvements)

I irred. unitary M with HD 6= 0 should form a nice part of the
unitary dual

I HD is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

I Relations to n-cohomology in special cases (Huang-P.-Renard)
and to (g,K )-cohomology (Huang-Kang-P.; more details
below)

I Relations to characters and branching (Huang-P-Zhu)
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I Generalizations to other settings:
I quadratic subalgebras (Kostant),

I Lie superalgebras (Huang-P.),

I affine Lie algebras (Kac, Möseneder-Frajria, Papi),

I graded affine Hecke algebras and p-adic groups
(Barbasch-Ciubotaru-Trapa),

I noncommutative equivariant cohomology
(Alekseev-Meinrenken, Kumar).

I Can construct reps with HD 6= 0 via “algebraic Dirac
induction” (P.-Renard; Prlić)

I There is a translation principle for the Euler characteristic of
HD , i.e., the Dirac index (Mehdi-P.-Vogan).
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I There is a translation principle for the Euler characteristic of
HD , i.e., the Dirac index (Mehdi-P.-Vogan).



I Generalizations to other settings:
I quadratic subalgebras (Kostant),

I Lie superalgebras (Huang-P.),

I affine Lie algebras (Kac, Möseneder-Frajria, Papi),

I graded affine Hecke algebras and p-adic groups
(Barbasch-Ciubotaru-Trapa),

I noncommutative equivariant cohomology
(Alekseev-Meinrenken, Kumar).

I Can construct reps with HD 6= 0 via “algebraic Dirac
induction” (P.-Renard; Prlić)
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HD , i.e., the Dirac index (Mehdi-P.-Vogan).



(g,K )-cohomology

Let X be a (g,K )-module with the same infinitesimal character as
a finite-dimensional module F .

The (twisted) (g,K )-cohomology of X is the space Ext·g,K (F ,X ).

If X is unitary, then

H(g,K ; X ) = Hom
K̃

(HD(F ),HD(X )).

(Or twice this if dim p is odd.)
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Aq(λ) modules

Vogan and Zuckerman proved that every unitary module with
nonzero (g,K )-cohomology is an Aq(λ) module.

Here q = l⊕ u is a θ-stable parabolic subalgebra of g with Levi
subalgebra l and nilradical u, and λ is the ρ-shifted infinitesimal
character.

The Aq(λ) modules are constructed by the so called cohomological
induction, starting from one-dimensional l-modules Cλ.

They can also be characterized by their infinitesimal characters and
the structure of K -types, which lie in a certain cone.
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Aq(λ) modules

Aq(λ) has nonzero Dirac cohomology precisely when θλ = λ.

The formula is:

HD(Aq(λ)) =
⊕

w∈W (l,t)1

2[dim a/2]Ew(λ+ρ)−ρk .

Recall that h = t⊕ a is a fundamental Cartan subalgebra of g; it is
contained in l.

Positive root systems for (g, h), (g, t), (k, t) and (l, t) are chosen in
a compatible way. ρ and ρk are the half sums of positive roots for
(g, h) respectively (k, t).

W (l, t)1 consists of the elements of the Weyl group W (l, t) which
take the dominant l-chamber into the dominant l ∩ k-chamber.
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Question

Is an Aq(λ) module uniquely determined by its Dirac cohomology?

This question arises in the study of elliptic tempered characters
(Huang).

It is also a natural classification question.

Furthermore, it is related to Dirac induction and the issue of
reconstructing modules from their Dirac cohomology.
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Answer

Yes, unless the real form l0 of l has factors so(2n, 1), sp(p, q) or
the nonsplit f4. (Huang-P., with help from Vogan.)

In particular, the answer is always yes if g is of type A, D, E or G.
It is also always yes if (g, k) is Hermitian.

The question boils down to the issue whether W (l, t)1 generates
W (l, t). The answer involves the study of modifications of Vogan
diagrams by simple noncompact reflections.
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Example: g0 = so(2n, 1)

For each k = 1, . . . , n, there is a θ-stable parabolic subalgebra qk
with Levi factor modulo center equal to so(2k , 1).

The modules Aqk (0) are different, but they all have the same Dirac
cohomology, consisting of two K -types:

(n − 1

2
, . . . ,

3

2
,

1

2
) and (n − 1

2
, . . . ,

3

2
,−1

2
).

(We also have two discrete series representations, each with a
single K -type in the Dirac cohomology.)
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THANK YOU!


