

Classifying $A_q(\lambda)$ modules by their Dirac cohomology

Pavle Pandžić, University of Zagreb

LT 11, Varna, June 2015

Real reductive groups

G : a connected real reductive Lie group, with Cartan involution θ , such that $K = G^\theta$ is compact.

Real reductive groups

G : a connected real reductive Lie group, with Cartan involution θ , such that $K = G^\theta$ is compact.

Main examples: closed subgroups of $GL(n, \mathbb{C})$, stable under $\theta(g) = {}^t \bar{g}^{-1}$.

Real reductive groups

G : a connected real reductive Lie group, with Cartan involution θ , such that $K = G^\theta$ is compact.

Main examples: closed subgroups of $GL(n, \mathbb{C})$, stable under $\theta(g) = {}^t \bar{g}^{-1}$.

For example, $SL(n, \mathbb{R})$, $U(p, q)$, $Sp(2n, \mathbb{R})$, $O(p, q)_0$.

Real reductive groups

G : a connected real reductive Lie group, with Cartan involution θ , such that $K = G^\theta$ is compact.

Main examples: closed subgroups of $GL(n, \mathbb{C})$, stable under $\theta(g) = {}^t \bar{g}^{-1}$.

For example, $SL(n, \mathbb{R})$, $U(p, q)$, $Sp(2n, \mathbb{R})$, $O(p, q)_0$.

The corresponding K are $SO(n) \subset SL(n, \mathbb{R})$;
 $U(p) \times U(q) \subset U(p, q)$; $U(n) \subset Sp(2n, \mathbb{R})$;
 $(O(p) \times O(q))_0 \subset O(p, q)_0$.

(\mathfrak{g}, K) -modules

A representation of G is a complex topological vector space V with a continuous G -action by linear operators.

(\mathfrak{g}, K) -modules

A representation of G is a complex topological vector space V with a continuous G -action by linear operators.

Group representations are the main objects of harmonic analysis and have many applications.

(\mathfrak{g}, K) -modules

A representation of G is a complex topological vector space V with a continuous G -action by linear operators.

Group representations are the main objects of harmonic analysis and have many applications.

To study algebraic properties of representations, it is convenient to introduce their algebraic analogs, (\mathfrak{g}, K) -modules.

(\mathfrak{g}, K) -modules

A representation of G is a complex topological vector space V with a continuous G -action by linear operators.

Group representations are the main objects of harmonic analysis and have many applications.

To study algebraic properties of representations, it is convenient to introduce their algebraic analogs, (\mathfrak{g}, K) -modules.

For a representation V of G , let V_K be the space of K -finite vectors in V .

(\mathfrak{g}, K) -modules

A representation of G is a complex topological vector space V with a continuous G -action by linear operators.

Group representations are the main objects of harmonic analysis and have many applications.

To study algebraic properties of representations, it is convenient to introduce their algebraic analogs, (\mathfrak{g}, K) -modules.

For a representation V of G , let V_K be the space of K -finite vectors in V .

V_K has an action of the Lie algebra \mathfrak{g}_0 of G
(K -finite \Rightarrow smooth)

(\mathfrak{g}, K) -modules

A representation of G is a complex topological vector space V with a continuous G -action by linear operators.

Group representations are the main objects of harmonic analysis and have many applications.

To study algebraic properties of representations, it is convenient to introduce their algebraic analogs, (\mathfrak{g}, K) -modules.

For a representation V of G , let V_K be the space of K -finite vectors in V .

V_K has an action of the Lie algebra \mathfrak{g}_0 of G
(K -finite \Rightarrow smooth)

$\mathfrak{g} = (\mathfrak{g}_0)_{\mathbb{C}}$ also acts

(\mathfrak{g}, K) -modules

A (\mathfrak{g}, K) -module is a vector space M

(\mathfrak{g}, K) -modules

A (\mathfrak{g}, K) -module is a vector space M
with a Lie algebra action of \mathfrak{g}

(\mathfrak{g}, K) -modules

A (\mathfrak{g}, K) -module is a vector space M

with a Lie algebra action of \mathfrak{g}

and a locally finite action of K ,

(\mathfrak{g}, K) -modules

A (\mathfrak{g}, K) -module is a vector space M

with a Lie algebra action of \mathfrak{g}

and a locally finite action of K ,

which are compatible

(i.e., induce the same action of

\mathfrak{k}_0 = the Lie algebra of K .)

Such M can be decomposed under K as

$$M = \bigoplus_{\delta \in \hat{K}} m_\delta E_\delta.$$

Such M can be decomposed under K as

$$M = \bigoplus_{\delta \in \hat{K}} m_\delta E_\delta.$$

M is a Harish-Chandra module if it is finitely generated and all $m_\delta < \infty$.

Example: $G = SU(1, 1)$ ($\cong SL(2, \mathbb{R})$).

The Lie algebra is $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C}) = 2 \times 2$ matrices of trace 0.

Example: $G = SU(1, 1)$ ($\cong SL(2, \mathbb{R})$).

The Lie algebra is $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C}) = 2 \times 2$ matrices of trace 0.

\mathfrak{g} has a basis

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Example: $G = SU(1, 1)$ ($\cong SL(2, \mathbb{R})$).

The Lie algebra is $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C}) = 2 \times 2$ matrices of trace 0.

\mathfrak{g} has a basis

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

The possible irreducible modules are

$$\begin{array}{cccc} \bullet & \bullet & \bullet & \dots \\ k & k+2 & k+4 & \dots \end{array} \quad (1)$$

$$\begin{array}{cccc} \dots & \bullet & \bullet & \bullet \\ \dots & -k-4 & -k-2 & -k \end{array} \quad (2)$$

$$\begin{array}{cccc} \bullet & \bullet & \dots & \bullet \\ -n & -n+2 & \dots & n \end{array} \quad (3)$$

$$\begin{array}{cccc} \dots & \bullet & \bullet & \bullet & \dots \\ \dots & i-2 & i & i+2 & \dots \end{array} \quad (4)$$

where $k > 0$, $n \geq 0$ and i are integers.

A dot = a K -type = a 1-dim h -eigenspace. The numbers are the h -eigenvalues.

e raises the eigenvalue by 2, f lowers by 2.

Infinitesimal character

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , and let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$.

Infinitesimal character

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , and let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$.

All $z \in Z(\mathfrak{g})$ act as scalars on irreducible modules. This defines the infinitesimal character of M , $\chi_M : Z(\mathfrak{g}) \rightarrow \mathbb{C}$.

Infinitesimal character

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , and let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$.

All $z \in Z(\mathfrak{g})$ act as scalars on irreducible modules. This defines the infinitesimal character of M , $\chi_M : Z(\mathfrak{g}) \rightarrow \mathbb{C}$.

Harish-Chandra proved that $Z(\mathfrak{g}) \cong P(\mathfrak{h}^*)^W$, so infinitesimal characters correspond to \mathfrak{h}^*/W .

Infinitesimal character

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , and let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$.

All $z \in Z(\mathfrak{g})$ act as scalars on irreducible modules. This defines the infinitesimal character of M , $\chi_M : Z(\mathfrak{g}) \rightarrow \mathbb{C}$.

Harish-Chandra proved that $Z(\mathfrak{g}) \cong P(\mathfrak{h}^*)^W$, so infinitesimal characters correspond to \mathfrak{h}^*/W .

Here \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is the Weyl group of $(\mathfrak{g}, \mathfrak{h})$.

Infinitesimal character

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , and let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$.

All $z \in Z(\mathfrak{g})$ act as scalars on irreducible modules. This defines the infinitesimal character of M , $\chi_M : Z(\mathfrak{g}) \rightarrow \mathbb{C}$.

Harish-Chandra proved that $Z(\mathfrak{g}) \cong P(\mathfrak{h}^*)^W$, so infinitesimal characters correspond to \mathfrak{h}^*/W .

Here \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is the Weyl group of $(\mathfrak{g}, \mathfrak{h})$.

The simplest nontrivial element of $Z(\mathfrak{g})$ is the Casimir element

$$\text{Cas}_{\mathfrak{g}} = \sum b_i d_i,$$

where b_i and d_i are dual bases of \mathfrak{g} with respect to the Killing form.

The Clifford algebra for G

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition.

(\mathfrak{k} and \mathfrak{p} are the ± 1 eigenspaces of the Cartan involution. \mathfrak{k} is the complexified Lie algebra of K .)

The Clifford algebra for G

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition.

(\mathfrak{k} and \mathfrak{p} are the ± 1 eigenspaces of the Cartan involution. \mathfrak{k} is the complexified Lie algebra of K .)

Let $C(\mathfrak{p})$ be the Clifford algebra of \mathfrak{p} with respect to B : the associative algebra with 1, generated by \mathfrak{p} , with relations

$$xy + yx = -2B(x, y).$$

The Dirac operator for G

Let b_i be any basis of \mathfrak{p} ; let d_i be the dual basis with respect to B .

The Dirac operator for G

Let b_i be any basis of \mathfrak{p} ; let d_i be the dual basis with respect to B .

Dirac operator:

$$D = \sum_i b_i \otimes d_i \quad \in U(\mathfrak{g}) \otimes C(\mathfrak{p})$$

The Dirac operator for G

Let b_i be any basis of \mathfrak{p} ; let d_i be the dual basis with respect to B .

Dirac operator:

$$D = \sum_i b_i \otimes d_i \quad \in U(\mathfrak{g}) \otimes C(\mathfrak{p})$$

D is independent of b_i and K -invariant.

D^2 is the spin Laplacean (Parthasarathy):

$$D^2 = - \text{Cas}_{\mathfrak{g}} \otimes 1 + \text{Cas}_{\mathfrak{k}_\Delta} + \text{constant.}$$

D^2 is the spin Laplacean (Parthasarathy):

$$D^2 = - \text{Cas}_{\mathfrak{g}} \otimes 1 + \text{Cas}_{\mathfrak{k}_\Delta} + \text{constant}.$$

Here $\text{Cas}_{\mathfrak{g}}$, $\text{Cas}_{\mathfrak{k}_\Delta}$ are the Casimir elements of $U(\mathfrak{g})$, $U(\mathfrak{k}_\Delta)$;

D^2 is the spin Laplacean (Parthasarathy):

$$D^2 = - \text{Cas}_{\mathfrak{g}} \otimes 1 + \text{Cas}_{\mathfrak{k}_\Delta} + \text{constant}.$$

Here $\text{Cas}_{\mathfrak{g}}$, $\text{Cas}_{\mathfrak{k}_\Delta}$ are the Casimir elements of $U(\mathfrak{g})$, $U(\mathfrak{k}_\Delta)$;

\mathfrak{k}_Δ is the diagonal copy of \mathfrak{k} in $U(\mathfrak{g}) \otimes C(\mathfrak{p})$,
defined by $\mathfrak{k} \hookrightarrow U(\mathfrak{g})$ and $\mathfrak{k} \rightarrow \mathfrak{so}(\mathfrak{p}) \hookrightarrow C(\mathfrak{p})$.

Dirac cohomology

M a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$
($S = \bigwedge \mathfrak{p}^+$, \mathfrak{p}^+ max isotropic subspace of \mathfrak{p})

Dirac cohomology

M a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$
($S = \bigwedge \mathfrak{p}^+$, \mathfrak{p}^+ max isotropic subspace of \mathfrak{p})

D acts on $M \otimes S$.

Dirac cohomology

M a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$
($S = \bigwedge \mathfrak{p}^+$, \mathfrak{p}^+ max isotropic subspace of \mathfrak{p})

D acts on $M \otimes S$.

Dirac cohomology of M :

$$H_D(M) = \text{Ker } D / \text{Im } D \cap \text{Ker } D$$

Dirac cohomology

M a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$
($S = \bigwedge \mathfrak{p}^+$, \mathfrak{p}^+ max isotropic subspace of \mathfrak{p})

D acts on $M \otimes S$.

Dirac cohomology of M :

$$H_D(M) = \text{Ker } D / \text{Im } D \cap \text{Ker } D$$

$H_D(M)$ is a module for the spin double cover \tilde{K} of K .

Dirac cohomology

M a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$
($S = \bigwedge \mathfrak{p}^+$, \mathfrak{p}^+ max isotropic subspace of \mathfrak{p})

D acts on $M \otimes S$.

Dirac cohomology of M :

$$H_D(M) = \text{Ker } D / \text{Im } D \cap \text{Ker } D$$

$H_D(M)$ is a module for the spin double cover \tilde{K} of K .

If M is unitary, then D is self adjoint wrt an inner product. So

$$H_D(M) = \text{Ker } D = \text{Ker } D^2,$$

and $D^2 \geq 0$ (Parthasarathy's Dirac inequality).

Example: $G = SU(1, 1) \cong SL(2, \mathbb{R})$

The modules corresponding to pictures (1)-(3) have $H_D \neq 0$.

Example: $G = SU(1, 1) \cong SL(2, \mathbb{R})$

The modules corresponding to pictures (1)-(3) have $H_D \neq 0$.

$H_D(M)$ is equal to highest weight+1 and/or lowest weight-1.

Example: $G = SU(1, 1) \cong SL(2, \mathbb{R})$

The modules corresponding to pictures (1)-(3) have $H_D \neq 0$.

$H_D(M)$ is equal to highest weight+1 and/or lowest weight-1.

The modules corresponding to picture (4) have $H_D = 0$.

Vogan's conjecture

Let $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ be a fundamental Cartan subalgebra of \mathfrak{g} . View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

Vogan's conjecture

Let $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ be a fundamental Cartan subalgebra of \mathfrak{g} . View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

The following was conjectured by Vogan, proved by Huang-P.

Vogan's conjecture

Let $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ be a fundamental Cartan subalgebra of \mathfrak{g} . View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

The following was conjectured by Vogan, proved by Huang-P.

Theorem

Assume M has infinitesimal character and $H_D(M)$ contains a \tilde{K} -type E_γ of highest weight $\gamma \in \mathfrak{t}^*$.

Vogan's conjecture

Let $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ be a fundamental Cartan subalgebra of \mathfrak{g} . View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

The following was conjectured by Vogan, proved by Huang-P.

Theorem

Assume M has infinitesimal character and $H_D(M)$ contains a \tilde{K} -type E_γ of highest weight $\gamma \in \mathfrak{t}^*$.

Then the inf. character of M is $\gamma + \rho_{\mathfrak{t}}$ up to Weyl group $W_{\mathfrak{g}}$.

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- ▶ discrete series - Parthasarathy;

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- ▶ discrete series - Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules - Huang-Kang-P.;

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- ▶ discrete series - Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules - Huang-Kang-P.;
- ▶ unitary h.wt. modules (Huang-P.-Renard; Huang-P.-Protsak);

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- ▶ discrete series - Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules - Huang-Kang-P.;
- ▶ unitary h.wt. modules (Huang-P.-Renard; Huang-P.-Protsak);
- ▶ some unipotent reps - Barbasch-P.

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- ▶ discrete series - Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules - Huang-Kang-P.;
- ▶ unitary h.wt. modules (Huang-P.-Renard; Huang-P.-Protsak);
- ▶ some unipotent reps - Barbasch-P.
- ▶ also fd modules - Kostant, Huang-Kang-P.

Further motivation

- ▶ unitarity (Dirac inequality and its improvements)

Further motivation

- ▶ unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual

Further motivation

- ▶ unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual
- ▶ H_D is related to classical topics like generalized Weyl character formula, generalized Bott-Borel-Weil Theorem, construction of discrete series, multiplicities of automorphic forms

Further motivation

- ▶ unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual
- ▶ H_D is related to classical topics like generalized Weyl character formula, generalized Bott-Borel-Weil Theorem, construction of discrete series, multiplicities of automorphic forms
- ▶ Relations to \mathfrak{n} -cohomology in special cases (Huang-P.-Renard) and to (\mathfrak{g}, K) -cohomology (Huang-Kang-P.; more details below)

Further motivation

- ▶ unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual
- ▶ H_D is related to classical topics like generalized Weyl character formula, generalized Bott-Borel-Weil Theorem, construction of discrete series, multiplicities of automorphic forms
- ▶ Relations to \mathfrak{n} -cohomology in special cases (Huang-P.-Renard) and to (\mathfrak{g}, K) -cohomology (Huang-Kang-P.; more details below)
- ▶ Relations to characters and branching (Huang-P-Zhu)

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - ▶ affine Lie algebras (Kac, Möseneder-Frajria, Papi),

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - ▶ affine Lie algebras (Kac, Möseneder-Frajria, Papi),
 - ▶ graded affine Hecke algebras and p-adic groups (Barbasch-Ciubotaru-Trapa),

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - ▶ affine Lie algebras (Kac, Möseneder-Frajria, Papi),
 - ▶ graded affine Hecke algebras and p -adic groups (Barbasch-Ciubotaru-Trapa),
 - ▶ noncommutative equivariant cohomology (Alekseev-Meinrenken, Kumar).

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - ▶ affine Lie algebras (Kac, Möseneder-Frajria, Papi),
 - ▶ graded affine Hecke algebras and p -adic groups (Barbasch-Ciubotaru-Trapa),
 - ▶ noncommutative equivariant cohomology (Alekseev-Meinrenken, Kumar).
- ▶ Can construct reps with $H_D \neq 0$ via “algebraic Dirac induction” (P.-Renard; Prlić)

- ▶ Generalizations to other settings:
 - ▶ quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - ▶ affine Lie algebras (Kac, Möseneder-Frajria, Papi),
 - ▶ graded affine Hecke algebras and p -adic groups (Barbasch-Ciubotaru-Trapa),
 - ▶ noncommutative equivariant cohomology (Alekseev-Meinrenken, Kumar).
- ▶ Can construct reps with $H_D \neq 0$ via “algebraic Dirac induction” (P.-Renard; Prlić)
- ▶ There is a translation principle for the Euler characteristic of H_D , i.e., the Dirac index (Mehdi-P.-Vogan).

(\mathfrak{g}, K) -cohomology

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F .

(\mathfrak{g}, K) -cohomology

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F .

The (twisted) (\mathfrak{g}, K) -cohomology of X is the space $\mathrm{Ext}_{\mathfrak{g}, K}^*(F, X)$.

(\mathfrak{g}, K) -cohomology

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F .

The (twisted) (\mathfrak{g}, K) -cohomology of X is the space $\text{Ext}_{\mathfrak{g}, K}^*(F, X)$.

If X is unitary, then

$$H(\mathfrak{g}, K; X) = \text{Hom}_{\tilde{K}}(H_D(F), H_D(X)).$$

(Or twice this if $\dim \mathfrak{p}$ is odd.)

$A_{\mathfrak{q}}(\lambda)$ modules

Vogan and Zuckerman proved that every unitary module with nonzero (\mathfrak{g}, K) -cohomology is an $A_{\mathfrak{q}}(\lambda)$ module.

$A_{\mathfrak{q}}(\lambda)$ modules

Vogan and Zuckerman proved that every unitary module with nonzero (\mathfrak{g}, K) -cohomology is an $A_{\mathfrak{q}}(\lambda)$ module.

Here $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ is a θ -stable parabolic subalgebra of \mathfrak{g} with Levi subalgebra \mathfrak{l} and nilradical \mathfrak{u} , and λ is the ρ -shifted infinitesimal character.

$A_{\mathfrak{q}}(\lambda)$ modules

Vogan and Zuckerman proved that every unitary module with nonzero (\mathfrak{g}, K) -cohomology is an $A_{\mathfrak{q}}(\lambda)$ module.

Here $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ is a θ -stable parabolic subalgebra of \mathfrak{g} with Levi subalgebra \mathfrak{l} and nilradical \mathfrak{u} , and λ is the ρ -shifted infinitesimal character.

The $A_{\mathfrak{q}}(\lambda)$ modules are constructed by the so called cohomological induction, starting from one-dimensional \mathfrak{l} -modules \mathbb{C}_{λ} .

$A_{\mathfrak{q}}(\lambda)$ modules

Vogan and Zuckerman proved that every unitary module with nonzero (\mathfrak{g}, K) -cohomology is an $A_{\mathfrak{q}}(\lambda)$ module.

Here $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ is a θ -stable parabolic subalgebra of \mathfrak{g} with Levi subalgebra \mathfrak{l} and nilradical \mathfrak{u} , and λ is the ρ -shifted infinitesimal character.

The $A_{\mathfrak{q}}(\lambda)$ modules are constructed by the so called cohomological induction, starting from one-dimensional \mathfrak{l} -modules \mathbb{C}_{λ} .

They can also be characterized by their infinitesimal characters and the structure of K -types, which lie in a certain cone.

$A_{\mathfrak{q}}(\lambda)$ modules

$A_{\mathfrak{q}}(\lambda)$ has nonzero Dirac cohomology precisely when $\theta\lambda = \lambda$.

$A_{\mathfrak{q}}(\lambda)$ modules

$A_{\mathfrak{q}}(\lambda)$ has nonzero Dirac cohomology precisely when $\theta\lambda = \lambda$.

The formula is:

$$H_D(A_{\mathfrak{q}}(\lambda)) = \bigoplus_{w \in W(\mathfrak{l}, \mathfrak{t})^1} 2^{[\dim \mathfrak{a}/2]} E_{w(\lambda + \rho) - \rho_{\mathfrak{k}}}.$$

$A_{\mathfrak{q}}(\lambda)$ modules

$A_{\mathfrak{q}}(\lambda)$ has nonzero Dirac cohomology precisely when $\theta\lambda = \lambda$.

The formula is:

$$H_D(A_{\mathfrak{q}}(\lambda)) = \bigoplus_{w \in W(\mathfrak{l}, \mathfrak{t})^1} 2^{[\dim \mathfrak{a}/2]} E_{w(\lambda + \rho) - \rho_{\mathfrak{t}}}.$$

Recall that $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ is a fundamental Cartan subalgebra of \mathfrak{g} ; it is contained in \mathfrak{l} .

$A_{\mathfrak{q}}(\lambda)$ modules

$A_{\mathfrak{q}}(\lambda)$ has nonzero Dirac cohomology precisely when $\theta\lambda = \lambda$.

The formula is:

$$H_D(A_{\mathfrak{q}}(\lambda)) = \bigoplus_{w \in W(\mathfrak{l}, \mathfrak{t})^1} 2^{[\dim \mathfrak{a}/2]} E_{w(\lambda + \rho) - \rho_{\mathfrak{k}}}.$$

Recall that $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ is a fundamental Cartan subalgebra of \mathfrak{g} ; it is contained in \mathfrak{l} .

Positive root systems for $(\mathfrak{g}, \mathfrak{h})$, $(\mathfrak{g}, \mathfrak{t})$, $(\mathfrak{k}, \mathfrak{t})$ and $(\mathfrak{l}, \mathfrak{t})$ are chosen in a compatible way. ρ and $\rho_{\mathfrak{k}}$ are the half sums of positive roots for $(\mathfrak{g}, \mathfrak{h})$ respectively $(\mathfrak{k}, \mathfrak{t})$.

$A_{\mathfrak{q}}(\lambda)$ modules

$A_{\mathfrak{q}}(\lambda)$ has nonzero Dirac cohomology precisely when $\theta\lambda = \lambda$.

The formula is:

$$H_D(A_{\mathfrak{q}}(\lambda)) = \bigoplus_{w \in W(\mathfrak{l}, \mathfrak{t})^1} 2^{[\dim \mathfrak{a}/2]} E_{w(\lambda + \rho) - \rho_{\mathfrak{k}}}.$$

Recall that $\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a}$ is a fundamental Cartan subalgebra of \mathfrak{g} ; it is contained in \mathfrak{l} .

Positive root systems for $(\mathfrak{g}, \mathfrak{h})$, $(\mathfrak{g}, \mathfrak{t})$, $(\mathfrak{k}, \mathfrak{t})$ and $(\mathfrak{l}, \mathfrak{t})$ are chosen in a compatible way. ρ and $\rho_{\mathfrak{k}}$ are the half sums of positive roots for $(\mathfrak{g}, \mathfrak{h})$ respectively $(\mathfrak{k}, \mathfrak{t})$.

$W(\mathfrak{l}, \mathfrak{t})^1$ consists of the elements of the Weyl group $W(\mathfrak{l}, \mathfrak{t})$ which take the dominant \mathfrak{l} -chamber into the dominant $\mathfrak{l} \cap \mathfrak{k}$ -chamber.

Question

Is an $A_q(\lambda)$ module uniquely determined by its Dirac cohomology?

Question

Is an $A_q(\lambda)$ module uniquely determined by its Dirac cohomology?
This question arises in the study of elliptic tempered characters
(Huang).

Question

Is an $A_q(\lambda)$ module uniquely determined by its Dirac cohomology?

This question arises in the study of elliptic tempered characters (Huang).

It is also a natural classification question.

Question

Is an $A_q(\lambda)$ module uniquely determined by its Dirac cohomology?

This question arises in the study of elliptic tempered characters (Huang).

It is also a natural classification question.

Furthermore, it is related to Dirac induction and the issue of reconstructing modules from their Dirac cohomology.

Answer

Yes, unless the real form \mathfrak{l}_0 of \mathfrak{l} has factors $\mathfrak{so}(2n, 1)$, $\mathfrak{sp}(p, q)$ or the nonsplit \mathfrak{f}_4 . (Huang-P., with help from Vogan.)

Answer

Yes, unless the real form \mathfrak{l}_0 of \mathfrak{l} has factors $\mathfrak{so}(2n, 1)$, $\mathfrak{sp}(p, q)$ or the nonsplit \mathfrak{f}_4 . (Huang-P., with help from Vogan.)

In particular, the answer is always yes if \mathfrak{g} is of type A, D, E or G.
It is also always yes if $(\mathfrak{g}, \mathfrak{k})$ is Hermitian.

Answer

Yes, unless the real form \mathfrak{l}_0 of \mathfrak{l} has factors $\mathfrak{so}(2n, 1)$, $\mathfrak{sp}(p, q)$ or the nonsplit \mathfrak{f}_4 . (Huang-P., with help from Vogan.)

In particular, the answer is always yes if \mathfrak{g} is of type A, D, E or G. It is also always yes if $(\mathfrak{g}, \mathfrak{k})$ is Hermitian.

The question boils down to the issue whether $W(\mathfrak{l}, \mathfrak{t})^1$ generates $W(\mathfrak{l}, \mathfrak{t})$. The answer involves the study of modifications of Vogan diagrams by simple noncompact reflections.

Example: $\mathfrak{g}_0 = \mathfrak{so}(2n, 1)$

For each $k = 1, \dots, n$, there is a θ -stable parabolic subalgebra \mathfrak{q}_k with Levi factor modulo center equal to $\mathfrak{so}(2k, 1)$.

Example: $\mathfrak{g}_0 = \mathfrak{so}(2n, 1)$

For each $k = 1, \dots, n$, there is a θ -stable parabolic subalgebra \mathfrak{q}_k with Levi factor modulo center equal to $\mathfrak{so}(2k, 1)$.

The modules $A_{\mathfrak{q}_k}(0)$ are different, but they all have the same Dirac cohomology, consisting of two K -types:

$$(n - \frac{1}{2}, \dots, \frac{3}{2}, \frac{1}{2}) \quad \text{and} \quad (n - \frac{1}{2}, \dots, \frac{3}{2}, -\frac{1}{2}).$$

Example: $\mathfrak{g}_0 = \mathfrak{so}(2n, 1)$

For each $k = 1, \dots, n$, there is a θ -stable parabolic subalgebra \mathfrak{q}_k with Levi factor modulo center equal to $\mathfrak{so}(2k, 1)$.

The modules $A_{\mathfrak{q}_k}(0)$ are different, but they all have the same Dirac cohomology, consisting of two K -types:

$$(n - \frac{1}{2}, \dots, \frac{3}{2}, \frac{1}{2}) \quad \text{and} \quad (n - \frac{1}{2}, \dots, \frac{3}{2}, -\frac{1}{2}).$$

(We also have two discrete series representations, each with a single K -type in the Dirac cohomology.)

THANK YOU!