

News on $SU(2|1)$ Supersymmetric Mechanics

Evgeny Ivanov (BLTP JINR, Dubna)

“Lie Theory and Its Applications in Physics”

XI International Workshop,
15 - 21 June 2015, Varna, Bulgaria

In collaboration with Stepan Sidorov

Outline

Motivations and contents

$SU(2|1)$ superspace

$(1, 4, 3)$ multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

$(1, 4, 3)$ multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

$(1, 4, 3)$ multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

$(1, 4, 3)$ multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

$(1, 4, 3)$ multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

(1, 4, 3) multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

(1, 4, 3) multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Outline

Motivations and contents

$SU(2|1)$ superspace

(1, 4, 3) multiplet

Chiral multiplet

Generalized $SU(2|1)$ chirality

Superconformal models

Harmonic $SU(2|1)$ superspace

Summary and outlook

Motivations and contents

Supersymmetric Quantum Mechanics (SQM) ([E.Witten, 1983](#)) is the simplest ($d = 1$) supersymmetric theory:

- ▶ Probes structure of higher-dimensional supersymmetric theories via the dimensional reduction;
- ▶ Provides superextensions of integrable models like [Calogero-Moser](#) systems, [Landau](#)-type models, etc;
- ▶ Extended SUSY in $d = 1$ ($\mathcal{N} \geq 2$) exhibits interesting specific features: dualities between various supermultiplets ([J.S.Gates, Jr. & L.Rana, 1995](#), [A.Pashnev & F.Toppan, 2001](#)), nonlinear “cousins” of off-shell linear multiplets ([E.I., S.Krivonos, O.Lechtenfeld, 2003, 2004](#)), etc.

Symmetry group of the standard \mathcal{N} extended SQM is

$$\{Q^A, Q^B\} = 2\delta^{AB}H, \quad [H, Q^A] = 0, \quad A, B = 1 \dots \mathcal{N}. \quad (1)$$

Recently, there was a substantial interest in rigid supersymmetric theories based on curved analogs of the Poincaré supergroup in diverse dimensions (e.g., [T.Dumitrescu, G.Festuccia, N.Seiberg, 2011, 2012](#)). There is the hope that their study will lead to a further progress in understanding, e.g., the generic [gauge/gravity](#) correspondence. It is interesting to consider “curved” analogs of SQM, based on some non-trivial semi-simple supergroups.

The subject of my talk is the simplest version of such SQM based on the supergroup $SU(2|1)$.

- ▶ The universal way to construct supersymmetric theories is the **Superspace Approach**.
- ▶ Our aim is to construct the worldline superfield realizations of $SU(2|1)$ and to show that all off-shell multiplets of $\mathcal{N} = 4, d = 1$ supersymmetry have the well-defined $SU(2|1)$ analogs.
- ▶ The “weak supersymmetry” models (A.Smilga, 2004) are based on the $SU(2|1)$ multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$.
- ▶ $SU(2|1)$ has also invariant chiral subspaces which are carriers of the chiral multiplets $(\mathbf{2}, \mathbf{4}, \mathbf{2})$. The relevant component actions naturally provide the bosonic $d = 1$ Wess-Zumino-type terms.
- ▶ $SU(2|1)$ also admits a supercoset which is an analog of the harmonic analytic superspace of the $\mathcal{N} = 4, d = 1$ supersymmetry (E.I., O.Lichtenfeld, 2004). There, $SU(2|1)$ analogs of the analytic $\mathcal{N} = 4$ superfields $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ and $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ live.
- ▶ The superconformal $D(2, 1; \alpha)$ invariant models in the $SU(2|1)$ superspace naturally yield trigonometric realization of the $d = 1$ conformal group $SO(2, 1)$.

$SU(2|1)$ superspace

- The (central-extended) superalgebra $su(2|1)$:

$$\begin{aligned}\{Q^i, \bar{Q}_j\} &= 2m \left(I_j^i - \delta_j^i F \right) + 2\delta_j^i H, \quad \left[I_j^i, I_l^k \right] = \delta_j^k I_l^i - \delta_l^i I_j^k, \\ \left[I_j^i, \bar{Q}_l \right] &= \frac{1}{2} \delta_j^i \bar{Q}_l - \delta_l^i \bar{Q}_j, \quad \left[I_j^i, Q^k \right] = \delta_j^k Q^i - \frac{1}{2} \delta_j^i Q^k, \\ [F, \bar{Q}_l] &= -\frac{1}{2} \bar{Q}_l, \quad [F, Q^k] = \frac{1}{2} Q^k.\end{aligned}$$

- The supercoset:

$$\frac{SU(2|1)}{SU(2) \times U(1)} \sim \frac{\{Q^i, \bar{Q}_j, H, I_j^i, F\}}{\{I_j^i, F\}}.$$

The superspace coordinates $\{t, \theta_i, \bar{\theta}^i\}$ are identified with the parameters associated with the coset generators. An element of this supercoset can be conveniently parametrized as

$$g = \exp \left(itH + i\tilde{\theta}_i Q^i - i\tilde{\theta}^i \bar{Q}_i \right), \quad \tilde{\theta}_i = \left[1 - \frac{2m}{3} (\bar{\theta} \cdot \theta) \right] \theta_i.$$

- ▶ Transformation properties under Q, \bar{Q}

$$\begin{aligned}\delta\theta_i &= \epsilon_i + 2m(\bar{\epsilon} \cdot \theta)\theta_i, & \delta\bar{\theta}^i &= \bar{\epsilon}^i - 2m(\epsilon \cdot \bar{\theta})\bar{\theta}^i, \\ \delta t &= i[(\epsilon \cdot \bar{\theta}) + (\bar{\epsilon} \cdot \theta)].\end{aligned}$$

- ▶ Invariant integration measure

$$d\zeta = dt d^2\theta d^2\bar{\theta} (1 + 2m\bar{\theta} \cdot \theta), \quad \delta d\zeta = 0.$$

- ▶ Generators

$$\begin{aligned}Q^i &= -i\frac{\partial}{\partial\theta_i} + 2im\bar{\theta}^i\bar{\theta}^j\frac{\partial}{\partial\bar{\theta}^j} + \bar{\theta}^i\frac{\partial}{\partial t}, & \bar{Q}_j &= i\frac{\partial}{\partial\bar{\theta}^j} + 2im\theta_j\theta_k\frac{\partial}{\partial\theta_k} - \theta_j\frac{\partial}{\partial t}, \\ I_j^i &= \left(\bar{\theta}^i\frac{\partial}{\partial\bar{\theta}^j} - \theta_j\frac{\partial}{\partial\theta_i}\right) - \frac{\delta_j^i}{2}\left(\bar{\theta}^k\frac{\partial}{\partial\bar{\theta}^k} - \theta_k\frac{\partial}{\partial\theta_k}\right), \\ F &= \frac{1}{2}\left(\bar{\theta}^k\frac{\partial}{\partial\bar{\theta}^k} - \theta_k\frac{\partial}{\partial\theta_k}\right), & H &= i\partial_t.\end{aligned}$$

- ▶ Covariant derivatives

$$\mathcal{D}^i = \left[1 + m(\bar{\theta} \cdot \theta) - \frac{3m^2}{4} (\bar{\theta} \cdot \theta)^2 \right] \frac{\partial}{\partial \theta_i} - m\bar{\theta}^j \theta_j \frac{\partial}{\partial \theta_i} - i\bar{\theta}^i \frac{\partial}{\partial t} + \dots,$$

$$\bar{\mathcal{D}}_j = - \left[1 + m(\bar{\theta} \cdot \theta) - \frac{3m^2}{4} (\bar{\theta} \cdot \theta)^2 \right] \frac{\partial}{\partial \bar{\theta}^j} + m\bar{\theta}^k \theta_j \frac{\partial}{\partial \bar{\theta}^k} + i\theta_j \frac{\partial}{\partial t} + \dots$$

Here “dots” stand for matrix $U(2)$ connection parts.

(1, 4, 3) multiplet

- The **(1, 4, 3)** multiplet is described by the real neutral superfield $G(t, \theta, \bar{\theta})$ satisfying

$$\varepsilon^{ij} \bar{\mathcal{D}}_i \bar{\mathcal{D}}_j G = \varepsilon_{ij} \mathcal{D}^i \mathcal{D}^j G = 0 \quad \Rightarrow$$

$$\begin{aligned} G = & x - mx (\bar{\theta} \cdot \theta) [1 - 2m (\bar{\theta} \cdot \theta)] + \frac{\ddot{x}}{2} (\bar{\theta} \cdot \theta)^2 - i (\bar{\theta} \cdot \theta) (\theta_i \psi^i + \bar{\theta}^j \dot{\bar{\psi}}_j) \\ & + [1 - 2m (\bar{\theta} \cdot \theta)] (\theta_i \psi^i - \bar{\theta}^j \bar{\psi}_j) + \bar{\theta}^j \theta_i B_j^i, \quad B_k^k = 0. \end{aligned}$$

- The irreducible set of off-shell fields is $x(t), \psi^i(t), \bar{\psi}_i(t), B_j^i(t) (B_k^k = 0)$, In the limit $m = 0$ it is reduced to the ordinary **(1, 4, 3)** superfield.
- The ϵ transformation properties of the component fields:

$$\delta x = (\bar{\epsilon} \cdot \bar{\psi}) - (\epsilon \cdot \psi), \quad \delta \psi^i = i \bar{\epsilon}^i \dot{x} - m \bar{\epsilon}^i x + \bar{\epsilon}^k B_k^i,$$

$$\delta B_{(ij)} = -2i \left[\epsilon_{(i} \dot{\bar{\psi}}_{j)} + \bar{\epsilon}_{(i} \dot{\bar{\psi}}_{j)} \right] + 2m \left[\bar{\epsilon}_{(i} \bar{\psi}_{j)} - \epsilon_{(i} \psi_{j)} \right].$$

- Invariant off-shell Lagrangian

$$\mathcal{L} = - \int d^2\theta d^2\bar{\theta} (1 + 2m \bar{\theta} \cdot \theta) f(G), \quad S = \int dt \mathcal{L}.$$

- After doing θ integral and eliminating the auxiliary field, the on-shell Lagrangian is

$$\mathcal{L} = \dot{x}^2 g(x) + i \left(\bar{\psi}_i \dot{\psi}^i - \dot{\bar{\psi}}_i \psi^i \right) g(x) - \frac{1}{2} \left(\bar{\psi}_i \psi^i \right)^2 \left[g''(x) - \frac{3(g'(x))^2}{2g(x)} \right] - m^2 x^2 g(x) + 2m \bar{\psi}_i \psi^i g(x) + mx \bar{\psi}_i \psi^i g'(x).$$

- This Lagrangian can be simplified by passing to new variables $y(x), \zeta^i$,

$$\dot{x}^2 g(x) = \frac{1}{2} \dot{y}^2, \quad \Rightarrow \quad y'(x) = \sqrt{2g(x)}, \quad \zeta^i = \psi^i y'(x),$$

We find

$$\begin{aligned} \mathcal{L} = & \frac{\dot{y}^2}{2} + \frac{i}{2} \left(\bar{\zeta}_i \dot{\zeta}^i - \dot{\bar{\zeta}}_i \zeta^i \right) - \frac{m^2}{2} V^2(y) + m \bar{\zeta}_i \zeta^i V'(y) \\ & - \frac{1}{2} \left(\bar{\zeta}_i \zeta^i \right)^2 \partial_y \left(\frac{V'(y) - 1}{V(y)} \right), \quad V(y) := \frac{x(y)}{x'(y)} \end{aligned}$$

- This Lagrangian is that defining the SQM model with “weak” $\mathcal{N} = 4$ supersymmetry (A.Smilga, 2004).

$(1, 4, 3)$ multiplet: quantization

- The simplest choice is $f(x) = \frac{x^2}{4}$:

$$\mathcal{L} = \frac{\dot{x}^2}{2} - \frac{m^2 x^2}{2} + \frac{i}{2} \left(\bar{\psi}_i \dot{\psi}^i - \dot{\bar{\psi}}_i \psi^i \right) + m \bar{\psi}_i \psi^i,$$
$$\delta x = (\bar{\epsilon} \cdot \bar{\psi}) - (\epsilon \cdot \psi), \quad \delta \psi^i = i \bar{\epsilon}^i \dot{x} - m \bar{\epsilon}^i x. \quad (2)$$

- The conserved Noether charges and Hamiltonian:

$$Q^i = \psi^i (p - imx), \quad \bar{Q}_i = \bar{\psi}_i (p + imx),$$

$$F = \frac{1}{2} \psi^k \bar{\psi}_k, \quad I_j^i = \psi^i \bar{\psi}_j - \frac{1}{2} \delta_j^i \psi^k \bar{\psi}_k.$$

$$H = \frac{p^2}{2} + \frac{m^2 x^2}{2} + m \psi^i \bar{\psi}_i.$$

This H is $SU(2|1)$ extension of the harmonic oscillator Hamiltonian.

We quantize as

$$[\hat{x}, \hat{p}] = i, \quad \{\hat{\psi}^i, \hat{\bar{\psi}}_j\} = \delta_j^i, \quad \hat{p} = -i\partial_x, \quad \hat{\bar{\psi}}_j = \partial/\partial\hat{\psi}^j.$$

The quantum Hamiltonian and supercharges are

$$\begin{aligned}\hat{H} &= \frac{1}{2} (\hat{p} + im\hat{x}) (\hat{p} - im\hat{x}) + m\hat{\psi}^i \hat{\bar{\psi}}_i, \\ \hat{Q}^i &= \hat{\psi}^i (\hat{p} - im\hat{x}), \quad \hat{\bar{Q}}_i = \hat{\bar{\psi}}_i (\hat{p} + im\hat{x}), \\ \hat{F} &= \frac{1}{2} \hat{\psi}^k \hat{\bar{\psi}}_k, \quad \hat{\gamma}_j^i = \hat{\psi}^i \hat{\bar{\psi}}_j - \frac{1}{2} \delta_j^i \hat{\psi}^k \hat{\bar{\psi}}_k.\end{aligned}$$

They form the superalgebra $su(2|1)$.

Spectrum

- We construct the Hilbert space of wave functions in terms of the harmonic oscillator wave functions. The super wave-function $\Omega^{(\ell)}$ at the energy level $\ell, \ell \geq 2$, reveals the four-fold degeneracy

$$\Omega^{(\ell)} = a^{(\ell)} |\ell\rangle + b_i^{(\ell)} \psi^i |\ell-1\rangle + \frac{1}{2} c^{(\ell)} \varepsilon_{ij} \psi^i \psi^j |\ell-2\rangle, \quad \ell \geq 2,$$

where $|\ell\rangle, |\ell-1\rangle, |\ell-2\rangle$ are the harmonic oscillator functions.

- We treat the operators $\hat{p} \pm imx$ in \hat{H} as the creation and annihilation operators and impose the standard conditions

$$\hat{\psi}_k |\ell\rangle = 0, \quad (\hat{p} - im\hat{x}) |0\rangle = 0, \quad (\hat{p} + im\hat{x}) |\ell\rangle = |\ell+1\rangle.$$

The spectrum of the Hamiltonian is then

$$\hat{H} \Omega^{(\ell)} = m\ell \Omega^{(\ell)}, \quad m > 0.$$

- The ground state ($\ell = 0$) and the first excited states ($\ell = 1$) are special, they encompass non-equal numbers of bosonic and fermionic states:

$$\Omega^{(0)} = a^{(0)} |0\rangle, \quad \Omega^{(1)} = a^{(1)} |1\rangle + b_i^{(1)} \psi^i |0\rangle.$$

$SU(2|1)$ representation content

- ▶ The ground state is annihilated by all $SU(2|1)$ generators including Q^i and \bar{Q}_i , so it is $SU(2|1)$ singlet.
- ▶ The states with $\ell = 1$ form the fundamental $(2|1)$ representation of $SU(2|1)$. The action of the supercharges on them is

$$Q^i \psi^k |0\rangle = 0, \quad \bar{Q}_i \psi^k |0\rangle = \delta_i^k |1\rangle, \\ Q^i |1\rangle = 2m \psi^i |0\rangle, \quad \bar{Q}_i |1\rangle = 0.$$

- ▶ The states with $\ell > 1$ form the representations $(2|2)$, with equal numbers of bosonic and fermionic states.
- ▶ $SU(2|1)$ Casimirs are nicely expressed as

$$m^2 C_2 = \hat{H} \left(\hat{H} - m \right), \quad m^3 C_3 = \hat{H} \left(\hat{H} - m \right) \left(\hat{H} - \frac{m}{2} \right)$$

and so are fully specified by the energy spectrum of \hat{H} :

$$C_2(\ell) = (\ell - 1) \ell, \quad C_3(\ell) = (\ell - 1/2) (\ell - 1) \ell.$$

The ground state with $\ell = 0$ is atypical, because Casimir operators are zero on it. On the states with $\ell = 1$ both Casimirs as well vanish, so these states also form an atypical (fundamental) $SU(2|1)$ representation. On the $\ell > 1$ states both Casimirs are non-zero, so these states form typical $SU(2|1)$ representations.

Chiral multiplet

- $SU(2|1)$ counterpart of the $\mathcal{N} = 4, d = 1$ chiral multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ exists. This is due to the existence of the chiral coset

$$\frac{\{Q^i, \bar{Q}_j, H, I_k^i, F\}}{\{\bar{Q}_j, I_k^i, F\}} \sim (t_L, \theta_i), \quad t_L = t + \frac{i}{2m} \ln(1 + 2m \bar{\theta} \cdot \theta),$$
$$\delta\theta_i = \epsilon_i + 2m(\bar{\epsilon} \cdot \theta)\theta_i, \quad \delta t_L = 2i(\bar{\epsilon} \cdot \theta).$$

- The multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ is described by the chiral superfield Φ

$$\bar{D}_j \Phi = 0, \quad \bar{\gamma}_j^i \Phi = 0, \quad \hat{F} \Phi = 2\kappa \Phi, \quad (3)$$

where in general $\kappa \neq 0$.

- The solution of this constraint is

$$\Phi = [1 + m(\bar{\theta} \cdot \theta)]^{-\kappa} \varphi_L(t_L, \theta), \quad \varphi_L(t_L, \theta) = z + \sqrt{2} \theta_i \xi^i + \varepsilon^{ij} \theta_i \theta_j F.$$

- The superfield φ_L and its components transform as

$$\delta^* \varphi_L = 4\kappa m(\bar{\epsilon}^j \theta_j) \varphi_L \Rightarrow$$
$$\delta z = -\sqrt{2} \epsilon_i \xi^i, \quad \delta \xi^i = \sqrt{2} i \bar{\epsilon}^j \nabla_t \xi^i - \sqrt{2} \varepsilon^{ik} \epsilon_k F,$$
$$\delta F = -\sqrt{2} \varepsilon_{ik} \epsilon^k [m \xi^i + i \nabla_t \xi^i], \quad \nabla_t := \partial_t + 2i\kappa m.$$

Invariant Lagrangian

- General superfield Lagrangian reads

$$\mathcal{L}_K = \frac{1}{4} \int d^2\theta d^2\bar{\theta} (1 + 2m\bar{\theta} \cdot \theta) f(\Phi, \Phi^\dagger).$$

- Its component on-shell form is as follows:

$$\begin{aligned} \mathcal{L} = & g \dot{\bar{z}} \dot{z} + 2i\kappa m \left(\dot{\bar{z}}z - \dot{z}\bar{z} \right) g - \frac{im}{2} \left(\dot{\bar{z}}f_{\bar{z}} - \dot{z}f_z \right) - \frac{i}{2} (\bar{\xi} \cdot \xi) \left(\dot{\bar{z}}g_{\bar{z}} - \dot{z}g_z \right) \\ & + \frac{i}{2} \left(\bar{\xi}_i \dot{\xi}^i - \dot{\bar{\xi}}_i \xi^i \right) g - m^2 V - m (\bar{\xi} \cdot \xi) U + \frac{1}{2} (\bar{\xi} \cdot \xi)^2 R, \end{aligned}$$

with

$$V = \kappa (\bar{z}\partial_{\bar{z}} + z\partial_z) f - \kappa^2 (\bar{z}\partial_{\bar{z}} + z\partial_z)^2 f,$$

$$U = \kappa (\bar{z}\partial_{\bar{z}} + z\partial_z) g - (1 - 2\kappa) g,$$

$$R = g_{z\bar{z}} - \frac{g_z g_{\bar{z}}}{g}.$$

It is invariant under

$$\delta z = -\sqrt{2} \epsilon_i \xi^i, \quad \delta \xi^i = \sqrt{2} i \bar{\epsilon}^i \nabla_t z + \sqrt{2} \epsilon_k \xi^k \xi^i \frac{g_z}{g}.$$

► Bosonic Lagrangian

$$\mathcal{L} = g \dot{\bar{z}} \dot{z} + 2i\kappa m \left(\dot{\bar{z}}z - \dot{z}\bar{z} \right) g - \frac{im}{2} \left(\dot{\bar{z}}f_{\bar{z}} - \dot{z}f_z \right) - m^2 V,$$
$$V = \kappa (\bar{z}\partial_{\bar{z}} + z\partial_z) f - \kappa^2 (\bar{z}\partial_{\bar{z}} + z\partial_z)^2 f.$$

- The standard $\mathcal{N} = 4, d = 1$ kinetic term is deformed to a non-trivial Lagrangian with WZ-term, and potential term. The latter vanishes for $\kappa = 0$, however, the WZ term vanishes only in the limit $m = 0$.
- Thus the basic novel point compared to the standard $\mathcal{N} = 4$ Kähler sigma model for the multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ is the necessary presence of the WZ term with the strength m , along with the Kähler kinetic term.

Model on a complex plane

- The Kähler potential

$$f(\Phi, \Phi^\dagger) = \Phi\Phi^\dagger \Rightarrow$$

$$\begin{aligned}\mathcal{L} = & \dot{\bar{z}}\dot{z} + im\left(2\kappa - \frac{1}{2}\right)\left(\dot{\bar{z}}z - \dot{z}\bar{z}\right) + \frac{i}{2}\left(\bar{\xi}_i\dot{\xi}^i - \dot{\bar{\xi}}_i\xi^i\right) \\ & + 2\kappa(2\kappa - 1)m^2\bar{z}z + (1 - 2\kappa)m(\bar{\xi} \cdot \xi).\end{aligned}$$

The Lagrangian is invariant under

$$\delta z = -\sqrt{2}\epsilon_i\xi^i, \quad \delta\xi^i = \sqrt{2}i\bar{\epsilon}^j\dot{z} - 2\sqrt{2}\kappa m\bar{\epsilon}^jz.$$

- The quantum Hamiltonian and supercharges:

$$\hat{H} = \bar{\nabla}_{\bar{z}}\nabla_z - 2\kappa m\left(\hat{z}\partial_z - \hat{\bar{z}}\partial_{\bar{z}}\right) + m(1 - 2\kappa)\hat{\eta}^k\hat{\bar{\eta}}_k$$

$$\hat{Q}^i = \sqrt{2}\hat{\eta}^i\nabla_z, \quad \hat{\bar{Q}}_j = \sqrt{2}\hat{\bar{\eta}}_j\bar{\nabla}_{\bar{z}},$$

$$\hat{F} = -2\kappa\left(\hat{z}\partial_z - \hat{\bar{z}}\partial_{\bar{z}}\right) - \left(2\kappa - \frac{1}{2}\right)\hat{\eta}^k\hat{\bar{\eta}}_k, \quad \hat{l}_j^i = \hat{\eta}^i\hat{\bar{\eta}}_j - \frac{1}{2}\delta_j^i\hat{\eta}^k\hat{\bar{\eta}}_k.$$

They form $su(2|1)$ superalgebra, with

$$\nabla_z = -i\partial_z - \frac{i}{2}m\bar{z}, \quad \bar{\nabla}_{\bar{z}} = -i\partial_{\bar{z}} + \frac{i}{2}mz, \quad [\nabla_z, \bar{\nabla}_{\bar{z}}] = m.$$

Wave functions and spectrum

- We take advantage of the fact that there exists an extra $U(1)$ charge generator commuting with all $SU(2|1)$ generators

$$\hat{E} = -\left(\hat{z}\partial_z - \hat{\bar{z}}\partial_{\bar{z}}\right) - \hat{\eta}^k \hat{\eta}_k .$$

- The relevant wave functions can be constructed in terms of bosonic eigenfunctions of this external generator

$$\Omega^{(\alpha)} = \bar{z}^\alpha A(z\bar{z}), \quad \hat{E} \Omega^{(\alpha)} = \alpha \Omega^{(\alpha)}, \quad (4)$$

α being some positive real number.

- Requiring this set to simultaneously form the full set of the eigenfunctions of the bosonic part of the Hamiltonian yields

$$\begin{aligned} \Omega^{(\alpha)} &\rightarrow \Omega^{(\ell;\alpha)}, \quad \hat{H} \Omega^{(\ell;\alpha)} = m(\ell + 2\kappa\alpha) \Omega^{(\ell;\alpha)} \\ \Omega^{(\ell;\alpha)} &= \bar{z}^\alpha e^{-\frac{mz\bar{z}}{2}} L_\ell^{(\alpha)}(mz\bar{z}), \end{aligned}$$

where $L_\ell^{(\alpha)}$ are Laguerre polynomials and ℓ is Landau level.

- ▶ Acting by supercharges on $\Omega^{(\ell;\alpha)}$ and imposing the obvious vacuum condition,

$$\bar{\eta}_j \Omega^{(\ell;\alpha)} = 0 \Rightarrow \bar{Q}_j \Omega^{(\ell;\alpha)} = 0,$$

we obtain other eigenstates of \hat{H} and \hat{E} .

- ▶ The full set of eigenfunctions obtained in this way reads:

$$\begin{aligned} \Psi^{(\ell;\alpha)} &= \left[a^{(\ell;\alpha)} + b_i^{(\ell;\alpha)} \eta^i \nabla_z + \frac{1}{2} c^{(\ell;\alpha)} \varepsilon_{ij} \eta^i \eta^j \nabla_z^2 \right] \Omega^{(\ell;\alpha)}, \quad \ell \geq 2, \\ \Psi^{(1;\alpha)} &= a^{(1;\alpha)} \Omega^{(1;\alpha)} + b_i^{(1;\alpha)} \eta^i \nabla_z \Omega^{(1;\alpha)}, \quad \Psi^{(0;\alpha)} = a^{(0;\alpha)} \Omega^{(0;\alpha)}. \end{aligned}$$

- ▶ The ground state ($\ell = 0$) and the first excited states ($\ell = 1$) are special: they encompass non-equal numbers of bosonic and fermionic states.
- ▶ The wave functions with $\ell = 1$ form the fundamental representation of $SU(2|1)$ (one bosonic and two fermionic states), while those with $\ell \geq 2$ form typical $(2|2)$ representations.

- ▶ Casimir operators:

$$m^2 C_2 = (\hat{H} - 2\kappa m \hat{E}) (\hat{H} - 2\kappa m \hat{E} - m),$$

$$m^3 C_3 = (\hat{H} - 2\kappa m \hat{E}) (\hat{H} - 2\kappa m \hat{E} - m) (\hat{H} - 2\kappa m \hat{E} - \frac{m}{2})$$

$$C_2(\ell) = (\ell - 1) \ell, \quad C_3(\ell) = (\ell - 1/2) (\ell - 1) \ell.$$

- ▶ They are vanishing for the wave functions with $\ell = 0, 1$, confirming the interpretation of the corresponding representations as atypical, and are non-vanishing on the wave functions with $\ell \geq 2$, implying them to form typical representations of $SU(2|1)$, with equal numbers of bosonic and fermionic states.

Generalized $SU(2|1)$ chirality

- One can choose another $SU(2|1)$ coset as the basic superspace

$$\frac{SU(2|1) \rtimes U(1)_{\text{ext}}}{SU(2) \times U(1)_{\text{ext}}} = \frac{SU(2|1)}{SU(2)} \sim \frac{\{Q^i, \bar{Q}_j, \tilde{H}, I_j^i\}}{\{I_j^i\}}.$$

The Hamiltonian is now the full internal $U(1)$ generator $\tilde{H} = H - mF$.

- The covariant spinor derivatives $\mathcal{D}_i, \bar{\mathcal{D}}^i$ are $U(1)$ inert and a generalized chirality condition can be imposed

$$(\cos \lambda \bar{\mathcal{D}}_i - \sin \lambda \mathcal{D}_i) \Phi = 0, \quad (5)$$

λ being a new real parameter. No κ now, so (5) $\rightarrow \Phi = \varphi_L(\hat{t}_L, \hat{\theta}_i)$.

- The components of φ_L are now transformed with manifest t

$$\delta z = -\sqrt{2} \cos \lambda (\epsilon \cdot \xi) e^{\frac{i}{2}mt} + \sqrt{2} \sin \lambda (\bar{\epsilon} \cdot \xi) e^{-\frac{i}{2}mt},$$

$$\delta \xi^i = \sqrt{2} \bar{\epsilon}^i [i \cos \lambda \dot{z} - \sin \lambda B] e^{-\frac{i}{2}mt} - \sqrt{2} \epsilon^i [i \sin \lambda \dot{z} + \cos \lambda B] e^{\frac{i}{2}mt},$$

$$\delta B = \sqrt{2} \cos \lambda [i(\bar{\epsilon} \cdot \dot{\xi}) + \frac{m}{2}(\bar{\epsilon} \cdot \xi)] e^{-\frac{i}{2}mt} + \sqrt{2} \sin \lambda [i(\epsilon \cdot \dot{\xi}) - \frac{m}{2}(\epsilon \cdot \xi)] e^{\frac{i}{2}mt}$$

- ▶ The most general $SU(2|1)$ invariant action of $\varphi^a(t_L, \hat{\theta})$, $a = 1, \dots, N$,:

$$\mathcal{S}_{\text{kin}} = \int dt \mathcal{L}_{\text{kin}} = \frac{1}{4} \int d\zeta f(\varphi^a, \bar{\varphi}^{\bar{a}}).$$

- ▶ Its on-shell bosonic core

$$\mathcal{L}_{\text{kin}}^{\text{on}}| = g_{\bar{a}b} \dot{\bar{z}}^{\bar{a}} \dot{z}^b - \frac{i}{2} m \cos 2\lambda (\dot{\bar{z}}^{\bar{a}} f_{\bar{a}} - \dot{z}^a f_a) - \frac{m^2}{4} g^{\bar{a}b} \sin^2 2\lambda f_{\bar{a}} f_b.$$

recognized as the Lagrangian of the Kähler oscillator (S. Bellucci, A. Nersessian, 2003, 2004) extended by a coupling to an external magnetic field.

- ▶ The supercharges do not commute with the Hamiltonian \tilde{H} , but are still conserved due to their explicit t -dependence

$$\frac{d}{dt} Q^i = \partial_t Q^i + \{Q^i, \tilde{H}\} = 0, \quad \frac{d}{dt} \bar{Q}_i = \partial_t \bar{Q}_i + \{\bar{Q}_i, \tilde{H}\} = 0.$$

Superconformal models

- The most general $\mathcal{N} = 4, d = 1$ superconformal group is $D(2, 1; \alpha)$:

$$\{Q_{\alpha ii'}, Q_{\beta jj'}\} = 2 \left(\epsilon_{ij} \epsilon_{i'j'} T_{\alpha\beta} + \alpha \epsilon_{\alpha\beta} \epsilon_{i'j'} J_{ij} - (1+\alpha) \epsilon_{\alpha\beta} \epsilon_{ij} L_{i'j'} \right),$$

$$[T_{\alpha\beta}, Q_{\gamma jj'}] = -i \epsilon_{\gamma(\alpha} Q_{\beta)jj'}, \quad [T_{\alpha\beta}, T_{\gamma\delta}] = i (\epsilon_{\alpha\gamma} T_{\beta\delta} + \epsilon_{\beta\delta} T_{\alpha\gamma}),$$

$$[J_{ij}, Q_{\alpha ki'}] = -i \epsilon_{k(i} Q_{\alpha j) i'}, \quad [J_{ij}, J_{kl}] = i (\epsilon_{ik} J_{jl} + \epsilon_{jl} J_{ik}),$$

$$[L_{i'j'}, Q_{\alpha ik'}] = -i \epsilon_{k'(i'} Q_{\alpha j) k'}, \quad [L_{i'j'}, L_{k'l'}] = i (\epsilon_{i'k'} L_{j'l'} + \epsilon_{j'l'} L_{i'k'})$$

- $Q_{\alpha ii'}$ are eight supercharges, the bosonic subalgebra is

$$su(2) \oplus su(2)' \oplus so(2, 1) \equiv \{J_{ik}\} \oplus \{L_{i'k'}\} \oplus \{T_{\alpha\beta}\}$$

- At $\alpha = -1, 0$, the superalgebra $D(2, 1; \alpha)$ is reduced to

$$D(2, 1; \alpha) \cong PSU(1, 1|2) \rtimes SU(2)_{\text{ext}}$$

- How to implement $D(2, 1; \alpha)$ in the $SU(2|1)$ superspaces? The crucial property is the existence of TWO different $su(2|1) \subset D(2, 1; \alpha)$, so that the latter is a closure of these two.

- These are defined by the following relations

$$(I). \quad \{Q^i, \bar{Q}_j\} = 2m(\mu) I_j^i + 2\delta_j^i [H(\mu) - m(\mu) F],$$

$$m(\mu) := -\alpha\mu, \quad H(\mu) := \mathcal{H} + \mu F, \quad \mathcal{H} = \hat{H} + \frac{\mu^2}{4} \hat{K},$$

$$(\hat{H}, \hat{K}) \in so(2, 1), \quad F \in su(2)', \quad I_j^i \in su(2),$$

$$(II). \quad \{S^i, \bar{S}_j\} = 2m(-\mu) I_j^i + 2\delta_j^i [H(-\mu) - m(-\mu) F]$$

The remaining $D(2, 1; \alpha)$ generators appears in $\{Q, S\}$ and $\{Q, \bar{S}\}$.

- $SU(2|1)$ (I) is identified with the manifest superisometry of the $SU(2|1)$ superspace; then $SU(2|1)$ (II) is realized on the superspace coordinates and superfields as a hidden symmetry.
- Always the “trigonometric” realization of the $d = 1$ conformal generators:

$$\hat{H} = \frac{i}{2} [1 + \cos \mu t] \partial_t, \quad \hat{K} = \frac{2i}{\mu^2} [1 - \cos \mu t] \partial_t, \quad \hat{D} = \frac{i}{\mu} \sin \mu t \partial_t$$

- The basic constraints are $D(2, 1; \alpha)$ covariant, at least for some special values of α . The multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$ is superconformal for any α , the chiral multiplet admits the superconformal symmetry only for $\alpha = 0, -1$.
- The superconformal subclasses of the general $SU(2|1)$ actions are singled out by requiring them to be even functions of μ , in accord with the above structure of $D(2, 1; \alpha)$ as a closure of two $SU(2|1)$.

Some examples of superconformal actions

- The multiplet **(1, 4, 3)**:

$$S_{\text{conf}} = - \int d\zeta f(G), \quad f(G) = \begin{cases} \frac{1}{8(\alpha+1)} G^{-\frac{1}{\alpha}} & \text{for } \alpha \neq -1, 0, \\ \frac{1}{8} G \ln G & \text{for } \alpha = -1 \end{cases}$$

The simplest choice is $\alpha = -1/2$, yields free Lagrangian

$$\mathcal{L}_{\text{conf}} = \frac{\dot{y}^2}{2} + \frac{i}{2} \left(\bar{\zeta}_i \dot{\zeta}^i - \dot{\bar{\zeta}}_i \zeta^i \right) + \tilde{B}_i' \tilde{B}_i' - \frac{\mu^2}{8} y^2$$

- The most general G superfield superconformally covariant constraints

$$\bar{\mathcal{D}}^2 \tilde{G} = \mathcal{D}^2 \tilde{G} = 0, \quad [\mathcal{D}, \bar{\mathcal{D}}] \tilde{G} = 4m \tilde{G} - 4c$$

At $c \neq 0$ covariant only under the $\alpha = -1$ supergroup. The bosonic sector of $\mathcal{L}_{\text{conf}}$ contains the standard conformal potential:

$$\mathcal{L}_{(\alpha=-1)}^{\text{bos}} = \frac{\dot{y}^2}{2} - \frac{\mu^2 y^2}{8} - \frac{c^2}{8y^2}$$

- The standard multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$:

$$\bar{\mathcal{D}}_i \Phi = 0, \quad \mathcal{D}^i \bar{\Phi} = 0, \quad \tilde{F} \Phi = 2\kappa \Phi$$

The constraints are covariant only for $\alpha = -1$. At $\kappa \neq 0$:

$$S_{\text{kin}}^{\text{conf}} = \frac{1}{4} \int d\zeta f(\Phi, \bar{\Phi}), \quad f = (\Phi \bar{\Phi})^{\frac{1}{4\kappa}}$$

Neither WZ term, nor standard conformal potential appear. Oscillator term only. At $\kappa = 1/4$, the free Lagrangian:

$$\mathcal{L}_{(\kappa=1/4)} = \dot{\bar{z}} \dot{z} + \frac{i}{2} \left(\bar{\xi}_i \dot{\xi}^i - \dot{\bar{\xi}}_i \xi^i \right) - \frac{\mu^2}{4} z \bar{z} \quad (6)$$

- The generalized $(\mathbf{2}, \mathbf{4}, \mathbf{2})$:

$$(\cos \lambda \bar{\mathcal{D}}_i - \sin \lambda \mathcal{D}_i) \Phi = 0$$

Also covariant under $D(2, 1; \alpha = -1)$ only.

- The only superconformally invariant superpotential in both cases is the holomorphic $S_{\text{pot}}^{\text{conf}} \sim \nu \int d\zeta_L \ln \varphi_L + \text{c.c.} \rightarrow$ standard conformal potential $\sim -\nu^2 |z|^{-2}$. Extra potential $\sim \mu^2 z \bar{z}$ comes always from the sigma-model action.
- At any κ the conformal action is reduced, by a field redefinition, to the free one (6) plus the conformal potential $\sim |z|^{-2}$.

Harmonic $SU(2|1)$ superspace

- The harmonic extension of the standard $SU(2|1)$ superspace:

$$\begin{aligned} \{t, \theta_i, \bar{\theta}^j\} &\Rightarrow \{t, \theta_i, \bar{\theta}^j, w_i^\pm\}, \quad w^{+i} w_i^- = 1, \\ \delta\theta_i &= \epsilon_i + 2m\bar{\epsilon}^k \theta_k \theta_i, \quad \delta\bar{\theta}^j = \bar{\epsilon}^j - 2m\epsilon_k \bar{\theta}^k \bar{\theta}^j, \quad \delta t = i(\epsilon_k \bar{\theta}^k + \bar{\epsilon}^k \theta_k), \\ \delta w_i^+ &= \lambda^{++} w_i^-, \quad \lambda^{++} = -m(1 - m\bar{\theta}^l \theta_l)(\bar{\theta}^k \epsilon^j + \theta^k \bar{\epsilon}^j) w_k^+ w_j^+, \\ \delta w_i^- &= 0. \end{aligned} \tag{7}$$

- Passing to the analytic basis

$$\begin{aligned} \{t, \theta_i, \bar{\theta}^j, w_i^\pm\} &\Rightarrow \{t_{(A)}, \theta^\pm, \bar{\theta}^\pm, w_i^\pm\}, \\ \delta\theta^+ &= \epsilon^+ + m\bar{\theta}^+ \theta^+ \epsilon^-, \quad \delta\bar{\theta}^+ = \bar{\epsilon}^+ - m\bar{\theta}^+ \theta^+ \bar{\epsilon}^-, \quad \delta t_{(A)} = 2i(\epsilon^- \bar{\theta}^+ + \theta^+ \bar{\epsilon}^-), \\ \delta\theta^- &= \epsilon^- + 2m\bar{\epsilon}^- \theta^- \theta^+, \quad \delta\bar{\theta}^- = \bar{\epsilon}^- + 2m\epsilon^- \bar{\theta}^- \bar{\theta}^+, \\ \delta w_i^+ &= -m(\bar{\theta}^+ \epsilon^+ + \theta^+ \bar{\epsilon}^+) w_i^-, \quad \delta w_i^- = 0, \quad \epsilon^\pm = \epsilon^i w_i^\pm, \quad \bar{\epsilon}^\pm = \bar{\epsilon}^i w_i^\pm \end{aligned}$$

- The analytic $SU(2|1)$ superspace

$$\zeta_A := (t_{(A)}, \bar{\theta}^+, \theta^+, w_i^\pm),$$

is closed under the $SU(2|1)$ transformations!

- In the analytic basis, the algebra of covariant derivatives (both spinor and harmonic) contains the following closed subalgebra, the so called “CR-structure”:

$$\{\mathcal{D}^+, \bar{\mathcal{D}}^+\} = -2m\mathcal{D}^{++}, \quad [\mathcal{D}^{++}, \mathcal{D}^+] = [\mathcal{D}^{++}, \bar{\mathcal{D}}^+] = 0,$$

where

$$\mathcal{D}^+ = \frac{\partial}{\partial\theta^-} + m\bar{\theta}^-\mathcal{D}^{++}, \quad \bar{\mathcal{D}}^+ = -\frac{\partial}{\partial\bar{\theta}^-} - m\theta^-\mathcal{D}^{++}$$

and $\mathcal{D}^{++} = w^{+i}\partial_{w^{-i}} + \dots$ is one of three harmonic derivatives forming an $su(2)$ algebra (together with $\mathcal{D}^{--} = w^{-i}\partial_{w^{+i}} + \dots$ and $\mathcal{D}^0 = w^{+i}\partial_{w^{+i}} - w^{-i}\partial_{w^{-i}} + \dots$).

- Analytic superfields:

$$\mathcal{D}^+\varphi^{+q} = \bar{\mathcal{D}}^+\varphi^{+q} = 0, \Rightarrow \mathcal{D}^{++}\varphi^{+q} = 0.$$

- The simplest choice is $q = 1$, with $q^{+A}, \widetilde{q^{+A}} = \varepsilon_{AB}q^{+B}$, describing the off-shell multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$

$$q^{+a}(\zeta_A) = x^{ia}w_i^+ + \theta^+\psi^a + \bar{\theta}^+\bar{\psi}^a - 2i\theta^+\bar{\theta}^+\dot{x}^{ia}w_i^-.$$

It transforms as

$$\delta q^{+a} = -m(\bar{\theta}^+\epsilon^- + \theta^+\bar{\epsilon}^-)q^{+a} \Rightarrow$$

$$\delta x^{ia} = -\epsilon^i\psi^a - \bar{\epsilon}^i\bar{\psi}^a, \quad \delta\bar{\psi}_a = 2i\epsilon_k\dot{x}_a^k - m\epsilon_kx_a^k, \quad \delta\psi^a = 2i\bar{\epsilon}^k\dot{x}_k^a + m\bar{\epsilon}^kx_k^a.$$

- The sigma-model type invariant action is

$$S(q^{\pm a}) = \int d\zeta_H L(q^{+a}q_a^-), \quad q^{-a} = \mathcal{D}^{--}q^{+a}.$$

- In components:

$$\begin{aligned} \mathcal{L} = & \quad G \left[\dot{x}^{ia} \dot{x}_{ia} + \frac{i}{2} \left(\bar{\psi}_a \dot{\psi}^a - \dot{\bar{\psi}}_a \psi^a \right) + \frac{m}{2} \psi^a \bar{\psi}_a \right] - \frac{i}{2} \dot{x}^{ia} \partial_{ic} G (\psi_a \bar{\psi}^c + \psi^c \bar{\psi}_a) \\ & - \frac{\Delta_x G}{16} (\bar{\psi})^2 (\psi)^2 + \frac{m}{2} x^2 G' \psi^a \bar{\psi}_a - \frac{m^2}{4} x^2 G, \quad G = G(x^2). \end{aligned}$$

- The simplest Lagrangian corresponds to $L = q^{+a}q_a^+$:

$$\mathcal{L}_{\text{free}} = \dot{x}^{ia} \dot{x}_{ia} + \frac{i}{2} \left(\bar{\psi}_a \dot{\psi}^a - \dot{\bar{\psi}}_a \psi^a \right) + \frac{m}{2} \psi^a \bar{\psi}_a - \frac{m^2}{4} x^{ia} x_{ia}.$$

- As distinct from the flat $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ case, no explicit $SU(2|1)$ invariant Wess-Zumino term can be constructed. An internal WZ term, coming from the kinetic sigma-model action, exists if $\tilde{F}q^{+a} \neq 0$.

Quantization in the free case

- The quantum Hamiltonian and supercharges:

$$H = -\frac{1}{4} \left(\partial^{ia} - mx^{ia} \right) \left(\partial_{ia} + mx_{ia} \right) + \frac{m}{2} \bar{\xi}_a \xi^a ,$$

$$Q_i = -i\xi^a (\partial_{ia} - mx_{ia}) , \quad \bar{Q}_i = -i\bar{\xi}^a (\partial_{ia} + mx_{ia}) ,$$

$$F = -\frac{1}{2} \bar{\xi}_a \xi^a , \quad I_{lk} = x_{(l}^{\bar{a}} \partial_{k)a} ,$$

$$E_{ab} = x_{(a}^i \partial_{ib)} - \bar{\xi}_{(a} \xi_{b)} , \quad [E_{ab}, E_{cd}] = \varepsilon_{cb} E_{ad} - \varepsilon_{ad} E_{cb} .$$

- The ground state conditions

$$\xi^a |0\rangle = 0 , \quad (\partial_{ia} + mx_{ia}) |0\rangle = 0 \Rightarrow |0\rangle = e^{-\frac{m}{2} x^2} , \quad Q^i |0\rangle = \bar{Q}_i |0\rangle = 0 .$$

- The general bosonic state $|\ell; s\rangle$ is defined as

$$|\ell; s\rangle = A_{(i_1 i_2 \dots i_s)(a_1 a_2 \dots a_s)} \nabla^{i_1 a_1} \nabla^{i_2 a_2} \dots \nabla^{i_s a_s} \left(\nabla^{ia} \nabla_{ia} \right)^\ell |0\rangle , \quad (8)$$

$s/2$ is the highest weight (“isospin”) of the irreducible representation of the group $SU(2)_{\text{PG}}$ acting on indices a . The spin content with respect to $SU(2)_{\text{int}}$ is the same.

- ▶ The general wave function $\Omega^{(\ell;s)}$ is a collection of $|\ell; s\rangle$ and its fermionic descendants obtained as the result of action of \bar{Q}_i on it. The spectrum is given by

$$H\Omega^{(\ell;s)} = \frac{m}{2} (2\ell + s) \Omega^{(\ell;s)}, \quad m > 0.$$

- ▶ Casimirs are

$$m^2 C_2 = H(H + m) - \frac{m^2}{2} E_b^a E_a^b, \quad m^3 C_3 = \left(H + \frac{m}{2}\right) C_2;$$

$$\frac{1}{2} E_b^a E_a^b \Omega^{(\ell;s)} = \frac{s}{2} \left(\frac{s}{2} + 1\right) \Omega^{(\ell;s)}.$$

- ▶ All cases with $\ell \geq 0$ correspond to the typical representations, with the degeneracy $4(s+1)^2$ and equal number of bosonic and fermionic states; The wave function $\Omega^{(0;s)}$ describes atypical representations, with $(s+1)^2$ bosonic and $s(s+1)$ fermionic states and the degeneracy $(2s+1)(s+1)$.

Mirror $(4, 4, 0)$ multiplet

- ▶ The standard $(4, 4, 0)$ multiplet has the content $(x^{i\alpha}, \xi^\alpha)$, i being the doublet index of $SU(2)_{\text{int}}$ and α - of $SU(2)_{\text{PG}}$; the mirror $(4, 4, 0)$ multiplet has the content (y^A, ψ^{iA}) , A being the index of some other $SU'(2)_{\text{PG}}$.
- ▶ In the flat $\mathcal{N} = 4, d = 1$ supersymmetry these multiplets and the relevant SQM models are equivalent, up to switching two $SU(2)$ automorphism algebras. In the $SU(2|1)$ case the models based on these two multiplets cease to be equivalent.
- ▶ The striking feature of the mirror multiplet is the existence of the explicit $SU(2|1)$ invariant Wess-Zumino term:

$$\tilde{\mathcal{L}}_{\text{WZ}} = 2\gamma \left\{ i \left(\dot{y}^A \partial_A f - \dot{\bar{y}}^A \bar{\partial}_A f \right) - \frac{m}{2} \left(y^A \partial_A f + \bar{y}^A \bar{\partial}_A f \right) - \frac{1}{2} \psi^{iA} \psi_i^B \partial_A \bar{\partial}_B f \right\},$$

where $f(y, \bar{y})$ obeys the constraints

$$\Delta_y f = 0, \quad m \left(y^B \partial_B - \bar{y}^B \bar{\partial}_B \right) f(y, \bar{y}) = 0.$$

It is very interesting to study the corresponding SQM models.

- ▶ By analogy with the $\mathcal{N} = 4, d = 1$ case, one can expect that all set of self-consistent $SU(2|1)$ SQM models should follow from those associated with the $(4, 4, 0)$ multiplets through various versions of the Hamiltonian reduction.

Summary and outlook

- ▶ We reviewed a new type of $\mathcal{N} = 4$ supersymmetric mechanics which is based on the supergroup $SU(2|1)$. It is a deformation of the standard $\mathcal{N} = 4$ mechanics by a mass parameter m .
- ▶ We presented the superfield formalism on two different coset manifolds of $SU(2|1)$ treated as the real and chiral $SU(2|1)$, $d = 1$ superspaces. They are carriers of the off-shell multiplets $(1, 4, 3)$ and $(2, 4, 2)$. There are two non-equivalent types of the $(2, 4, 2)$ multiplet.
- ▶ The $SU(2|1)$ SQM models reveal surprising features. For the $(1, 4, 3)$ multiplet, the oscillator-type potential terms with m as a mass are present in the sigma-model action. For the $(2, 4, 2)$ models, the kinetic term is accompanied by the $d = 1$ WZ term and potential terms.
- ▶ We constructed harmonic $SU(2|1)$ superspace and described two sorts of the “root” $(4, 4, 0)$ multiplets in its framework. The mirror $(4, 4, 0)$ multiplet admits an explicit $SU(2|1)$ invariant $d = 1$ super WZ term.
- ▶ In all cases the sets of the quantum states reveal deviations from the standard rule of equality of the bosonic and fermionic states, in accordance with the existence of atypical $SU(2|1)$ representations.
- ▶ Superconformally invariant subclasses of the $SU(2|1)$ actions were constructed, based on the property that the superconformal algebra $D(2, 1; \alpha)$ is a closure of its two $su(2|1)$ subalgebras. For the $d = 1$ conformal generators - trigonometric realization automatically.

► *Some further lines of development:*

- (a) Multi-particle extensions: to take a few superfields of one or different types, to construct the relevant off- and on-shell actions, to quantize, to identify the relevant target bosonic geometries (m -deformed?), etc.
- (b) To inquire whether the remaining $\mathcal{N} = 4, d = 1$ multiplets (e.g. the multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$) have their $SU(2|1)$ counterparts and to construct the corresponding SQM models. By analogy with the flat $\mathcal{N} = 4, d = 1$ harmonic superspace approach (E.I., O.Lichtenfeld, 2003), one can expect that all such multiplets and the associate SQM models should follow from the “root” multiplets $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ through the well defined gauging procedure (F.Delduc, E.I., 2006, 2007).
- (c) To generalize all this to the next in complexity case of the supergroup $SU(2|2)$. It involves 8 supercharges and so can presumably be treated as a deformation of $\mathcal{N} = 8, d = 1$ supersymmetry (and of $\mathcal{N} = (4, 4), d = 2$ supersymmetry, in fact).
- (d) To establish possible links with the higher-dimensional theories with “curved” supersymmetries in the localization approach.

- E. Ivanov, S. Sidorov, *Deformed $N=4$ supersymmetric mechanics*, Class. Quant. Grav. **31** (2014) 075013, arXiv:1105.0689 [hep-th].
- E. Ivanov, S. Sidorov, *Super Kähler Oscillator From $SU(2|1)$ Superspace*, J. Phys. A **47** (2014) 292002, arXiv:1312.6821 [hep-th].
- E. Ivanov, S. Sidorov, F. Toppan, *Superconformal Models in $SU(2|1)$ Superspace*, Phys. Rev. D **91** (2015) 085032, arXiv:1501.05622 [hep-th].
- E. Ivanov, S. Sidorov, *$SU(2|1)$ Mechanics and Harmonic Superspace*, to appear.

THANK YOU FOR ATTENTION!