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» G — a simple Lie group over C, B C G — fixed Borel subgroup,
» R — the corresponding root system, R — set of positive roots,
W = W(G, B) — Weyl group,

g=Lie(G),g=n®hdn", where n® h = Lie(B)

X, for @ € R — root vector, so thatn = @ CX,.
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G acts on g adjointly and for u € n let
O, = {gug™' : g € G} be its G-orbit
B, = {gug™' : g € B} be its B-orbit
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» G — a simple Lie group over C, B C G — fixed Borel subgroup,
» R — the corresponding root system, R — set of positive roots,
» W = W(G, B) — Weyl group,

g=Lie(G),g=n®hdn", where n® h = Lie(B)

X, for a € R — root vector, so that n = @ CX,.
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G acts on g adjointly and for u € n let
O, = {gug™' : g € G} be its G-orbit
B, = {gug™' : g € B} be its B-orbit

If G is of type A,, Bn, C, then O, is defined completely by
Jordan form of u (Gerstenhaber, Kraft-Procesi). The number of
G— orbits is finite.
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Orbital varieties and spherical orbits

Consider O, Nn. This is a reducible, equidimensional Lagrangian
subvariety of O, so that in particular dim O, Nn =0.5dim O,
(Spaltenstein, Steinberg, Joseph). lts irreducible components are
called orbital varieties.
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Orbital varieties and spherical orbits

Consider O, Nn. This is a reducible, equidimensional Lagrangian
subvariety of O, so that in particular dim O, Nn =0.5dim O,
(Spaltenstein, Steinberg, Joseph). lts irreducible components are
called orbital varieties.

An orbital variety is obviously B-stable, however in general it has
an infinite number of B—orbits and does not admit a dense
B—orbit.
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Consider O, Nn. This is a reducible, equidimensional Lagrangian
subvariety of O, so that in particular dim O, Nn =0.5dim O,
(Spaltenstein, Steinberg, Joseph). lts irreducible components are
called orbital varieties.

An orbital variety is obviously B-stable, however in general it has
an infinite number of B—orbits and does not admit a dense
B—orbit.

"Easy” case is when all orbital varieties in a given O, admit a
dense B—orbit.
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Orbital varieties and spherical orbits

Consider O, Nn. This is a reducible, equidimensional Lagrangian
subvariety of O, so that in particular dim O, Nn =0.5dim O,
(Spaltenstein, Steinberg, Joseph). lts irreducible components are
called orbital varieties.

An orbital variety is obviously B-stable, however in general it has
an infinite number of B—orbits and does not admit a dense
B—orbit.

"Easy” case is when all orbital varieties in a given O, admit a
dense B—orbit.

Obvious candidates are O, — spherical, since in this case the
number of B—orbits in O, is finite (Brion, Vinberg).
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Orbital varieties and spherical orbits

Consider O, Nn. This is a reducible, equidimensional Lagrangian
subvariety of O, so that in particular dim O, Nn =0.5dim O,
(Spaltenstein, Steinberg, Joseph). lts irreducible components are
called orbital varieties.

An orbital variety is obviously B-stable, however in general it has
an infinite number of B—orbits and does not admit a dense
B—orbit.

"Easy” case is when all orbital varieties in a given O, admit a
dense B—orbit.

Obvious candidates are O, — spherical, since in this case the
number of B—orbits in O, is finite (Brion, Vinberg).

The classification of such orbits is as follows (Panyushev):

» u>=0in cases A,, Cp;

» 13 = 0 with not more than one Jordan 3-block in cases
Bna Dn;
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B—orbits of square 0 and sums of orthogonal roots in A,

Different aspects of B— orbits in a spherical orbit in the case of A,
were studied intensively (Boos - Reineke, Di Francesco - Knutson -
Zinn-Justin, Fresse - Melnikov, Ignatiev - Panov, Panyushev, Perrin
- Smirnov, Rothbach, Stroppel, etc. etc).
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B—orbits of square 0 and sums of orthogonal roots in A,

Different aspects of B— orbits in a spherical orbit in the case of A,
were studied intensively (Boos - Reineke, Di Francesco - Knutson -
Zinn-Justin, Fresse - Melnikov, Ignatiev - Panov, Panyushev, Perrin
- Smirnov, Rothbach, Stroppel, etc. etc).

Theorem

(A-M.) In A, let u € n be a matrix of square 0 and of rank m.

Then each B—orbit in O, Nn has a unique representative of the
m

form Y X., where {as}™; € R is a subset of strongly

s=1
orthogonal roots and each such sum defines a B—orbit in O, Nn.
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Sums of orthogonal roots in A, and link patterns

Recall that in case A,_1 we can choose B to be the group of
upper-triangular invertible matrices (of det=1) and n the algebra
of strictly upper triangular matrices.

In this case root vectors for positive roots can be identified as
Xej—e; = Eij where 1 < i <j<nand E; is an elementary matrix.
Recall also that e; — e; and e, — ¢ are strongly orthogonal iff

{i,j}y 0 {k, 1} = 0.

Thus,
m
> KXoy > (it41) - - (s jm)
s=1

where as = e, — €.
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Sums of orthogonal roots in A, and link patterns

Recall that in case A,_1 we can choose B to be the group of
upper-triangular invertible matrices (of det=1) and n the algebra
of strictly upper triangular matrices.

In this case root vectors for positive roots can be identified as
Xej—e; = Eij where 1 < i <j<nand E; is an elementary matrix.
Recall also that e; — e; and e, — ¢ are strongly orthogonal iff
[ir 0 gk, 1} = 0.

Thus,

m

> Xow = (1) (imom)

s=1
where as = e;, — €.
We can visualise this set of disjoint 2-cycles as a graph on n points
put on horizontal line with edges (i1, /1) ... (im,jm) drawn as arcs.
Such an array is called a link pattern.
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For example, for n =7, k=3 and 0 = {(1,3), (2,6), (4,7)} one
has
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Combinatorics of link patterns and closures of B-orbits

So B—orbits of square 0 in n are labelled by link patterns. We can
read a lot of information on topology of B—orbits out of
combinatorics of link pattern: dimensions, inclusions of the
closures, smoothness of its closure in G—orbit, etc.
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Combinatorics of link patterns and closures of B-orbits

So B—orbits of square 0 in n are labelled by link patterns. We can
read a lot of information on topology of B—orbits out of
combinatorics of link pattern: dimensions, inclusions of the
closures, smoothness of its closure in G—orbit, etc.

We define a combinatorial order on link patterns < as follows: For
o= (i,f1)---(issjs) and o’ = (k1, h) ... (ke, lt) put o’ < o if for
every 1 < a < b < n one has that the number of arcs of ¢ on the
interval [a, b] is greater or equal to the number of arcs of ¢’ on

[a, b].
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Combinatorics of link patterns and closures of B-orbits

So B—orbits of square 0 in n are labelled by link patterns. We can
read a lot of information on topology of B—orbits out of
combinatorics of link pattern: dimensions, inclusions of the
closures, smoothness of its closure in G—orbit, etc.

We define a combinatorial order on link patterns < as follows: For
o= (i,f1)---(issjs) and o’ = (k1, h) ... (ke, lt) put o’ < o if for
every 1 < a < b < n one has that the number of arcs of ¢ on the
interval [a, b] is greater or equal to the number of arcs of ¢’ on

[a, b].

Theorem
(A-M.) For B—orbits B,, B, of square 0 in A,_1 one has
B, C B, iffo’ <o.
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Applications to orbital varieties

Each orbital variety in a given O, admits a unique dense B—orbit,
so that considering the maximal B—orbits in O, N'n we get the
data on orbital varieties.
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Applications to orbital varieties

Each orbital variety in a given O, admits a unique dense B—orbit,
so that considering the maximal B—orbits in O, N'n we get the
data on orbital varieties.

In particular, for V an orbital variety in O, (where u? = 0) we get
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Applications to orbital varieties

Each orbital variety in a given O, admits a unique dense B—orbit,
so that considering the maximal B—orbits in O, N'n we get the
data on orbital varieties.

In particular, for V an orbital variety in O, (where u? = 0) we get

» VN O, (where O, € O,) is a union of orbital varieties;
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Applications to orbital varieties

Each orbital variety in a given O, admits a unique dense B—orbit,

so that considering the maximal B—orbits in O, N'n we get the

data on orbital varieties.

In particular, for V an orbital variety in O, (where u? = 0) we get
» VN O, (where O, € O,) is a union of orbital varieties;

» The intersection of codimension 1 of two orbital varieties in
the same orbit is irreducible;
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Applications to orbital varieties

Each orbital variety in a given O, admits a unique dense B—orbit,

so that considering the maximal B—orbits in O, N'n we get the

data on orbital varieties.

In particular, for V an orbital variety in O, (where u? = 0) we get
» VN O, (where O, € O,) is a union of orbital varieties;

» The intersection of codimension 1 of two orbital varieties in
the same orbit is irreducible;

Remark: We have not used it but indeed link patterns are graphs
of involutions in W = §,,.
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B—orbits of square 0 in C,
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B—orbits of square 0 in C,

Theorem
(N. Barnea-A.M.) In C, let u € n be a matrix of square 0 and of
rank m. Then each B—orbit in O, Nn has a unique representative

k
of the form Y X,, where {as}5_; € RT is a subset of strongly
s=1
orthogonal roots such that the number of long roots plus twice the
number of short roots is equal to m and each such sum defines a

B—orbit in O, Nn.

Anna Melnikov LT11, Varna Borel orbits of square 0 in sp,,(C) and orbital varieties



Symmetric link patterns

Recall that root vectors of positive roots in C, are identified with
Xei—e; = Eij — Ejpnivn < (i,))2n+1—j,2n+1-1)
Xe,-—f—ej = Ei,j+n + Ej,i+n A (i72n+ 1 _j)(j72n+ 1- i)

X2e,- = Ljjt+n (i,2n +1-— i)

where 1 <j < j<n.

Recall also that roots are strongly orthogonal in C,, iff

{i,j} " {k,1} =0 in the case of e; £ ¢ and e, £ ¢

and iff i & {j, k} in the case of 2¢; and € £ .
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Symmetric link patterns

Recall that root vectors of positive roots in C, are identified with
Xei—e; = Eij — Ejpnivn < (i,))2n+1—j,2n+1-1)

Xe,-—f—ej = Ei,j+n + Ej,i+n A (i72n+ 1 _j)(j72n+ 1- i)

X2e,- = Ljjt+n (i,2n +1-— i)

where 1 <j < j<n.

Recall also that roots are strongly orthogonal in C,, iff

{i,j} " {k,1} =0 in the case of e; £ ¢ and e, £ ¢

and iff i & {j, k} in the case of 2¢; and € £ .

Thus again B—orbits of square 0 in C, are labelled by link
patterns, this time on 2n points and symmetric around the middle.
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Symmetric link patterns

Recall that root vectors of positive roots in C, are identified with
Xei—e; = Eij — Ejpnivn < (i,))2n+1—j,2n+1-1)
Xe,-—f—ej = Ei,j+n + Ej,i+n A (i72n+ 1 _j)(j72n+ 1- i)

X2e,- = Ljjt+n (i,2n +1-— i)

where 1 <j < j<n.

Recall also that roots are strongly orthogonal in C,, iff

{i,j} N {k,1} =0 in the case of e; + ¢; and e, + ¢

and iff i & {j, k} in the case of 2¢; and € £ .

Thus again B—orbits of square 0 in C, are labelled by link
patterns, this time on 2n points and symmetric around the middle.
For example X, 4e; + Xoe, + Xe,—e5 in Cs corresponds to
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Ordering of symmetric link patterns and corollaries for

orbital varieties

Theorem

(N.B - A.M.) The inclusions of B—orbit closures of square 0 in C,
are defined by restriction of =< on 2n points link patterns to the
subset of symmetric link patterns.
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Ordering of symmetric link patterns and corollaries for

orbital varieties

Theorem

(N.B - A.M.) The inclusions of B—orbit closures of square 0 in C,
are defined by restriction of =< on 2n points link patterns to the
subset of symmetric link patterns.

Again, we apply the results to orbital varieties of square 0 in C,,.
Let u € n be of square 0. Let V be an orbital variety in O,. One
has:
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Ordering of symmetric link patterns and corollaries for

orbital varieties

Theorem

(N.B - A.M.) The inclusions of B—orbit closures of square 0 in C,
are defined by restriction of =< on 2n points link patterns to the
subset of symmetric link patterns.

Again, we apply the results to orbital varieties of square 0 in C,,.
Let u € n be of square 0. Let V be an orbital variety in O,. One
has:
> In general (that is if an orbital variety is not in the abeilian
nilradical of C,) V N Oy where O, C O, is not

equidimensional and does not always include an orbital variety
of O,
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Ordering of symmetric link patterns and corollaries for

orbital varieties

Theorem

(N.B - A.M.) The inclusions of B—orbit closures of square 0 in C,
are defined by restriction of =< on 2n points link patterns to the
subset of symmetric link patterns.

Again, we apply the results to orbital varieties of square 0 in C,,.
Let u € n be of square 0. Let V be an orbital variety in O,. One
has:

> In general (that is if an orbital variety is not in the abeilian
nilradical of C,) V N Oy where O, C O, is not
equidimensional and does not always include an orbital variety
of O,

» The intersection of codimension 1 of two orbital varieties in
the same orbit is irreducible;
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Panyushev's conjecture for B—orbits in abelian nilradicals

D. Panyushev proposed a general approach to B—orbits in abelian
nilradicals of all simple Lie algebras. They are always B—orbits in
spherical orbits and can be labelled by special sums of strongly
orthogonal roots.

In cases A, and C, these are orbits of square zero.

The sum of strongly orthogonal roots can be translated into an
involution of W. In general different sums of strongly orthogonal
roots can give the same involution, but this translation is 1:1
restricted to the subset of strongly orthogonal roots in abelian
nilradicals. We label B—orbits by involutions ¢ in this subset.
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Panyushev's conjecture for B—orbits in abelian nilradicals

Let w, € W be its longest element. Let #(co) be the number of
2-cycles in involution o. Let < denote Bruhat order on W and ¢
be length function on W.
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Panyushev's conjecture for B—orbits in abelian nilradicals

Let w, € W be its longest element. Let #(co) be the number of
2-cycles in involution o. Let < denote Bruhat order on W and ¢
be length function on W.
Conjecture
(Panyushev) Let B,, B, be B—orbits in an abelian nilradical of g.
» By C B, if and only if woo'wo < Woowp,
> dim B, = {reowe)i#()
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Panyushev's conjecture for B—orbits in abelian nilradicals

Let w, € W be its longest element. Let #(co) be the number of
2-cycles in involution o. Let < denote Bruhat order on W and ¢
be length function on W.

Conjecture
(Panyushev) Let B,, B, be B—orbits in an abelian nilradical of g.

» By C B, if and only if woo'wo < Woowp,
> dim B, = {reowe)i#()

The conjecture was known to be true for A,. We have proven it for
B,, C,, D,. The only cases left are Eg, E7.
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