

# Borel orbits of square 0 in $\mathfrak{sp}_{2n}(\mathbb{C})$ and orbital varieties

Anna Melnikov

LT11, Varna

June 19, 2015

# Notation

- ▶  $G$  – a simple Lie group over  $\mathbb{C}$ ,  $B \subset G$  – fixed Borel subgroup,
- ▶  $R$  – the corresponding root system,  $R^+$  – set of positive roots,
- ▶  $W = W(G, B)$  – Weyl group,
- ▶  $\mathfrak{g} = \text{Lie}(G)$ ,  $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ , where  $\mathfrak{n} \oplus \mathfrak{h} = \text{Lie}(B)$
- ▶  $X_\alpha$  for  $\alpha \in R$  – root vector, so that  $\mathfrak{n} = \bigoplus_{\alpha \in R^+} \mathbb{C}X_\alpha$ .

# Notation

- ▶  $G$  – a simple Lie group over  $\mathbb{C}$ ,  $B \subset G$  – fixed Borel subgroup,
- ▶  $R$  – the corresponding root system,  $R^+$  – set of positive roots,
- ▶  $W = W(G, B)$  – Weyl group,
- ▶  $\mathfrak{g} = \text{Lie}(G)$ ,  $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ , where  $\mathfrak{n} \oplus \mathfrak{h} = \text{Lie}(B)$
- ▶  $X_\alpha$  for  $\alpha \in R$  – root vector, so that  $\mathfrak{n} = \bigoplus_{\alpha \in R^+} \mathbb{C}X_\alpha$ .

$G$  acts on  $\mathfrak{g}$  adjointly and for  $u \in \mathfrak{n}$  let

$\mathcal{O}_u = \{gug^{-1} : g \in G\}$  be its  $G$ -orbit

$\mathcal{B}_u = \{gug^{-1} : g \in B\}$  be its  $B$ -orbit

# Notation

- ▶  $G$  – a simple Lie group over  $\mathbb{C}$ ,  $B \subset G$  – fixed Borel subgroup,
- ▶  $R$  – the corresponding root system,  $R^+$  – set of positive roots,
- ▶  $W = W(G, B)$  – Weyl group,
- ▶  $\mathfrak{g} = \text{Lie}(G)$ ,  $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ , where  $\mathfrak{n} \oplus \mathfrak{h} = \text{Lie}(B)$
- ▶  $X_\alpha$  for  $\alpha \in R$  – root vector, so that  $\mathfrak{n} = \bigoplus_{\alpha \in R^+} \mathbb{C}X_\alpha$ .

$G$  acts on  $\mathfrak{g}$  adjointly and for  $u \in \mathfrak{n}$  let

$\mathcal{O}_u = \{gug^{-1} : g \in G\}$  be its  $G$ -orbit

$\mathcal{B}_u = \{gug^{-1} : g \in B\}$  be its  $B$ -orbit

If  $G$  is of type  $A_n$ ,  $B_n$ ,  $C_n$  then  $\mathcal{O}_u$  is defined completely by Jordan form of  $u$  (*Gerstenhaber, Kraft-Procesi*). The number of  $G$ -orbits is finite.

# Orbital varieties and spherical orbits

Consider  $\mathcal{O}_u \cap \mathfrak{n}$ . This is a reducible, equidimensional Lagrangian subvariety of  $\mathcal{O}_u$  so that in particular  $\dim \mathcal{O}_u \cap \mathfrak{n} = 0.5 \dim \mathcal{O}_u$  (*Spaltenstein, Steinberg, Joseph*). Its irreducible components are called **orbital varieties**.

# Orbital varieties and spherical orbits

Consider  $\mathcal{O}_u \cap \mathfrak{n}$ . This is a reducible, equidimensional Lagrangian subvariety of  $\mathcal{O}_u$  so that in particular  $\dim \mathcal{O}_u \cap \mathfrak{n} = 0.5 \dim \mathcal{O}_u$  (*Spaltenstein, Steinberg, Joseph*). Its irreducible components are called **orbital varieties**.

An orbital variety is obviously  $B$ -stable, however in general it has an infinite number of  $B$ -orbits and does not admit a dense  $B$ -orbit.

# Orbital varieties and spherical orbits

Consider  $\mathcal{O}_u \cap \mathfrak{n}$ . This is a reducible, equidimensional Lagrangian subvariety of  $\mathcal{O}_u$  so that in particular  $\dim \mathcal{O}_u \cap \mathfrak{n} = 0.5 \dim \mathcal{O}_u$  (*Spaltenstein, Steinberg, Joseph*). Its irreducible components are called **orbital varieties**.

An orbital variety is obviously  $B$ -stable, however in general it has an infinite number of  $B$ -orbits and does not admit a dense  $B$ -orbit.

"Easy" case is when all orbital varieties in a given  $\mathcal{O}_u$  admit a dense  $B$ -orbit.

# Orbital varieties and spherical orbits

Consider  $\mathcal{O}_u \cap \mathfrak{n}$ . This is a reducible, equidimensional Lagrangian subvariety of  $\mathcal{O}_u$  so that in particular  $\dim \mathcal{O}_u \cap \mathfrak{n} = 0.5 \dim \mathcal{O}_u$  (*Spaltenstein, Steinberg, Joseph*). Its irreducible components are called **orbital varieties**.

An orbital variety is obviously  $B$ -stable, however in general it has an infinite number of  $B$ -orbits and does not admit a dense  $B$ -orbit.

"Easy" case is when all orbital varieties in a given  $\mathcal{O}_u$  admit a dense  $B$ -orbit.

Obvious candidates are  $\mathcal{O}_u$  – spherical, since in this case the number of  $B$ -orbits in  $\mathcal{O}_u$  is finite (*Brion, Vinberg*).

# Orbital varieties and spherical orbits

Consider  $\mathcal{O}_u \cap \mathfrak{n}$ . This is a reducible, equidimensional Lagrangian subvariety of  $\mathcal{O}_u$  so that in particular  $\dim \mathcal{O}_u \cap \mathfrak{n} = 0.5 \dim \mathcal{O}_u$  (*Spaltenstein, Steinberg, Joseph*). Its irreducible components are called **orbital varieties**.

An orbital variety is obviously  $B$ -stable, however in general it has an infinite number of  $B$ -orbits and does not admit a dense  $B$ -orbit.

"Easy" case is when all orbital varieties in a given  $\mathcal{O}_u$  admit a dense  $B$ -orbit.

Obvious candidates are  $\mathcal{O}_u$  – spherical, since in this case the number of  $B$ -orbits in  $\mathcal{O}_u$  is finite (*Brion, Vinberg*).

The classification of such orbits is as follows (*Panyushev*):

- ▶  $u^2 = 0$  in cases  $A_n, C_n$ ;
- ▶  $u^3 = 0$  with not more than one Jordan 3-block in cases  $B_n, D_n$ ;

# $B$ –orbits of square 0 and sums of orthogonal roots in $A_n$

Different aspects of  $B$ – orbits in a spherical orbit in the case of  $A_n$  were studied intensively (*Boos - Reineke, Di Francesco - Knutson - Zinn-Justin, Fresse - Melnikov, Ignatiev - Panov, Panyushev, Perrin - Smirnov, Rothbach, Stroppel, etc. etc*).

# $B$ –orbits of square 0 and sums of orthogonal roots in $A_n$

Different aspects of  $B$ – orbits in a spherical orbit in the case of  $A_n$  were studied intensively (*Boos - Reineke, Di Francesco - Knutson - Zinn-Justin, Fresse - Melnikov, Ignatiev - Panov, Panyushev, Perrin - Smirnov, Rothbach, Stroppel, etc. etc.*).

## Theorem

(A.M.) In  $A_n$  let  $u \in \mathfrak{n}$  be a matrix of square 0 and of rank  $m$ . Then each  $B$ –orbit in  $\mathcal{O}_u \cap \mathfrak{n}$  has a unique representative of the form  $\sum_{s=1}^m X_{\alpha_s}$  where  $\{\alpha_s\}_{s=1}^m \in R^+$  is a subset of strongly orthogonal roots and each such sum defines a  $B$ –orbit in  $\mathcal{O}_u \cap \mathfrak{n}$ .

# Sums of orthogonal roots in $A_n$ and link patterns

Recall that in case  $A_{n-1}$  we can choose  $B$  to be the group of upper-triangular invertible matrices (of  $\det=1$ ) and  $\mathfrak{n}$  the algebra of strictly upper triangular matrices.

In this case root vectors for positive roots can be identified as

$X_{e_i - e_j} = E_{i,j}$  where  $1 \leq i < j \leq n$  and  $E_{i,j}$  is an elementary matrix.

Recall also that  $e_i - e_j$  and  $e_k - e_l$  are strongly orthogonal iff  $\{i, j\} \cap \{k, l\} = \emptyset$ .

Thus,

$$\sum_{s=1}^m X_{\alpha_s} \longleftrightarrow (i_1, j_1) \dots (i_m, j_m)$$

where  $\alpha_s = e_{i_s} - e_{j_s}$ .

# Sums of orthogonal roots in $A_n$ and link patterns

Recall that in case  $A_{n-1}$  we can choose  $B$  to be the group of upper-triangular invertible matrices (of  $\det=1$ ) and  $\mathfrak{n}$  the algebra of strictly upper triangular matrices.

In this case root vectors for positive roots can be identified as

$X_{e_i - e_j} = E_{i,j}$  where  $1 \leq i < j \leq n$  and  $E_{i,j}$  is an elementary matrix.

Recall also that  $e_i - e_j$  and  $e_k - e_l$  are strongly orthogonal iff  $\{i,j\} \cap \{k,l\} = \emptyset$ .

Thus,

$$\sum_{s=1}^m X_{\alpha_s} \longleftrightarrow (i_1, j_1) \dots (i_m, j_m)$$

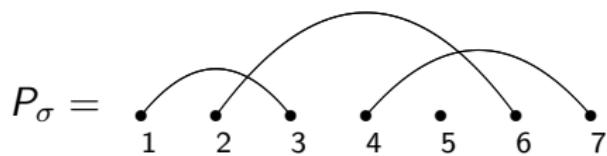
where  $\alpha_s = e_{i_s} - e_{j_s}$ .

We can visualise this set of disjoint 2-cycles as a graph on  $n$  points put on horizontal line with edges  $(i_1, j_1) \dots (i_m, j_m)$  drawn as arcs.

Such an array is called a **link pattern**.

## Example

For example, for  $n = 7$ ,  $k = 3$  and  $\sigma = \{(1, 3), (2, 6), (4, 7)\}$  one has



# Combinatorics of link patterns and closures of $B$ -orbits

So  $B$ -orbits of square 0 in  $\mathfrak{n}$  are labelled by link patterns. We can read a lot of information on topology of  $B$ -orbits out of combinatorics of link pattern: dimensions, inclusions of the closures, smoothness of its closure in  $G$ -orbit, etc.

So  $B$ -orbits of square 0 in  $\mathfrak{n}$  are labelled by link patterns. We can read a lot of information on topology of  $B$ -orbits out of combinatorics of link pattern: dimensions, inclusions of the closures, smoothness of its closure in  $G$ -orbit, etc.

We define a combinatorial order on link patterns  $\preceq$  as follows: For  $\sigma = (i_1, j_1) \dots (i_s, j_s)$  and  $\sigma' = (k_1, l_1) \dots (k_t, l_t)$  put  $\sigma' \preceq \sigma$  if for every  $1 \leq a < b \leq n$  one has that the number of arcs of  $\sigma$  on the interval  $[a, b]$  is greater or equal to the number of arcs of  $\sigma'$  on  $[a, b]$ .

So  $B$ -orbits of square 0 in  $\mathfrak{n}$  are labelled by link patterns. We can read a lot of information on topology of  $B$ -orbits out of combinatorics of link pattern: dimensions, inclusions of the closures, smoothness of its closure in  $G$ -orbit, etc.

We define a combinatorial order on link patterns  $\preceq$  as follows: For  $\sigma = (i_1, j_1) \dots (i_s, j_s)$  and  $\sigma' = (k_1, l_1) \dots (k_t, l_t)$  put  $\sigma' \preceq \sigma$  if for every  $1 \leq a < b \leq n$  one has that the number of arcs of  $\sigma$  on the interval  $[a, b]$  is greater or equal to the number of arcs of  $\sigma'$  on  $[a, b]$ .

## Theorem

(A.M.) For  $B$ -orbits  $\mathcal{B}_\sigma$ ,  $\mathcal{B}_{\sigma'}$  of square 0 in  $A_{n-1}$  one has  $\mathcal{B}_{\sigma'} \subset \overline{\mathcal{B}_\sigma}$  iff  $\sigma' \preceq \sigma$ .

# Applications to orbital varieties

Each orbital variety in a given  $\mathcal{O}_u$  admits a unique dense  $B$ –orbit, so that considering the maximal  $B$ –orbits in  $\mathcal{O}_u \cap \mathfrak{n}$  we get the data on orbital varieties.

# Applications to orbital varieties

Each orbital variety in a given  $\mathcal{O}_u$  admits a unique dense  $B$ –orbit, so that considering the maximal  $B$ –orbits in  $\mathcal{O}_u \cap \mathfrak{n}$  we get the data on orbital varieties.

In particular, for  $V$  an orbital variety in  $\mathcal{O}_u$  (where  $u^2 = 0$ ) we get

# Applications to orbital varieties

Each orbital variety in a given  $\mathcal{O}_u$  admits a unique dense  $B$ –orbit, so that considering the maximal  $B$ –orbits in  $\mathcal{O}_u \cap \mathfrak{n}$  we get the data on orbital varieties.

In particular, for  $V$  an orbital variety in  $\mathcal{O}_u$  (where  $u^2 = 0$ ) we get

- ▶  $\overline{V} \cap \mathcal{O}_x$  (where  $\mathcal{O}_x \in \overline{\mathcal{O}_u}$ ) is a union of orbital varieties;

# Applications to orbital varieties

Each orbital variety in a given  $\mathcal{O}_u$  admits a unique dense  $B$ –orbit, so that considering the maximal  $B$ –orbits in  $\mathcal{O}_u \cap \mathfrak{n}$  we get the data on orbital varieties.

In particular, for  $V$  an orbital variety in  $\mathcal{O}_u$  (where  $u^2 = 0$ ) we get

- ▶  $\overline{V} \cap \mathcal{O}_x$  (where  $\mathcal{O}_x \in \overline{\mathcal{O}_u}$ ) is a union of orbital varieties;
- ▶ The intersection of codimension 1 of two orbital varieties in the same orbit is irreducible;

# Applications to orbital varieties

Each orbital variety in a given  $\mathcal{O}_u$  admits a unique dense  $B$ –orbit, so that considering the maximal  $B$ –orbits in  $\mathcal{O}_u \cap \mathfrak{n}$  we get the data on orbital varieties.

In particular, for  $V$  an orbital variety in  $\mathcal{O}_u$  (where  $u^2 = 0$ ) we get

- ▶  $\overline{V} \cap \mathcal{O}_x$  (where  $\mathcal{O}_x \in \overline{\mathcal{O}_u}$ ) is a union of orbital varieties;
- ▶ The intersection of codimension 1 of two orbital varieties in the same orbit is irreducible;

**Remark:** We have not used it but indeed link patterns are graphs of involutions in  $W = S_n$ .

# $B$ –orbits of square 0 in $C_n$

# $B$ –orbits of square 0 in $C_n$

## Theorem

(N. Barnea-A.M.) In  $C_n$  let  $u \in \mathfrak{n}$  be a matrix of square 0 and of rank  $m$ . Then each  $B$ –orbit in  $\mathcal{O}_u \cap \mathfrak{n}$  has a unique representative of the form  $\sum_{s=1}^k X_{\alpha_s}$  where  $\{\alpha_s\}_{s=1}^k \in R^+$  is a subset of strongly orthogonal roots such that the number of long roots plus twice the number of short roots is equal to  $m$  and each such sum defines a  $B$ –orbit in  $\mathcal{O}_u \cap \mathfrak{n}$ .

## Symmetric link patterns

Recall that root vectors of positive roots in  $C_n$  are identified with

$$X_{e_i - e_j} = E_{i,j} - E_{j+n,i+n} \longleftrightarrow (i,j)(2n+1-j,2n+1-i)$$

$$X_{e_i + e_j} = E_{i,j+n} + E_{j,i+n} \longleftrightarrow (i,2n+1-j)(j,2n+1-i)$$

$$X_{2e_i} = E_{i,i+n} \longleftrightarrow (i,2n+1-i)$$

where  $1 \leq i < j \leq n$ .

Recall also that roots are strongly orthogonal in  $C_n$  iff

$\{i,j\} \cap \{k,l\} = \emptyset$  in the case of  $e_i \pm e_j$  and  $e_k \pm e_l$

and iff  $i \notin \{j, k\}$  in the case of  $2e_i$  and  $e_j \pm e_k$ .

## Symmetric link patterns

Recall that root vectors of positive roots in  $C_n$  are identified with

$$X_{e_i - e_j} = E_{i,j} - E_{j+n,i+n} \longleftrightarrow (i,j)(2n+1-j,2n+1-i)$$

$$X_{e_i + e_j} = E_{i,j+n} + E_{j,i+n} \longleftrightarrow (i,2n+1-j)(j,2n+1-i)$$

$$X_{2e_i} = E_{i,i+n} \longleftrightarrow (i,2n+1-i)$$

where  $1 \leq i < j \leq n$ .

Recall also that roots are strongly orthogonal in  $C_n$  iff

$\{i,j\} \cap \{k,l\} = \emptyset$  in the case of  $e_i \pm e_j$  and  $e_k \pm e_l$

and iff  $i \notin \{j, k\}$  in the case of  $2e_i$  and  $e_j \pm e_k$ .

Thus again  $B$ -orbits of square 0 in  $C_n$  are labelled by link patterns, this time on  $2n$  points and symmetric around the middle.

# Symmetric link patterns

Recall that root vectors of positive roots in  $C_n$  are identified with

$$X_{e_i - e_j} = E_{i,j} - E_{j+n,i+n} \longleftrightarrow (i,j)(2n+1-j,2n+1-i)$$

$$X_{e_i + e_j} = E_{i,j+n} + E_{j,i+n} \longleftrightarrow (i,2n+1-j)(j,2n+1-i)$$

$$X_{2e_i} = E_{i,i+n} \longleftrightarrow (i,2n+1-i)$$

where  $1 \leq i < j \leq n$ .

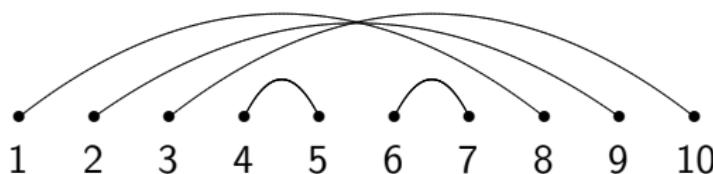
Recall also that roots are strongly orthogonal in  $C_n$  iff

$\{i,j\} \cap \{k,l\} = \emptyset$  in the case of  $e_i \pm e_j$  and  $e_k \pm e_l$

and iff  $i \notin \{j,k\}$  in the case of  $2e_i$  and  $e_j \pm e_k$ .

Thus again  $B$ -orbits of square 0 in  $C_n$  are labelled by link patterns, this time on  $2n$  points and symmetric around the middle.

For example  $X_{e_1 + e_3} + X_{2e_2} + X_{e_4 - e_5}$  in  $C_5$  corresponds to



# Ordering of symmetric link patterns and corollaries for orbital varieties

## Theorem

*(N.B - A.M.) The inclusions of  $B$ -orbit closures of square 0 in  $C_n$  are defined by restriction of  $\preceq$  on  $2n$  points link patterns to the subset of symmetric link patterns.*

# Ordering of symmetric link patterns and corollaries for orbital varieties

## Theorem

(N.B - A.M.) *The inclusions of  $B$ -orbit closures of square 0 in  $C_n$  are defined by restriction of  $\preceq$  on  $2n$  points link patterns to the subset of symmetric link patterns.*

Again, we apply the results to orbital varieties of square 0 in  $C_n$ .

Let  $u \in \mathfrak{n}$  be of square 0. Let  $V$  be an orbital variety in  $\mathcal{O}_u$ . One has:

# Ordering of symmetric link patterns and corollaries for orbital varieties

## Theorem

(N.B - A.M.) The inclusions of  $B$ -orbit closures of square 0 in  $C_n$  are defined by restriction of  $\preceq$  on  $2n$  points link patterns to the subset of symmetric link patterns.

Again, we apply the results to orbital varieties of square 0 in  $C_n$ .

Let  $u \in \mathfrak{n}$  be of square 0. Let  $V$  be an orbital variety in  $\mathcal{O}_u$ . One has:

- ▶ In general (that is if an orbital variety is not in the abelian nilradical of  $C_n$ )  $\overline{V} \cap \mathcal{O}_x$  where  $\overline{\mathcal{O}}_x \subsetneq \overline{\mathcal{O}}_u$  is not equidimensional and does not always include an orbital variety of  $\mathcal{O}_x$ ;

# Ordering of symmetric link patterns and corollaries for orbital varieties

## Theorem

(N.B - A.M.) The inclusions of  $B$ -orbit closures of square 0 in  $C_n$  are defined by restriction of  $\preceq$  on  $2n$  points link patterns to the subset of symmetric link patterns.

Again, we apply the results to orbital varieties of square 0 in  $C_n$ .

Let  $u \in \mathfrak{n}$  be of square 0. Let  $V$  be an orbital variety in  $\mathcal{O}_u$ . One has:

- ▶ In general (that is if an orbital variety is not in the abelian nilradical of  $C_n$ )  $\overline{V} \cap \mathcal{O}_x$  where  $\overline{\mathcal{O}}_x \subsetneq \overline{\mathcal{O}}_u$  is not equidimensional and does not always include an orbital variety of  $\mathcal{O}_x$ ;
- ▶ The intersection of codimension 1 of two orbital varieties in the same orbit is irreducible;

# Panyushev's conjecture for $B$ –orbits in abelian nilradicals

D. Panyushev proposed a general approach to  $B$ –orbits in abelian nilradicals of all simple Lie algebras. They are always  $B$ –orbits in spherical orbits and can be labelled by special sums of strongly orthogonal roots.

In cases  $A_n$  and  $C_n$  these are orbits of square zero.

The sum of strongly orthogonal roots can be translated into an involution of  $W$ . In general different sums of strongly orthogonal roots can give the same involution, but this translation is 1:1 restricted to the subset of strongly orthogonal roots in abelian nilradicals. We label  $B$ –orbits by involutions  $\sigma$  in this subset.

# Panyushev's conjecture for $B$ –orbits in abelian nilradicals

Let  $w_o \in W$  be its longest element. Let  $\#(\sigma)$  be the number of 2-cycles in involution  $\sigma$ . Let  $\leq$  denote Bruhat order on  $W$  and  $\ell$  be length function on  $W$ .

Let  $w_o \in W$  be its longest element. Let  $\#(\sigma)$  be the number of 2-cycles in involution  $\sigma$ . Let  $\leq$  denote Bruhat order on  $W$  and  $\ell$  be length function on  $W$ .

## Conjecture

(Panyushev) Let  $\mathcal{B}_\sigma, \mathcal{B}_{\sigma'}$  be  $B$ –orbits in an abelian nilradical of  $\mathfrak{g}$ .

- ▶  $\mathcal{B}_{\sigma'} \subset \overline{\mathcal{B}_\sigma}$  if and only if  $w_o \sigma' w_o \leq w_o \sigma w_o$ ;
- ▶  $\dim \mathcal{B}_\sigma = \frac{\ell(w_o \sigma w_o) + \#(\sigma)}{2}$

Let  $w_o \in W$  be its longest element. Let  $\#(\sigma)$  be the number of 2-cycles in involution  $\sigma$ . Let  $\leq$  denote Bruhat order on  $W$  and  $\ell$  be length function on  $W$ .

## Conjecture

(Panyushev) Let  $\mathcal{B}_\sigma, \mathcal{B}_{\sigma'}$  be  $B$ –orbits in an abelian nilradical of  $\mathfrak{g}$ .

- ▶  $\mathcal{B}_{\sigma'} \subset \overline{\mathcal{B}_\sigma}$  if and only if  $w_o\sigma'w_o \leq w_o\sigma w_o$ ;
- ▶  $\dim \mathcal{B}_\sigma = \frac{\ell(w_o\sigma w_o) + \#(\sigma)}{2}$

The conjecture was known to be true for  $A_n$ . We have proven it for  $B_n$ ,  $C_n$ ,  $D_n$ . The only cases left are  $E_6$ ,  $E_7$ .

## Acknowledgment

Many Thanks!