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Notation

I G – a simple Lie group over C, B ⊂ G – fixed Borel subgroup,

I R – the corresponding root system, R+ – set of positive roots,

I W = W (G ,B) – Weyl group,

I g = Lie(G ), g = n⊕ h⊕ n−, where n⊕ h = Lie(B)

I Xα for α ∈ R – root vector, so that n =
⊕
α∈R+

CXα.

G acts on g adjointly and for u ∈ n let
Ou = {gug−1 : g ∈ G} be its G -orbit
Bu = {gug−1 : g ∈ B} be its B-orbit

If G is of type An, Bn, Cn then Ou is defined completely by
Jordan form of u (Gerstenhaber, Kraft-Procesi). The number of
G− orbits is finite.
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Orbital varieties and spherical orbits

Consider Ou ∩ n. This is a reducible, equidimensional Lagrangian
subvariety of Ou so that in particular dimOu ∩ n = 0.5 dimOu

(Spaltenstein, Steinberg, Joseph). Its irreducible components are
called orbital varieties.

An orbital variety is obviously B-stable, however in general it has
an infinite number of B−orbits and does not admit a dense
B−orbit.
”Easy” case is when all orbital varieties in a given Ou admit a
dense B−orbit.
Obvious candidates are Ou – spherical, since in this case the
number of B−orbits in Ou is finite (Brion, Vinberg).
The classification of such orbits is as follows (Panyushev):

I u2 = 0 in cases An, Cn;

I u3 = 0 with not more than one Jordan 3-block in cases
Bn, Dn;
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B−orbits of square 0 and sums of orthogonal roots in An

Different aspects of B− orbits in a spherical orbit in the case of An

were studied intensively (Boos - Reineke, Di Francesco - Knutson -
Zinn-Justin, Fresse - Melnikov, Ignatiev - Panov, Panyushev, Perrin
- Smirnov, Rothbach, Stroppel, etc. etc).

Theorem
(A.M.) In An let u ∈ n be a matrix of square 0 and of rank m.
Then each B−orbit in Ou ∩ n has a unique representative of the

form
m∑
s=1

Xαs where {αs}ms=1 ∈ R+ is a subset of strongly

orthogonal roots and each such sum defines a B−orbit in Ou ∩ n.
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Sums of orthogonal roots in An and link patterns

Recall that in case An−1 we can choose B to be the group of
upper-triangular invertible matrices (of det=1) and n the algebra
of strictly upper triangular matrices.
In this case root vectors for positive roots can be identified as
Xei−ej = Ei ,j where 1 ≤ i < j ≤ n and Ei ,j is an elementary matrix.
Recall also that ei − ej and ek − el are strongly orthogonal iff
{i , j} ∩ {k , l} = ∅.
Thus,

m∑
s=1

Xαs ←→ (i1, j1) . . . (im, jm)

where αs = eis − ejs .

We can visualise this set of disjoint 2-cycles as a graph on n points
put on horizontal line with edges (i1, j1) . . . (im, jm) drawn as arcs.
Such an array is called a link pattern.
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Example

For example, for n = 7, k = 3 and σ = {(1, 3), (2, 6), (4, 7)} one
has

Pσ = r r r r r r r
1 2 3 4 5 6 7
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Combinatorics of link patterns and closures of B-orbits

So B−orbits of square 0 in n are labelled by link patterns. We can
read a lot of information on topology of B−orbits out of
combinatorics of link pattern: dimensions, inclusions of the
closures, smoothness of its closure in G−orbit, etc.

We define a combinatorial order on link patterns � as follows: For
σ = (i1, j1) . . . (is , js) and σ′ = (k1, l1) . . . (kt , lt) put σ′ � σ if for
every 1 ≤ a < b ≤ n one has that the number of arcs of σ on the
interval [a, b] is greater or equal to the number of arcs of σ′ on
[a, b].

Theorem
(A.M.) For B−orbits Bσ, Bσ′ of square 0 in An−1 one has
Bσ′ ⊂ Bσ iff σ′ � σ.
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Applications to orbital varieties

Each orbital variety in a given Ou admits a unique dense B−orbit,
so that considering the maximal B−orbits in Ou ∩ n we get the
data on orbital varieties.

In particular, for V an orbital variety in Ou (where u2 = 0) we get

I V ∩ Ox (where Ox ∈ Ou) is a union of orbital varieties;

I The intersection of codimension 1 of two orbital varieties in
the same orbit is irreducible;

Remark: We have not used it but indeed link patterns are graphs
of involutions in W = Sn.
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B−orbits of square 0 in Cn

Theorem
(N. Barnea-A.M.) In Cn let u ∈ n be a matrix of square 0 and of
rank m. Then each B−orbit in Ou ∩ n has a unique representative

of the form
k∑

s=1
Xαs where {αs}ks=1 ∈ R+ is a subset of strongly

orthogonal roots such that the number of long roots plus twice the
number of short roots is equal to m and each such sum defines a
B−orbit in Ou ∩ n.
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Symmetric link patterns

Recall that root vectors of positive roots in Cn are identified with
Xei−ej = Ei ,j − Ej+n,i+n ←→ (i , j)(2n + 1− j , 2n + 1− i)
Xei+ej = Ei ,j+n + Ej ,i+n ←→ (i , 2n + 1− j)(j , 2n + 1− i)
X2ei = Ei ,i+n ←→ (i , 2n + 1− i)
where 1 ≤ i < j ≤ n.
Recall also that roots are strongly orthogonal in Cn iff
{i , j} ∩ {k, l} = ∅ in the case of ei ± ej and ek ± el
and iff i 6∈ {j , k} in the case of 2ei and ej ± ek .

Thus again B−orbits of square 0 in Cn are labelled by link
patterns, this time on 2n points and symmetric around the middle.
For example Xe1+e3 + X2e2 + Xe4−e5 in C5 corresponds to

r r r r r r r r r r
1 2 3 4 5 6 7 8 9 10
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Ordering of symmetric link patterns and corollaries for
orbital varieties

Theorem
(N.B - A.M.) The inclusions of B−orbit closures of square 0 in Cn

are defined by restriction of � on 2n points link patterns to the
subset of symmetric link patterns.

Again, we apply the results to orbital varieties of square 0 in Cn.
Let u ∈ n be of square 0. Let V be an orbital variety in Ou. One
has:

I In general (that is if an orbital variety is not in the abeilian
nilradical of Cn) V ∩ Ox where Ox ( Ou is not
equidimensional and does not always include an orbital variety
of Ox ;

I The intersection of codimension 1 of two orbital varieties in
the same orbit is irreducible;
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Panyushev’s conjecture for B−orbits in abelian nilradicals

D. Panyushev proposed a general approach to B−orbits in abelian
nilradicals of all simple Lie algebras. They are always B−orbits in
spherical orbits and can be labelled by special sums of strongly
orthogonal roots.
In cases An and Cn these are orbits of square zero.
The sum of strongly orthogonal roots can be translated into an
involution of W . In general different sums of strongly orthogonal
roots can give the same involution, but this translation is 1:1
restricted to the subset of strongly orthogonal roots in abelian
nilradicals. We label B−orbits by involutions σ in this subset.
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Panyushev’s conjecture for B−orbits in abelian nilradicals

Let wo ∈W be its longest element. Let #(σ) be the number of
2-cycles in involution σ. Let ≤ denote Bruhat order on W and `
be length function on W .

Conjecture

(Panyushev) Let Bσ,Bσ′ be B−orbits in an abelian nilradical of g.

I Bσ′ ⊂ Bσ if and only if woσ
′wo ≤ woσwo ;

I dimBσ = `(woσwo)+#(σ)
2

The conjecture was known to be true for An. We have proven it for
Bn, Cn, Dn. The only cases left are E6, E7.
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