

Extension fullness and derived category \mathcal{O}

Kevin Coulembier

Department of Mathematical Analysis
Ghent University

June 2015, Varna

Joint work with V. Mazorchuk

K. Coulembier, V. Mazorchuk.

Some homological properties of category \mathcal{O} . III,
Accepted in *Advances in Mathematics*.

K. Coulembier, V. Mazorchuk.

Extension fullness of the categories of Gelfand-Zeitlin and Whittaker modules,
SIGMA 11 (2015), 016, 17 pages.

K. Coulembier, V. Mazorchuk.

Dualities and derived equivalences for category \mathcal{O} ,
In preparation.

Content:

- (1) Intro: Category \mathcal{O} as example of a highest weight category
- (2) General concepts
 - ▶ Ringel duality
 - ▶ Derived categories
 - ▶ Extension fullness
- (3) Results
 - ▶ Ringel duality for parabolic category \mathcal{O}
 - ▶ Derived equivalences for category \mathcal{O}
 - ▶ Extension fullness

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

Category \mathcal{O}

Consider a reductive Lie algebra \mathfrak{g} (finite dimensional, complex), with triangular decomposition

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+.$$

The BGG category \mathcal{O} is the full subcategory of the category of all modules, of modules which are

- ▶ finitely generated
- ▶ \mathfrak{h} -diagonisable
- ▶ locally $U(\mathfrak{n}^+)$ -finite.

Category \mathcal{O}

Consider a reductive Lie algebra \mathfrak{g} (finite dimensional, complex), with triangular decomposition

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+.$$

The BGG category \mathcal{O} is the full subcategory of the category of all modules, of modules which are

- ▶ finitely generated
- ▶ \mathfrak{h} -diagonisable
- ▶ locally $U(\mathfrak{n}^+)$ -finite.

Similarly $\mathcal{O}^{\mathfrak{p}}$ for a parabolic subalgebra $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{u}^+$

$$\mathfrak{g} = \mathfrak{u}^- \oplus \mathfrak{l} \oplus \mathfrak{u}^+.$$

Simple, standard and projective modules

Verma module for every $\lambda \in \mathfrak{h}^*$

$$\Delta(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}^+)} \mathbb{C}_\lambda$$

Simple, standard and projective modules

Verma module for every $\lambda \in \mathfrak{h}^*$

$$\Delta(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}^+)} \mathbb{C}_\lambda$$

Simple module $L(\lambda)$ given by quotient of $\Delta(\lambda)$ with unique maximal submodule.

Simple, standard and projective modules

Verma module for every $\lambda \in \mathfrak{h}^*$

$$\Delta(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}^+)} \mathbb{C}_\lambda$$

Simple module $L(\lambda)$ given by quotient of $\Delta(\lambda)$ with unique maximal submodule.

Category \mathcal{O} has enough projective objects and indecomposable projective modules are in bijection with simple modules.

Indecomposable projective cover of $L(\lambda)$ is denoted by $P(\lambda)$.

Simple, standard and projective modules

Verma module for every $\lambda \in \mathfrak{h}^*$

$$\Delta(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}^+)} \mathbb{C}_\lambda$$

Simple module $L(\lambda)$ given by quotient of $\Delta(\lambda)$ with unique maximal submodule.

Category \mathcal{O} has enough projective objects and indecomposable projective modules are in bijection with simple modules.

Indecomposable projective cover of $L(\lambda)$ is denoted by $P(\lambda)$.

Category \mathcal{O} decomposes into blocks which each contain a finite amount of simple modules (described by Weyl group orbits), we denote such a block by \mathcal{O}_λ with $\lambda \in \mathfrak{h}^*$ the highest of the highest weights of the simple modules.

$\mathcal{O}_\lambda \cong A_\lambda\text{-mod}$, for some finite dimensional algebra A_λ

Highest weight categories / quasi-hereditary algebras A finite dimensional algebra is quasi-hereditary iff there is some poset P such that there are modules $\Delta(\mu) \in A\text{-mod}$ (called standard) for all $\mu \in P$ such that

- ▶ $\dim \text{End}_A(\Delta(\mu)) = 1$
- ▶ $\text{Hom}_A(\Delta(\mu_1), \Delta(\mu_2)) \neq 0$, then $\mu_1 \leq \mu_2$
- ▶ $\text{Ext}_A^1(\Delta(\mu_1), \Delta(\mu_2)) \neq 0$, then $\mu_1 < \mu_2$
- ▶ ${}_A A$ has a standard filtration

Highest weight categories / quasi-hereditary algebras A finite dimensional algebra is quasi-hereditary iff there is some poset P such that there are modules $\Delta(\mu) \in A\text{-mod}$ (called standard) for all $\mu \in P$ such that

- ▶ $\dim \text{End}_A(\Delta(\mu)) = 1$
- ▶ $\text{Hom}_A(\Delta(\mu_1), \Delta(\mu_2)) \neq 0$, then $\mu_1 \leq \mu_2$
- ▶ $\text{Ext}_A^1(\Delta(\mu_1), \Delta(\mu_2)) \neq 0$, then $\mu_1 < \mu_2$
- ▶ ${}_A A$ has a standard filtration

Then there is also a dual notion of costandard modules $\nabla(\mu)$ and injective modules have costandard filtrations.

For category \mathcal{O} this is governed by the duality functor.

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

For a quasi-hereditary algebra A with poset P , there exist precisely $|P|$ non-isomorphic indecomposable modules which admit both standard and costandard filtrations. They are known (unfortunately) as tilting modules $T(\mu)$.

The Ringel dual is defined as

$$R(A) := \text{End}_A(T)^{\text{opp}}$$

with $T = \bigoplus_{\mu \in P} T(\mu)$.

For a quasi-hereditary algebra A with poset P , there exist precisely $|P|$ non-isomorphic indecomposable modules which admit both standard and costandard filtrations. They are known (unfortunately) as tilting modules $T(\mu)$.

The Ringel dual is defined as

$$R(A) := \text{End}_A(T)^{\text{opp}}$$

with $T = \bigoplus_{\mu \in P} T(\mu)$.

Properties:

- ▶ $R(R(A)) \cong A$
- ▶ $R(A)$ inherits a quasi-hereditary structure from A
- ▶ A and $R(A)$ are ‘derived equivalent’

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

Derived categories

Interesting information on an object of an abelian category \mathcal{C} with enough projective objects is contained in its projective resolution.

Derived categories

Interesting information on an object of an abelian category \mathcal{C} with enough projective objects is contained in its projective resolution. This and other observations motivated the introduction of the (bounded) derived category.

Derived categories

Interesting information on an object of an abelian category \mathcal{C} with enough projective objects is contained in its projective resolution. This and other observations motivated the introduction of the (bounded) derived category.

$\mathcal{D}^b(\mathcal{C})$ is a category with objects given by finite complexes of objects in \mathcal{C} . The morphisms are not just the usual morphisms between complexes.

Derived categories

Interesting information on an object of an abelian category \mathcal{C} with enough projective objects is contained in its projective resolution. This and other observations motivated the introduction of the (bounded) derived category.

$\mathcal{D}^b(\mathcal{C})$ is a category with objects given by finite complexes of objects in \mathcal{C} . The morphisms are not just the usual morphisms between complexes. They are such that an object (considered as a complex in one position) is isomorphic to its projective resolution.

Derived categories

Interesting information on an object of an abelian category \mathcal{C} with enough projective objects is contained in its projective resolution. This and other observations motivated the introduction of the (bounded) derived category.

$\mathcal{D}^b(\mathcal{C})$ is a category with objects given by finite complexes of objects in \mathcal{C} . The morphisms are not just the usual morphisms between complexes. They are such that an object (considered as a complex in one position) is isomorphic to its projective resolution.

The previous result then reads

$$\mathcal{D}^b(A\text{-mod}) \cong \mathcal{D}^b(R(A)\text{-mod})$$

for a quasi-hereditary algebra A .

Yoneda extensions

Procedure introduced by Yoneda to define functors

$$\mathrm{Ext}_{\mathcal{C}}^k(\cdot, \cdot) : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathbf{Set},$$

without the necessity for projective/injective objects, closer to interpretation of Ext^1 .

Yoneda extensions

Procedure introduced by Yoneda to define functors

$$\mathrm{Ext}_{\mathcal{C}}^k(\cdot, \cdot) : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathbf{Set},$$

without the necessity for projective/injective objects, closer to interpretation of Ext^1 .

By a result of Verdier

$$\mathrm{Ext}_{\mathcal{C}}^k(M, N) \cong \mathrm{Hom}_{\mathcal{D}^b(\mathcal{C})}(M, N[k]).$$

Thus, also without injectives/projectives, the derived category allows to define/calculate extensions.

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

Definition

An abelian category \mathcal{C} with exact full subcategory $\iota : \mathcal{B} \hookrightarrow \mathcal{C}$. We say that \mathcal{B} is an extension full subcategory if ι induces an isomorphism

$$\iota : \mathrm{Ext}_{\mathcal{B}}^k(M, N) \rightarrow \mathrm{Ext}_{\mathcal{A}}^k(M, N)$$

for all $k \in \mathbb{N}$, $M, N \in \mathrm{Ob}(\mathcal{B})$.

Definition

An abelian category \mathcal{C} with exact full subcategory $\iota : \mathcal{B} \hookrightarrow \mathcal{C}$. We say that \mathcal{B} is an extension full subcategory if ι induces an isomorphism

$$\iota : \mathrm{Ext}_{\mathcal{B}}^k(M, N) \rightarrow \mathrm{Ext}_{\mathcal{A}}^k(M, N)$$

for all $k \in \mathbb{N}$, $M, N \in \mathrm{Ob}(\mathcal{B})$.

→ useful, for instance, if \mathcal{B} does not have projectives/injectives

Definition

An abelian category \mathcal{C} with exact full subcategory $\iota : \mathcal{B} \hookrightarrow \mathcal{C}$. We say that \mathcal{B} is an extension full subcategory if ι induces an isomorphism

$$\iota : \mathrm{Ext}_{\mathcal{B}}^k(M, N) \rightarrow \mathrm{Ext}_{\mathcal{A}}^k(M, N)$$

for all $k \in \mathbb{N}$, $M, N \in \mathrm{Ob}(\mathcal{B})$.

→ useful, for instance, if \mathcal{B} does not have projectives/injectives

Example 1 and application

Category \mathcal{O} is extension full in the category of weight modules (Delorme).

Definition

An abelian category \mathcal{C} with exact full subcategory $\iota : \mathcal{B} \hookrightarrow \mathcal{C}$. We say that \mathcal{B} is an extension full subcategory if ι induces an isomorphism

$$\iota : \mathrm{Ext}_{\mathcal{B}}^k(M, N) \rightarrow \mathrm{Ext}_{\mathcal{A}}^k(M, N)$$

for all $k \in \mathbb{N}$, $M, N \in \mathrm{Ob}(\mathcal{B})$.

→ useful, for instance, if \mathcal{B} does not have projectives/injectives

Example 1 and application

Category \mathcal{O} is extension full in the category of weight modules (Delorme). Consequently

$$\mathrm{Ext}_{\mathcal{O}}^i(\Delta(\lambda), M) \cong \mathrm{Hom}_{\mathfrak{h}}(\mathbb{C}_{\lambda}, H^k(\mathfrak{n}^+, M)).$$

Definition

An abelian category \mathcal{C} with exact full subcategory $\iota : \mathcal{B} \hookrightarrow \mathcal{C}$. We say that \mathcal{B} is an extension full subcategory if ι induces an isomorphism

$$\iota : \mathrm{Ext}_{\mathcal{B}}^k(M, N) \rightarrow \mathrm{Ext}_{\mathcal{A}}^k(M, N)$$

for all $k \in \mathbb{N}$, $M, N \in \mathrm{Ob}(\mathcal{B})$.

→ useful, for instance, if \mathcal{B} does not have projectives/injectives

Example 1 and application

Category \mathcal{O} is extension full in the category of weight modules (Delorme). Consequently

$$\mathrm{Ext}_{\mathcal{O}}^i(\Delta(\lambda), M) \cong \mathrm{Hom}_{\mathfrak{h}}(\mathbb{C}_{\lambda}, H^k(\mathfrak{n}^+, M)).$$

Example 2 (Cline-Parshall-Scott)

For A quasi-hereditary, the Serre subcategory of $A\text{-mod}$ generated by the simples corresponding to a (co)-ideal in the poset is extension full in $A\text{-mod}$.

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

Theorem (W. Soergel)

Every block in category \mathcal{O} for a reductive Lie algebra is Ringel self-dual.

Theorem (W. Soergel)

Every block in category \mathcal{O} for a reductive Lie algebra is Ringel self-dual.

Theorem (V. Mazorchuk and C. Stroppel)

The principal block in category \mathcal{O}^p for any parabolic subalgebra p of any reductive Lie algebra is Ringel self-dual.

Category \mathcal{O}^p , as a whole, is Ringel self dual for $\mathfrak{sl}(n)$, for any p .

Theorem (W. Soergel)

Every block in category \mathcal{O} for a reductive Lie algebra is Ringel self-dual.

Theorem (V. Mazorchuk and C. Stroppel)

The principal block in category \mathcal{O}^p for any parabolic subalgebra \mathfrak{p} of any reductive Lie algebra is Ringel self-dual.

Category \mathcal{O}^p , as a whole, is Ringel self dual for $\mathfrak{sl}(n)$, for any \mathfrak{p} .

Theorem (K.C. and V. Mazorchuk)

*Every block in category \mathcal{O}^p for any parabolic subalgebra \mathfrak{p} of any reductive Lie algebra is Ringel dual to **another** block in the same category.*

→ These blocks are *not* always equivalent.

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

Here we consider only Lie algebras of type A . First set $\mathfrak{g} = \mathfrak{sl}(n)$. Any parabolic subalgebra corresponds to a composition of n . The Borel subalgebra \mathfrak{b} corresponds to $(1, 1, \dots, 1)$. Similarly, any dominant integral weight defines a partition. Moreover $\mathcal{O}_\lambda \cong \mathcal{O}_{\lambda'}$ if λ, λ' correspond to the same composition by W. Soergel.

Here we consider only Lie algebras of type A . First set $\mathfrak{g} = \mathfrak{sl}(n)$. Any parabolic subalgebra corresponds to a composition of n . The Borel subalgebra \mathfrak{b} corresponds to $(1, 1, \dots, 1)$. Similarly, any dominant integral weight defines a partition. Moreover $\mathcal{O}_\lambda \cong \mathcal{O}_{\lambda'}$ if λ, λ' correspond to the same composition by W . Soergel.

Theorem (M. Khovanov)

For $\mathfrak{g} = \mathfrak{sl}(n)$ and two compositions q_1 and q_2 of n which are the same up to ordering,

$$\mathcal{D}^b(\mathcal{O}_0^{q_1}) \cong \mathcal{D}^b(\mathcal{O}_0^{q_2}).$$

→ Note that in general here $\mathcal{O}_0^{q_1} \not\cong \mathcal{O}_0^{q_2}$.

Here we consider only Lie algebras of type A . First set $\mathfrak{g} = \mathfrak{sl}(n)$. Any parabolic subalgebra corresponds to a composition of n . The Borel subalgebra \mathfrak{b} corresponds to $(1, 1, \dots, 1)$. Similarly, any dominant integral weight defines a partition. Moreover $\mathcal{O}_\lambda \cong \mathcal{O}_{\lambda'}$ if λ, λ' correspond to the same composition by W . Soergel.

Theorem (M. Khovanov)

For $\mathfrak{g} = \mathfrak{sl}(n)$ and two compositions q_1 and q_2 of n which are the same up to ordering,

$$\mathcal{D}^b(\mathcal{O}_0^{q_1}) \cong \mathcal{D}^b(\mathcal{O}_0^{q_2}).$$

- Note that in general here $\mathcal{O}_0^{q_1} \not\cong \mathcal{O}_0^{q_2}$.
- The proof is very geometric, relying on description in terms of perverse sheaves on partial flag varieties.

Theorem (K.C. and V. Mazorchuk)

For $\mathfrak{g} = \mathfrak{sl}(n)$ and four compositions p_1, p_2, q_1 and q_2 of n such that p_1 and p_2 resp. q_1 and q_2 are the same up to ordering,

$$\mathcal{D}^b(\mathcal{O}_{p_1}^{q_1}) \cong \mathcal{D}^b(\mathcal{O}_{p_2}^{q_2}).$$

→ The proof is entirely algebraic, leading to an explicit description of the functor giving the equivalence.

Theorem (K.C. and V. Mazorchuk)

Consider two Lie algebras \mathfrak{g} and \mathfrak{g}' of type A , with respective Borel subalgebras \mathfrak{b} and \mathfrak{b}' . Then there is a gradable derived equivalence

$$\mathcal{D}^b(\mathcal{O}_\lambda(\mathfrak{g}, \mathfrak{b})) \cong \mathcal{D}^b(\mathcal{O}_{\lambda'}(\mathfrak{g}', \mathfrak{b}'))$$

for dominant $\lambda \in \Lambda$ and $\lambda' \in \Lambda'$ if and only if there exists an isomorphism $\varphi : W_\Lambda \rightarrow W_{\Lambda'}$ such that $G \cap W_{\Lambda, \lambda} \cong \varphi(G) \cap W_{\Lambda', \lambda'}$ for any maximal simple subgroup G of W_Λ .

Theorem (K.C. and V. Mazorchuk)

Consider two Lie algebras \mathfrak{g} and \mathfrak{g}' of type A, with respective Borel subalgebras \mathfrak{b} and \mathfrak{b}' . Then there is a gradable derived equivalence

$$\mathcal{D}^b(\mathcal{O}_\lambda(\mathfrak{g}, \mathfrak{b})) \cong \mathcal{D}^b(\mathcal{O}_{\lambda'}(\mathfrak{g}', \mathfrak{b}'))$$

for dominant $\lambda \in \Lambda$ and $\lambda' \in \Lambda'$ if and only if there exists an isomorphism $\varphi : W_\Lambda \rightarrow W_{\Lambda'}$ such that $G \cap W_{\Lambda, \lambda} \cong \varphi(G) \cap W_{\Lambda', \lambda'}$ for any maximal simple subgroup G of W_Λ .

Theorem (W. Soergel)

Consider two Lie algebras \mathfrak{g} and \mathfrak{g}' of type A, with respective Borel subalgebras \mathfrak{b} and \mathfrak{b}' . Then there is an equivalence

$$\mathcal{O}_\lambda(\mathfrak{g}, \mathfrak{b}) \cong \mathcal{O}_{\lambda'}(\mathfrak{g}', \mathfrak{b}')$$

for dominant $\lambda \in \Lambda$ and $\lambda' \in \Lambda'$ if and only if there exists an isomorphism $\varphi : W_\Lambda \rightarrow W_{\Lambda'}$ such that $\varphi(W_{\Lambda, \lambda}) = W_{\Lambda', \lambda'}$ as subgroups of $W_{\Lambda'}$.

Outline

Category \mathcal{O}

General concepts

Ringel duality

Derived categories

Extension fullness

Results

Ringel duality for parabolic category \mathcal{O}

Derived equivalences for category \mathcal{O}

Extension fullness

Proposition (K.C. and V. Mazorchuk)

$\iota : \mathcal{B} \hookrightarrow \mathcal{C}$ is extension full if and only if ι induces a full and faithful functor

$$\iota : \mathcal{D}^b(\mathcal{B}) \rightarrow \mathcal{D}^b(\mathcal{C})$$

Theorem (K.C. and V. Mazorchuk)

- ▶ \mathcal{O} is extension full in the category of weight modules
- ▶ thick \mathcal{O} is extension full
- ▶ the category of generalised weight modules is extension full
- ▶ the category of Gelfand-Zeitlin modules is extension full
- ▶ the category of Whittaker modules is extension full