The Heun functions and thelr
applications in astropnysics.

Denitsa Staicova, INRNE
Plamen Fiziev, JINR

15 - 21 June 2015, Varna, Bulgaria

VRAAEMMA

Ha HAYRFTI

TCPA Foundation



Heun 1889:
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e=a+B-y-0+1, 4 regular singularities, z=0,1,a,«
Confluence: CHE, BHE, DHE, THE

Generalize: the hypergeometric function, the Lame function, Mathieu
function, the spheroidal wave functions

Numerous applications: in the Schrodinger equation with anharmonic potential,
in water molecule, in the Stark effect, in gravitational physics of scalar, spinor,
electromagnetic and gravitational waves, in crystalline materials, in 3d waves in
atmosphere, in Bethe anzatz systems, in Collogero-Moser-Sutherland systems

Group of symmetries of order 192




General Heun Function (GHE)
Si ngularities: regular={0,1,a, l""}

= T

Confluent Heun Function (CHE)
Singularities: regular={0 1}, irregular—{"}
CHE = ;ith [-L+ —=] [ yiz 1 [ g-=b_ "]y{z}= 0

Biconfluent Heun Function (DHE)
Singularities: regular={0}, irregular={=}

BHE = d—ﬂ,, wE) + |—2 Z— 0+ HT“J [i}-{z}] + {-y'— - 2 — I—E-MM] wizl=0

d= dz 2z
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Double confluent Heun Function (DHE)
Singularities: regular={}, irregular={-1, 1}

Triconfluent Heun Function (THE)
Singularities: regular={}, irregular={=}

THE = j—;y{zﬁl +(—y—3 2) [% ,_v[z}] + (@t zB—3z) y(z) =0

Hypergeometric DE: i dw
Regular singularities at z=0,1, [HEC) byl Ll CR sl a Y E

*Regularity condition: if for P(x)y" + Q(x)y + R(x)y = 0, the limits:




- Applications in astrophysics:
Perturbations of a black hole

U = Hwttm) S(0)R(r)
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BH parameters: a, M
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Both ODEs of the CHE type!!!
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The case a=0, s=-2: P. Fiziev, D.S. ,PRD.84, 127502 (2011)

The EM QNMs of the KBH (s=-1)

219 moat w
C.:_:?”ﬂw "+7— HeunC(a 08,7, 0,1, z) =0,

HeunC’(m, 51,71, 901,11, (cos (W/G))Q)
HeunC' (a2, B2, ¥2, 02, 72, (sin (W/G))Z)

Fiziev P., D. S., arXiv:1112.0310v1 [astro-ph.HE],
American Journal of Computational Mathematics Vol. 02 : 02, pp.95 (2012)
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D.S., P. Fiziev, Astrophysics and Space Science, 358:10, 2015

The results, a=0:

sin(arg(w) + arg(r)) > 0,7 = |r|e’
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(b) m=0, 1=1, sin(arg(w) +

arg(r))
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When we add rotation: 145 ~0.021
Fom) S(E,)
.40 —i1.03 1
In the extreme regime (a—M), 135] M
QNMs can be fit with oo
analytical formula by Hod N T e RN S | AL
Phys.Rev. D 78:084035,(2008) 023 026 02T Ol 0 01 092 0 S
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Even though the spurious spectrum follows the QNM/QBM, it doesn't correspond to physical BC



Stability of the modes with respect to the radial variable r
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D.S, P. Fiziev, in prep.

The spurious spectrum fails the r-test — they change with changes of |r| and arg(r)



Comparison with jet BC (s=-1, M=1/2):

Jets: D.S., Fiziev P. QNM: Fiziev P., D.S. (2010)
Astrophys Space Sci (2011) 332: 385-401 arXiv:1005.5375 [cs.NA]
E.  (w)=—(aw)-2awm=2(aw)+awm
W,_o  n=(—m+iNVb'—1)Q, , N=0,1
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We observe qualitative difference due to the different boundary conditions!






Values of the parameters for TAE:

For m = 0: a1 = 4@&0,1 = Im
4aw,n =1/2 — E —2aw — a’w? and

oy = —4aw [32 = 1,7% = 1,00 = —daw,n =,1/2 —
E—I—Q{M—aw,p—(m(ﬂﬁ))

For m = 1. a1 = —4daw,f1 = 2,71
baw,m =1—-FE —2aw — a*w?

w* and

{12:—4M,62:0,72:2,52:—4@@'”7]2:1—134-
2 aw — a’w? and p = —4 aw

For m = 2. oy = —4daw,8; = 3,1 = —1,01 =
4aw,n =5/2 - FE — 2aw — a’w? and

ay = —daw, By = 1,70 = 3,09 = —daw, N :5/2_
E +2aw — a*w? and p = 8 — daw.




Values of the parameters for TRE:
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r—— and the parameters are:
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The polynomial condition:

P. Fiziev, Class. Quant. Grav.27:135001, 2010 arXiv:0908.4234

P. Fiziev, J.Phys. A: Math. Theor. 43 (2010). 035203

We represent the three-diagonal determinant Ay (u) in the following specific explicit form:

p—q1  1(1+473) 0 0 0
No p—q+la  20243) ... 0 0
0 (N—-1Da pu—gqz+2a ... 0 0

0 0 0 coo p—qna + (N=2)a (N-=1)(N—-14+p5) 0
0 0 0 2a0 p—gn+(N—1)a N(N+p3)
0 0 0 0 la lL_QN—J—l‘l‘Na"

which turns to be useful for calculations. Here ¢,, = (:
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W,—o1 p=(—m+iNVb —=1)Q,
Fiziev P. P., ,Class. Quant. Grav.27:135001,
2010

b=M la - bifurcation
parameter

Q) =a/2Mr_ - angular velocity

of the horizon
N=0, 1

Re(w)
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