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A family of functions and numbers is gradually uncovered
- first independently and recently in collaboration -
by mathematicians and by particle theorists:
(Chen’s) iterated integrals↔ Feynman amplitudes
(Kontsevich-Zagier) periods↔ residues of poles of regularized
primitively divergent amplitudes; values of scattering
amplitudes at rational ratios of momenta and masses.
This family includes hyperlogarithms and multiple zeta values
and has a rich algebraic structure and interesting
(partly conjectural) properties.
Aim: introduction and a broad overview of the subject.
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Residues of primitively divergent amplitudes

A position space Feynman integrand G(~x) in a massless QFT
is a rational homogeneous function of ~x ∈ RN. If G corresponds
to a connected graph with V vertices in D = 4 then
N = 4(V − 1). The integrand is superficially divergent if G
defines a homogeneous density in RN of non-positive degree:

G(λ~x) dNλx = λ−κG(~x) dNx , κ ≥ 0 , x ∈ RN \ D (λ > 0) ;
(1.1)

κ is called (superficial) degree of divergence. In a scalar QFT
with massless propagators a connected graph with a set L of
internal lines gives rise to a Feynman amplitude that is a
multiple of the product

G(~x) =
∏

(i,j)∈L

1
x2

ij
. (1.2)



For a primitively divergent amplitude
the following proposition serves as a definition of both
the residue ResG and of a renormalized amplitude Gρ(~x).
(N. Nikolov, R. Stora, I.T., 2011-2014)



Proposition 1. If G(~x) (1.2) is primitively divergent then for any
smooth norm ρ(~x) on RN one has

[ρ(~x)]εG(~x)− 1
ε

(Res G)(~x) = Gρ(~x) + O(ε). (1.3)

Here Res G is a distribution with support at the origin. Its
calculation is reduced to the case κ = 0 of a logarithmically
divergent graph by using the identity

(Res G)(~x) =
(−1)κ

κ!
∂i1 ...∂iκRes (x i1 ...x iκG)(~x) (1.4)

where summation is assumed (from 1 to N) over the repeated
indices i1, ..., iκ. If G is homogeneous of degree −N then

(Res G)(~x) = res (G) δ(~x) (for ∂i(x iG) = 0) . (1.5)



Here the numerical residue res G is given by an integral over
the hypersurface Σρ = {~x | ρ(~x) = 1}:

res G =
1

πN/2

∫
Σρ

G(~x)
N∑

i=1

(−1)i−1x idx1 ∧ ...d̂x i ... ∧ dxN , (1.6)

(a hat over an argument meaning, as usual, that this argument
is omitted). The residue res G is independent of the (transverse
to the dilation) surface Σρ since the form in the integrant is
closed in the projective space PN−1.



I Note that N is even, in fact, divisible by 4, so that PN−1 is
orientable.

I The functional res G is a period according to the definition
of Maxim Kontsevich and Don Zagier. Such residues are
often called ”Feynman” or ”quantum” periods in the present
context.

I The same numbers appear in the expansion of the
renormalization group beta function (Broadhurst-Kreimer,
Schnetz 1990’s).



The convention of accompanying the 4D volume d4x by a π−2

yields rational residues for one- and two-loop graphs.
For graphs with three or higher number of loops ` one
encounters multiple zeta values of overall weight not
exceeding 2`− 3.
The only residues at three, four and five loops (in the ϕ4 theory)
are integer multiples of ζ(3), ζ(5) and ζ(7), respectively.
The first double zeta value, ζ(5,3), appears at six loops (with a
rational coefficient). All known residues were (up to 2013)
rational linear combinations of multiple zeta values.
A seven loop graph was demonstrated by Panzer in 2014 to
involve what Broadhurst calls multiple Deligne values -
hyperlogarithms at sixth roots of unity.



The definition of a period is deceptively simple: a complex
number is a period if its real and imaginary parts can be written
as absolutely convergent integrals of rational functions with
rational coefficients in domains given by polynomial inequalities
with rational coefficients. The set P of all periods would not
change if we replace everywhere in the definition ”rational” by
”algebraic”. If we denote by Q̄ the field of algebraic numbers
(the inverse of an algebraic number being also algebraic) then
we would have the inclusions

Q ⊂ Q̄ ⊂ P ⊂ C. (1.7)



The periods form a ring: the inverse of a period needs not be a
period. Feynman amplitudes in an arbitrary QFT can be
normalized in such a way that their values at rational ratios of
dimensional parameters (momenta and masses) become
periods (Bogner, Weinzierl, 2009). The set of all periods is
countable. Examples of periods include the transcendentals

π =

∫∫
x2+y2≤1

dxdy , ln n =

∫ n

1

dx
x
, n = 2,3, ..., (1.8)

as well as the values of iterated integrals at algebraic
arguments. They include both the classical MZVs as well as
multiple Deligne values. The basis e of natural logarithms, the
Euler constant γ = −Γ′(1), as well as ln(ln n), ln(ln(ln n)), ...,
and 1/π are believed (but not proven) not to be periods.



There are infinitely many primitively divergent 4-point graphs
(while there is a single primitive 2-point graph - corresponding
to the self-energy amplitudes (x2

12)−3). A remarkable sequence
of `-loop graphs (` ≥ 3) with four external lines, the zig-zag
graphs, can be characterized by their n-point vacuum
completions Γ̄n, n = `+ 2 as follows. Γ̄n admits a closed
Hamiltonian cycle that passes through all vertices in
consecutive order such that each vertex i is also connected
with i ± 2 (mod n). These graphs were conjectured by
Broadhurst and Kreimer in 1995 and proven by Brown and
Schnetz in 2012 to have residues

Per(Γ̄`+2) =
4− 43−`

`

(
2`− 2
`− 1

)
ζ(2`− 3) for ` = 3,5, ... ;

=
4
`

(
2`− 2
`− 1

)
ζ(2`− 3) for ` = 4,6, ... . (1.9)



Primitive conformal amplitudes
Each primitively divergent Feynman amplitude G(x1, ..., x4)
defines a conformally covariant (locally integrable) function
away from the small diagonal x1 = ... = x4. On the other hand,
every four points, x1, ..., x4, can be confined by a conformal
transformation to a 2-plane. Then we can represent each
euclidean point xi by a complex number zi so that

x2
ij = |zij |2 = (zi − zj)(z̄i − z̄j). (1.10)

The correspondence between 4-vectors x and complex
numbers z can be written (in spherical coordinates) in the form:

x = r(cosρe + sinρn) , e2 = 1 = n2 , en = 0 , r ≥ 0. (1.11)

z = reiρ → x2(= r2) = zz̄ , (x−e)2 = |1−z|2 = (1−z)(1− z̄)
(1.12)∫

n∈S2

d4x
π2 = |z − z̄|2 d2z

π
,

∫
S2
δ(x)d4x = δ(z)d2z . (1.13)



For a primitively divergent graph with four distinct external
vertices in the ϕ4 theory the amplitude (integrated over the
internal vertices) has scale dimension 12 and can be written in
the form:

G(x1, ..., x4) =
g(u, v)∏

i<j x2
ij

=
F (z)∏
i<j |zij |2

(1.14)

where the indices run in the range 1 ≤ i < j ≤ 4, the variables
u, v , and (the complex) z are conformally invariant crossratios:

u =
x2

12x2
34

x2
13x2

24
= zz̄ , v =

x2
14x2

23

x2
13x2

24
= |1− z|2 , z =

z12z34

z13z24
.

(1.15)



The crossratios z and z̄ are the simplest realizations of the
argument z of the hyperlogarithmic functions. They also appear
(as a consequence of the so called dual conformal invariance)
in the expressions of momentum space integrals like

T (p2
1,p

2
2,p

2
3) =

∫
d4k

π2k2(p1 + k)2(k − p3)2 =
F (z)

p2
3

(1.16)

where p1 + p2 + p3 = 0, p2
1

p2
3

= zz̄, p2
2

p2
3

= |1− z|2.



Double shuffle algebra of hyperlogarithms

Let σ0 = 0, σ1, ..., σN be distinct complex numbers
corresponding to an alphabet X = {e0, ...,eN}. Let X ∗ be the
set of words w in this alphabet including the empty word ∅. The
hyperlogarithm Lw (z) is a Chen’s iterated integral defined
recursively in the punctured complex plane
D = P1(C) \ Σ, Σ = {σ0, ..., σN ,∞}
by the differential equations:



d
dz

Lwσ(z) =
Lw (z)

z − σ
, σ ∈ Σ , L∅ = 1 , (2.1)

and the initial condition

Lw (0) = 0 for w 6= 0n(= 0 . . . 0), L0n (z) =
(ln z)n

n!
, L∅ = 1.

(2.2)
Denoting by σn a word of n consecutive σ’s we find, for σ 6= 0,

Lσn (z) =
(ln(1− z

σ ))n

n!
. (2.3)



There is a correspondence between the finite alphabet of
complex numbers σi and the set of positive integers:

(−1)dLσ10n1−1...σd 0nd−1(z) = Lin1,...,nd (
σ2

σ1
, ...,

σd

σd−1
,

z
σd

) (2.4)

where Lin1,...,nd is given by the multiple power series

Lin1,...,nd (z1, ..., zd ) =
∑

1≤k1<...<kd

zk1
1 ...z

kd
d

kn1
1 ...knd

d
. (2.5)

More generally, we have

(−1)dL0n0σ10n1−1...σd 0nd−1(z) =∑
k0≥0 ki≥ni ,1≤i≤d

k0+...+kd =n0+...+nd

(−1)k0+n0

d∏
i=1

(
ki − 1
ni − 1

)
L0k0 (z) Lk1−kr (

σ2

σ1
, ...,

σd

σd−1
,

z
σd

). (2.6)



In particular,
L01(z) = Li2(z)− ln zLi1(z) = Li2(z) + ln z ln(1− z).
The number of letters |w | = n0 + ...+ nd of a word w defines its
weight, while the number d of non zero letters is its depth. The
set X ∗ of words can be equipped with a commutative shuffle
product w ttw ′ defined recursively:

∅ttw = w(= w tt∅) , auttbv = a(uttbv) +b(auttv) (2.7)

where u, v ,w are (arbitrary) words while a,b are letters (note
that the empty word ∅ is not a letter).



We denote by

OΣ = C
[
z,
( 1

z − σi

)
i=1,...,N

]
(2.8)

the ring of regular functions on D. Extending by OΣ linearity the
correspondence w → Lw one proves that it defines a
homomorphism of shuffle algebras OΣ ⊗ C(X )→ LΣ where LΣ

is the OΣ span of Lw ,w ∈ X ∗.
The shuffle product is commutative as displayed by

Luttv = LuLv . (2.9)

In particular, the dilogarithm Li2(z) given by (2.5) for
d = 1,n1 = 2 disappears from the shuffle product:

L0tt1(z) = L01(z) + L10(z) = L0(z)L1(z). (2.10)



If the shuffle relations are suggested by the expansion of
products of iterated integrals, the product of series expansions
suggests the (also commutative) stuffle product. Here is the
rule for the product of depth one and depth two factors:

Lin1,n2(z1, z2)Lin3(z3) = Lin1,n2,n3(z1, z2, z3) +

Lin1,n3,n2(z1, z3, z2) + Lin3,n1,n2(z3, z1, z2) +

Lin1,n2+n3(z1, z2z3) + Lin1+n3,n2(z1z3, z2). (2.11)

The multiple polylogarithms of one variable (with
z1 = ... = zd−1 = 1) span a shuffle but not a stuffle algebra.
The stuffle product also respects the weight but (in contrast to
the shuffle) only filters the depth (the depth of each term in the
right hand side does not exceed the sum of depths of the
factors in the left hand side).



It is convenient to rewrite the definition of hyperlogarithms in
terms of a formal series L(z) with values in the (free) tensor
algebra C(X ) (the complex vector space generated by all words
in X ∗) which satisfies the Knizhnik-Zamoldchikov (K-Z)
equation:

L(z) :=
∑

w

Lw (z)w ,
d
dz

L(z) = L(z)
N∑

i=0

ei

z − σi
. (2.12)



For X consisting of two letters e0,e1 ↔ σ0 = 0, σ1 = 1, L(z)
generates the classical multipolylogarithms; its value at
z = 1,Z := L(1) is the generating series of MZVs. The
monodromy of L around the points 0 and 1 is:

M0 L(z) = e2πie0 L(z) , M1 L(z) = Z e2πie1 Z−1 L(z), Z =
∑

w

ζww ,

(2.13)
so thatM0L0n (z) = L0n (z) + 2πiL0(n−1)(z),M1Lin(z) =
Lin(z)− 2πiL0(n−1)(z). Indeed, L(z) is the unique solution of the
K-Z equation obeying the ”initial” condition

L(z) = ee0 ln zh0(z), h0(0) = 1, (2.14)

h0(z) being a formal power series in the words in X ∗ that is
holomorphic in z in the neighborhood of z = 0. There exists a
counterpart h1(z) of h0, holomorphic around z = 1 and
satisfying h1(1) = 1 such that

L(z) = Z ee1 ln(1−z) h1(z). (2.15)



The weight of consecutive terms in the expansion of L(z) (2.15)
is the sum of the weights of hyperlogarithms and the zeta
factors. It is thus convenient to first review of the double shuffle
algebra of MZVs.



Formal multizeta values

The MZV ζ(n1, ...,nd ) is defined as Lin1,...,nd (1) whenever the
corresponding series converges:

(−1)dζ10n1−1...10nd−1 = ζ(n1, ...,nd ) =
∑

1≤k1<...<kd

1
kn1

1 ...knd
d

for nd > 1.

(3.1)
The convergent MZVs of a given weight satisfy a number of
shuffle and stuffle identities. Looking for instance at the shuffle
(sh) and the stuffle (st) products of two −ζ10 = ζ(2) we find:

sh : ζ2
10 = 4ζ1100 + 2ζ1010(= 4ζ(1,3) + 2ζ(2,2));

st : ζ(2)2 = 2ζ(2,2) + ζ(4);

hence ζ(4) = 4ζ(1,3) = ζ(2)2 − 2ζ(2,2). (3.2)



There are no non-zero convergent words of weight 1 and hence
no shuffle or stuffle relations of weight 3. On the other hand,
already Euler has discovered the relation: ζ(1,2) = ζ(3). Thus
shuffle and stuffle relations among convergent words do not
exhaust all known relations among MZVs of a given weight.
The divergent zeta values for nd = 1 cancel in the difference
between the shuffle and stuffle products u ttv − u ∗ v . For
instance, at weight 3 we have

ζ((1)tt(2)) = 2ζ(1,2)+ζ(2,1); ζ((1)∗(2)) = ζ(1,2)+ζ(3)+ζ(2,1).
(3.3)

Extending the homomorphism w → ζ(w) as a homomorphism
of both the shuffle and the stuffle algebras to divergent words,
assuming, in particular, that
ζ((1) tt(2)) = ζ((1) ∗ (2)) = ζ(1)ζ(2) and taking the difference
of the two equations (3.3) we observe that all divergent zeta’s
cancel and we recover Euler’s identity.



Translation between the two-letter alphabet {0,1} (used as
lower indices) and the infinite alphabet of all positive integers
appearing (in parentheses) as arguments of zeta:

~n = (n1, ...,nd )↔ (−1)nρ(~n) for ρ(~n) = 10n1−1...10nd−1. (3.4)

Using this correspondence one obtains, in particular, the first
relation (3.3).



One introduces shuffle regularized MZVs using the following.
Proposition 3. There is a unique way to define a set of real
numbers I(a0; a1, ...,an; an+1) for any ai ∈ {0,1}, such that

(i) I(0; 1,a2, ....an−1,0; 1) = ζ1a2...an−10

(ii) I(a0; a1; a2) = 0, I(a0,a1) = 1 for all a0,a1,a2 ∈ {0,1};
(iii) I(a0; a1, ...,ar ; an+1)I(a0; ar+1, ...,ar+s) =∑
σ∈Σ(r ,s)

I(a0; aσ(1), ...,aσ(r+s); an+1) (r + s = n);

(iv) I(a; a1, ...,an; a) = 0 for n > 0;

(v) I(a0; a1, ...,an; an+1) = (−1)nI(an+1; an, ...,a1; a0);

(vi) I(a0; a1, ...,an; an+1) = I(1− an+1; 1− an, ...,1− a1; 1− a0).(3.5)

Σ(r , s) is the set of permutations that preserve the order of the
first r and the last s indices among them. Eq.
ζ(n1, ...,nd ) = (−1)d I(0; ρ(~n); 1) then defines the shuffle
regularized zeta values for all nd ≥ 1. Condition (ii) implies, in
particular, ζ(1) = 0.



In fact, it suffices to add a condition involving multiplication by
the divergent word (1),

ζ((1) ttw − (1) ∗ w) = 0 for all convergent words w , (3.6)

to the shuffle and stuffle relations among convergent words in
order to obtain all known relations among MZVs of a given
weight. For w = (n),n ≥ 2 (a word of depth 1), Eq. (3.6) gives

ζ((1)tt(n)− (1) ∗ (n)) =
n−1∑
i=1

ζ(i ,n + 1− i)− ζ(n + 1) = 0 (3.7)

(a relation known to Euler). The discovery (and the proof) that

ζ(2n) = − B2n

2(2n)!
(2πi)2n, B2 =

1
6
,B4 = − 1

30
, (−1)n−1B2n ∈ Q>0,

(3.8)
where Bn are the (Jacob) Bernoulli numbers, was among the
first that made Euler famous. Nothing is known about the
transcendentality of ζ(n) (or of ζ(n)

πn ) for odd n. We introduce
following Leila Schneps the notion of the Q-algebra FZ of
formal MZVs Fζ which satisfy the above relations.



The algebra FZ =
⊕

n FZn is weight graded and

FZ0 = Q,FZ1 = {0},FZ2 = 〈ζ(2)〉,FZ3 = 〈ζ(3)〉,FZ4 = 〈ζ(4)〉,
FZ5 = 〈ζ(5), ζ(2)ζ(3)〉,FZ6 = 〈ζ(2)3, ζ(3)2〉,

FZ7 = 〈ζ(7), ζ(2)ζ(5), ζ(2)2ζ(3)〉, (3.9)

where < x , y , ... > is the Q vector space spanned by x , y , ...
(and we have replaced Fζ by ζ in the right hand side for short).
The main conjecture in the theory of MZVs is that the graded
algebra FZ is isomorphic to the algebra Z of MZVs. It is a
strong conjecture. If true it would imply that there is no linear
relation among MZVs of different weights over the rationals (in
particular, that all ζ(n) are irrational). We follow the physicists’
practice to treat this conjecture as established and to omit the
F ’s in the notation for (formal) MZVs.



Examples: E1. In order to see that the space Z4 of weight four
zeta values is 1-dimensional we should add to Eqs. (3.2) the
relation (3.7) for n = 3 and its depth three counterpart:

ζ((1) tt(1,2)− (1) ∗ (1,2)) = ζ(1,1,2)− ζ(1,3)− ζ(2,2) = 0.
(3.10)

This allows to express all zeta values of weight four as
(positive) integer multiples of ζ(1,3).
E2. The shuffle and the stuffle products corresponding to
ζ(2)ζ(3) give two relations which combined with (3.7) for n = 4
allow to express the three double zeta values of weight five in
terms of simple ones:

ζ(1,4) = 2ζ(5)− ζ(2)ζ(3), ζ(2,3) = 3ζ(2)ζ(3)− 11
2
ζ(5),

ζ(3,2) =
9
2
ζ(5)− 2ζ(2)ζ(3).(3.11)



In general, the number of convergent words of weight n in the
alphabet {0,1} is 2n−2. We see from Eq. (3.9) the number of
relations also grows fast: there are six relations among the
eight MZVs at weight five; 14 such relations at weight six, 29, at
weight seven. One first needs a double zeta value, say ζ(3,5),
in order to write a basis (of four elements) at weight eight (there
being 60 relations among the elements of FZ8).
Question: dimension of weight spaces dn = dimZn =?

To answer it we will introduce (a pedestrian version of) motivic
zeta values.



Consider the concatenation algebra

C = Q〈f3, f5, ...〉, (3.12)

the free algebra over Q on the countable alphabet {f3, f5, ....}. If
we could identify the formal zeta values with the algebra

C[f2] = C ⊗Q Q[f2], (3.13)

we would be able to compute the dimension dn of Zn for any n.
Indeed, the generating (Hibert-Poincaré) series for the
dimensions dCn of the weight n subspace of C is given by∑

n≥0

dCn tn =
1

1− t3 − t5 − ...
=

1− t2

1− t2 − t3 (3.14)

while the Hilbert-Poincaré series of the second factor Q[f2] in
(3.13) is (1− t2)−1. Multiplying the two we obtain - for the
”motivic zeta values” - the dn conjectured by Don Zagier:∑
n≥0

dntn =
1

1− t2 − t3 , d0 = 1,d1 = 0,d2 = 1,dn+2 = dn +dn−1.

(3.15)



Taking the identities among (formal) zeta values into account
we can write the generating series Z of MZV (also called
Drinfeld’s associator) in terms of multiple commutators of e0,e1:

Z = 1 + ζ(2)[e0,e1] + ζ(3)[[e0,e1],e0 + e1] + .... (3.16)



The concatenation algebra C, identified with the quotient

C = C[f2]/Q[f2], (3.17)

can be turned into a Hopf algebra with the deconcatenation
coproduct:

∆(fi1 ...fir ) = 1⊗ fi1 ...fir + fi1 ...fir ⊗1 +
r−1∑
k=1

fi1 ...fik ⊗ fik+1 ...fir . (3.18)

This coproduct can be extended to the trivial comodule C[f2]
(3.13) by setting

∆ : C[f2]→ C ⊗ C[f2], ∆(f2) = 1⊗ f2 (3.19)

(and assuming that f2 commutes with fodd ). Remarkably, there
appear to be a one-to-one (non-canonical) correspondence
between the bases of the weight spaces Zn and C[f2]n:

〈ζ(2)〉 ↔ 〈f2〉; 〈ζ(3)〉 ↔ 〈f3〉; 〈ζ(2)2〉 ↔ 〈f 2
2 〉;

〈ζ(5), ζ(2)ζ(3)〉 ↔ 〈f5, f2f3(= f3f2)〉; 〈ζ(2)3, ζ(3)2〉 ↔ 〈f 3
2 , f3 ttf3〉;

〈ζ(7), ζ(2)ζ(5), ζ(2)2ζ(3)〉 ↔ 〈f7, f2f5, f 2
2 f3〉, .... (3.20)



A sharpening of the above main conjecture for MZVs reads:
The algebra Z of MZVs is weight-graded and (non-canonically)
isomorphic as graded Hopf algebra with C[f2]. If true it would
imply that the (infinite sequence of) numbers π, ζ(3), ζ(5), ... are
transcendental algebraically independent over the rationals. It
would also fix the dimension of the weight spaces Zn to be
equal to dn (3.15). Presently, we only know that this is true for
n = 0,1,2,3,4; in general, it is proven that

dimZn ≤ dn ∀n; dimZn = dn for n ≤ 4 . (3.21)



Remark The validity of the above sharpened conjecture would
imply, in particular, that ζ(2n + 1) are primitive elements of the
Hopf algebra of MZVs:

∆(ζ(2n + 1)) = ζ(2n + 1)⊗ 1 + 1⊗ ζ(2n + 1). (3.22)

Eq. (3.8) precludes the possibility of extending this property to
even zeta values. Indeed, it implies the relation

ζ(2n) = bnζ(2)n, bn = (24)n|B2n|
2(2n)!

which is only compatible with

∆ζ(2) = 1⊗ ζ(2).



If for weights n ≤ 7 one can express all MZVs in terms of
(products of) simple zeta values (of depth one) for n ≥ 8 this is
no longer possible. Brown (2012) has established that the
Hoffman elements ζ(n1, ...,nd ) with ni ∈ {2,3} form a basis of
motivic zeta values for all n.



The coproduct for MZV, described in the Remark, extends to
hyperlogarithms and can be formulated in terms of the
regularized iterated integrals of Proposition 3. Here is the
coproduct of a classical polylogarithm:

∆Lin(z) = Lin(z)⊗ 1 +
n−1∑
k=0|

(ln z)k

k !
⊗ Lin−k (z). (3.23)

Specializing to z = 1 in (3.23) for even n leads to a
contradiction unless we factor LΣ by ln(−1) = iπ(=

√
−6ζ(2)):

H := LΣ/iπLΣ so that LΣ = H[iπ] . (3.24)

The coaction ∆ is defined on the comodule LΣ as follows:

∆ : LΣ → H⊗LΣ , ∆(iπ) = 1⊗ iπ . (3.25)

The asymmetry of the coproduct is also reflected in its relation
to differentiation and to the discontinuity discσ =Mσ − 1:

∆(
∂

∂z
F ) = (

∂

∂z
⊗ id)∆F , ∆(discσF ) = (id ⊗ discσ)∆F .

(3.26)



Single-valued hyperlogarithms. Applications

Knowing the action of the monodromy Mσi around each
singular point Brown constructs single valued hyperlogarithms
in the tensor product of LΣ with its complex conjugate. We shall
spell out this construction for classical multiple polylogarithms
LΣ = Lc , defined as O-linear combination of Lw (z) for w , words
in the ”Morse alphabet” X = {e0,e1} ↔ {0,1}, where
O = C[z, 1

z ,
1

z−1 ]. The tensor product L̄c ⊗ Lc contains
functions of (z̄, z) transforming under arbitrary representations
of the monodromy group including the trivial one, - i.e. the
single-valued multiple polylogarithms (SVMPs).



We introduce an ŌO basis of homogeneous SVMPs Pw (z) and
will denote by

PX (z) =
∑

w∈X∗
Pw (z)w (4.1)

its generating series. Their significance stems from the fact that
a large class of euclidean Feynman amplitudes are given by
single valued hyperlogarithms. The following theorem is
established by Francis Brown in 2004.



Theorem 4. There exists a unique family of single-valued
functions Pw (z),w ∈ X∗, z ∈ C \ {0,1} such that their
generating function (4.1) satisfies the following
Knizhnik-Zamolodchikov equations and initial condition:

∂PX (z) = PX (z)(
e0

z
+

e1

z − 1
), ∂ :=

∂

∂z
, ∂̄ :=

∂

∂z̄
,

∂̄PX (z) = (
e0

z̄
+

e′1
1− z̄

)PX (z), Z−e0,−e′1
e′1Z−1

−e0,−e′1
=

Ze0,e1e1Z−1
e0,e1

, PX (z) ∼ ee0 ln(zz̄) for z ∼ 0 . (4.2)

The functions Pw (z) are linearly independent over ŌO and
satisfy the shuffle relations. Every element of their linear span
has a primitive with respect to ∂

∂z , and every single valued
function F (z) ∈ L̄cLc can be written as a unique ŌO-linear
combination of Pw (z).



The equation for e′1 is dictated by the expression for the
monodromy of Lw (z) (2.13) around z = 1 and can be solved
recursively in terms of elements of the Lie algebra over the ring
of zeta integers Z[Z], generated by e0,e1 and their multiple
commutators. The result is:

e′1 = e1 + 2ζ(3)[[[e0,e1],e1] , e0 + e1] + ζ(5)(...) + ... , (4.3)

where the parenthesis multiplying ζ(5) consists of eight bracket
words of weight six. It follows that e′1 = e1 for words of weight
not exceeding three or depth not exceeding one.



For words involving (repeatedly) a single letter we have

P0n (z) =
(ln z̄z)n

n!
, P1n (z) =

(ln |1− z|2)n

n!
. (4.4)

The depth-one-weight-two SVMPs, which satisfy the differential
equations

∂P01 =
P0

z − 1
, ∂̄P01 =

P1

z̄
(P01(0) = 0 = P10(0)) ,

∂P10 =
P1

z
, ∂̄P10 =

P0

z̄ − 1
, (4.5)

are given by

P01 = L10(z̄) + L01(z) + L0(z̄)L1(z) =

Lie2(z)− Li2(z̄) + ln z̄z ln(1− z),

P10 = L01(z̄) + L10(z) + L1(z̄)L0(z) =

Li2(z̄)− Li2(z) + ln z̄z ln(1− z̄) . (4.6)



They obey the shuffle relation P01 + P10 = P0P1 so that the
only new weight two function is their difference,

P01 − P10 = 2(Li2(z)− Li2(z̄) + ln z̄z ln
1− z
1− z̄

= 4iD(z) , (4.7)

proportional to the Bloch-Wigner dilogarithm,
D(z) = Im(Li2(z) + ln(1− z) ln |z|).



One can also write down depth-one SVMPs of arbitrary weight
encountered in the expression Fn(z) for the graphical function
associated with the wheel diagram with (n + 1) spokes, first
computed by Broadhurst in 1985:

Fn(z) = (−1)n P0n−110n (z)− P0n10(n−1)(z)

z − z̄
=

=
n∑

k=0

(−1)n−k
(

n + k
n

)
P0n−k (z)

Lin+k (z)− Lin+k (z̄)

z − z̄
. (4.8)

The period of the wheel amplitude is given by the limit of this
expression for z → 1

Fn(1) =

(
2n
n

)
Li2n−1(1) =

(
2n
n

)
ζ(2n − 1). (4.9)

Just like MZVs appear as values at z = 1 of multiple
polylogarithms the values at one of SVMPs define single-valued
periods (Brown, 2013) with applications in QFT (and in
superstrings: Stieberger, 2013). Their generating function is

Z sv = Pe0,e1(1) = 1+2ζ(3)[e0, [e1,e0]]+2ζ(5)(...)+...⇒ ζsv (2) = 0.
(4.10)



The structure of a graded Hopf algebra of the family of
hyperlogarithms allows to read off there symmetry properties
from the simpler properties of ordinary logarithms, as illustrated
by Duhr’s derivation of the inversion formula for the dilog:
Li2
(

1
x

)
= iπ ln x − Li2(x)− 1

2 ln2 x + 2ζ(2).
SVMPs are symmetric under the group S3 of Möbius
transformations, that permute the singular points {0,1,∞}.S3
is generated by two involutions, s1 : z → 1− z, s2 : z → 1

z such
that s1s2 : z → z−1

z , (s1s2)3 = 1. The formal power series
Pe0,e1(z) obeys simple symmetry relations under s1 and s2:

Pe0,e1(1− z) = Pe0,e1(1)Pe1,e0(z),

Pe0,e1(
1
z

) = Pe0,−e0−e1(1)P−e0−e1,e1(z). (4.11)



According to (4.10) the first factor in the right hand side of
(4.11) does not contribute to the transformation law of SVMPs
of weight one and two; s1 just permutes the indices 0 and 1
while P0( 1

z ) = −P0(z),P1( 1
z ) = P1(z)− P0(z) and

P01(
1
z

) = P00(z)− P01(z), P10(
1
z

) = P00(z)− P10(z)

⇒ D(
1
z

) = −D(z) (4.12)

where D(z) is the Bloch-Wigner dilogarithm (4.7).



As a simple example, one can calculate - without really
integrating - the integral

I(x1, x2, x3, x4) =

∫
d4x
π2

4∏
i=1

1
(x − xi)2 =

f (u, v)

x2
13x2

24
, (4.13)

where u, v are the crossratios (1.15). Using the conformal
invariance of f (u, v) we can set
x1 →∞, x2 = e (e2 = 1), x4 = 0; x2

3 = z̄z, (X3 − e)2 = |1− z|2.
Applying to the result the 4-dimensional Laplacian with respect
to x3 which acts on F (z) = f (u, v) as
1
4∆3F (z) = 1

z−z̄ ∂̄∂[(z − z̄)F (z)], we obtain:

∂̄∂[(z − z̄)F (z)] =
z̄ − z

z̄z|1− z|2
=

1
z̄(z − 1)

− 1
z(z̄ − 1)

⇒ F (z) =
P01(z)− P10(z)

z − z̄
. (4.14)



Thus F (z) is given by (4.8) for n = 1, (z − z̄)F (z) being the
only odd with respect to complex conjugation SVMP of weight
two. We note that the odd denominator z − z̄ also comes from
the Jacobian J of the change of integration variables
{xα} → {Di = (x − xi)

2}, α, i = 1, ...,4 in (4.13):

I(x1, ..., x4) =
1
π2

∫
1
J

4∏
i=1

dDi

Di
, J = det

(
∂Di

∂xα

)
. (4.15)

Indeed, at the singularity Di = 0 we have

J|Di =0 = 4x2
13x2

24

√
2(u + v + uv)− 1− u2 − v2 = 4x2

13x2
24

√
−(z − z̄)2.

(4.16)
Integrals of the type of (4.13) have been calculated long ago by
more conventional methods by Ussyukina. The present
techniques have been applied to calculate a (previously
unknown) 3-loop correlator.



Outlook

Multidimensional Feynman integrals give rise to a family of
functions and numbers with the structure of a differential
graded double shuffle Hopf algebra. It is displayed most readily
for conformally invariant position space amplitudes in a
massless QFT.
The dimensions of weight spaces of MZVs (which exhaust the
Feynman periods up to six loops in the massless ϕ4 theory) do
not exceed - and are conjectured to coincide with - their motivic
counterparts studied by Francis Brown. At seven loops first
appear values of hyperlogarithms at sixth root of unity. In the
two-loop sunrise integral with massive propagators) multiple
elliptic polylogarithms are involved (Bloch, Vanhove, Adams,
Bogner, Weinzierl); they are also expected for higher loop
massless integrals.



We have not touched upon the application of cluster algebras to
multileg on shell Feynman amplitudes. A remarkable step in
this direction was made by Goncharov and a group of four
physicists, 2013.
As hyperlogarithms and associated numbers do not suffice for
expressing massive or higher order Feynman amplitudes,
mathematicians and physicists are exploring their (elliptic
polylog and modular form) generalizations (Brown, 2014-2015).
Connections of MZVs with other part of mathematics (including
the Grothendieck-Teichmüller Lie algebra, mixed Tate motives
and modular forms) are surveyed, for instance, by Schneps.
Recent developments and perspectives are surveyed in Francis
Brown’s lecture at the 2014 Intentional Congress of
Mathematicians (1407.5165).
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