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Spin models: Mathematical setup
Spin operators: §, €g
(rep matrices of g on H;)

Ingredients

e Symmetry (here: a simple Lie algebra g)
o Hilbert space H = ); H; (a unitary rep of g)

@ Hamiltonian H € End(#) (hermitean, commuting with action of g)

Quantities of interest

@ The spectrum of H

@ The properties as L — oo (thermodynamic limit)
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The Haldane-Shastry Model

as a Paradigm
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The Haldane-Shastry Model

SU(N) quantum spins on a circle

Sy <— SU(N) spins in the fundamental representation

Si
2mi
<— Equidistant positions zx = e L

Hamiltonian
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What's your interest in the Haldane-Shastry model?

(Spin) Calogero-Sutherland model

Fractional statistics

Dynamical correlation functions /
T~ _, 2D CFT

Haldane-Shastry model

A~ NN

Finitized characters of su(N)y Jack polynomials

Degenerate affine Hecke algebra
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Properties of the Haldane-Shastry model

Features

@ Yangian symmetry [Haldane, Ha Talstra,Bernard, Pasquier]

(] Quantum Integl’ablhty [Bernard,Gaudin,Haldane, Pasquier]
@ Physical insights:

o Elementary excitations are spinons

o Generalized exclusion principle: Haldane statistics [Haldane]

Specifically

@ The full spectrum and all eigenstates are explicitly known
@ They are related to correlators of the SU(N); WZW model
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Solution of the Haldane-Shastry model

Classification of states

The spectrum is described by motifs m = (my, ..., m;) which satisfy
e m=m =0
e my € {0,1} (occupation numbers)
@ There are no N consecutive 1's (generalized exclusion principle)
Ground state motif for SU(4): 011101110---01110

Energy and momentum

E(m) = Emax— (£)* D mik(L — k)
k

P(m) = 2{ Z myk
k
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Comparison to the SU(N) Heisenberg model

- St Sk =
Sk+1 Si Heisenberg  Haldane-Shastry
Continuum limit ~ SU(N); SU(N)y

Quantum integrability
Yangian symmetry for L — oo
Yangian symmetry for L < oo X

Logarithmic corrections as L — oo X

= The Haldane-Shastry model realizes the CFT almost perfectly
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The goals of this talk
[ Limitations of the Haldane-Shastry model

Limitations of the Haldane-Shastry model
The nice properties of the Haldane-Shastry model are bound to
SU(N) symmetry

spins in the fundamental representation

o
@ 1D arrangements
o

equidistant positions

Goals
@ Suggest a systematic generalization of the Haldane-Shastry model

@ Investigate which of the features survive

[Tool: Entanglement]
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Matrix Product States
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Designing quantum states

Question

How to construct quantum systems
(or quantum states) with predefined properties?

Answer

Use their entanglement features to
decode/encode this information
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Matrix product states

Ingredients

@ Two local Hilbert spaces V (physical) and B (auxiliary)

@ V and B should be representations of the symmetry group
@ An intertwiner A: End(B) — V

Definition of matrix product states (MPS)

Periodic BC: [¢) =tr(A®---®@A) €V

I\ I\ I\ I\ T) ZtrAkl. AR k)

ki,....k matrix product
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Properties of matrix product states

Essential properties

@ The dimension of V encodes the entanglement of |¢)

@ There exists a so-called “parent Hamiltonian” H with
e His a sum of local projectors (onto the complement of A® A)

e H is gapped

e H>0 | |

Hly) =0 A A

o If A satisfies certain natural properties, one also has
o [1) is the unique ground state

Critical systems are gapless, so they require infinite size of B
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Matrix product states for critical systems

§ ¢

é Auxiliary quantum field theory (QFT)

¢: Set of fields ¢ (xx)

| ‘25

Strategy
Replace B by the Hilbert space of a QFT:

[0) =Dy (87 00) 01 ) M, k)

QFT correlator
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The goal of the talk

© Start from a 2D CFT /vertex operator algebra
@ Construct a quantum spin model (in either 1D or 2D)
© Try to solve it in the thermodynamic limit

@ Investigate its relation to the original CFT

Concrete choice of CFT here: WZW models

@ Based on affine Lie algebra

@ Natural realization of g-symmetry
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From CFT to

long-range spin models
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Outline of the idea

Philosophy (based on a given CFT)
r CFT correlation function ¢(zi,...,z.) —l

State |¢)) (wave function) of a quantum mechanical lattice model

L» Hamiltonian with [¢)) as a (unique) groundstate <J

Conformal field theory Quantum spin model

C o © ° o © ° 5
Zie .(.— w,-(z,-) — Zie .(.— Si
Field insertions Spin locations
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Outline of the idea

Philosophy (based on a given CFT)

Correlator my..m, (21, ...,21) = <¢m1 (z1)--- @me(zL)>
|;>State ) = 3 (myy Yy (205, 2) [ma - >4j
L» Hamiltonian H > 0 with H|y)) =0 <J

Conformal field theory Quantum spin model

(C A ° ® A ° [ ] .
Zje o<.— Yi(z) — Zie o<.— S:
Field insertions Spin locations
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Features and natural questions

Features

@ Interpretation as an Infinite Matrix Product State (coMPS)

@ Freedom: Type and position of field insertions can be chosen at will

Examples

random 2D square triangular honeycomb 1D chain

Questions

@ Why a lattice model? — Potential cold atom implementation

@ Thermodynamic limit: What is the relation to the original CFT?
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Application to
SU(N) spin models
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The SU(N) WZW model

Starting point: The SU(N); WZW model

@ Based on affine Lie algebra su(/N); extending su(N)
@ It has N — 1 basic fields (integrable reps) with abelian fusion
e We will only work with the fundamental field (z)

Affine Lie algebra: Centrally extended loop algebra

[J2,J5) = if?P JS ., + kmK*Pon

Thomas Quella (University of Cologne) ocoMPS for long-range spin models



Construction of the Hamiltonian

Strategy

o Find operators P that annihilate (¢1(z1) - ¥r(z.))

o Define H=> ", PP«

@ By construction:
o H is hermitean Vi(2) k
e H>0
e [¢) is a groundstate

Relevant result

The operators Py arise from null vectors in Verma modules over the affine
Lie algebra su(N) after making use of WZW Ward identities
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Null vectors in affine Verma modules

Structure of the relevant Verma module over su(/N);

Degree

JI BV

.“‘ V :..'
LY & Nul field x(2) = P?51(2)

........ .L. Primary field ¢(z)

» Cartan of su(N)
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From null fields to the Hamiltonian

Construction of the null operators P

Yi(z) X7 (2)
0= = (Yu(z) xi(@) - vulz)
——
Panglwk(Zk)
J Yi(21) ey
N 7{ ;foiw (P)?p “mode — current”
Zk
(Pe)2, Vi) VYi(2«) o
- Z “WZW Ward identity”
Zy — 2|
I(#k)
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Evaluation of the Hamiltonian

a b
Pi({z}) (W(z1) - -¥(zL)) def Z M(lﬁ(a)“-?ﬂ(n» -0

i) kA

H = ZP;:({Z})T kb PP ({2})

_1\d
Z Z Wk, ij{ 7 %_’_% fabc S?SJbS;f - % dabc Slasjbslf
ki j(#k)
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Discussion

Thermodynamic limit

Expectation: Expectation/hope:
— Gapless — Gapped spin liquid
— Same CFT — 1D edge CFT

— Anyonic excitations

(actually, no...)

Generic 1D Generic 2D

For the general case an analytic solution is beyond reach

One analytic result
The exact groundstate is defined in terms of

(Vr4(21) - Yrg(2)) = S50 TN ](zi — ) 5D

known <Jj

where g are quantum numbers (weights) with respect to SU(N)
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The Hamiltonian for the uniform chain

Si ) _ Useful quantity:
5 Sj BBl (av,

wj =
Zj — Zj

Two spin interaction Three spin interaction

The Hamiltonian

H =G \z —2z |2
kel coupling to

=+ C2 + C3 dabc +C4

Result
@ Reduction to Haldane-Shastry model plus coupling to total spin

@ Exact solution despite absence of Yangian symmetry
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Generalizations
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Overview: Generalizations

uniform

alternating V — V 2D setup

Other generalizations
@ Supersymmetrization: SU(N) — SU(M+N|M)
@ A long range loop model (limit M — o)
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Discussion of the alternating Hamiltonian

Discussion

@ The three-spin couplings do not decouple, not even for special
arrangements of spins

@ An analytic solution is (currently) not available

@ Numerical evidence: The thermodynamic limit of an equidistant
alternating chain on a circle is described by a (yet unidentified) CFT

Numerical implementation

@ The rewriting in terms of a loop model reduces the numerical
complexity drastically

@ The number N only arises as a parameter of the loop model but does
not affect the complexity

Thomas Quella (University of Cologne) ocoMPS for long-range spin models



Embedding into supersymmetric setups

Extension

The construction of the Hamiltonian generalizes to supergroups of the form
SU(M+N|M)

Comments

@ The WZW theories for supergroups are much more intricate than for
Ordinary grOUpS (—> |Og CFT) [Schomerus,Saleur] [TQ,Schomerus] [...]

o Lattice discretizations of these theories are highly desired
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A long-range loop model

@ The Hilbert space admits a multiplicity free decomposition

H= VeV =P nes

into irreps of SU(N) and the walled Brauer algebra WB/ ((N)
@ The Hamiltonian is an element of WB ;(N)

@ The latter can be studied on an arbitrary representation of WBy ¢(4),
including those which define loop models with arbitrary fugacity &

Comments

@ The loop model provides a faithful representation of the spectrum of
the SU(M+N|M) spin model as M — oo
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Summary and Outlook
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Summary and Outlook

Long-range SU(N) spin models on arbitrary lattices in 1D or 2D can be
constructed based on the null vectors in the SU(N); WZW model

Concrete results

@ The 1D uniform case can be reduced to the Haldane-Shastry model

o All eigenstates and their energies are known explicitly

@ The 1D alternating case leads to a yet to be identified CFT

@ Exploration of various 2D setups [Tu,Nielsen, Cirac]

@ Application to other symmetry groups

see [Tu] [Bondesan,Peschutter, TQ] [TQ, Tu] for SO(N), GL(M|N) and SP(N)
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A vision: Design of critical and topological phases

[ 1+1D CFT J ren .[ Critical 1D quantum system J

“optimal” discretization
S /output

<
~

“Nice QFT" | input | “Entanglement Creator”
(2D CFT) (coMPS Construction)

output

Aiepunoq /3|nq

bulk/boundary

continuum limit

[ 2+1D TQFT ] .[ Gapped 2D topological system }

“optimal” discretization

Application to WZW models
WZW model «+— Long-range quantum spin model
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Extra slides
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Rewriting in terms of loop models

Two-spin interactions

There are two independent invariant operators on V®V and V @ V

Three-spin interactions

There are six independent invariant operators on triple tensor products

Advantage

All of them admit a simple geometric interpretation and allow to reinterpret
the spin model as a loop model
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Invariant operators on two sites

Invariant operators on V ® V

y v y vV
I = E = :_51'52+N
‘ {N
V. v
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Invariant operators on three sites

Invariant operatorson YV @ V ® V
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Invariant operators on three sites

Invariant operators on V@ V @ V

y Vv VY y Vv y Vv VY
1% Y% V V V )% 1% % 1%
y Vv y Vv y v VY

Yy vy Vv y V Yy vy Vv
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Relations for the permutation group

Thomas Quella (University of Cologne) ocoMPS for long-range spin models 6/14



Relations for the Temperley-Lieb contractions
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The walled Brauer algebra

The walled Brauer algebra

The walled Brauer algebra WB/(0) is a diagram algebra of directed crossing
strands and arcs with loop fugacity 4. It is generated by permutations Pj;
and Temperley-Lieb contractions Ej;

Schur-Weyl duality

The actions of SU(N) and WB, (V) are mutually centralizing on the physical
Hilbert space H# = V! ® VE=t. There is a multiplicity free decomposition

" = P eow,
A

Thomas Quella (University of Cologne) ocoMPS for long-range spin models



Implementation

Representations of the walled Brauer algebra

Irreps can all be realized as subspaces of diagrams (in the regular rep)

Consequences

@ One can then implement the spin Hamiltonian on the full space of
diagrams. This defines the loop model

@ The spectrum of the spin chain is contained in the spectrum of the
loop model (modulo multiplicities)

e Origin: Additional reps and relations (the walled Brauer algebra is not
always faithfully represented)
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The Gaudin model

Hamiltonian and arrangement

5-5 G
W=D = \.\_,)
l<_] .I.fl...

Quantum integrability

5.5
W= 20
J(F#i)

l

= [Hi,H] = 0

(&)
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The Gaudin model

Hamiltonian and arrangement
oo
HeY 2
zi — zj

i<j

Specific features

@ There is a close relation to the Kac-Wakimoto construction for
representations of affine Lie algebras [Feigin, Frenkel,Reshetikhin]

@ ... and to the geometric Langlands program [Frenkel]
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Quantum spin liquids

p

Kagome lattice Herbertsmithite

Definition of a quantum spin liquid

Spin system with a unique and translation invariant spin singlet ground state

Physical requirements

@ Frustration (many nearly degenerate states)

@ Strong quantum fluctuations
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General tasks and future plans

Micrsoscopic Hamiltonian
Mott insulators

: QOHQB®

: e Tars
) Design Classification @ @ 65 (\VJ\ \9

B

s s

Topological phases of
strongly correlated systems

— Manipulation Y Detection
- : hep-th :
> \i - v
"""" Quantum computation . Entanglement
Quantum simulation \4 spectroscopy
Non-equilibrium physics Dualities & holography
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From null fields to the Hamiltonian

Null fields

Analogy:
. y.lblgzi Representations of SU(2)
Y(z)e=——— @p(z) --- - J
%.X(Z) : . e tetete
: : —— E —t——t—+— J*
nergy oY J

Construction of the null operators P

0 = (¥1(z1) - xi(z) - u(21))
N ]é d;:{,'w (Pe)?p (@1(21) - - [S2(w)ou(24)] - - (1))
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From null fields to the Hamiltonian

Null fields

Analogy:
y°¢1(z) Representations of SU(2)
7/)(2)°<>°1/12(Z) J- J
/n) > @x(2) - e te e e
: : —— E —t——t—+— J*
nergy oY J
Construction of the null operators P

0 = § 4 (P, (va(an) - [Pwhe(z0)] - (2)

= > (Zk o (Y1(z1) - u(2e) -~ i)
k) K
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From null fields to the Hamiltonian

Null fields

Analogy:

W eY(z) - R i f SU(2
J\/ epresentations o (2)
P(z)@=——— @y(z) --- S
TS ex(z) - o eeee
t t t > E —t—t—t> JZ
nergy BRI J

Construction of the operators P;

Projection onto x?(z;)

0 = (v(a)- [jéé’ﬁip P(w)i(a) | -+ va)
i

JFi “

<¢ 21)-Y(z) ) = Pi({z}) (¥(a1)---¥(z))
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