

The Arcetri model(s): exactly solvable spherical model(s) of interface growth

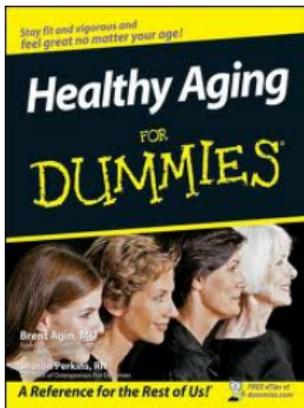
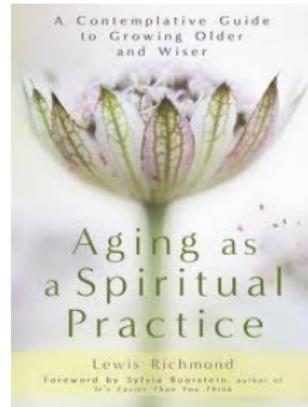
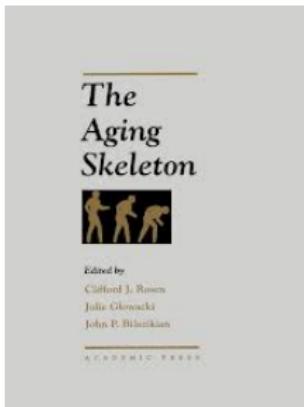
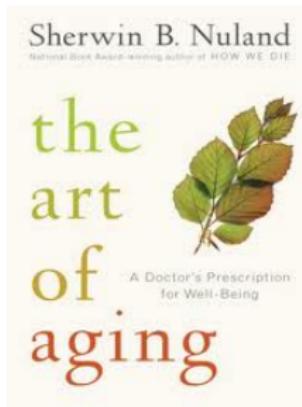
Malte Henkel

Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198)
Université de Lorraine **Nancy**, France

LT-11, Varna, 20th of June 2015

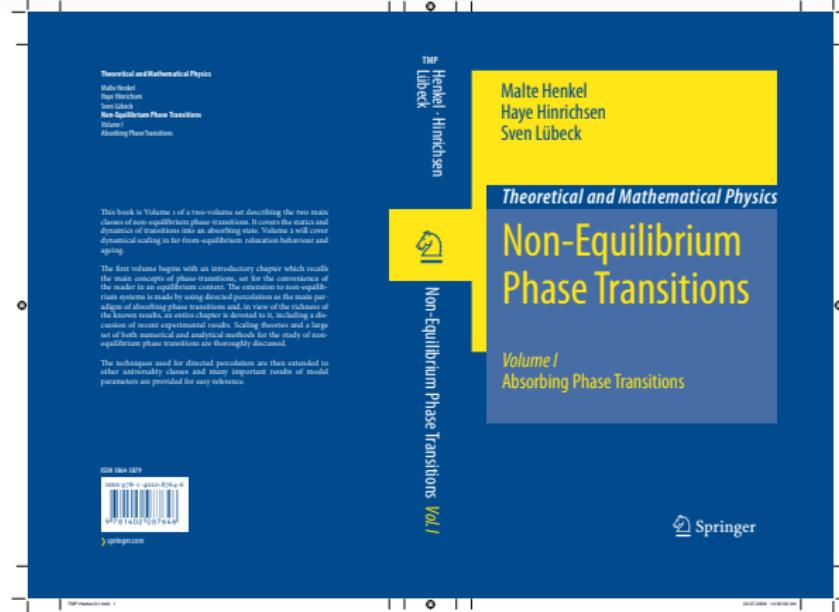
MH & **X. Durang**, J. Stat. Mech. (at press 2015) [arxiv:1501.07745]

Some themes **unrelated** to physical ageing :



... **not** discussed here ...

... but there also exist books on **physical ageing** ...



Vol. 1 : absorbing phase transitions – co-authors **H. Hinrichsen, S. Lübeck** 2009

Vol. 2 : ageing & local scaling – co-author **M. Pleimling**

2010

ISBN : 978-1-4020-8764-6 (vol 1.) & 978-90-481-2868-6 (vol. 2)

Overview :

0. Physical ageing : a reminder
1. Magnets and growing interfaces : analogies
2. Interface growth & KPZ universality class
3. Interface growth and Arcetri models : heuristics
4. First Arcetri model : simple ageing
5. Second Arcetri model : several marginally different length scales
6. Conclusions

0. Physical ageing : a reminder

known & practically used since prehistoric times (metals, glasses)
systematically studied in physics since the 1970s

STRIJK '78

discovery : ageing effects **reproducible** & **universal** !
occur in widely different systems

(structural glasses, spin glasses, polymers, simple magnets, . . .)

Three **defining properties** of **ageing** :

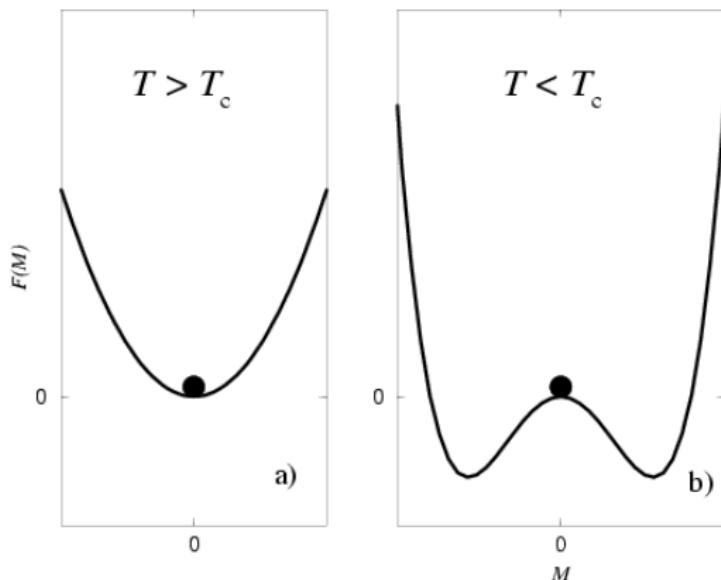
- ① slow relaxation (non-exponential !)
- ② **no** time-translation-invariance (TTI)
- ③ dynamical scaling

without fine-tuning of parameters

Cooperative phenomenon, **far from equilibrium**

Consider a **simple ferromagnet** (no disorder, no 'frustration')

- ➊ prepare system initially at high temperature $T \gg T_c > 0$
- ➋ **quench** to temperature $T < T_c$ (or $T = T_c$)
→ non-equilibrium state
- ➌ fix T and observe dynamics

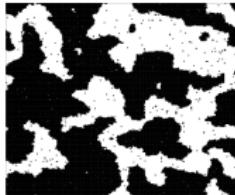


competition :
2 equivalent ground states
rapid local ordering
no global order
relaxation time ∞

$t = t_1$

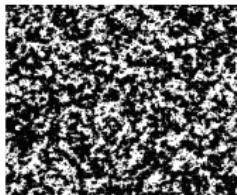
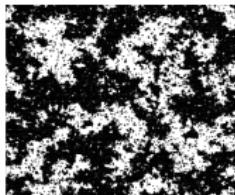


$t = t_2 > t_1$



magnet $T < T_c$

→ ordered cluster



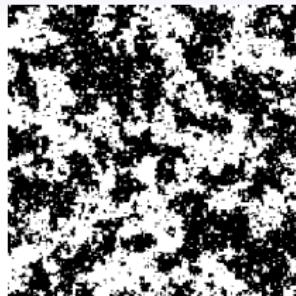
magnet $T = T_c$

→ correlated cluster

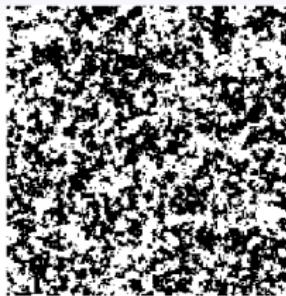
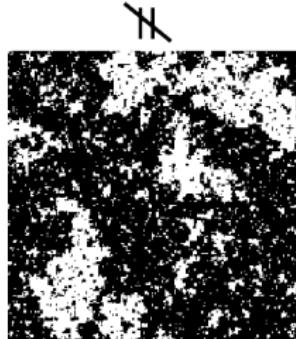
growth of ordered/correlated domains, of typical linear size

$$L(t) \sim t^{1/z}$$

dynamical exponent z : determined by equilibrium state



$$r/L(t_1)$$



$$r/L(t_2)$$

illustration of statistical self-similarity for different times $t_1 < t_2$

Two-time observables for simple magnets

time-dependent magnetisation = **order-parameter** = $\phi(t, \mathbf{r})$

two-time **correlator** $C(t, s) := \langle \phi(t, \mathbf{r}) \phi(s, \mathbf{r}) \rangle - \langle \phi(t, \mathbf{r}) \rangle \langle \phi(s, \mathbf{r}) \rangle$

two-time **response** $R(t, s) := \frac{\delta \langle \phi(t, \mathbf{r}) \rangle}{\delta h(s, \mathbf{r})} \Big|_{h=0} = \langle \phi(t, \mathbf{r}) \tilde{\phi}(s, \mathbf{r}) \rangle$

t : observation time, s : waiting time

a) system **at** equilibrium : **fluctuation-dissipation theorem**

KUBO

$$R(t-s) = \frac{1}{T} \frac{\partial C(t-s)}{\partial s} , \quad T : \text{temperature}$$

b) **far from equilibrium** : C and R **independent** !

The **fluctuation-dissipation ratio** (FDR)

CUGLIANDOLO, KURCHAN, PARISI '94

$$X(t, s) := \frac{TR(t, s)}{\partial C(t, s) / \partial s}$$

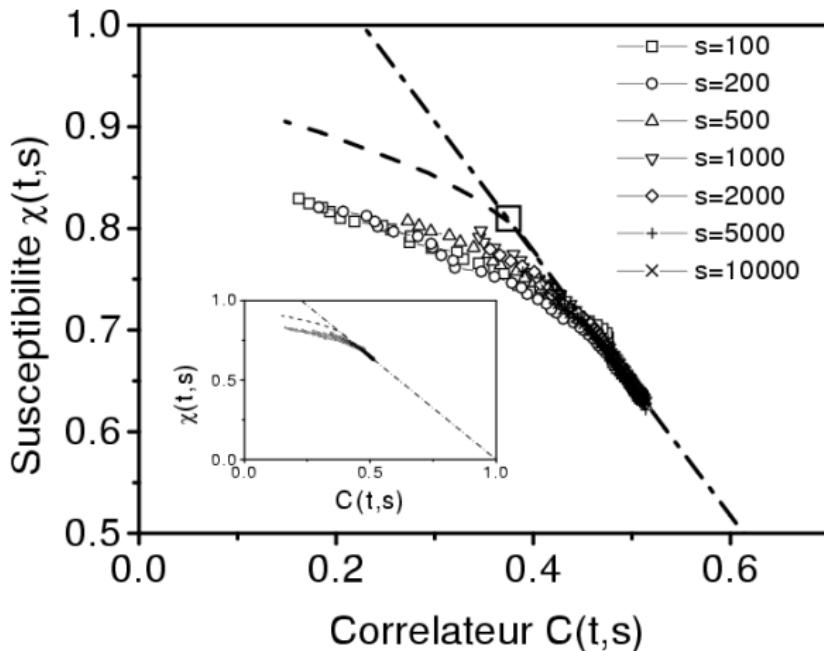
measures the distance with respect to equilibrium :

$$X_{\text{eq}} = X(t-s) = 1$$

Experiment : breaking of the FDT

spin glass $\text{CdCr}_{1.7}\text{In}_{0.3}\text{S}_4$, quenched to $T/T_c = 0.8$

susceptibility $\chi_{\text{ZFC}}(t, s) = \int_s^t du R(t, u)$ over against correlator $C(t, s)$



For quenches to $T \leq T_c$, system **never** reaches equilibrium

Scaling regime : $t, s \gg \tau_{\text{micro}}$ and $t - s \gg \tau_{\text{micro}}$

$$C(t, s) = s^{-b} f_C \left(\frac{t}{s} \right), \quad R(t, s) = s^{-1-a} f_R \left(\frac{t}{s} \right)$$

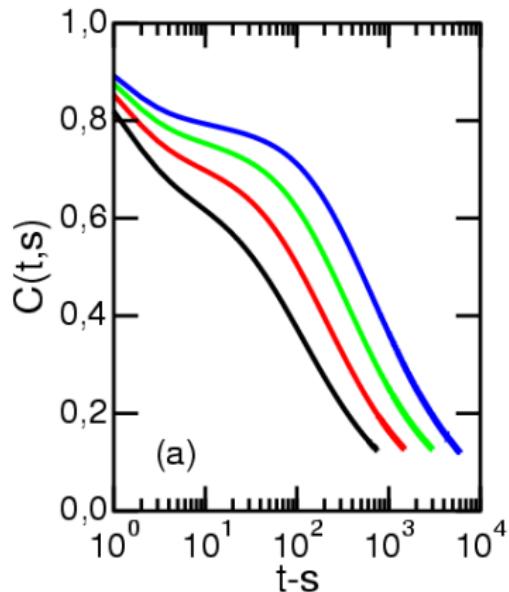
asymptotics : $f_C(y) \sim y^{-\lambda_C/z}$, $f_R(y) \sim y^{-\lambda_R/z}$ for $y \gg 1$

λ_C : autocorrelation exponent, λ_R : autoresponse exponent,
 z : dynamical exponent, a, b : ageing exponents

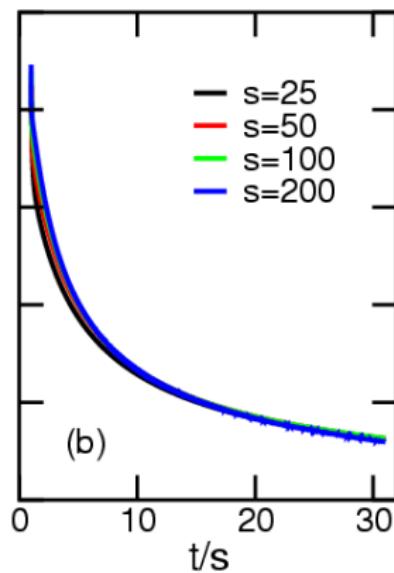
Constat : exponents & scaling functions are **universal**,
i.e. independent of 'fine details'

may use simplified theoretical models to find their values

Dynamical scaling in the ageing 3D Ising model, $T < T_c$



no time-translation invariance

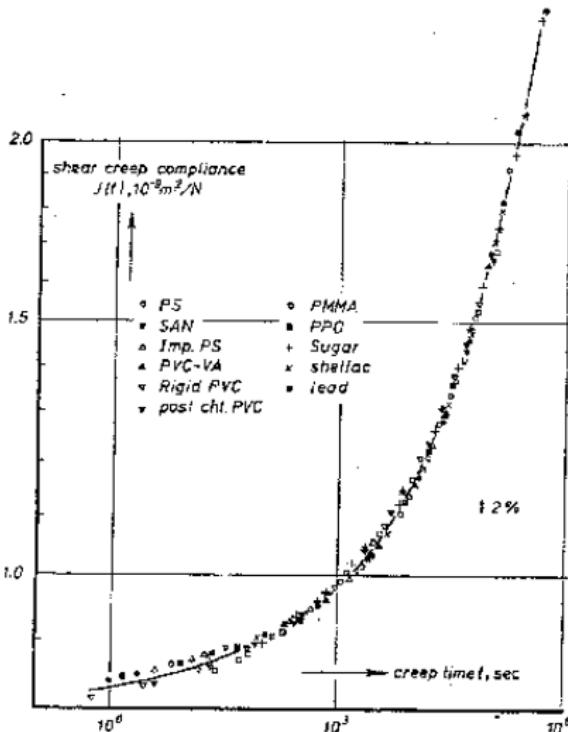


dynamical scaling

$C(t,s)$: autocorrelation function, quenched to $T < T_c$

scaling regime : $t, s \gg \tau_{\text{micro}}$ and $t - s \gg \tau_{\text{micro}}$

data collapse evidence for **dynamical scale-invariance**



Master curves of mechanical response of **distinct** glassy materials are **identical**

independent of 'details'

→ **Universality**!

good for theorists ...

hint for hidden symmetry?

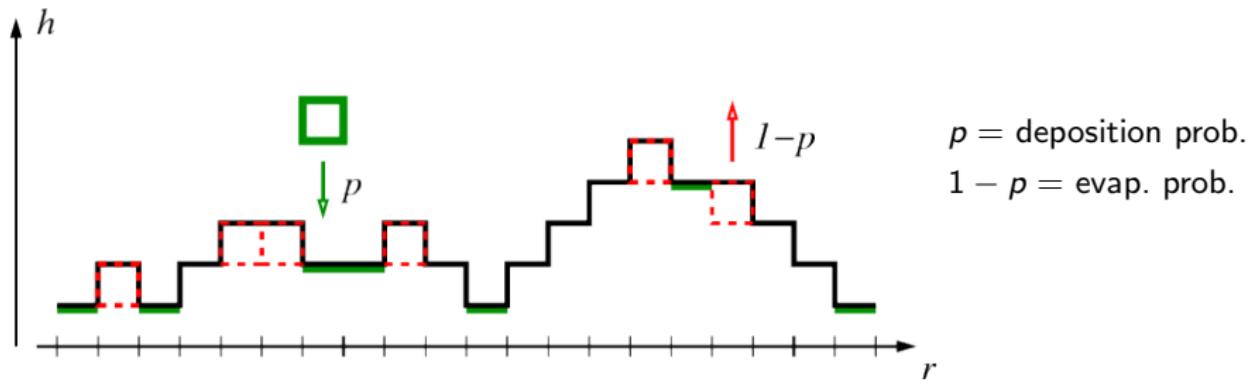
since **universal** : use simplified models to find their form

Interface growth

deposition (evaporation) of particles on a substrate

→ height profile $h(t, r)$

slope profile $\mathbf{u}(t, r) = \nabla h(t, r)$



Questions :

- * average properties of profiles & their fluctuations ?
- * what about their relaxational properties ?
- * are these also examples of physical ageing ?
- ? does dynamical scaling **always** exist ?

1. Magnets and growing interfaces : analogies

Common properties of critical and ageing phenomena :

- * **collective** behaviour,
 - very **large** number of interacting degrees of freedom
- * **algebraic** large-distance and/or large-time behaviour
- * described in terms of **universal** critical **exponents**
- * very **few** relevant scaling operators
- * justifies use of extremely **simplified mathematical models**
 - with a remarkably rich and complex behaviour
- * yet of **experimental significance**

Magnets

thermodynamic equilibrium state

order parameter $\phi(t, \mathbf{r})$

phase transition, at critical temperature T_c

variance :

$$\langle (\phi(t, \mathbf{r}) - \langle \phi(t) \rangle)^2 \rangle \sim t^{-2\beta/(\nu z)}$$

relaxation, after quench to $T \leq T_c$

autocorrelator

$$C(t, s) = \langle \phi(t, \mathbf{r}) \phi(s, \mathbf{r}) \rangle_c$$

Interfaces

growth continues forever

height profile $h(t, \mathbf{r})$

same generic behaviour throughout

roughness :

$$w(t)^2 = \langle (h(t, \mathbf{r}) - \bar{h}(t))^2 \rangle \sim t^{2\beta}$$

relaxation, from initial substrate :

autocorrelator $C(t, s) =$

$$\langle (h(t, \mathbf{r}) - \bar{h}(t)) (h(s, \mathbf{r}) - \bar{h}(s)) \rangle$$

ageing scaling behaviour :

when $t, s \rightarrow \infty$, and $y := t/s > 1$ fixed, expect

$$C(t, s) = s^{-b} f_C(t/s) \quad \text{and} \quad f_C(y) \stackrel{y \rightarrow \infty}{\sim} y^{-\lambda_C/z}$$

b, β, ν and dynamical exponent z : **universal** & related to stationary state

autocorrelation exponent λ_C : **universal** & independent of stationary exponents

Magnets

exponent value $b = \begin{cases} 0 & ; T < T_c \\ 2\beta/\nu z & ; T = T_c \end{cases}$

Interfaces

exponent value $b = -2\beta$

models :

(a) gaussian field

$$\mathcal{H}[\phi] = -\frac{1}{2} \int d\mathbf{r} (\nabla \phi)^2$$

(b) Ising model

$$\mathcal{H}[\phi] = -\frac{1}{2} \int d\mathbf{r} [(\nabla \phi)^2 + \tau \phi^2 + \frac{g}{2} \phi^4]$$

such that $\tau = 0 \leftrightarrow T = T_c$

dynamical Langevin equation (Ising) :

(a) Edwards-Wilkinson (EW) :

$$\partial_t h = \nu \nabla^2 h + \eta$$

(b) Kardar-Parisi-Zhang (KPZ) :

$$\partial_t \phi = -D \frac{\delta \mathcal{H}[\phi]}{\delta \phi} + \eta$$

$$= D \nabla^2 \phi + \tau \phi + g \phi^3 + \eta$$

$$\partial_t h = \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta$$

$\eta(t, \mathbf{r})$ is the usual white noise, $\langle \eta(t, \mathbf{r}) \eta(t', \mathbf{r}') \rangle = 2T\delta(t - t')\delta(\mathbf{r} - \mathbf{r}')$

phase transition exactly solved $d = 2$

relaxation exactly solved $d = 1$

growth exactly solved $d = 1$

CALABRESE & LE DOUSSAL '11

Question : obtain qualitative understanding by approximate treatment of the non-linearity ?

Ising model : yes, certainly ! \Rightarrow spherical model !

BERLIN & KAC 52
LEWIS & WANNIER 52

- (a) for a lattice model : replace Ising spins $\sigma_i = \pm 1 \mapsto S_i \in \mathbb{R}$, with (mean) spherical constraint $\sum_i S_i^2 = \mathcal{N}$
- (b) for continuum field : replace $\phi^3 \mapsto \phi \langle \phi^2 \rangle$ and spherical constraint $\int d\mathbf{r} \langle \phi^2 \rangle \sim 1$.

Interest : analytically solvable for any d and in more general contexts than Ising model, all exponents ... known exactly. Very useful to illustrate general principles in a specific setting. New universality class, distinct from the Ising model ($O(N)$ model with $N \rightarrow \infty$).

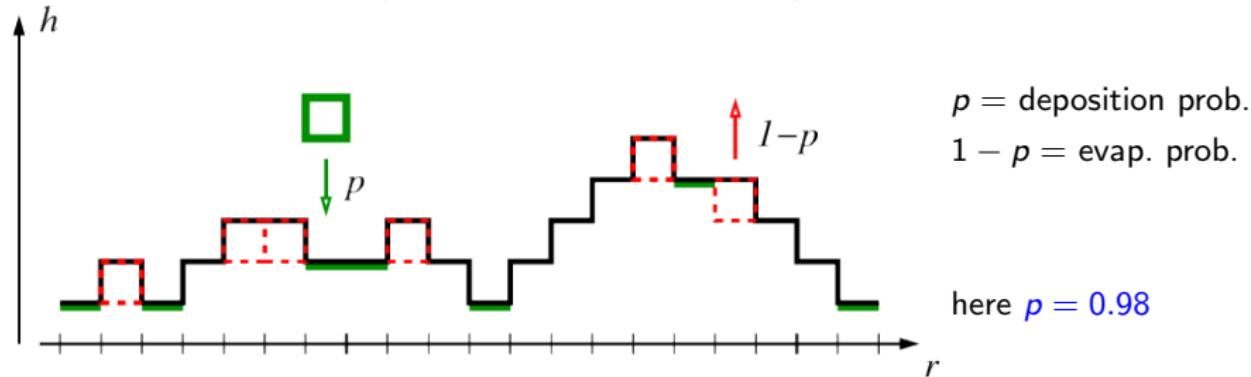
Question : can one find a similar procedure, based on the KPZ equation ?

Are there new universality class(es) for interface growth ?
Behaviour different from the rather trivial EW-equation ?

2. Interface growth & KPZ class

deposition (evaporation) of particles on a substrate \rightarrow height profile $h(t, \mathbf{r})$
generic situation : RSOS (restricted solid-on-solid) model

KIM & KOSTERLITZ 89



some universality classes :

(a) KPZ $\partial_t h = \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta$

KARDAR, PARISI, ZHANG 86

(b) EW $\partial_t h = \nu \nabla^2 h + \eta$

EDWARDS, WILKINSON 82

η is a gaussian white noise with $\langle \eta(t, \mathbf{r}) \eta(t', \mathbf{r}') \rangle = 2\nu T \delta(t - t') \delta(\mathbf{r} - \mathbf{r}')$

Family-Viscek scaling on a spatial lattice of extent L^d : $\bar{h}(t) = L^{-d} \sum_j h_j(t)$

FAMILY & VISCEK 85

$$w^2(t; L) = \frac{1}{L^d} \sum_{j=1}^{L^d} \left\langle (h_j(t) - \bar{h}(t))^2 \right\rangle = L^{2\alpha} f(tL^{-z}) \sim \begin{cases} L^{2\alpha} & ; \text{ if } tL^{-z} \gg 1 \\ t^{2\beta} & ; \text{ if } tL^{-z} \ll 1 \end{cases}$$

β : growth exponent, α : roughness exponent, $\alpha = \beta z$

two-time correlator :

limit $L \rightarrow \infty$

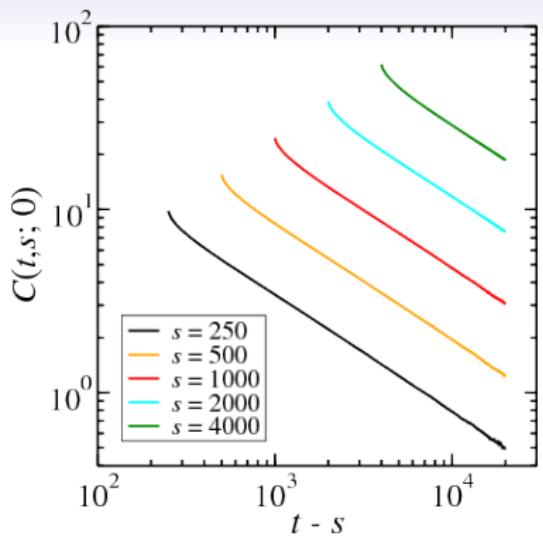
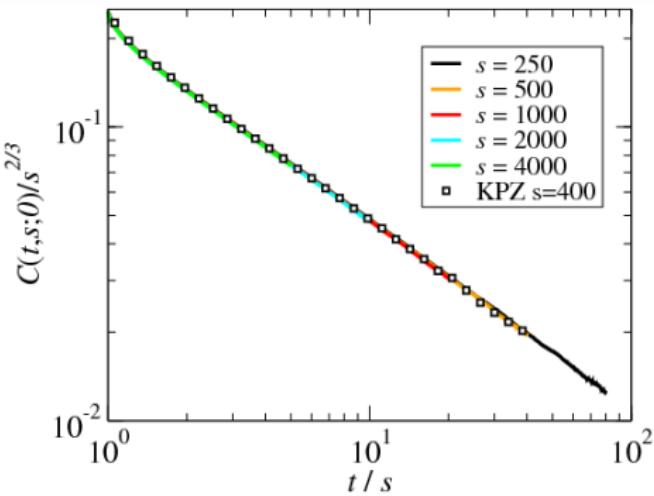
$$C(t, s; \mathbf{r}) = \langle (h(t, \mathbf{r}) - \langle \bar{h}(t) \rangle) (h(s, \mathbf{0}) - \langle \bar{h}(s) \rangle) \rangle = s^{-b} F_C \left(\frac{t}{s}, \frac{\mathbf{r}}{s^{1/z}} \right)$$

with ageing exponent : $b = -2\beta$

KALLABIS & KRUG 96

expect for $y = t/s \gg 1$: $F_C(y, \mathbf{0}) \sim y^{-\lambda_c/z}$ autocorrelation exponent

1D relaxation dynamics, starting from an initially flat interface



observe all **3** properties of **ageing** : $\left\{ \begin{array}{l} \text{slow dynamics} \\ \text{no TTI} \\ \text{dynamical scaling} \end{array} \right.$

confirm **simple ageing** for the **1D** KPZ universality class

confirm expected exponents $b = -2/3$, $\lambda_C/z = 2/3$

pars pro toto

Values of some growth and ageing exponents in 1D

model	z	a	b	$\lambda_R = \lambda_C$	β	α
KPZ	3/2	-1/3	-2/3	1	1/3	1/2
exp 1			$\approx -2/3^\dagger$	$\approx 1^\dagger$	0.336(11)	0.50(5)
exp 2	1.5(2)				0.32(4)	0.50(5)
EW	2	-1/2	-1/2	1	1/4	1/2

liquid crystals
(cancer) cell growth

Takeuchi, Sano, Sasamoto, Spohn 10/11/12

Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12

† scaling holds only for flat interface

Two-time space-time responses and correlators consistent with
 simple ageing for 1D KPZ

Similar results known for EW universality class

3. Interface growth & Arcetri models : heuristics

? KPZ \longrightarrow **intermediate model** \longrightarrow EW ?

preferentially exactly solvable, and this in $d \geq 1$ dimensions

inspiration : mean **spherical model** of a ferromagnet

BERLIN & KAC 52
LEWIS & WANNIER 52

Ising spins $\sigma_i = \pm 1$

obey $\sum_i \sigma_i^2 = \mathcal{N} = \#$ sites

spherical spins $S_i \in \mathbb{R}$

spherical constraint $\langle \sum_i S_i^2 \rangle = \mathcal{N}$

hamiltonian $\mathcal{H} = -J \sum_{(i,j)} S_i S_j - \lambda \sum_i S_i^2$

Lagrange multiplier λ

exponents non-mean-field for $2 < d < 4$ and $T_c > 0$ for $d > 2$

kinetics from Langevin equation

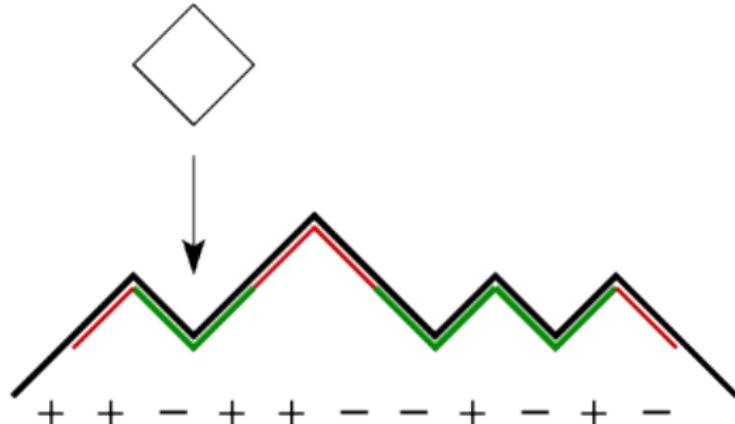
$$\partial_t \phi = -D \frac{\delta \mathcal{H}[\phi]}{\delta \phi} + \mathfrak{z}(t) \phi + \eta$$

time-dependent Lagrange multiplier $\mathfrak{z}(t)$ fixed from spherical constraint
all equilibrium and ageing exponents exactly known, for $T < T_c$ and $T = T_c$

consider **RSOS**-adsorption process :

rigorous : continuum limit gives KPZ

BERTINI & GIACOMIN 97



use **not** the heights $h_n(t) \in \mathbb{N}$ on a discrete lattice,
but rather the **slopes** $u_n(t) = \frac{1}{2} (h_{n+1}(t) - h_{n-1}(t)) = \pm 1$ RSOS

? let $u_n(t) \in \mathbb{R}$, & impose a spherical constraint $\sum_n \langle u_n(t)^2 \rangle \stackrel{!}{=} \mathcal{N}$?

? consequences of the 'hardening' of a soft EW-interface by a 'spherical constraint' on the u_n ?

KPZ equation for height $h(t, r)$: $\partial_t h = \nu \partial_r^2 h + \frac{\mu}{2} (\partial_x h)^2 + \eta$

Burger's equation for slope $u(t, r) = \partial_r h(t, r)$:

$$\partial_t u = \nu \partial_r^2 u + \mu u \partial_r u + \partial_r \eta$$

model A I : $\partial_t u = \nu \partial_r^2 u + \mathfrak{z}(t)u + \partial_r \eta, \quad \int dr \langle u^2 \rangle \sim 1$

$$\mathfrak{z}(t) \sim \langle \langle \partial_r u \rangle \rangle \sim \text{curvature}$$

model A II : $\partial_t u = \nu \partial_r^2 u + \mathfrak{z}(t) \partial_r u + \partial_r \eta, \quad \int dr \langle u^2 \rangle \sim 1$

$$\mathfrak{z}(t) \sim \langle \langle u \rangle \rangle \sim \text{slope}$$

model A III : $\partial_t h = \nu \partial_r^2 h + \mathfrak{z}(t) \partial_r h + \eta, \quad \int dr \langle (\partial_r h)^2 \rangle \sim 1$

$$\mathfrak{z}(t) \sim \langle \langle \partial_r h \rangle \rangle \sim \text{slope}$$

? interface rough or smooth ?

? long-time properties and ageing behaviour ?

? does dynamical scaling resp. simple ageing always hold ?

4. First Arcetri model A1 : simple ageing

slope $u(t, x) = \partial_x h(t, x)$ obeys Burgers' equation,

replace its non-linearity by a mean spherical condition \Rightarrow

$$\begin{aligned}\partial_t u_n(t) &= \nu (u_{n+1}(t) + u_{n-1}(t) - 2u_n(t)) + \mathfrak{z}(t)u_n(t) \\ &\quad + \frac{1}{2} (\eta_{n+1}(t) - \eta_{n-1}(t))\end{aligned}$$

$$\sum_n \langle u_n(t)^2 \rangle = N \quad \langle \eta_n(t) \eta_m(s) \rangle = 2T\nu\delta(t-s)\delta_{n,m}$$

Extension to $d \geq 1$ dimensions :

$\mathfrak{z}(t)$ Lagrange multiplier

define gradient fields $u_a(t, \mathbf{r}) := \nabla_a h(t, \mathbf{r})$, $a = 1, \dots, d$:

$$\partial_t u_a(t, \mathbf{r}) = \nu \nabla_{\mathbf{r}} \cdot \nabla_{\mathbf{r}} u_a(t, \mathbf{r}) + \mathfrak{z}(t)u_a(t, \mathbf{r}) + \nabla_a \eta(t, \mathbf{r})$$

$$\sum_{\mathbf{r}} \sum_{a=1}^d \langle u_a(t, \mathbf{r})^2 \rangle = N^d$$

interface height : $\widehat{u}_a(t, \mathbf{q}) = i \sin q_a \widehat{h}(t, \mathbf{q})$; $\mathbf{q} \neq \mathbf{0}$ in Fourier space

exact solution :

$$\omega(\mathbf{q}) = \sum_{a=1}^d (1 - \cos q_a), \quad \mathbf{q} \neq \mathbf{0}$$

$$\hat{h}(t, \mathbf{q}) = \hat{h}(0, \mathbf{q}) e^{-2t\omega(\mathbf{q})} \sqrt{\frac{1}{g(t)}} + \int_0^t d\tau \hat{\eta}(\tau, \mathbf{q}) \sqrt{\frac{g(\tau)}{g(t)}} e^{-2(t-\tau)\omega(\mathbf{q})}$$

in terms of the auxiliary function $g(t) = \exp\left(-2 \int_0^t d\tau \mathfrak{z}(\tau)\right)$,
which satisfies Volterra equation

$$g(t) = f(t) + 2T \int_0^t d\tau g(\tau) f(t - \tau) , \quad f(t) := d \frac{e^{-4t} I_1(4t)}{4t} (e^{-4t} I_0(4t))^{d-1}$$

* for $d = 1$, identical to 'spherical spin glass', with $T = 2T_{SG}$:

hamiltonian $\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j$; J_{ij} random matrix, its eigenvalues distributed according to Wigner's semi-circle law

CUGLIANDOLO & DEAN 95

a further auxiliary function : $F_r(t) := \prod_{a=1}^d e^{-2t} I_{r_a}(2t)$ I_n : modified Bessel function
for initially uncorrelated heights and initially flat interface

height autocorrelator :

$$C(t, s) = \langle h(t, \mathbf{r}) h(s, \mathbf{r}) \rangle_c = \frac{2F_0(t+s)}{\sqrt{g(t)g(s)}} + \frac{2T}{\sqrt{g(t)g(s)}} \int_0^s d\tau g(\tau) F_0(t+s-2\tau)$$

interface width : $w^2(t) = C(t, t) = \frac{2F_0(2t)}{g(t)} + \frac{2T}{g(t)} \int_0^t d\tau g(\tau) F_0(2t-2\tau)$

slope autocorrelator :

$$A(t, s) = \sum_{a=1}^d \langle u_a(t, \mathbf{r}) u_a(s, \mathbf{r}) \rangle_c = \frac{2f((t+s)/2)}{\sqrt{g(t)g(s)}} + \int_0^s d\tau \frac{2Tg(\tau)}{\sqrt{g(t)g(s)}} f((t+s)/2 - \tau)$$

height response : $R(t, s; \mathbf{r}) = \left. \frac{\delta \langle h(t, \mathbf{r}) \rangle}{\delta j(s, \mathbf{0})} \right|_{j=0} = \Theta(t-s) \sqrt{\frac{g(s)}{g(t)}} F_{\mathbf{r}}(t-s)$

slope autoresponse : $Q(t, s; \mathbf{0}) = \Theta(t-s) \sqrt{\frac{g(s)}{g(t)}} f((t-s)/2)$

* **correspondence of 1D AI model with**

spherical spin glass :

spins $S_i \leftrightarrow$ slopes u_n

spin glass autocorrelator

$$C_{\text{SG}}(t, s) = \frac{1}{N} \sum_{i=1}^N \overline{\langle S_i(t) S_i(s) \rangle} = A(t, s)$$

spin glass response

$$R_{\text{SG}}(t, s) = \left. \sum_{i=1}^N \frac{\delta \overline{\langle S_i(t) \rangle}}{\delta h_i(s)} \right|_{h=0} = 2Q(t, s)$$

* kinetics of heights $h_n(t)$ in model AI driven by phase-ordering of the spherical spin glass $\equiv 3D$ kinetic spherical model

phase transition : long-range correlated surface growth for $T \leq T_c$

$$\frac{1}{T_c(d)} = \frac{d}{2} \int_0^\infty dt e^{-dt} t^{-1} I_1(t) I_0(t)^{d-1} \quad ; \quad T_c(1) = 2, T_c(2) = \frac{\pi}{\pi - 2}$$

Some results : always simple ageing upper critical dimension $d^* = 2$

1. $T = T_c, d < 2$:

rough interface, width $w(t) = t^{(2-d)/4} \implies \beta = \frac{2-d}{4} > 0$

ageing exponents $a = b = \frac{d}{2} - 1, \lambda_R = \lambda_C = \frac{3d}{2} - 1; z = 2$

exponents z, β, a, b same as EW, but exponent $\lambda_C = \lambda_R$ different

2. $T = T_c, d > 2$:

smooth interface, width $w(t) = \text{cste.} \implies \beta = 0$

ageing exponents $a = b = \frac{d}{2} - 1, \lambda_R = \lambda_C = d; z = 2$

same asymptotic exponents as EW, but scaling functions are distinct

3. $T < T_c$:

rough interface, width $w^2(t) = (1 - T/T_c)t \implies \beta = \frac{1}{2}$

ageing exponents $a = \frac{d}{2} - 1, b = -1, \lambda_R = \lambda_C = \frac{d-2}{2}; z = 2$

Summary of results in the A/ model :

Captures at least some qualitative properties of growing interfaces.

- * phenomenology of relaxation analogous to domain growth in simple magnets \Rightarrow **dynamical scaling form of simple ageing**
- * existence of a critical point $T_c(d) > 0$ for all $d > 0$ as a magnet
- * at $T = T_c$, rough interface for $d < 2$, smooth interface for $d > 2$;
upper critical dimension $d^* = 2$
- * at $T = T_c$, $d < 2$, the stationary exponents (β, z) are those of EW,
but the non-stationary ageing exponents are different
explicit example for expectation from field-theory renormalisation
group in domain growth of independent exponents $\lambda_{C,R}$
different from EW and KPZ classes, where $\lambda_C = d$ for all $d < 2$ KRECH 97
- * at $T = T_c$, $d > 2$, **distinct from EW**, although all exponents agree
- * for $d = 1$, equivalent to $p = 2$ spherical spin glass
- * at $T = T_c$ and $2 < d < 4$, same ageing behaviour as at the multicritical
point of the bosonic pair-contact process with diffusion (BPCPD)
- * distinct universality class for $T < T_c$

5. Second Arcetri model AII : several length scales

$d = 1$ only ; work in progress

$$\partial_t u = \nu \partial_r^2 u + \mathfrak{z}(t) \partial_r u + \partial_r \eta, \quad \int dr \langle u^2 \rangle \sim 1$$

requirement : stationary solution should remain roughly flat

but find $\nu u'' + \mathfrak{z} u' = 0 \implies u = u^{(0)} + u^{(1)} e^{-(\mathfrak{z}/\nu)r}$ exponential growth ?

N.B. : equation of motion couples even and odd contributions to slope profile

decompose $u(t, r) = a(t, r) + b(t, r)$

with $a(t, r) = a(t, -r)$ even and $b(t, r) = -b(t, -r)$ odd

gives $\nu a'' + \mathfrak{z} b' = 0$, $\nu b'' + \mathfrak{z} a' = 0 \implies$ exponential growth as $r \rightarrow \pm\infty$?

$$u(t, r) = a(t, r) + b(t, r) \quad \text{with } a \text{ even and } b \text{ odd}$$

construct pair of equations of motion, with an **important modification**

$$\begin{aligned}\partial_t a(t, r) &= \nu \partial_r^2 a(t, r) + \mathfrak{z}(t) \partial_r b(t, r) + \partial_r \eta^-(t, r) \\ \partial_t b(t, r) &= \nu \partial_r^2 b(t, r) - \mathfrak{z}(t) \partial_r a(t, r) - \partial_r \eta^+(t, r) \\ \left\langle \sum_r (a(t, r) + b(t, r))^2 \right\rangle &= \mathcal{N}\end{aligned}$$

with symmetrised noise $\eta^\pm(t, r) = \frac{1}{2} (\eta(t, r) \pm \eta(t, -r))$

These are the defining equations of the model A//

gives $\nu a'' + \mathfrak{z} b' = 0$, $\nu b'' - \mathfrak{z} a' = 0 \implies \nu^2 a''' = -\mathfrak{z}^2 a'$, $\nu^2 b''' = -\mathfrak{z}^2 b'$

\implies profiles remain bounded as $r \rightarrow \pm\infty$!

analogous procedure for third Arcetri model A///

initial condition :

interface flat on average, initial slopes uncorrelated,
spherical constraint respected

work out spherical constraint : let $Z(t) := \int_0^t d\tau \mathfrak{z}(\tau)$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} dk \cosh(2 \sin k Z(t)) e^{-4\nu\omega(k)t}$$

$$+ \frac{\nu T}{\pi} \int_{-\pi}^{\pi} dk \sin^2 k \int_0^t d\tau \cosh(2 \sin k (Z(t) - Z(\tau))) e^{-4\nu\omega(k)(t-\tau)} =$$

concentrate on case $T = 0$: dynamics driven by initial fluctuations

much as in phase-ordering kinetics in simple magnets

spherical constraint : $e^{4\nu t} = I_0(\sqrt{(4\nu t)^2 + (2Z(t))^2})$

asymptotic solution for $t \gg 1$: $Z(t) \simeq (\nu t \ln(\pi\nu t))^{1/2}$

slope response

choose units such that $\nu = 1$

$$\begin{aligned} R_{x,y}(t,s) &= \left\langle \frac{\partial a(t,x)}{\partial j^+(s,y)} \Big|_{j=0} \right\rangle + \left\langle \frac{\partial b(t,x)}{\partial j^-(s,y)} \Big|_{j=0} \right\rangle \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} dk \sin ke^{-2\omega(k)(t-s)} \sinh(\sin k(Z(t) - Z(s))) \cos k(x - y) \end{aligned}$$

slope correlator

$$\begin{aligned} C_{x,y}(t,s) &= \langle a(t,x)a(s,y) + b(t,x)b(s,y) \rangle \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} dk e^{-2\omega(k)(t+s)} \cosh(\sin k(Z(t) + Z(s))) \cos k(x - y) \end{aligned}$$

both can be evaluated as sums of modified Bessel functions

analysis of the long-time scaling behaviour

it turns out that simple ageing is not obeyed !

rather, consider as a scaling variable $\tau := t - s = y s \ln^{-\varsigma} \pi s$

scaling limit $t, s \rightarrow \infty$ with y fixed and $\varsigma > 0$ 'logarithmic sub-ageing'

use $Z(t) \simeq \sqrt{t \ln \pi t}$ for $t \rightarrow \infty$:

slope autocorrelator $C(t, s) = C_{0,0}(t, s)$

$$\begin{aligned} C(t, s) &= \frac{I_0 \left(2(t+s) \sqrt{(1 + (Z(t) + Z(s))^2 / (2(t+s))^2} \right)}{I_0 \left(2(t+s) \sqrt{1 + Z^2((t+s)/2)} \right)} \\ &\simeq \exp \left(-\frac{y^2}{32} \ln^{1-2\varsigma} \pi s \right) \end{aligned}$$

* try simple ageing $\varsigma = 0$: \Rightarrow no data collapse & multiscaling !

* only find dynamical scaling if $\varsigma = \frac{1}{2} > 0$

* same sub-ageing behaviour as in the 2D spherical magnet with conserved order parameter

slope autoresponse $R(t, s) = R_{0,0}(t, s)$

$$R(t, s) \simeq \sqrt{\frac{2}{\pi}} s^{-1} y^{-3/2} \ln^{1+3\zeta/2} \pi s$$

- * looks very similar to simple ageing
- * but **additional logarithmic factor** breaks dynamical scale-invariance

spatial equal-time correlator $C_n(t) = C_{n,0}(t, t)$

$$\begin{aligned} C_n(t) &= \frac{I_n \left(4t \sqrt{1 + Z^2(t)/4t^2} \right) \cos(n \arctan Z(t)/2t)}{I_0 \left(4t \sqrt{1 + Z^2(t)/4t^2} \right)} \\ &\simeq \exp \left(- \left(\frac{n}{\sqrt{8t}} \right)^2 \right) \cos \left(\frac{n}{\sqrt{2t/\ln \pi t}} \right) \end{aligned}$$

- * find **two marginally different length scales**
- * simple scaling ansatz leads to **multiscaling**
- * analogue : spherical magnet at $T = 0$, conserved order-parameter CONIGLIO & ZANNETTI 89
but the **AII model does not have a macroscopic conservation law!**

6. Conclusions

- * long-time dynamics of growing interfaces naturally evolves towards dynamical scaling & ageing
- * phenomenology very similar to ageing phenomena in simple magnets
- * subtleties in the precise scaling forms
- * exactly solvable model with proven sub-ageing, although the A_{II} does not have a macroscopic conservation law !

proving dynamical symmetries can remain a delicate affair !