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Some themes unrelated to physical ageing :

. . .not discussed here . . .



. . . but there also exist books on physical ageing . . .
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This book is Volume 1 of a two-volume set describing the two main 
classes of non-equilibrium phase-transitions. It covers the statics and 
dynamics of transitions into an absorbing state. Volume 2 will cover 
dynamical scaling in far-from-equilibrium  relaxation behaviour and 
ageing. 

The first volume begins with an introductory chapter which recalls 
the main concepts of phase-transitions, set for the convenience of 
the reader in an equilibrium context. The extension to non-equilib-
rium systems is made by using directed percolation as the main par-
adigm of absorbing phase transitions and, in view of the richness of 
the known results, an entire chapter is devoted to it, including a dis-
cussion of recent experimental results. Scaling theories and a large 
set of both numerical and analytical methods for the study of non-
equilibrium phase transitions are thoroughly discussed. 

The techniques used for directed percolation are then extended to 
other universality classes and many important results of model  
parameters are provided for easy reference.
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Overview :

0. Physical ageing : a reminder
1. Magnets and growing interfaces : analogies
2. Interface growth & kpz universality class
3. Interface growth and Arcetri models : heuristics
4. First Arcetri model : simple ageing
5. Second Arcetri model : several marginally different length scales
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0. Physical ageing : a reminder

known & practically used since prehistoric times (metals, glasses)
systematically studied in physics since the 1970s Struik ’78

discovery : ageing effects reproducible & universal !

occur in widely different systems
(structural glasses, spin glasses, polymers, simple magnets, . . . )

Three defining properties of ageing :

1 slow relaxation (non-exponential !)

2 no time-translation-invariance (tti)

3 dynamical scaling without fine-tuning of parameters

Cooperative phenomenon, far from equilibrium



Consider a simple ferromagnet (no disorder, no ‘frustration’)

1 prepare system initially at high temperature T � Tc > 0

2 quench to temperature T < Tc (or T = Tc)
→ non-equilibrium state

3 fix T and observe dynamics

competition :
2 equivalent ground states
rapid local ordering
no global order
relaxation time ∞



t = t1 t = t2 > t1

magnet T < Tc

−→ ordered cluster

magnet T = Tc

−→ correlated cluster

growth of ordered/correlated domains, of typical linear size

L(t) ∼ t1/z

dynamical exponent z : determined by equilibrium state



illustration of statistical self-similarity for different times t1 < t2

Walter ’10



Two-time observables for simple magnets
time-dependent magnetisation = order-parameter = φ(t, r)

two-time correlator C (t, s) := 〈φ(t, r)φ(s, r)〉 − 〈φ(t, r)〉 〈φ(s, r)〉

two-time response R(t, s) :=
δ 〈φ(t, r)〉
δh(s, r)

∣∣∣∣
h=0

=
〈
φ(t, r)φ̃(s, r)

〉
t : observation time, s : waiting time

a) system at equilibrium : fluctuation-dissipation theorem Kubo

R(t − s) =
1

T

∂C (t − s)

∂s
, T : temperature

b) far from equilibrium : C and R independent !

The fluctuation-dissipation ratio (fdr) Cugliandolo, Kurchan, Parisi ’94

X (t, s) :=
TR(t, s)

∂C (t, s)/∂s

measures the distance with respect to equilibrium : Xeq = X (t − s) = 1



Experiment : breaking of the FDT

spin glass CdCr1.7In0.3S4, quenched to T/Tc = 0.8
susceptibility χZFC(t, s) =

∫ t
s du R(t, u) over against correlator C (t, s)

D. Hérisson et M. Ocio, Phys. Rev. Lett. 88, 257202 (2002)



For quenches to T ≤ Tc , system never reaches equilibrium

Scaling regime : t, s � τmicro and t − s � τmicro

C (t, s) = s−bfC

( t
s

)
, R(t, s) = s−1−afR

( t
s

)
asymptotics : fC (y) ∼ y−λC/z , fR(y) ∼ y−λR/z for y � 1

λC : autocorrelation exponent, λR : autoresponse exponent,
z : dynamical exponent, a, b : ageing exponents

Constat : exponents & scaling functions are universal,
i.e. independent of ‘fine details’

may use simplified theoretical models to find their values



Dynamical scaling in the ageing 3D Ising model, T < Tc

no time-translation invariance dynamical scaling

C (t, s) : autocorrelation function, quenched to T < Tc

scaling regime : t, s � τmicro and t − s � τmicro

data collapse evidence for dynamical scale-invariance mh & Pleimling 10



Master curves of
mechanical response of
distinct glassy materials are
identical

independent of ‘details’

−→ Universality !

good for theorists . . .

hint for hidden symmetry ?

Struik 78

since universal : use simplified models to find their form



Interface growth

deposition (evaporation) of particles on a substrate

→ height profile h(t, r) slope profile u(t, r) = ∇h(t, r)

p = deposition prob.

1− p = evap. prob.

Questions :
* average properties of profiles & their fluctuations ?
* what about their relaxational properties ?
* are these also examples of physical ageing ?
? does dynamical scaling always exist ?



1. Magnets and growing interfaces : analogies

Common properties of critical and ageing phenomena :

* collective behaviour,
very large number of interacting degrees of freedom

* algebraic large-distance and/or large-time behaviour
* described in terms of universal critical exponents
* very few relevant scaling operators
* justifies use of extremely simplified mathematical models

with a remarkably rich and complex behaviour

* yet of experimental significance



Magnets
thermodynamic equilibrium state
order parameter φ(t, r)
phase transition, at critical temperature Tc

variance :〈
(φ(t, r)− 〈φ(t)〉)2

〉
∼ t−2β/(νz)

relaxation, after quench to T ≤ Tc

autocorrelator
C (t, s) = 〈φ(t, r)φ(s, r)〉c

Interfaces
growth continues forever
height profile h(t, r)
same generic behaviour throughout

roughness :

w(t)2 = 〈
(
h(t, r)− h(t)

)2〉 ∼ t2β

relaxation, from initial substrate :
autocorrelator C (t, s) =〈(
h(t, r)− h(t)

) (
h(s, r)− h(s)

)〉
ageing scaling behaviour :

when t, s →∞, and y := t/s > 1 fixed, expect

C (t, s) = s−bfC (t/s) and fC (y)
y→∞∼ y−λC/z

b, β, ν and dynamical exponent z : universal & related to stationary state

autocorrelation exponent λC : universal & independent of stationary exponents



Magnets
exponent value b =

{
0 ; T < Tc
2β/νz ; T = Tc

Interfaces
exponent value b = −2β

models :

(a) gaussian field
H[φ] = −1

2

∫
dr (∇φ)2

(b) Ising model
H[φ] = −1

2

∫
dr
[
(∇φ)2 + τφ2 + g

2φ
4
]

such that τ = 0↔ T = Tc

dynamical Langevin equation (Ising) :

∂tφ = −D δH[φ]

δφ
+ η

= D∇2φ+ τφ+ gφ3 + η

(a) Edwards-Wilkinson (ew) :
∂th = ν∇2h + η

(b) Kardar-Parisi-Zhang (kpz) :

∂th = ν∇2h + µ
2 (∇h)2 + η

η(t, r) is the usual white noise, 〈η(t, r)η(t′, r′)〉 = 2Tδ(t − t′)δ(r − r′)

phase transition exactly solved d = 2
relaxation exactly solved d = 1

Onsager ’44, Glauber ’63, . . .

growth exactly solved d = 1
Calabrese & Le Doussal ’11

Sasamoto & Spohn ’10



Question : obtain qualitative understanding by approximate treatment
of the non-linearity ?

Ising model : yes, certainly ! ⇒ spherical model ! Berlin & Kac 52
Lewis & Wannier 52

(a) for a lattice model : replace Ising spins σi = ±1 7→ Si ∈ R,
with (mean) spherical constraint

∑
i S

2
i = N

(b) for continuum field : replace φ3 7→ φ〈φ2〉 and spherical
constraint

∫
dr 〈φ2〉 ∼ 1.

Interest : analytically solvable for any d and in more general contexts
than Ising model, all exponents . . . known exactly. Very useful to
illustrate general principles in a specific setting. New universality
class, distinct from the Ising model (O(N) model with N →∞).

Question : can one find a similar procedure, based on the kpz equation ?

Are there new universality class(es) for interface growth ?
Behaviour different from the rather trivial ew-equation ?



2. Interface growth & kpz class

deposition (evaporation) of particles on a substrate → height profile h(t, r)
generic situation : RSOS (restricted solid-on-solid) model Kim & Kosterlitz 89

p = deposition prob.

1− p = evap. prob.

here p = 0.98

some universality classes :
(a) KPZ ∂th = ν∇2h + µ

2 (∇h)2 + η Kardar, Parisi, Zhang 86

(b) EW ∂th = ν∇2h + η Edwards, Wilkinson 82

η is a gaussian white noise with 〈η(t, r)η(t ′, r′)〉 = 2νT δ(t − t ′)δ(r − r′)



Family-Viscek scaling on a spatial lattice of extent Ld : h(t) = L−d
∑

j hj(t)

Family & Viscek 85

w2(t; L) =
1

Ld

Ld∑
j=1

〈(
hj(t)− h(t)

)2
〉

= L2αf
(
tL−z

)
∼
{

L2α ; if tL−z � 1
t2β ; if tL−z � 1

β : growth exponent, α : roughness exponent, α = βz

two-time correlator : limit L→∞

C (t, s; r) =
〈(
h(t, r)−

〈
h(t)

〉) (
h(s, 0)−

〈
h(s)

〉)〉
= s−bFC

( t
s
,

r

s1/z

)
with ageing exponent : b = −2β Kallabis & Krug 96

expect for y = t/s � 1 : FC (y , 0) ∼ y−λC/z autocorrelation exponent



1D relaxation dynamics, starting from an initially flat interface

observe all 3 properties of ageing :


slow dynamics
no tti
dynamical scaling

confirm simple ageing for the 1D kpz universality class
confirm expected exponents b = −2/3, λC/z = 2/3 pars pro toto

Kallabis & Krug 96 ; Krech 97 ; Bustingorry et al. 07-10 ; Chou & Pleimling 10 ;

D’Aquila & Täuber 11/12 ; mh, Noh, Pleimling 12 . . .



Values of some growth and ageing exponents in 1D

model z a b λR = λC β α

kpz 3/2 −1/3 −2/3 1 1/3 1/2
exp 1 ≈ −2/3† ≈ 1† 0.336(11) 0.50(5)
exp 2 1.5(2) 0.32(4) 0.50(5)

ew 2 −1/2 −1/2 1 1/4 1/2

liquid crystals Takeuchi, Sano, Sasamoto, Spohn 10/11/12

(cancer) cell growth Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12

† scaling holds only for flat interface

Two-time space-time responses and correlators consistent with
simple ageing for 1D kpz

Similar results known for ew universality class
Roethlein, Baumann, Pleimling 06



3. Interface growth & Arcetri models : heuristics

? kpz −→ intermediate model −→ ew ?
preferentially exactly solvable, and this in d ≥ 1 dimensions

inspiration : mean spherical model of a ferromagnet Berlin & Kac 52
Lewis & Wannier 52

Ising spins σi = ±1 obey
∑

i σ
2
i = N = # sites

spherical spins Si ∈ R spherical constraint
〈∑

i S
2
i

〉
= N

hamiltonian H = −J
∑

(i,j) SiSj − λ
∑

i S
2
i Lagrange multiplier λ

exponents non-mean-field for 2 < d < 4 and Tc > 0 for d > 2

kinetics from Langevin equation ∂tφ = −D δH[φ]
δφ + z(t)φ+ η

time-dependent Lagrange multiplier z(t) fixed from spherical constraint
all equilibrium and ageing exponents exactly known, for T < Tc and T = Tc

Ronca 78, Coniglio & Zannetti 89, Godrèche & Luck ’00, Corberi, Lippiello, Fusco, Gonnella & Zannetti 02-14 . . .



consider RSOS-adsorption process :
rigorous : continuum limit gives KPZ Bertini & Giacomin 97

use not the heights hn(t) ∈ N on a discrete lattice,
but rather the slopes un(t) = 1

2 (hn+1(t)− hn−1(t)) = ±1 RSOS

? let un(t) ∈ R, & impose a spherical constraint
∑

n〈un(t)2〉 !
= N ?

? consequences of the ‘hardening’ of a soft ew-interface by a ‘spherical
constraint’ on the un ?



KPZ equation for height h(t, r) : ∂th = ν∂2
r h + µ

2 (∂xh)2 + η
Burger’s equation for slope u(t, r) = ∂rh(t, r) :

∂tu = ν∂2
r u + µu∂ru + ∂rη

model AI : ∂tu = ν∂2
r u + z(t)u + ∂rη,

∫
dr 〈u2〉 ∼ 1

z(t) ∼ 〈〈∂ru〉〉 ∼ curvature

model AII : ∂tu = ν∂2
r u + z(t)∂ru + ∂rη,

∫
dr 〈u2〉 ∼ 1

z(t) ∼ 〈〈u〉〉 ∼ slope

model AIII : ∂th = ν∂2
r h + z(t)∂rh + η,

∫
dr 〈(∂rh)2〉 ∼ 1

z(t) ∼ 〈〈∂rh〉〉 ∼ slope

? interface rough or smooth ?
? long-time properties and ageing behaviour ?
? does dynamical scaling resp. simple ageing always hold ?



4. First Arcetri model AI : simple ageing
slope u(t, x) = ∂xh(t, x) obeys Burgers’ equation,
replace its non-linearity by a mean spherical condition =⇒

∂tun(t) = ν (un+1(t) + un−1(t)− 2un(t)) + z(t)un(t)

+
1

2
(ηn+1(t)− ηn−1(t))∑

n

〈
un(t)2

〉
= N 〈ηn(t)ηm(s)〉 = 2Tνδ(t − s)δn,m

Extension to d ≥ 1 dimensions : z(t) Lagrange multiplier

define gradient fields ua(t, r) := ∇ah(t, r), a = 1, . . . , d :

∂tua(t, r) = ν∇r · ∇rua(t, r) + z(t)ua(t, r) +∇aη(t, r)∑
r

d∑
a=1

〈
ua(t, r)2

〉
= Nd

interface height : ûa(t,q) = i sin qa ĥ(t,q) ; q 6= 0 in Fourier space



exact solution : ω(q) =
∑d

a=1(1− cos qa), q 6= 0

ĥ(t,q) = ĥ(0,q)e−2tω(q)

√
1

g(t)
+

∫ t

0
dτ η̂(τ,q)

√
g(τ)

g(t)
e−2(t−τ)ω(q)

in terms of the auxiliary function g(t) = exp
(
−2
∫ t

0 dτ z(τ)
)

,

which satisfies Volterra equation

g(t) = f (t) + 2T

∫ t

0
dτ g(τ)f (t − τ) , f (t) := d

e−4t I1(4t)

4t

(
e−4t I0(4t)

)d−1

* for d = 1, identical to ‘spherical spin glass’, with T = 2TSG :
hamiltonian H = −1

2

∑
i ,j JijSiSj ; Jij random matrix, its eigenvalues

distributed according to Wigner’s semi-circle law Cugliandolo & Dean 95

a further auxiliary function : Fr(t) :=
∏d

a=1 e
−2t Ira(2t) In : modified Bessel function

for initially uncorrelated heights and initially flat interface



height autocorrelator :
C (t, s) = 〈h(t, r)h(s, r)〉c = 2F0(t+s)√

g(t)g(s)
+ 2T√

g(t)g(s)

∫ s

0
dτ g(τ)F0(t + s − 2τ)

interface width : w2(t) = C (t, t) = 2F0(2t)
g(t) + 2T

g(t)

∫ t

0
dτ g(τ)F0(2t − 2τ)

slope autocorrelator :
A(t, s) =

∑d
a=1 〈ua(t, r)ua(s, r)〉c = 2f ((t+s)/2)√

g(t)g(s)
+
∫ s

0
dτ 2Tg(τ)√

g(t)g(s)
f ((t + s)/2− τ)

height response : R(t, s; r) = δ〈h(t,r)〉
δj(s,0)

∣∣∣
j=0

= Θ(t − s)
√

g(s)
g(t) Fr(t − s)

slope autoresponse : Q(t, s; 0) = Θ(t − s)
√

g(s)
g(t) f ((t − s)/2)

* correspondence of 1D AI model with
spherical spin glass : spins Si ↔ slopes un

spin glass autocorrelator CSG(t, s) = 1
N
∑N

i=1 〈Si (t)Si (s)〉 = A(t, s)

spin glass response RSG(t, s) =
∑N

i=1
δ〈Si (t)〉
δhi (s)

∣∣∣
h=0

= 2Q(t, s)

* kinetics of heights hn(t) in model AI driven by phase-ordering of the
spherical spin glass ≡ 3D kinetic spherical model



phase transition : long-range correlated surface growth for T ≤ Tc

1

Tc(d)
=

d

2

∫ ∞
0

dt e−dtt−1I1(t)I0(t)d−1 ; Tc(1) = 2,Tc(2) =
π

π − 2

Some results : always simple ageing upper critical dimension d∗ = 2
1. T = Tc , d < 2 :

rough interface, width w(t) = t(2−d)/4 =⇒ β = 2−d
4 > 0

ageing exponents a = b = d
2 − 1, λR = λC = 3d

2 − 1 ; z = 2

exponents z , β, a, b same as ew, but exponent λC = λR different

2. T = Tc , d > 2 :
smooth interface, width w(t) = cste. =⇒ β = 0
ageing exponents a = b = d

2 − 1, λR = λC = d ; z = 2

same asymptotic exponents as ew, but scaling functions are distinct

3. T < Tc :
rough interface, width w2(t) = (1− T/Tc)t =⇒ β = 1

2

ageing exponents a = d
2 − 1, b = −1, λR = λC = d−2

2 ; z = 2



Summary of results in the AI model :
Captures at least some qualitative properites of growing interfaces.

* phenomenology of relaxation analogous to domain growth in simple
magnets =⇒ dynamical scaling form of simple ageing

* existence of a critical point Tc(d) > 0 for all d > 0 as a magnet

* at T = Tc , rough interface for d < 2, smooth interface for d > 2 ;
upper critical dimension d∗ = 2

* at T = Tc , d < 2, the stationary exponents (β, z) are those of ew,
but the non-stationary ageing exponents are different

explicit example for expectation from field-theory renormalisation
group in domain growth of independent exponents λC ,R

different from ew and kpz classes, where λC = d for all d < 2 Krech 97

* at T = Tc , d > 2, distinct from ew, although all exponents agree
* for d = 1, equivalent to p = 2 spherical spin glass
* at T = Tc and 2 < d < 4, same ageing behaviour as at the multicritical

point of the bosonic pair-contact process with diffusion (bpcpd)

* distinct universality class for T < Tc



5. Second Arcetri model AII : several length scales

d = 1 only ; work in progress

∂tu = ν∂2
r u + z(t)∂ru + ∂rη,

∫
dr 〈u2〉 ∼ 1

requirement : stationary solution should remain roughly flat

but find νu′′ + zu′ = 0 =⇒ u = u(0) + u(1)e−(z/ν)r exponential growth ?

N.B. : equation of motion couples even and odd contributions to slope profile

decompose u(t, r) = a(t, r) + b(t, r)

with a(t, r) = a(t,−r) even and b(t, r) = −b(t,−r) odd

gives νa′′ + zb′ = 0, νb′′ + za′ = 0 =⇒ exponential growth as r → ±∞ ?



u(t, r) = a(t, r) + b(t, r) with a even and b odd

construct pair of equations of motion, with an important modification

∂ta(t, r) = ν∂2
r a(t, r) + z(t)∂rb(t, r) + ∂rη

−(t, r)

∂tb(t, r) = ν∂2
r b(t, r)− z(t)∂ra(t, r)− ∂rη+(t, r)

〈
∑
r

(a(t, r) + b(t, r))2〉 = N

with symmetrised noise η±(t, r) = 1
2 (η(t, r)± η(t,−r))

These are the defining equations of the model AII

gives νa′′ + zb′ = 0, νb′′−za′ = 0 =⇒ ν2a′′′ = −z2a′, ν2b′′′ = −z2b′

=⇒ profiles remain bounded as r → ±∞ !

analogous procedure for third Arcetri model AIII



initial condition :
interface flat on average, initial slopes uncorrelated,
spherical constraint respected

work out spherical constraint : let Z (t) :=
∫ t

0 dτ z(τ)

1

2π

∫ π

−π
dk cosh(2 sin kZ (t))e−4νω(k)t

+
νT

π

∫ π

−π
dk sin2 k

∫ t

0
dτ cosh(2 sin k(Z (t)− Z (τ)))e−4νω(k)(t−τ) = 1

concentrate on case T = 0 : dynamics driven by initial fluctuations
much as in phase-ordering kinetics in simple magnets

spherical constraint : e4νt = I0(
√

(4νt)2 + (2Z (t))2 )

asymptotic solution for t � 1 : Z (t) ' (νt ln(πνt))1/2



slope response choose units such that ν = 1

Rx ,y (t, s) =

〈
∂a(t, x)

∂j+(s, y)

∣∣∣∣
j=0

〉
+

〈
∂b(t, x)

∂j−(s, y)

∣∣∣∣
j=0

〉

=
1

2π

∫ π

−π
dk sin ke−2ω(k)(t−s) sinh(sin k(Z (t)− Z (s))) cos k(x − y)

slope correlator

Cx ,y (t, s) = 〈a(t, x)a(s, y) + b(t, x)b(s, y)〉

=
1

2π

∫ π

π
dk e−2ω(k)(t+s) cosh(sin k(Z (t) + Z (s))) cos k(x − y)

both can be evaluated as sums of modified Bessel functions



analysis of the long-time scaling behaviour
it turns out that simple ageing is not obeyed !

rather, consider as a scaling variable τ := t − s = ys ln−ς πs

scaling limit t, s →∞ with y fixed and ς > 0 ‘logarithmic sub-ageing’

use Z (t) '
√
t lnπt for t →∞ :

slope autocorrelator C (t, s) = C0,0(t, s)

C (t, s) =
I0
(

2(t + s)
√

(1 + (Z (t) + Z (s))2/(2(t + s))2
)

I0
(

2(t + s)
√

1 + Z 2((t + s)/2)
)

' exp

(
−y2

32
ln1−2ς πs

)
* try simple ageing ς = 0 : =⇒ no data collapse & multiscaling !
* only find dynamical scaling if ς = 1

2 > 0
* same sub-ageing behaviour as in the 2D spherical magnet with

conserved order parameter Berthier 00



slope autoresponse R(t, s) = R0,0(t, s)

R(t, s) '
√

2

π
s−1y−3/2 ln1+3ς/2 πs

* looks very similar to simple ageing
* but additional logarithmic factor breaks dynamical scale-invariance

spatial equal-time correlator Cn(t) = Cn,0(t, t)

Cn(t) =
In
(

4t
√

1 + Z 2(t)/4t2
)

cos (n arctanZ (t)/2t)

I0
(

4t
√

1 + Z 2(t)/4t2
)

' exp

(
−
(

n√
8t

)2
)

cos

(
n√

2t/ lnπt

)
* find two marginally different length scales
* simple scaling ansatz leads to multiscaling
* analogue : spherical magnet at T = 0, conserved order-parameter Coniglio & Zannetti 89

but the AII model does not have a macroscopic conservation law !



6. Conclusions

* long-time dynamics of growing interfaces naturally evolves towards
dynamical scaling & ageing

* phenomenology very similar to ageing phenomena in simple magnets
* subtleties in the precise scaling forms
* exactly solvable model with proven sub-ageing, although the AII does

not have a macroscopic conservation law !

proving dynamical symmetries can remain a delicate affair !


