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Definitions and notations

Hahn polynomial of degree n ∈ {0, 1, . . . , N}

Qn(x ;α, β,N) = 3F2

(−n, n + α+ β + 1, −x
α+ 1, −N ; 1

)
Generalized hypergeometric series:

pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
∞∑

k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!

Pochhammer symbol (a)0 = 1

(a)k = a(a + 1) · · · (a + k − 1)

Three-term recurrence relation and difference equation
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Definitions and notations

Discrete orthogonality relation
N∑

x=0
w(x ;α, β,N)Qn(x ;α, β,N)Qn′(x ;α, β,N) = hn(α, β,N) δn,n′

with α, β > −1 (or < −N)

w(x ;α, β,N) =
(
α+ x

x

)(
N + β − x

N − x

)
(x = 0, 1, . . . ,N)

hn(α, β,N) = (n + α+ β + 1)N+1(β + 1)nn!
(2n + α+ β + 1)(α+ 1)n(N − n + 1)nN!

orthonormal Hahn functions

Q̃n(x ;α, β,N) ≡
√

w(x ;α, β,N) Qn(x ;α, β,N)√
hn(α, β,N)

Roy Oste Algebraic structures Hahn polynomials 2 / 20



Askey-scheme of hypergeometric orthogonal polynomials

(Figure 18.21.1 NIST DLMF)
Roy Oste Algebraic structures Hahn polynomials 3 / 20



Introductory example

Lie algebra su(2) with basis J0, J+, J−

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 J±† = J∓

deformation of su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 + c P J±† = J∓

parameter c and P parity operator

P2 = 1 [P, J0] = 0 {P, J±} = 0 P† = P

∼= Bannai-Ito algebra 1 parameter
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Unitary finite-dimensional irreps

On basis |j ,−j〉, |j ,−j + 1〉, . . ., |j , j〉 with ε = ±1

odd dim, j integer

P|j ,m〉 = ε(−1)j+m |j ,m〉 ĉ = c ε/(2j + 1)
J0|j ,m〉 = (m − ĉ/2) |j ,m〉

J±|j ,m〉 =
{√

(j ∓m ± ĉ)(j ±m + 1) |j ,m ± 1〉 if j + m odd√
(j ∓m)(j ±m + 1∓ ĉ) |j ,m ± 1〉 if j + m even

even dim, j half-integer

P |j ,m〉 = ε(−1)j+m+1 |j ,m〉,
J0 |j ,m〉 = m |j ,m〉

J±|j ,m〉 =
{√

(j ∓m)(j ±m + 1) |j ,m ± 1〉 if j ±m odd√
(j ∓m)(j ±m + 1) + c ε |j ,m ± 1〉 if j ±m even
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Finite oscillator model

Finite-dim represenation of su(2) deformation

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 + c P J±† = J∓

Position, momentum and Hamiltonian operator

q̂ = 1
2(J+ + J−), p̂ = i

2(J+ − J−), Ĥ = J0 + j + ĉ + 1
2

are self-adjoint and satisfy

[Ĥ, q̂] = −i p̂ [Ĥ, p̂] = i q̂ (1 = ~ = m = ω)

On |j ,−j〉, |j ,−j + 1〉, . . ., |j , j〉 the spectrum of Ĥ is linear

n + 1
2 (n = 0, 1, . . . , 2j)
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Matrix form position operator

On |j ,m〉

2q̂ =



0 M0 0 · · · 0
M0 0 M1 · · · 0
0 M1 0 . . .
...

... . . . . . . M2j−1
0 0 M2j−1 0


with

Mk =
{√

(k + 1− ĉ)(2j − k) if k odd√
(k + 1)(2j − k + ĉ) if k even

Eigenvalues of the position operator q̂

−j ,−j + 1, . . . ,−1, 0, 1, 2, . . . , j − 1, j

How?
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Introductory example

Matrix

M =



0 M0
M0 0 M1

M1 0 M2

M2 0 . . .
. . . . . .


with

Mk =
{√

(k + 1 + b)(2j − k) if k odd√
(k + 1)(2j − k + a) if k even

Eigenvalues

±
√

k(k + a + b) for k ∈ {0, . . . , j}

Special case: b = −a
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Introductory example

Eigenvectors
MU = UD

Orthogonal matrix U = (Urs)0≤r ,s≤2j a = 2α+ 1
b = 2β + 1

U2r ,j−s = U2r ,j+1+s = (−1)r
√
2

Q̃s(r ;α, β + 1, j)

U2r+1,j−s = −U2r+1,j+1+s = −(−1)r
√
2

Q̃s(r ;α+ 1, β, j))

Rows alternate Hahn polynomials with different parameters

Q̃n(x ;α, β,N) and Q̃n(x ; α̂, β̂,N)

eigenvectors of two-diagonal matrix with simple eigenvalues
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Classification

Hahn polynomials with different parameters

Q̃n(x) ≡ Q̃n(x ;α, β,N) and Q̂n(x) ≡ Q̃n(x ; α̂, β̂,N)

combined into new set with • two-diagonal Jacobi matrix
• simple eigenvalues

Underlying mechanism: pair of relations

â(x) Q̂n(x − 1) + b̂(x) Q̂n(x) = d(n) Q̃n(x)
a(x) Q̃n(x) + b(x) Q̃n(x + 1) = d̂(n) Q̂n(x)

Key property: coeff LHS no n, RHS no x
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Classification
Hahn I Q̂n(x) ≡ Qn(x ;α+ 1, β + 1,N − 1)

Qn(x)− Qn(x + 1) = n(n + α+ β + 1)
N(α+ 1) Q̂n−1(x)

(N − x − 1)(x + α+ 2)Q̂n−1(x + 1)
−(x + 1)(N − x + β)Q̂n−1(x)

= N(α+ 1)Qn(x + 1)

Hahn II Q̂n(x) ≡ Qn(x ;α, β,N − 1)
(x − β − N)Qn(x)

−(x + α+ 1)Qn(x + 1) = −(N − n)(n + α+ β + N + 1)
N Q̂n(x)

(x + 1)Q̂n(x)− (x − N + 1)Q̂n(x + 1) = NQn(x + 1)

Hahn III Q̂n(x) ≡ Qn(x ;α+ 1, β − 1,N)

−(x − β −N)Qn(x) + (x −N)Qn(x + 1) = (n + α+ 1)(n + β)
(α+ 1) Q̂n(x)

−(x + 1)Q̂n(x) + (x + α+ 2)Q̂n(x + 1) = (α+ 1)Qn(x + 1)
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Algebraic structures

J+ = 2


0 0

M0 0 0
M1 0 . . .

. . . . . .


J− = upper diagonal

J0 = diag(−N, . . . ,N)

P = diag(1,−1, 1,−1, . . .)

These matrices satisfy
[J0, J±] = ±J± P2 = 1 PJ0 = J0P PJ± = −J±P

Hahn I
[J+, J−] = 2J0 + 2(α+ β + 1)J0P − (2N + 1)(α− β)P + (α− β)I
Hahn II
[J+, J−] = −2J0+2(α+β+2N+1)J0P+(2N+1)(α−β)P−(α−β)I
Hahn III
[J+, J−] = 2J0 + 2(α− β)J0P − c(α, β, 2N + 2)P + (α− β)I
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Algebraic structures

J+ = 2


0 0

M0 0 0
M1 0 . . .

. . . . . .


J− = upper diagonal

J0 = diag(−N, . . . ,N)

P = diag(1,−1, 1,−1, . . .)

These matrices satisfy
[J0, J±] = ±J± P2 = 1 PJ0 = J0P PJ± = −J±P

Hahn I
[J+, J−] = 2J0 + 2(α+ β + 1)J0P − (2N + 1)(α− β)P + (α− β)I
Hahn II
[J+, J−] = −2J0+2(α+β+2N+1)J0P+(2N+1)(α−β)P−(α−β)I
Hahn III
[J+, J−] = 2J0 + 2(α− β)J0P − c(α, β, 2N + 2)P + (α− β)I

Roy Oste Algebraic structures Hahn polynomials 12 / 20



Special cases

Representations of deformations su(2)

α = −1
2 = β → reduce to su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 J±† = J∓

α = β → deformation of su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 + c P J±† = J∓

parameter c and P parity operator

P2 = 1 [P, J0] = 0 {P, J±} = 0 P† = P

Roy Oste Algebraic structures Hahn polynomials 13 / 20



Special cases

Representations of deformations su(2)

α = −1
2 = β → reduce to su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 J±† = J∓

α = β → deformation of su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 + c P J±† = J∓

parameter c and P parity operator

P2 = 1 [P, J0] = 0 {P, J±} = 0 P† = P

Roy Oste Algebraic structures Hahn polynomials 13 / 20



Special cases

Representations of deformations su(2)

α = −1
2 = β → reduce to su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 J±† = J∓

α = β → deformation of su(2)

[J0, J±] = ±J± J0
† = J0

[J+, J−] = 2J0 + c P J±† = J∓

parameter c and P parity operator

P2 = 1 [P, J0] = 0 {P, J±} = 0 P† = P

Roy Oste Algebraic structures Hahn polynomials 13 / 20



Finite oscillator model

Position, momentum and Hamiltonian operator

q̂ = 1
2(J+ + J−), p̂ = i

2(J+ − J−), Ĥ = J0 + X

are self-adjoint and satisfy
[Ĥ, q̂] = −i p̂ [Ĥ, p̂] = i q̂ (1 = ~ = m = ω)

Ĥ linear spectrum

n + 1
2 (n = 0, 1, . . . , 2j)

Matrix form position operator

q̂ =



0 M0 0 · · · 0
M0 0 M1 · · · 0
0 M1 0 . . .
...

... . . . . . . M2j−1
0 0 M2j−1 0


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Eigenvalue testmatrices

Sylvester-Kac matrix, the Kac matrix, the Clement matrix, . . .

0 1
N 0 2

N − 1 0 3
. . . . . . . . .

2 0 N
1 0


Tridiagonal

zero diagonal

simple entries

Eigenvalues

−N,−N + 2,−N + 4, . . . , N − 4, N − 2, N
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Eigenvalue testmatrices

N even: Extension with parameter a

0 1 + a
N 0 2

N − 1− a 0 3 + a
. . . . . . . . .

2 0 N
1− a 0


Tridiagonal

zero diagonal

simple entries

Eigenvalues

−N,−N + 2,−N + 4, . . . , N − 4, N − 2, N
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Eigenvalue testmatrices

N even: Extension two parameters

0 1 + a
N 0 2

N − 1 + b 0 3 + a
. . . . . . . . .

3 + b 0 N − 1 + a
2 0 N

1 + b 0



Eigenvalues

0,±
√

(2k)(2k + a + b) for k ∈ {1, . . . ,N/2}

Special case: b = −a
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Eigenvalue testmatrices

N odd: Extension two parameters

0 1 + a
N + b 0 2

N − 1 0 3 + a
. . . . . . . . .

3 + b 0 N − 1
2 0 N + a

1 + b 0



Eigenvalues

±
√

(2k + 1 + a)(2k + 1 + b) for k ∈ {0, . . . , (N − 1)/2}

Special case: b = a
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New polynomials

Let γ > −1, δ > −1, and consider the 2N + 2 polynomials

P2n(q) = (−1)n
√
2

Qn(q2 − γ − 1; γ, δ,N)

P2n+1(q) = −(−1)n
√
2

√
(n + γ + 1)(n + γ + δ + 1)(2n + 2 + γ + δ)

(n + N + γ + δ + 2)(2n + γ + δ + 1)

× 1
(γ + 1)q Qn(q2 − γ − 1; γ + 1, δ,N)

satisfy discrete orthogonality relation∑
q∈S

(
q2 − 1

q2 − γ − 1

)(
N − q2 + γ + δ + 1

N − q2 + γ + 1

)
Pn(q)Pn′(q) = hbn/2c(γ, δ,N)δn,n′

with

S = {−
√

N + γ + 1, . . . ,−
√
γ + 1,

√
γ + 1, . . . ,

√
N + γ + 1}
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New polynomials
Let γ > −1, δ > −1, and consider the 2N + 1 polynomials:

P2n(q) = (−1)n
√
2

Qn(q2; γ, δ,N)

P2n+1(q) = −(−1)n
√
2

√
(n + γ + δ + 1)(2n + γ + δ + 2)

(2n + γ + δ + 1)

×
√

(N − n)(n + γ + 1)
(γ + 1)N q Qn(q2 − 1; γ + 1, δ,N − 1)

satisfy discrete orthogonality relation∑
q∈S

(
q2 + γ

q2

)(
N − q2 + δ

N − q2

)
(1+δq,0)Pn(q)Pn′(q) = hbn/2c(γ, δ,N)δn,n′

with

S = {−
√

N,−
√

N − 1, . . . ,−1, 0, 1, . . . ,
√

N − 1,
√

N}
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Conclusion

Classification

• Hahn

• Dual Hahn

• Racah

Applications

• Algebraic structure for oscillator models

• Eigenvalue testmatrices

• New polynomials

Thank you

Roy Oste Algebraic structures Hahn polynomials 20 / 20


	Introduction
	Definitions and notations
	Introductory example
	Classification

	Applications
	Finite quantum oscillators
	Eigenvalue testmatrices
	``New'' polynomials


