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Definitions and notations

Hahn polynomial of degree n € {0, 1

Qn(x; a, B, N) = 3F> <—n, n+a+pB+1, _x;1>

a+1l, —N

Generalized hypergeometric series:

[ee)
a1, - al (aP)
F
<b1, .., b ) kz% b)k .- (bg)k k!
Pochhammer symbol (a)g =1

(a)k =ala+1)---(a+k—1)

Three-term recurrence relation and difference equation
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Definitions and notations

Discrete orthogonality relation

N

Z W(X;aw@7 N)QH(X;awB7 N)Qn’(X;awB7 N) = hn(a7ﬁ7 N) 5n,n’

x=0

with o, 8 > —1 (or < —N)
W(X;Ox,,@,N):(a—'_X)(N,—\il_f;X) (x=0,1,...,N)

X

(n+a+B+1)ns1(B+1)an!
Cn+a+ B+ 1)(a+1)s(N—n+1),N!

hn(, B, N) =

orthonormal Hahn functions

\/W(X a, B, N) Qn(x; v, B, N)

Qn(x; v, B, N) =

(aﬁ, N)
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Askey-scheme of hypergeometric orthogonal polynomials

[«F@®) Wilson Racah

3F>(3) Continuous Continuous Hahn Hahn Dual Hahn

dual Hahn

A4 Y Y VY A4
2Fi(2) Meixner-Pollaczek Jacobi Meixner Krawtchouk
[ Fu(D, 2Fy(D) Laguerre Charlier
A4 4
[ 2F«(0) Hermite |

(Figure 18.21.1 NIST DLMF)
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Introductory example

Lie algebra su(2) with basis Jy, J4, J—

[Jo, J+] = =4 Jot = Jo
[y, J_] =20 Jit =z
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Introductory example

Lie algebra su(2) with basis Jy, J4, J—

[Jo, J+] = =4 Jot = Jo
[y, J_] =20 Jit =z

deformation of su(2)

[Jo, Jx] = £ Jot = Jo
[Jy,J]=2J +cP Jit = U

parameter ¢ and P parity operator
PP=1 [P,h]=0 {P.Ji}=0 PI=P

2 Bannai-lto algebra 1 parameter
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Unitary finite-dimensional irreps

On basis ’Ja _j>' ‘J: _j+1>' T ’Ja./> with € = £1

odd dim, j integer

Plj, m) = e(=1)Y"™ |, m) &=ce/(2j+1)
Joli; m) = (m—¢/2) |j, m)

Ll m>:{\/(j:Fmié)(jim—i—l)U,mj:l} if j + m odd
’ VOFmMGEm+1F2)|[j,m+1) ifj+ meven

y

even dim, j half-integer

Plj,m) = e(=1Y*m |, m),

JO |J7 m> =m ‘J: m>

Julj,my = VG MG Em+1) Uy m 1) if j + m odd
=hme VOFmMGEm+1)+celjm+1l) ifj+meven

o
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Finite oscillator model

Finite-dim represenation of su(2) deformation

[Jo, J+] = s Jo' = Jo
[Jy,J]=2J +cP Jit =g

Position, momentum and Hamiltonian operator

A 1 . i ~ . c+1
Gg=-(Jr+J), p=-(J+—Jo), H=Jo+j+
2 2 2
are self-adjoint and satisfy
[A,8]=—ip [Apl=ifg (A=h=m=uw)
On |j,—j), ,—j+1), ..., lj,J) the spectrum of A is linear
1 .
n+§ (n=0,1,...,2))
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Matrix form position operator

On |j, m)
0 My O 0
My 0 M 0
2= 0 M; 0
. . M2j—1
0 0 My_1 0
with

_{\/(k+16)(2j—k) if k odd
kD) —k &) if k even

Eigenvalues of the position operator §
_ja_j+17--‘7_1a 07 15 277./_17./

How?
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Introductory example

Matrix
0 My
My 0 M
M — My 0 M,
M, 0
with

" _{\/(k+1+b)(2j—k) if k odd
- V(k+1)(2j — k+2a) if k even

Eigenvalues

+\/k(k+a+b) forke{0,...,j}

Special case: b= —a
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Introductory example

Eigenvectors

MU = UD J
Orthogonal matrix U = (Urs)o<r,s<2j a=2a+1
b=28+1
Usrjs = Unrjirss = L Qu(ri. 54+ 1))
NG , )
Uori1j-s = —Uart1jt14s = S Qs(r;r+1,8,))
/2 ' B

Rows alternate Hahn polynomials with different parameters

Qnx;a, B, N) and  Qu(x; &, 53, N)
eigenvectors of two-diagonal matrix with simple eigenvalues
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Classification

Hahn polynomials with different parameters

Qn(x) = Qu(x;, B,N)  and  Qn(x) = Qu(x; &, 3, N)

combined into new set with e two-diagonal Jacobi matrix
e simple eigenvalues
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Classification

Hahn polynomials with different parameters

Qn(x) = Qu(x;, B,N)  and  Qn(x) = Qu(x; &, 3, N)

combined into new set with e two-diagonal Jacobi matrix
e simple eigenvalues

Underlying mechanism: pair of relations

Key property: coeff LHS no n, RHS no x J
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Classification

Hahn | Qn(x) =Q(x;a+1,86+1,N-1)
Qu(x) = Qulx +1) = BHE2HEED G, ()

(N—x—-1)(x+a+2)Q,1(x+1) _ @ X
—(x+1)(N=x+3)Q, 1(x) Mo @by

v

Hahn I Qn(x) = Qn(x; o, B, N — 1)
(x=B=N)Qu(x) —_ _(N-n)ntatBtN+l)p
—(x+a+1)Qu(x+1) N "
(x +1)Qn(x) = (x = N+ 1)Qn(x + 1) = NQu(x +1) |
Hahn 111 Qn(x) = Qulx; .+ 1,8 —1,N)
—(x = B = N)Qu(x) + (x = N)@n(x+ 1) = LEEXDLED g ()

—(x+DRn(x)+ (x + a+2)Qn(x +1) = (@ +1)Qu(x + 1)
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Algebraic structures

0 O .
Mo 0 0 J_ = upper diagonal
Jp=2 M, 0 Jo = diag(—N, ..., N)

P = diag(1,-1,1,—1,...)

These matrices satisfy

[Jo, Jx] = £+ P>=1 PJo = JoP Py =—J.P
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Algebraic structures

0 O .
Mo 0 0 J_ = upper diagonal
Jp=2 M, 0 Jo = diag(—N, ..., N)

P = diag(1,-1,1,—1,...)

These matrices satisfy

[Jo, Jx] = £+ P>=1 PJo = JoP Py =—J.P

Hahn |

[Ji,J-] =20 +2(a+ B+ 1)JoP — (2N +1)(a— B)P + (o — B)I
Hahn 11

[Jt,J-] = —2h+2(a+LB+2N+1)JpoP+(2N+1)(a—B)P—(a—p)I
Hahn I

[y, )] = 2Jo +2(a — B)JoP — c(ev, B,2N + 2)P + (o — B)!
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Special cases

Representations of deformations su(2)
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Special cases

Representations of deformations su(2)

o= —3% = — reduce to su(2)
[Jo, Jx] = £ S = Jo
[Je, )] =24 Jit = Jr
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Special cases

Representations of deformations su(2)

o= —3% = — reduce to su(2)
[Jo, Ju] = +Js Jof = Jo
[Je, )] =24 Jit = Jr

a = — deformation of su(2)
[Jo, Ju] = £ ST = Jo
[Jp,J]=20 +cP Jpt = Uy
parameter ¢ and P parity operator

PP=1 [P, J]=0 {P,J}=0 Pi=pP
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Finite oscillator model

Position, momentum and Hamiltonian operator
G=3Ui+1),  b=a(h—Jt)  H=h+X
are self-adjoint and satisfy
[A.ql=—ip  [Hpl=ig (1=h=m=uw)
A linear spectrum

1
n+ = (n=0,1,...,2j)

2
Matrix form position operator
0 My O e 0
My 0 M e 0
qg= 0 M; O
SRR Maj_1
0 0 Moj_1 0
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Eigenvalue testmatrices

Sylvester-Kac matrix, the Kac matrix, the Clement matrix, ...

0 1
N 0 2 Tridiagonal
N—-1 0 3
zero diagonal
2. 0. N simple entries
1 0

Eigenvalues

“N,~N+2,~-N+4,...,N—4 N—2, N
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Eigenvalue testmatrices

N even: Extension with parameter a

0 1+a
N 0 2

Tridiagonal
N—-1-a 0 3+a2

zero diagonal

2. 0. N simple entries

Eigenvalues

“N,~N+2,~-N+4,...,N—4 N—2, N
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Eigenvalue testmatrices

N even: Extension two parameters

0
N

1+a
0 2
N—14+b 0 3+4+a

3+b 0 N—-1+a

2

0
1456

N
0

Eigenvalues

0,+/(2k)(2k + a+ b)

for ke {1,...,N/2}

Special case: b= —a
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Eigenvalue testmatrices

N odd: Extension two parameters

0 14+ a
N+b 0 2
N—-1 0 3+a

3+4b 0 N-1
2 0 N+ a
1+b 0

Eigenvalues

+1/(2k +1+3)(2k +1+b) for ke {0,...,(N—1)/2}

Special case: b= a
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New polynomials

Let v > —1, 6 > —1, and consider the 2N + 2 polynomials
—1)n
P2n(q) = (\/5) Qn(q®> —v—1;7,6,N)
p ()__(—1)" (n+~v+1)(n+v+6+1)2n+2+~v+9)
St V2 (n—l—N+7—|—6+2)(2n—|—7+6+1)
1

satisfy discrete orthogonality relation

2-1 N—qg*+vy+6+1
z‘g (qu—v— 1)( Niqzzwr 1 )P,,(q)P,,,(q) = hinj2) (7,0, N)onm
qe

with
S={-VN+~y+1,....,—/v+LVvy+1,...,VyN+~v+1}
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New polynomials

Let v > —1, 6 > —1, and consider the 2N 4+ 1 polynomials:
_1)n
Pan(q) = (\/5) Qn(975 7,6, N)
(=1)" [(n+~v+6+1)2n+~v+5+2)
Pans(9) = —
2n+1\9 \/5 (2n+7+5+1)
VIN—n)(n+7+1) 2
X —1,v+1,0,N—-1
O+ N q @n(q gl )

satisfy discrete orthogonality relation
244\ (N—q¢*+6
Z (q 2 7) ( Ni 2 )(1+6Q,O)Pn(q)Pn’(q) = th/2J ('7757 N)(sn,n’
ges q q
with

S={-VN,-VN-1,...,-1,0,1,...,vV/N = 1,VN}
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Conclusion

Classification

e Hahn
e Dual Hahn
e Racah
Applications
o Algebraic structure for oscillator models
e Eigenvalue testmatrices

e New polynomials

Thank you
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