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1. Introduction
Filiform Lie superalgebras

The definition of filiform Lie superalgebras is well known, a
class of nilpotent Lie superalgebras with important properties.

In particular every filiform Lie superalgebra can be obtained by
a deformation of the model filiform Lie superalgebra L™™.

Is it possible to obtain a similar result for filiform Lie algebras of
order 37
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Lie algebras of order F

@ A classical use of the generalizations of Lie theory is in the
study of symmetries in physics. Nowadays, symmetries
are not limited to the geometrical ones of space-time,
because there are other new ones associated with internal
degrees of freedom of particles and fields.

@ Thus the generalizations of Lie theory that have been
proven to be physically relevant are, among others, color
Lie (super)algebras and Lie algebras of order F.
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A Lie superalgebras
Preliminaries peraig

Lie algebras of order F

Vis Zp—graded V = V5@ V5.
X € V homogeneous of degree o« X € V,,
X € V5 (resp. V5) are also called even (resp. odd).

Definition
A Lie superalgebra (g,[.,.]) g Z>-graded vector space,
g = gy © g7, bracket product [, ] verifying:
® [0, 05] C Barp(mod2) @, B € Zo.
@ [X,Y]=—(-1)*PlY,X] VXEgaVY € gg.
° (_1)’ya[X7 [Y7 Z]]+(_1 )QB[Y7 [Z7 X]]+(_1)BPY[Z7 [X7 ﬂ] =0
XEgOu YEgﬂv ZEQVQ,B,’YEZQ
graded Jacobi identity (Jg(X, Y, 2))
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Preliminaries peraig

Lie algebras of order F

Descending Central Sequence is a sequence defined by

(C*(9)), k e NU {0}
C%g) =g
C'(g) =[9.C""(g)], i€N

g is Nilpotent <> 3m € N: ¢™(g) = {0},c™"(g) # {0}

g is Nilpotent if the descending central sequence is stabilized in
zero.

The smallest integer verifying this condition is called the
Nilindex. ( Nilindex m )
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Lie superalgebras

Preliminaries Lie algebras of order F

Definition

Let F € N*. A Zg-graded C-vector space
g=00Dg1 Dgo--- D gr_qis called a complex Lie algebra of
order F if the following hold:

(1) go is a complex Lie algebra.

(2) Foralli=1,...,F—1, g;is arepresentation of gg. If
X € go, Y € gj, then [X, Y] denotes the action of X € gg on
Yegiforalli=1,..., F—1.

(8) Foralli=1,...,F—1,there exists an F-Linear,
go-equivariant map, {---} : S¥( g;) — go, where S7( g;)
denotes the F-fold symmetric product of g;.

(4) Forall X; € go and Y; € g, the following “Jacobi identities"
hold:
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Preliminaries pera'g

Lie algebras of order F

[[X1, X, X3] + [[X2, X3], X4] + [[Xs, X4], X2] = 0. (1)
[[X1, Xa], Ya] + [[X2, Y3, Xi] + [[ Y3, X1], Xo] = 0. (2)
X Ve YEN = (X, Vale Y o {Yas o [X YD

F+1
Z[ s L YAy ity Yica o ooy YEq J] = 0 4)

We observe that a Lie algebra of order 1 it is just a Lie algebra
and a Lie algebra of order 2 it is a Lie superalgebra. Thus, Lie
algebras of order F can be seen as a generalization of Lie
algebras and superalgebras.
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Lie superalgebras
Lie algebras of order F

Preliminaries

Letg=go® g1 D -+ D gr_1 be a Lie algebra of order F, with
F>1. Foranyi=1,...,F—1, the subspaces gy & g; inherits
the structure of a Lie algebra of order F. We call these type of
algebras elementary Lie algebras of order F.

We will restrict our study to elementary Lie algebras of order 3,
g9 =90 D g1.
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Lie superalgebras

Preliminaries Lie algebras of order F

Definition

Let g = go ® g4 be an elementary Lie algebra of order 3 and let
A= (goNgo)® (g0 Ag1)®S3(gy). Thelinearmap ¢ : A — gis
called an infinitesimal deformation (Gerstenhaber
deformations) of g if it satisfies

potp+pou=0

and

Yo =0

with u representing the law of g.
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Definition

Letg=go® g1 D -+ D gr_q1 be a Lie algebra of order F. g; is
called a gp-filiform module if there exists a decreasing
subsequence of vector subspaces in its underlying vectorial
space V, V=V, D -- D Vi D Vp, with dimensions
m,m—1,...0, respectively, m > 0, and such that

[90, Vis1] = V.
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Letg=go® g1 D -+ D gr_q1 be a Lie algebra of order F. g; is
called a gp-filiform module if there exists a decreasing
subsequence of vector subspaces in its underlying vectorial
space V, V=V, D -- D Vi D Vp, with dimensions
m,m—1,...0, respectively, m > 0, and such that

[90, Vit1] = V..

Letg =go® g1 ®--- D gr_1 be a Lie algebra of order F. Then g
is a filiform Lie algebra of order F if the following conditions

hold:
(1) go is a filiform Lie algebra.
(2) g; has structure of go-filiform module, forall i, 1 <i < F—1
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Theorem

ADAPTED BASIS

Letg = go ® g1 @ go be a Lie algebra of order 3. If g is a filiform
Lie algebra of order 3, then there exists an adapted basis of g,
namely {Xo, ..., Xn, Y1,..., Ym, Z1, ..., Zp} with{Xo, X,...,
Xn} a basis of go, {Y1,...,Ym} abasis of g4 and{Z,..., 2y} a
basis of go, such that:

( [Xo, Xi] = /+1, [Xo, Y] = /+1, (X0, Zk] = Zk+1,
[)(qu] Z Xk7 [XI7 Y] ZD Yk7 [)(IJZ]_Z Zk7
k=1

{)/I'v )/p W} - Z []l;Xka {Zi7Zj’Z/} = Z GijIXk7
k=0

Xo is called the characteristic vector.
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Our Contribution

The model filiform Lie algebra of order 3

[XO7)(i]:)(f+17 1§1§n_1
po: g [Xo, Yl =Y, 1<j<m-—1

[X0, 2kl = Zk1 1<k<p-1
with {Xo, X1, ..., X0, Y1,.... Ym, 24, ..., Zp} a basis of .
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Our Contribution

The model filiform Lie algebra of order 3
[XO7)(i]:)(f+17 1§1§n_1
po: 9 [Xo,Yil= Y1, 1<j<m-1

[X0, 2kl = Zk1 1<k<p-1
with {Xo, X1, ..., X0, Y1,.... Ym, 24, ..., Zp} a basis of .

I

we are going to consider its pre-infinitesimal deformations
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Definition

Let g = go © g1 be an elementary Lie algebra of order 3 and let
A= (goNgo)® (g0 Ag1)DS3(g1). The linearmap ¢ : A — giis
called a pre-infinitesimal deformation of g if it satisfies

po+ipon=0

with n representing the law of g.

Z(uo) = all the pre-infinitesimal deformations of 1 that vanish
on the characteristic vector Xy

Z(no) = Z(po) N Hom(go A go,80) ® Z(0) N Hom(go A g1, 1)
&Z(po) N Hom(S%(g1), 90)
= A®BaC
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Our Contribution

Then, as the vector space of pre-infinitesimal deformations
called Z(uo) is equal to A® B & C we will restrict our study to
each vector subspace. Of all of them, the most important
vector subspace will be C because any pre-infinitesimal
deformation ¢) belonging to C verifies that ¢ o ¢ =0, i.e. ¥
is an infinitesimal deformation. Thus, pg + v will be a filiform
elementary Lie algebra of order 3 with ¢) € C.
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Our Contribution

We have obtained the dimension and a basis of C:
@ for narbitrary and m =3
@ for m =4 and n even.
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Our Contribution Basic Ideas for Proofs

s[(2, C)-module Method

sl(2,C) =< X_, H, X; > with the following commutation
relations:

X, X_]=H, [HX]=2X,, [H.X]=-2X_

Let V be a n-dimensional s((2, C)-module, V =< ey, ..., e, >.
Then, up to isomorphism there exists a unique structure of an
irreducible sl(2,C)-module in V given in a basis ey, ..., e, as
follows:

X+'ej:ej+1, 1§i§n_17

X+ “€n = 07

H-ei=(-n+2i—1)e;, 1<i<n.

en is the maximal vector of V and its weight, called the highest
weight of V, is equal to n — 1.
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s[(2, C)-module Method

Let Vo, V4,..., Vi be sl(2, C)-modules, then the space
Hom(®K_, V;, Vo) is a s[(2, C)-module in the following natural
manner:
i=k
(6'90)()(17"‘7 ) £¢X17”'7 ZSOX17"‘7§'XI')XI'+17"')XH)

i=1

with ¢ € sl(2,C) and ¢ € Hom(®K_, V;, V).
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s[(2, C)-module Method

Let Vo, V4,..., Vi be sl(2, C)-modules, then the space
Hom(®K_, V;, Vo) is a s[(2, C)-module in the following natural
manner:

i=k
(6'90)()(17"‘7 ) £¢X17”'7 ZSOX17"‘7§'XI')XI'+17"')XH)
i=1

with ¢ € sl(2,C) and ¢ € Hom(®K_, Vj, Vp). An element
¢ € Hom(Vy ® Vi ® V4, W) is said to be invariant if X, - ¢ =0,
i.e.

Xi-o(X1, X2, X3)—p(Xi-X1, X2, X3)—( X1, Xy X2, X3) —p(X1, X2, X-X3) = 0
(5)

VX1,X2,X3 S V1.

Note that ¢ € Hom(V; ® Vi ® Vi, V) is invariant if and only if ¢ is a

maximal vector.
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s[(2, C)-module Method

The model filiform elementary Lie algebra of order 3

po = go @ g1 with basis {Xp, Xi,...,Xn, Y1,..., Ym}. It can be
seen that a pre-infinitesimal deformation ¢ belonging to C will
be a symmetric multi-linear map:

¢ :S%(g1) — 90/CXo
such that

[X07 QO(YI? Yj, Yk)] - (p([XO) YI]7 Yja Yk) - 90(Y17 [X07 Yj]7 Yk)_
_QD(YH Y/? [X07 Yk]) =0 (6)

with1 <i<j<k<m
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s[(2, C)-module Method

We are going to consider the structure of irreducible
5[(2,C)-module in Vp =< Xj,..., Xh >=go/CXp and in
Vi =< Yi,..., Yn >= g4, thus in particular:

Xp X=X, 1<i<n—1, Xi-Xp=0,
X+')/j:)/j+1a1§j§m*1a X+Ym:0

We identify the multiplication of X, and X; in the
5[(2,C)-module Vy =< Xj,..., X, >, with the bracket [Xp, Xi] in
go- Analogously, we identify X, - Y; and [Xp, Yj].
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s[(2, C)-module Method

We are going to consider the structure of irreducible
5[(2,C)-module in Vp =< Xj,..., Xh >=go/CXp and in
Vi =< Yi,..., Yn >= g4, thus in particular:

Xp X=X, 1<i<n—1, Xi-Xp=0,
X+')/j:)/j+1a1§j§m*1a X+Ym:0

We identify the multiplication of X, and X; in the
5[(2,C)-module Vy =< Xj,..., X, >, with the bracket [Xp, Xi] in
go- Analogously, we identify X, - Y; and [Xp, Yj].

I

The expressions (5) and (6) are equivalent.
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Our Contribution

s[(2, C)-module Method

Any symmetric multi-linear map ¢, ¢ : S2Vy — V, will be an
element of C if and only if ¢ is a maximal vector of the

5[(2, (C)-mOdUIe Hom(S3 Vy, Vo), with Vo = <X1 gooog Xn> and
Vi=({Y1,..., Ym).

As each irreducible s\(2, C)-module has (up to nonzero scalar
multiples) an unique maximal vector, then the dimension of C is
equal to the number of summands of any decomposition of
Hom(S3®V4, V) into the direct sum of irreducible
s[(2,C)-modules.
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