

About Filiform Lie Algebras of order 3

Navarro, R.M.¹

¹Department of Mathematics
University of Extremadura

XI. International Workshop
LIE THEORY AND ITS APPLICATIONS IN PHYSICS
15-21 June 2015, Varna, Bulgaria

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- Lie superalgebras
- Lie algebras of order F

3 Our Contribution

- Main Results
- Basic Ideas for Proofs

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- Lie superalgebras
- Lie algebras of order F

3 Our Contribution

- Main Results
- Basic Ideas for Proofs

1. Introduction

Filiform Lie superalgebras

The definition of *filiform Lie superalgebras* is well known, a class of nilpotent Lie superalgebras with important properties.

In particular every filiform Lie superalgebra can be obtained by a deformation of the model filiform Lie superalgebra $L^{n,m}$.

Is it possible to obtain a similar result for filiform Lie algebras of order 3?

1. Introduction

Filiform Lie superalgebras

The definition of *filiform Lie superalgebras* is well known, a class of nilpotent Lie superalgebras with important properties.

In particular every filiform Lie superalgebra can be obtained by a deformation of the model filiform Lie superalgebra $L^{n,m}$.

Is it possible to obtain a similar result for filiform Lie algebras of order 3?

1. Introduction

Filiform Lie superalgebras

The definition of *filiform Lie superalgebras* is well known, a class of nilpotent Lie superalgebras with important properties.

In particular every filiform Lie superalgebra can be obtained by a deformation of the model filiform Lie superalgebra $L^{n,m}$.

Is it possible to obtain a similar result for filiform Lie algebras of order 3?

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- Lie superalgebras
- Lie algebras of order F

3 Our Contribution

- Main Results
- Basic Ideas for Proofs

Lie algebras of order F

- A classical use of the generalizations of Lie theory is in the study of symmetries in physics. Nowadays, symmetries are not limited to the geometrical ones of space-time, because there are other new ones associated with internal degrees of freedom of particles and fields.
- Thus the generalizations of Lie theory that have been proven to be physically relevant are, among others, color Lie (super)algebras and **Lie algebras of order F**.

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- **Lie superalgebras**
- Lie algebras of order F

3 Our Contribution

- Main Results
- Basic Ideas for Proofs

V is \mathbb{Z}_2 -graded $V = V_{\bar{0}} \oplus V_{\bar{1}}$.

$X \in V$ homogeneous of degree α $X \in V_\alpha$

$X \in V_{\bar{0}}$ (resp. $V_{\bar{1}}$) are also called even (resp. odd).

Definition

A **Lie superalgebra** $(\mathfrak{g}, [\cdot, \cdot])$ \mathfrak{g} \mathbb{Z}_2 -graded vector space,

$\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$, bracket product $[\cdot, \cdot]$ verifying:

- $[\mathfrak{g}_\alpha, \mathfrak{g}_\beta] \subset \mathfrak{g}_{\alpha+\beta \pmod{2}}$ $\alpha, \beta \in \mathbb{Z}_2$.
- $[X, Y] = -(-1)^{\alpha \cdot \beta} [Y, X]$ $\forall X \in \mathfrak{g}_\alpha, \forall Y \in \mathfrak{g}_\beta$.
- $(-1)^{\gamma \alpha} [X, [Y, Z]] + (-1)^{\alpha \beta} [Y, [Z, X]] + (-1)^{\beta \gamma} [Z, [X, Y]] = 0$
 $X \in \mathfrak{g}_\alpha, Y \in \mathfrak{g}_\beta, Z \in \mathfrak{g}_\gamma \alpha, \beta, \gamma \in \mathbb{Z}_2$

graded Jacobi identity ($J_g(X, Y, Z)$)

Descending Central Sequence is a sequence defined by

$$(\mathcal{C}^k(\mathfrak{g})), k \in \mathbb{N} \cup \{0\}$$

$$\mathcal{C}^0(\mathfrak{g}) = \mathfrak{g}$$

$$\mathcal{C}^i(\mathfrak{g}) = [\mathfrak{g}, \mathcal{C}^{i-1}(\mathfrak{g})], \quad i \in \mathbb{N}$$

\mathfrak{g} is **Nilpotent** $\Leftrightarrow \exists m \in \mathbb{N} : \mathcal{C}^m(\mathfrak{g}) = \{0\}, \mathcal{C}^{m-1}(\mathfrak{g}) \neq \{0\}$

\mathfrak{g} is Nilpotent if the descending central sequence is stabilized in zero.

The smallest integer verifying this condition is called the **Nilindex**. (Nilindex m)

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- Lie superalgebras
- Lie algebras of order F

3 Our Contribution

- Main Results
- Basic Ideas for Proofs

Definition

Let $F \in \mathbb{N}^*$. A \mathbb{Z}_F -graded \mathbb{C} -vector space

$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \cdots \oplus \mathfrak{g}_{F-1}$ is called a complex **Lie algebra of order F** if the following hold:

- (1) \mathfrak{g}_0 is a complex Lie algebra.
- (2) For all $i = 1, \dots, F-1$, \mathfrak{g}_i is a representation of \mathfrak{g}_0 . If $X \in \mathfrak{g}_0$, $Y \in \mathfrak{g}_i$, then $[X, Y]$ denotes the action of $X \in \mathfrak{g}_0$ on $Y \in \mathfrak{g}_i$ for all $i = 1, \dots, F-1$.
- (3) For all $i = 1, \dots, F-1$, there exists an F -Linear, \mathfrak{g}_0 -equivariant map, $\{\dots\} : \mathcal{S}^F(\mathfrak{g}_i) \longrightarrow \mathfrak{g}_0$, where $\mathcal{S}^F(\mathfrak{g}_i)$ denotes the F -fold symmetric product of \mathfrak{g}_i .
- (4) For all $X_i \in \mathfrak{g}_0$ and $Y_j \in \mathfrak{g}_k$, the following “Jacobi identities” hold:

Definition

$$[[X_1, X_2], X_3] + [[X_2, X_3], X_1] + [[X_3, X_1], X_2] = 0. \quad (1)$$

$$[[X_1, X_2], Y_3] + [[X_2, Y_3], X_1] + [[Y_3, X_1], X_2] = 0. \quad (2)$$

$$[X, \{Y_1, \dots, Y_F\}] = \{[X, Y_1], \dots, Y_F\} + \dots + \{Y_1, \dots, [X, Y_F]\}. \quad (3)$$

$$\sum_{j=1}^{F+1} [Y_j, \{Y_1, \dots, Y_{j-1}, Y_{j+1}, \dots, Y_{F+1}\}] = 0. \quad (4)$$

Corollary

We observe that a Lie algebra of order 1 it is just a Lie algebra and a Lie algebra of order 2 it is a Lie superalgebra. Thus, Lie algebras of order F can be seen as a generalization of Lie algebras and superalgebras.

Theorem

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{F-1}$ be a Lie algebra of order F , with $F > 1$. For any $i = 1, \dots, F-1$, the subspaces $\mathfrak{g}_0 \oplus \mathfrak{g}_i$ inherits the structure of a Lie algebra of order F . We call these type of algebras **elementary Lie algebras of order F** .

We will restrict our study to elementary Lie algebras of order 3,
 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

Definition

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be an elementary Lie algebra of order 3 and let $A = (\mathfrak{g}_0 \wedge \mathfrak{g}_0) \oplus (\mathfrak{g}_0 \wedge \mathfrak{g}_1) \oplus S^3(\mathfrak{g}_1)$. The linear map $\psi : A \longrightarrow \mathfrak{g}$ is called an **infinitesimal deformation** (Gerstenhaber deformations) of \mathfrak{g} if it satisfies

$$\mu \circ \psi + \psi \circ \mu = 0$$

and

$$\psi \circ \psi = 0$$

with μ representing the law of \mathfrak{g} .

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- Lie superalgebras
- Lie algebras of order F

3 Our Contribution

- **Main Results**
- Basic Ideas for Proofs

Definition

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{F-1}$ be a Lie algebra of order F . \mathfrak{g}_i is called a **\mathfrak{g}_0 -filiform module** if there exists a decreasing subsequence of vector subspaces in its underlying vectorial space V , $V = V_m \supset \cdots \supset V_1 \supset V_0$, with dimensions $m, m-1, \dots, 0$, respectively, $m > 0$, and such that $[\mathfrak{g}_0, V_{i+1}] = V_i$.

Definition

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{F-1}$ be a Lie algebra of order F . Then \mathfrak{g} is a **filiform Lie algebra of order F** if the following conditions hold:

- (1) \mathfrak{g}_0 is a filiform Lie algebra.
- (2) \mathfrak{g}_i has structure of \mathfrak{g}_0 -filiform module, for all i , $1 \leq i \leq F-1$

Definition

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{F-1}$ be a Lie algebra of order F . \mathfrak{g}_i is called a **\mathfrak{g}_0 -filiform module** if there exists a decreasing subsequence of vector subspaces in its underlying vectorial space V , $V = V_m \supset \cdots \supset V_1 \supset V_0$, with dimensions $m, m-1, \dots, 0$, respectively, $m > 0$, and such that $[\mathfrak{g}_0, V_{i+1}] = V_i$.

Definition

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{F-1}$ be a Lie algebra of order F . Then \mathfrak{g} is a **filiform Lie algebra of order F** if the following conditions hold:

- (1) \mathfrak{g}_0 is a filiform Lie algebra.
- (2) \mathfrak{g}_i has structure of \mathfrak{g}_0 -filiform module, for all i , $1 \leq i \leq F-1$

Theorem

ADAPTED BASIS

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$ be a Lie algebra of order 3. If \mathfrak{g} is a filiform Lie algebra of order 3, then there exists an adapted basis of \mathfrak{g} , namely $\{X_0, \dots, X_n, Y_1, \dots, Y_m, Z_1, \dots, Z_p\}$ with $\{X_0, X_1, \dots, X_n\}$ a basis of \mathfrak{g}_0 , $\{Y_1, \dots, Y_m\}$ a basis of \mathfrak{g}_1 and $\{Z_1, \dots, Z_p\}$ a basis of \mathfrak{g}_2 , such that:

$$\left\{ \begin{array}{l} [X_0, X_i] = X_{i+1}, [X_0, Y_j] = Y_{j+1}, [X_0, Z_k] = Z_{k+1}, \\ [X_i, X_j] = \sum_{k=0}^n C_{ij}^k X_k, [X_i, Y_j] = \sum_{k=1}^m D_{ij}^k Y_k, [X_i, Z_j] = \sum_{k=1}^p E_{ij}^k Z_k, \\ \{Y_i, Y_j, Y_l\} = \sum_{k=0}^n F_{ijl}^k X_k, \{Z_i, Z_j, Z_l\} = \sum_{k=0}^n G_{ijl}^k X_k, \end{array} \right.$$

X_0 is called the characteristic vector.

The model filiform Lie algebra of order 3

$$\mu_0 : \left\{ \begin{array}{l} [X_0, X_i] = X_{i+1}, \quad 1 \leq i \leq n-1 \\ [X_0, Y_j] = Y_{j+1}, \quad 1 \leq j \leq m-1 \\ [X_0, Z_k] = Z_{k+1} \quad 1 \leq k \leq p-1 \end{array} \right.$$

with $\{X_0, X_1, \dots, X_n, Y_1, \dots, Y_m, Z_1, \dots, Z_p\}$ a basis of μ_0 .

we are going to consider its pre-infinitesimal deformations

The model filiform Lie algebra of order 3

$$\mu_0 : \left\{ \begin{array}{l} [X_0, X_i] = X_{i+1}, \quad 1 \leq i \leq n-1 \\ [X_0, Y_j] = Y_{j+1}, \quad 1 \leq j \leq m-1 \\ [X_0, Z_k] = Z_{k+1} \quad 1 \leq k \leq p-1 \end{array} \right.$$

with $\{X_0, X_1, \dots, X_n, Y_1, \dots, Y_m, Z_1, \dots, Z_p\}$ a basis of μ_0 .

we are going to consider its pre-infinitesimal deformations

Definition

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be an elementary Lie algebra of order 3 and let $A = (\mathfrak{g}_0 \wedge \mathfrak{g}_0) \oplus (\mathfrak{g}_0 \wedge \mathfrak{g}_1) \oplus S^3(\mathfrak{g}_1)$. The linear map $\psi : A \longrightarrow \mathfrak{g}$ is called a **pre-infinitesimal deformation** of \mathfrak{g} if it satisfies

$$\mu \circ \psi + \psi \circ \mu = 0$$

with μ representing the law of \mathfrak{g} .

$Z(\mu_0)$ = all the pre-infinitesimal deformations of μ_0 that vanish on the characteristic vector X_0

$$\begin{aligned} Z(\mu_0) &= Z(\mu_0) \cap \text{Hom}(\mathfrak{g}_0 \wedge \mathfrak{g}_0, \mathfrak{g}_0) \oplus Z(\mu_0) \cap \text{Hom}(\mathfrak{g}_0 \wedge \mathfrak{g}_1, \mathfrak{g}_1) \\ &\quad \oplus Z(\mu_0) \cap \text{Hom}(S^3(\mathfrak{g}_1), \mathfrak{g}_0) \\ &:= A \oplus B \oplus C \end{aligned}$$

Then, as the vector space of pre-infinitesimal deformations called $Z(\mu_0)$ is equal to $A \oplus B \oplus C$ we will restrict our study to each vector subspace. Of all of them, **the most important vector subspace will be C because any pre-infinitesimal deformation ψ belonging to C verifies that $\psi \circ \psi = 0$, i.e. ψ is an infinitesimal deformation.** Thus, $\mu_0 + \psi$ will be a filiform elementary Lie algebra of order 3 with $\psi \in C$.

We have obtained the dimension and a basis of C :

- for n arbitrary and $m = 3$
- for $m = 4$ and n even.

Outline

1 Introduction

- Filiform Lie superalgebras
- Lie algebras of order F

2 Preliminaries

- Lie superalgebras
- Lie algebras of order F

3 Our Contribution

- Main Results
- Basic Ideas for Proofs

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

$\mathfrak{sl}(2, \mathbb{C}) = \langle X_-, H, X_+ \rangle$ with the following commutation relations:

$$[X_+, X_-] = H, \quad [H, X_+] = 2X_+, \quad [H, X_-] = -2X_-$$

Let V be a n -dimensional $\mathfrak{sl}(2, \mathbb{C})$ -module, $V = \langle e_1, \dots, e_n \rangle$. Then, up to isomorphism there exists a unique structure of an irreducible $\mathfrak{sl}(2, \mathbb{C})$ -module in V given in a basis e_1, \dots, e_n as follows:

$$\begin{cases} X_+ \cdot e_i = e_{i+1}, & 1 \leq i \leq n-1, \\ X_+ \cdot e_n = 0, \\ H \cdot e_i = (-n+2i-1)e_i, & 1 \leq i \leq n. \end{cases}$$

e_n is the maximal vector of V and its weight, called the highest weight of V , is equal to $n-1$.

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

Let V_0, V_1, \dots, V_k be $\mathfrak{sl}(2, \mathbb{C})$ -modules, then the space $\text{Hom}(\otimes_{i=1}^k V_i, V_0)$ is a $\mathfrak{sl}(2, \mathbb{C})$ -module in the following natural manner:

$$(\xi \cdot \varphi)(x_1, \dots, x_k) = \xi \cdot \varphi(x_1, \dots, x_k) - \sum_{i=1}^{i=k} \varphi(x_1, \dots, \xi \cdot x_i, x_{i+1}, \dots, x_n)$$

with $\xi \in \mathfrak{sl}(2, \mathbb{C})$ and $\varphi \in \text{Hom}(\otimes_{i=1}^k V_i, V_0)$. An element $\varphi \in \text{Hom}(V_1 \otimes V_1 \otimes V_1, V_0)$ is said to be invariant if $X_+ \cdot \varphi = 0$, i.e.

$$X_+ \cdot \varphi(x_1, x_2, x_3) - \varphi(X_+ \cdot x_1, x_2, x_3) - \varphi(x_1, X_+ \cdot x_2, x_3) - \varphi(x_1, x_2, X_+ \cdot x_3) = 0 \quad (5)$$

$\forall x_1, x_2, x_3 \in V_1$.

Note that $\varphi \in \text{Hom}(V_1 \otimes V_1 \otimes V_1, V_0)$ is invariant if and only if φ is a maximal vector.

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

Let V_0, V_1, \dots, V_k be $\mathfrak{sl}(2, \mathbb{C})$ -modules, then the space $\text{Hom}(\otimes_{i=1}^k V_i, V_0)$ is a $\mathfrak{sl}(2, \mathbb{C})$ -module in the following natural manner:

$$(\xi \cdot \varphi)(x_1, \dots, x_k) = \xi \cdot \varphi(x_1, \dots, x_k) - \sum_{i=1}^{i=k} \varphi(x_1, \dots, \xi \cdot x_i, x_{i+1}, \dots, x_n)$$

with $\xi \in \mathfrak{sl}(2, \mathbb{C})$ and $\varphi \in \text{Hom}(\otimes_{i=1}^k V_i, V_0)$. An element $\varphi \in \text{Hom}(V_1 \otimes V_1 \otimes V_1, V_0)$ is said to be invariant if $X_+ \cdot \varphi = 0$, i.e.

$$X_+ \cdot \varphi(x_1, x_2, x_3) - \varphi(X_+ \cdot x_1, x_2, x_3) - \varphi(x_1, X_+ \cdot x_2, x_3) - \varphi(x_1, x_2, X_+ \cdot x_3) = 0 \quad (5)$$

$$\forall x_1, x_2, x_3 \in V_1.$$

Note that $\varphi \in \text{Hom}(V_1 \otimes V_1 \otimes V_1, V_0)$ is invariant if and only if φ is a maximal vector.

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

The model filiform elementary Lie algebra of order 3

$\mu_0 = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with basis $\{X_0, X_1, \dots, X_n, Y_1, \dots, Y_m\}$. It can be seen that a pre-infinitesimal deformation φ belonging to C will be a symmetric multi-linear map:

$$\varphi : S^3(\mathfrak{g}_1) \longrightarrow \mathfrak{g}_0 / \mathbb{C}X_0$$

such that

$$[X_0, \varphi(Y_i, Y_j, Y_k)] - \varphi([X_0, Y_i], Y_j, Y_k) - \varphi(Y_i, [X_0, Y_j], Y_k) - \varphi(Y_i, Y_j, [X_0, Y_k]) = 0 \quad (6)$$

with $1 \leq i \leq j \leq k \leq m$

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

We are going to consider the structure of irreducible $\mathfrak{sl}(2, \mathbb{C})$ -module in $V_0 = \langle X_1, \dots, X_n \rangle = \mathfrak{g}_0 / \mathbb{C}X_0$ and in $V_1 = \langle Y_1, \dots, Y_n \rangle = \mathfrak{g}_1$, thus in particular:

$$\begin{cases} X_+ \cdot X_i = X_{i+1}, & 1 \leq i \leq n-1, \\ X_+ \cdot X_n = 0, \\ X_+ \cdot Y_j = Y_{j+1}, & 1 \leq j \leq m-1, \\ X_+ \cdot Y_m = 0. \end{cases}$$

We identify the multiplication of X_+ and X_i in the $\mathfrak{sl}(2, \mathbb{C})$ -module $V_0 = \langle X_1, \dots, X_n \rangle$, with the bracket $[X_0, X_i]$ in \mathfrak{g}_0 . Analogously, we identify $X_+ \cdot Y_j$ and $[X_0, Y_j]$.

The expressions (5) and (6) are equivalent.

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

We are going to consider the structure of irreducible $\mathfrak{sl}(2, \mathbb{C})$ -module in $V_0 = \langle X_1, \dots, X_n \rangle = \mathfrak{g}_0 / \mathbb{C}X_0$ and in $V_1 = \langle Y_1, \dots, Y_n \rangle = \mathfrak{g}_1$, thus in particular:

$$\begin{cases} X_+ \cdot X_i = X_{i+1}, & 1 \leq i \leq n-1, \\ X_+ \cdot X_n = 0, \\ X_+ \cdot Y_j = Y_{j+1}, & 1 \leq j \leq m-1, \\ X_+ \cdot Y_m = 0. \end{cases}$$

We identify the multiplication of X_+ and X_i in the $\mathfrak{sl}(2, \mathbb{C})$ -module $V_0 = \langle X_1, \dots, X_n \rangle$, with the bracket $[X_0, X_i]$ in \mathfrak{g}_0 . Analogously, we identify $X_+ \cdot Y_j$ and $[X_0, Y_j]$.

The expressions (5) and (6) are equivalent.

$\mathfrak{sl}(2, \mathbb{C})$ -module Method

Lemma

Any symmetric multi-linear map φ , $\varphi : S^3 V_1 \longrightarrow V_0$ will be an element of C if and only if φ is a maximal vector of the $\mathfrak{sl}(2, \mathbb{C})$ -module $\text{Hom}(S^3 V_1, V_0)$, with $V_0 = \langle X_1, \dots, X_n \rangle$ and $V_1 = \langle Y_1, \dots, Y_m \rangle$.

Corollary

As each irreducible $\mathfrak{sl}(2, \mathbb{C})$ -module has (up to nonzero scalar multiples) an unique maximal vector, then the dimension of C is equal to the number of summands of any decomposition of $\text{Hom}(S^3 V_1, V_0)$ into the direct sum of irreducible $\mathfrak{sl}(2, \mathbb{C})$ -modules.

For Further Reading

- M. Bordemann, J.R. Gómez, Yu. Khakimdjanov, R.M. Navarro, *Some deformations of nilpotent Lie superalgebras.* Journal of Geometry and Physics 57 (2007) 1391-1403.
- M. Goze, M. Rausch de Traubenberg and A. Tanasa, *Poincaré and $sl(2)$ algebras of order 3.* J. Math. Phys., 48 (2007), 093507.
- R.M. Navarro, *Filiform Lie algebras of order 3.* J. Math. Phys. 55, 041701 (2014); doi: 10.1063/1.4869747

Acknowledgment

THANK YOU!!