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Importance of the Harmonic Oscilla-
tor

• Caption from Y.S. Kim, M.E. Noz, Workshop on
Branes and Generalized Dynamics (Argonne,
Illinois, USA, October 2003)
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Importance of the Harmonic Oscilla-
tor - 2

• Some years ago Professor P.A.M. Dirac and his wife
Margit came to my home for dinner. Robert and Edie
Dressler stopped by for a while. In the course of our
conversation I remarked that I had read that Einstein
said it would be enough if we could understand the
electron. Dirac replied that it would be enough if
students could understand the harmonic oscillator...

Sylvan Charles Bloch, ’Introduction to Classical
and Quantum Oscillators’, New York:
Wiley-Interscience (1997)
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The algebra su(2) under the CP deformed symmetry

The algebra su(2)CP is a unital algebra with basis
elements J0, J+, J−, C and P subject to the following
relations:

• The operator C commutes with all basis elements.
• P is a parity operator satisfying P2 = 1 and

[P , J0] = PJ0−J0P = 0, {P , J±} = PJ±+J±P = 0.

• The su(2) commutation relations are CP deformed:

[J0, J±] = ±J±,

[J+, J−] = 2J0 (CP − 1) .
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Actions of the basis elements J0, J+

and J−

J0|j,m〉 = m |j,m〉,

J+|j,m〉 =

{
√

(j −m)(j −m− 1) |j,m+ 1〉, j +m even;
√

(j +m)(j +m+ 1) |j,m+ 1〉, j +m odd,

J−|j,m〉 =

{
√

(j +m)(j +m− 1) |j,m− 1〉, j +m even;
√

(j −m)(j −m+ 1) |j,m− 1〉, j +m odd.
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Actions of the operators C and P

C|j,m〉 = 2j |j,m〉,

P|j,m〉 = (−1)j+m |j,m〉.

• Note that j must be integer in order to be a
representation;

• Then, J+|j, j〉 = 0 and J−|j,−j〉 = 0
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A one-dimensional oscillator model
based on the algebra su(2)CP

Ĥ = J0 + j +
1

2
, q̂ =

1

2
(J+ + J−), p̂ =

i

2
(J+ − J−).

They satisfy the Heisenberg equations:
[

Ĥ, q̂
]

= −ip̂,
[

Ĥ, p̂
]

= iq̂.

Then Ĥ|j,m〉 = (m+ j + 1
2)|j,m〉.

Energy spectrum En = n+ 1
2 (n = 0, 1, . . . , 2j).
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Krawtchouk polynomials

Kn (x; p,N) = 2F1

(

−n,−x

−N
;
1

p

)

.

Orthogonality holds for discrete values of x:
∑N

x=0w (x,N)Kn (x; p,N)Kn′ (x; p,N) = h (n,N) δn,n′ ,

w (x,N) =
(

N
x

)

px(1− p)x (x = 0, 1, . . . , N),

h (n,N) =
(−1)nn!
(−N)

n

(

1−p
p

)n

.

Here, (a)k = a(a+ 1) · · · (a+ k − 1) are Pochhammer
symbols.
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The symmetric Krawtchouk polyno-
mials - difference equations

j (2j − 1)Kj+n

(

2 (x+ 1) ; 12 , 2j
)

= − (x+ 1) (2x+ 1)Kj+n−1

(

2x; 12 , 2 (j − 1)
)

+(j − x− 1) (2j − 2x− 3)Kj+n−1

(

2 (x+ 1) ; 12 , 2 (j − 1)
)

;

2 (j + n) (j − n)Kj+n−1

(

2x; 12 , 2 (j − 1)
)

= j (2j − 1)Kj+n

(

2x; 12 , 2j
)

−j (2j − 1)Kj+n

(

2 (x+ 1) ; 12 , 2j
)

.
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Position wavefunctions

Even case j +m = 2n and positive values of position:

Ψ2n(qk) = (−1)n2k−jK̃2n(k;
1
2 , 2j), n = 0, 1, . . . , j, k = 1, . . . , j − 1,

Odd case j+m = 2n+1 and positive values of position:

Ψ2n+1(qk) = (−1)n2k−jK̃2n(k − 1; 12 , 2j − 2).

One can extend these computations and obtain similar
expressions for zero and negative values of the
positions.
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Position wavefunctions - 2
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Eigenvalues of the position operator q̂

Spectrum of the position operator for j = 5, (a) in the case
of the su(2) model, (b) in the case of the sl(2|1) model and
(c) in the case of the su(2)CP model.

q±(j−k) = ±
√

(j − k) (j + k), k = 0, 1, 2, . . . , j.
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Generalization of the position eigen-
values

We suppose the following generalization:

q±(j−k) = ±
√

(j − k) (j + k + α + β + 1),

k = 0, 1, 2, . . . , j.

α > −1, β > −1

There exists certain general algebra.
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Generalization of the algebra su(2)CP

Basis elements J0, J+, J−, C and P of the new algebra
are subject to the following relations:

• The operator C commutes with all basis elements.
• P is a parity operator satisfying P2 = 1 and

[P , J0] = PJ0−J0P = 0, {P , J±} = PJ±+J±P = 0.

• The su(2) commutation relations are deformed by
the following manner:

[J0, J±] = ±J±,

[J+, J−] = 2J0 [CP + (α + β)P − 1] + (CP − 1) (α− β) .
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Generalized actions of J0, J+, J− and C

J0|j,m〉 = m |j,m〉,

J+|j,m〉 =

{
√

(j −m)(j −m+ 2β) |j,m+ 1〉, j +m even;
√

(j +m+ 2α + 1)(j +m+ 1) |j,m+ 1〉, j +m odd,

J−|j,m〉 =

{
√

(j +m)(j +m+ 2α) |j,m− 1〉, j +m even;
√

(j −m+ 2β + 1)(j −m+ 1) |j,m− 1〉, j +m odd.

C|j,m〉 = (2j + 1) |j,m〉
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Special case

Special case holds, when α = β and commutation
relations become simpler:

[J+, J−] = 2J0 (CP + 2αP − 1)

Realization is possible in terms of the Hahn
polynomials by using the following difference euqtions
for them!
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Hahn polynomials - difference equa-
tions

j ·Qk (n;α, β, j) = n ·Qk (n− 1;α, β, j − 1)

+ (j − n)Qk (n;α, β, j − 1) ,

(j−k)(j+k+α+β+1)
j

Qk (n;α, β, j − 1)

= (j + β − n)Qk (n;α, β, j) + (n+ α + 1)Qk (n+ 1;α, β, j) .
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Properties

• Finite-discrete analogue of the Fourier transform;
• Possible limits of the model
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Thank you for attention!
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