

A class of infinite-dimensional representations of the Lie superalgebra $\mathfrak{osp}(2m+1|2n)$ and the parastatistics Fock space

Joris Van der Jeugt
Ghent University, Belgium
Joris.VanderJeugt@UGent.be

Varna, June 2015

Work in collaboration with N.I. Stoilova.

Overview

1 Introduction: parabosons and parafermions

- Ancient history
- Old history
- Recent history

2 Parastatistics algebra $\mathfrak{osp}(2m+1|2n)$

- The LSA $\mathfrak{osp}(2m+1|2n)$
- Subalgebras of $\mathfrak{osp}(2m+1|2n)$
- Induced module construction
- Basis of $\overline{V}(p)$
- GZ-basis for $\mathfrak{u}(m|n)$
- Action of para-operators on this basis
- Structure of $V(p)$
- Character of $V(p)$

3 Outlook

Bosons and Fermions

Commutator: $[A, B] = AB - BA$

Anti-commutator: $\{A, B\} = AB + BA$

Graded: $\llbracket A, B \rrbracket = AB - (-1)^{\langle A \rangle \langle B \rangle} BA \quad (\langle A \rangle = \deg(A) \in \{0, 1\})$

- n pairs of Bose operators B_i^\pm :

$$[B_i^-, B_j^+] = \delta_{ij} \quad \text{all other } [\cdot, \cdot] \text{ zero}$$

- Fock space characterized by $(B_i^\pm)^\dagger = B_i^\mp$ and $B_i^- |0\rangle = 0$
- Basis vectors (orthogonal, normalized):

$$|k_1, \dots, k_n\rangle = \frac{(B_1^+)^{k_1} \cdots (B_n^+)^{k_n}}{\sqrt{k_1! \cdots k_n!}} |0\rangle$$

Bosons and Fermions

Commutator: $[A, B] = AB - BA$

Anti-commutator: $\{A, B\} = AB + BA$

Graded: $\llbracket A, B \rrbracket = AB - (-1)^{\langle A \rangle \langle B \rangle} BA$ ($\langle A \rangle = \deg(A) \in \{0, 1\}$)

- n pairs of **Bose operators** B_i^\pm :

$$[B_i^-, B_j^+] = \delta_{ij} \quad \text{all other } [\cdot, \cdot] \text{ zero}$$

- Fock space characterized by $(B_i^\pm)^\dagger = B_i^\mp$ and $B_i^-|0\rangle = 0$
- Basis vectors (orthogonal, normalized):

$$|k_1, \dots, k_n\rangle = \frac{(B_1^+)^{k_1} \cdots (B_n^+)^{k_n}}{\sqrt{k_1! \cdots k_n!}} |0\rangle$$

- m pairs of **Fermi operators** F_i^\pm :

$$\{F_i^-, F_j^+\} = \delta_{ij} \quad \text{all other } \{\cdot, \cdot\} \text{ zero}$$

- Fock space characterized by $(F_i^\pm)^\dagger = F_i^\mp$ and $F_i^-|0\rangle = 0$

Parabosons and parafermions

- n pairs of **parabosons** b_j^\pm ($j = 1, \dots, n$) [Green 1953]:

$$[\{b_j^\xi, b_k^\eta\}, b_l^\epsilon] = (\epsilon - \eta) \delta_{kl} b_j^\xi + (\epsilon - \xi) \delta_{jl} b_k^\eta$$

- Fock space $V(p)$ characterized by $(b_j^\pm)^\dagger = b_j^\mp$ and $b_j^- |0\rangle = 0$ and [Greenberg & Messiah 1965]

$$\{b_j^-, b_k^+\} |0\rangle = \textcolor{red}{p} \delta_{jk} |0\rangle$$

Parabosons and parafermions

- n pairs of **parabosons** b_j^\pm ($j = 1, \dots, n$) [Green 1953]:

$$[\{b_j^\xi, b_k^\eta\}, b_l^\epsilon] = (\epsilon - \eta) \delta_{kl} b_j^\xi + (\epsilon - \xi) \delta_{jl} b_k^\eta$$

- Fock space $V(p)$ characterized by $(b_j^\pm)^\dagger = b_j^\mp$ and $b_j^- |0\rangle = 0$ and [Greenberg & Messiah 1965]

$$\{b_j^-, b_k^+\} |0\rangle = \textcolor{red}{p} \delta_{jk} |0\rangle$$

- m pairs of **parafermion** f_j^\pm ($j = 1, \dots, m$) [Green 1953]:

$$[[f_j^\xi, f_k^\eta], f_l^\epsilon] = |\epsilon - \eta| \delta_{kl} f_j^\xi - |\epsilon - \xi| \delta_{jl} f_k^\eta$$

- Fock space $W(p)$ characterized by $(f_j^\pm)^\dagger = f_j^\mp$ and $f_j^- |0\rangle = 0$ and [Greenberg & Messiah 1965]

$$[f_j^-, f_k^+] |0\rangle = \textcolor{blue}{p} \delta_{jk} |0\rangle$$

Paraboson and parafermion algebra

Theorem (LA by generators and relations) [Kamefuchi & Takahishi 1962; Ryan & Sudarshan 1963]

The Lie algebra (LA) generated by $2m$ elements f_j^\pm subject to the parafermion triple relations is $\mathfrak{so}(2m+1)$. The Fock space $W(p)$ is the unitary irreducible representation of $\mathfrak{so}(2m+1)$ with lowest weight $(-\frac{p}{2}, -\frac{p}{2}, \dots, -\frac{p}{2})$.

Paraboson and parafermion algebra

Theorem (LA by generators and relations) [Kamefuchi & Takahishi 1962; Ryan & Sudarshan 1963]

The Lie algebra (LA) generated by $2m$ elements f_j^\pm subject to the parafermion triple relations is $\mathfrak{so}(2m+1)$. The Fock space $W(p)$ is the unitary irreducible representation of $\mathfrak{so}(2m+1)$ with lowest weight $(-\frac{p}{2}, -\frac{p}{2}, \dots, -\frac{p}{2})$.

Theorem (LSA by generators and relations) [Ganchev & Palev 1980]

The Lie superalgebra (LSA) generated by $2n$ odd elements b_j^\pm subject to the paraboson triple relations is $\mathfrak{osp}(1|2n)$. The Fock space $V(p)$ is the unitary irreducible representation of $\mathfrak{osp}(1|2n)$ with lowest weight $(\frac{p}{2}, \frac{p}{2}, \dots, \frac{p}{2})$.

Parastatistics, parastatistics algebra

Simultaneous system: can be combined in 4 ways [Greenberg, Messiah]. The most interesting case: *relative para-fermi*.

With $c_j = f_j$ ($1 \leq j \leq m$) and $c_{m+j} = b_j$ ($1 \leq j \leq n$):
parastatistics relations.

$$\begin{aligned} \llbracket \llbracket c_j^+, c_k^- \rrbracket, c_l^+ \rrbracket &= 2\delta_{kl}c_j^+, & \llbracket \llbracket c_j^+, c_k^+ \rrbracket, c_l^+ \rrbracket &= 0 \\ \llbracket c_j^-, \llbracket c_k^+, c_l^- \rrbracket \rrbracket &= 2\delta_{jk}c_l^-, & \llbracket \llbracket c_j^-, c_k^- \rrbracket, c_l^- \rrbracket &= 0 \end{aligned}$$

or

$$\llbracket \llbracket c_j^\xi, c_k^\eta \rrbracket, c_l^\epsilon \rrbracket = -2\delta_{jl}\delta_{\epsilon, -\xi}\epsilon^{\langle l \rangle}(-1)^{\langle k \rangle \langle l \rangle}c_k^\eta + 2\epsilon^{\langle l \rangle}\delta_{kl}\delta_{\epsilon, -\eta}c_j^\xi$$

Parastatistics, parastatistics algebra

Simultaneous system: can be combined in 4 ways [Greenberg, Messiah]. The most interesting case: *relative para-fermi*.

With $c_j = f_j$ ($1 \leq j \leq m$) and $c_{m+j} = b_j$ ($1 \leq j \leq n$): parastatistics relations.

$$\begin{aligned} [[c_j^+, c_k^-], c_l^+] &= 2\delta_{kl}c_j^+, & [[c_j^+, c_k^+], c_l^+] &= 0 \\ [[c_j^-, [c_k^+, c_l^-]]] &= 2\delta_{jk}c_l^-, & [[c_j^-, c_k^-], c_l^-] &= 0 \end{aligned}$$

or

$$[[c_j^\xi, c_k^\eta], c_l^\epsilon] = -2\delta_{jl}\delta_{\epsilon, -\xi}\epsilon^{\langle l \rangle}(-1)^{\langle k \rangle \langle l \rangle}c_k^\eta + 2\epsilon^{\langle l \rangle}\delta_{kl}\delta_{\epsilon, -\eta}c_j^\xi$$

Theorem [Palev 1982]

The Lie superalgebra (LSA) generated by $2m$ even elements f_j^\pm and $2n$ odd elements b_j^\pm subject to the above relations is $\mathfrak{osp}(2m+1|2n)$. The Fock space $V(p)$ is the unitary irreducible representation of $\mathfrak{osp}(2m+1|2n)$ with lowest weight $[-\frac{p}{2}, \dots, -\frac{p}{2} | \frac{p}{2}, \dots, \frac{p}{2}]$.

Structure of Fock space

- Green's ansatz: p -fold tensor product of ordinary boson/fermion Fock space & extract an irreducible component. Ongoing work: Daskaloyannis 2007, Salom 2013.
- Characters of paraboson or parastatistics space [Loday & Popov 2009]
- Basis and paraboson operator actions in $V(p)$ for $\mathfrak{osp}(1|2n)$: Lievens, Stoilova, Van der Jeugt 2008.
- Basis and parafermion operator actions in $W(p)$ for $\mathfrak{so}(2m+1)$: Stoilova, Van der Jeugt 2008.
- Extension to infinite number of parabosons or parafermions [Stoilova, Van der Jeugt 2009]

The LSA $\mathfrak{osp}(2m+1|2n)$

Lie superalgebra $\mathfrak{osp}(2m+1|2n)$: matrices of size
 $(m+m+1+n+n) \times (m+m+1+n+n)$:

$$\begin{pmatrix} a & b & u & x & x_1 \\ c & -a^t & v & y & y_1 \\ -v^t & -u^t & 0 & z & z_1 \\ y_1^t & x_1^t & z_1^t & d & g \\ -y^t & -x^t & -z^t & f & -d^t \end{pmatrix} \quad \begin{array}{l} (b \text{ and } c \text{ skew-symmetric,} \\ g \text{ and } f \text{ are symmetric}) \\ \text{blue even} \\ \text{red odd} \end{array}$$

Cartan subalgebra \mathfrak{h} : $h_i = e_{ii} - e_{i+m, i+m}$ ($i = 1, \dots, m$),
 $h_{m+j} = e_{2m+1+j, 2m+1+j} - e_{2m+1+n+j, 2m+1+n+j}$ ($j = 1, \dots, n$).
Even/odd generators:

$$c_j^+ = f_j^+ = \sqrt{2}(e_{j, 2m+1} - e_{2m+1, j+m}),$$

$$c_j^- = f_j^- = \sqrt{2}(e_{2m+1, j} - e_{j+m, 2m+1}),$$

$$c_{m+j}^+ = b_j^+ = \sqrt{2}(e_{2m+1, 2m+1+n+j} + e_{2m+1+j, 2m+1}),$$

$$c_{m+j}^- = b_j^- = \sqrt{2}(e_{2m+1, 2m+1+j} - e_{2m+1+n+j, 2m+1}).$$

Subalgebras of $\mathfrak{osp}(2m+1|2n)$

Lie superalgebra $\mathfrak{osp}(2m+1|2n)$: matrices of size
 $(m+m+1+n+n) \times (m+m+1+n+n)$:

$$\begin{pmatrix} a & b & u & x & x_1 \\ c & -a^t & v & y & y_1 \\ -v^t & -u^t & 0 & z & z_1 \\ y_1^t & x_1^t & z_1^t & d & g \\ -y^t & -x^t & -z^t & f & -d^t \end{pmatrix} \quad \mathfrak{so}(2m+1)$$

Subalgebras of $\mathfrak{osp}(2m+1|2n)$

Lie superalgebra $\mathfrak{osp}(2m+1|2n)$: matrices of size
 $(m+m+1+n+n) \times (m+m+1+n+n)$:

$$\begin{pmatrix} a & b & u & x & x_1 \\ c & -a^t & v & y & y_1 \\ -v^t & -u^t & 0 & z & z_1 \\ y_1^t & x_1^t & z_1^t & d & g \\ -y^t & -x^t & -z^t & f & -d^t \end{pmatrix} \quad \mathfrak{sp}(2n)$$

Subalgebras of $\mathfrak{osp}(2m+1|2n)$

Lie superalgebra $\mathfrak{osp}(2m+1|2n)$: matrices of size
 $(m+m+1+n+n) \times (m+m+1+n+n)$:

$$\begin{pmatrix} a & b & u & x & x_1 \\ c & -a^t & v & y & y_1 \\ -v^t & -u^t & 0 & z & z_1 \\ y_1^t & x_1^t & z_1^t & d & g \\ -y^t & -x^t & -z^t & f & -d^t \end{pmatrix} \quad \mathfrak{osp}(1|2n)$$

Subalgebras of $\mathfrak{osp}(2m+1|2n)$

Lie superalgebra $\mathfrak{osp}(2m+1|2n)$: matrices of size
 $(m+m+1+n+n) \times (m+m+1+n+n)$:

$$\begin{pmatrix} a & b & u & x & x_1 \\ c & -a^t & v & y & y_1 \\ -v^t & -u^t & 0 & z & z_1 \\ y_1^t & x_1^t & z_1^t & d & g \\ -y^t & -x^t & -z^t & f & -d^t \end{pmatrix} \quad \mathfrak{u}(m|n)$$

The LSA $\mathfrak{osp}(2m+1|2n)$

Lie superalgebra $\mathfrak{osp}(2m+1|2n)$: matrices of size
 $(m+m+1+n+n) \times (m+m+1+n+n)$:

$$\begin{pmatrix} a & b & \textcolor{blue}{u} & x & x_1 \\ c & -a^t & \textcolor{blue}{v} & y & y_1 \\ -\textcolor{blue}{v}^t & -\textcolor{blue}{u}^t & 0 & \textcolor{red}{z} & \textcolor{red}{z}_1 \\ y_1^t & x_1^t & \textcolor{red}{z}_1^t & d & g \\ -y^t & -x^t & -\textcolor{red}{z}^t & f & -d^t \end{pmatrix} \quad \begin{array}{l} (b \text{ and } c \text{ skew-symmetric,} \\ g \text{ and } f \text{ are symmetric}) \end{array}$$

Even/odd generators:

$$c_j^+ = f_j^+ = \sqrt{2}(e_{j,2m+1} - e_{2m+1,j+m}),$$

$$c_j^- = f_j^- = \sqrt{2}(e_{2m+1,j} - e_{j+m,2m+1}),$$

$$c_{m+j}^+ = b_j^+ = \sqrt{2}(e_{2m+1,2m+1+n+j} + e_{2m+1+j,2m+1}),$$

$$c_{m+j}^- = b_j^- = \sqrt{2}(e_{2m+1,2m+1+j} - e_{2m+1+n+j,2m+1}).$$

Subalgebras of $\mathfrak{osp}(2m+1|2n)$

Obvious even subalgebra: $\mathfrak{so}(2m+1) \oplus \mathfrak{sp}(2n)$

$$\begin{aligned} [c_i^\xi, c_k^\eta], \quad c_l^\epsilon, \quad & (i, k, l = 1, \dots, m; \xi, \eta, \epsilon = \pm) \\ \{c_{m+j}^\xi, c_{m+s}^\eta\}, \quad & (j, s = 1, \dots, n; \xi, \eta = \pm). \end{aligned}$$

Subalgebra $\mathfrak{u}(m|n) \equiv \mathfrak{gl}(m|n)$: $(m+n)^2$ elements

$$[[c_j^-, c_k^+]] \quad (j, k = 1, \dots, m+n)$$

Cartan subalgebra \mathfrak{h} : (recall: $[[c_j^-, c_k^+]]|0\rangle = p \delta_{jk}$)

$$\begin{aligned} [c_i^-, c_i^+] = -2h_i \quad & (i = 1, \dots, m), \\ \{c_{m+j}^-, c_{m+j}^+\} = 2h_{m+j} \quad & (j = 1, \dots, n). \end{aligned}$$

So $|0\rangle$ is vector of weight $[-\frac{p}{2}, \dots, -\frac{p}{2}, \frac{p}{2}, \dots, \frac{p}{2}]$.

Induced module construction

- $[[c_j^-, c_k^+]]|0\rangle = p \delta_{jk} |0\rangle \Leftrightarrow$ trivial one-dim. $\mathfrak{u}(m|n)$ module of weight $[-\frac{p}{2}, \dots, -\frac{p}{2} | \frac{p}{2}, \dots, \frac{p}{2}]$
- $c_j^-|0\rangle = 0 \Leftrightarrow$ extend $\mathfrak{u}(m|n)$ to a parabolic subalgebra

$$\mathfrak{P} = \text{span}\{c_j^-, [[c_j^+, c_k^-]], [[c_j^-, c_k^-]] \mid j, k = 1, \dots, m+n\},$$

and extend $\mathbb{C}|0\rangle$ to trivial \mathfrak{P} module by requiring $c_j^-|0\rangle = 0$
($j = 1, \dots, m+n$)

- Induced module: $\overline{V}(p) = \text{Ind}_{\mathfrak{P}}^{\mathfrak{osp}(2m+1|2n)} \mathbb{C}|0\rangle$
- basis vectors: ($k_{i,m+j} \in \{0, 1\}$, others in \mathbb{Z}_+) [PBW-theo]

$$(c_1^+)^{k_1} \cdots (c_{m+n}^+)^{k_{m+n}} ([[c_1^+, c_2^+]])^{k_{12}} ([[c_1^+, c_3^+]])^{k_{13}} \cdots \cdots ([[c_{m+n-1}^+, c_{m+n}^+]])^{k_{m+n-1, m+n}} |0\rangle$$

Irreducible module

$$V(p) = \overline{V}(p)/M(p) \text{ (max. nontrivial submodule)}$$

Basis of $\overline{V}(p)$

Character of representations: formal series of terms

$$\nu x_1^{j_1} x_2^{j_2} \dots x_m^{j_m} y_1^{j_{m+1}} y_2^{j_{m+2}} \dots y_n^{j_{m+n}},$$

with $[j_1, \dots, j_m | j_{m+1}, \dots, j_{m+n}]$ the weight and ν the dimension of the corresp. weight space.

Character of $\mathbb{C}|0\rangle$ is just

$$(x_1)^{-p/2} \dots (x_m)^{-p/2} (y_1)^{p/2} \dots (y_n)^{p/2},$$

By earlier basis (or PBW):

$$\text{char } \overline{V}(p) = \frac{(x_1)^{-p/2} \dots (x_m)^{-p/2} (y_1)^{p/2} \dots (y_n)^{p/2} \prod_{i,j} (1 + x_i y_j)}{\prod_i (1 - x_i) \prod_{i < k} (1 - x_i x_k) \prod_j (1 - y_j) \prod_{j < l} (1 - y_j y_l)}$$

Expansion in supersymmetric Schur functions

[Cummins, King 1987]

$$\frac{\prod_{i,j} (1 + x_i y_j)}{\prod_i (1 - x_i) \prod_{i < k} (1 - x_i x_k) \prod_j (1 - y_j) \prod_{j < l} (1 - y_j y_l)} = \sum_{\lambda \in \mathcal{H}} s_{\lambda}(x_1, \dots, x_m | y_1, \dots, y_n) = \sum_{\lambda \in \mathcal{H}} s_{\lambda}(\mathbf{x} | \mathbf{y})$$

Sum is over the set \mathcal{H} of all partitions λ satisfying the $(m|n)$ -hook condition $\lambda_{m+1} \leq n$.

$s_{\lambda}(\mathbf{x} | \mathbf{y})$ is the supersymmetric Schur function.

$s_{\lambda}(\mathbf{x} | \mathbf{y})$ are characters of (covariant) $\mathfrak{u}(m|n)$ repres. $V([\Lambda^{\lambda}])$

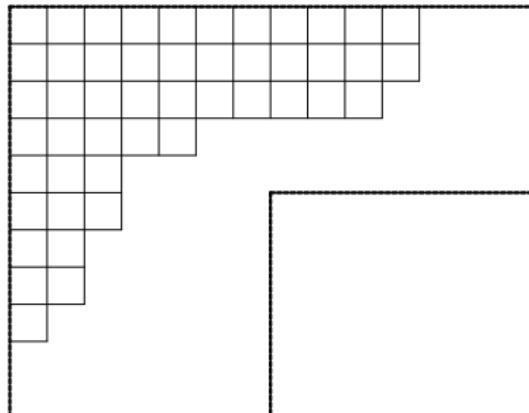
Relation: partition $\lambda = (\lambda_1, \lambda_2, \dots)$ / highest weight Λ^{λ}

$\equiv [\mu]^r \equiv [\mu_{1r}, \dots, \mu_{mr} | \mu_{m+1,r}, \dots, \mu_{rr}]$ ($r = m + n$):

$$\mu_{ir} = \lambda_i, \quad \mu_{m+j,r} = \max\{0, \lambda'_j - m\}$$

Gives branching of the $\mathfrak{osp}(2m+1|2n)$ to $\mathfrak{u}(m|n)$ for $\overline{V}(p)$ (and thus also basis!).

Covariant representations of $\mathfrak{u}(m|n)$



$$m = 5, n = 7, r = m + n = 12$$

$$u(5|7)$$

$$\lambda = (11, 11, 10, 5, 3, 3, 2, 2, 1)$$

weight $[\mu] = [\mu]^r$:

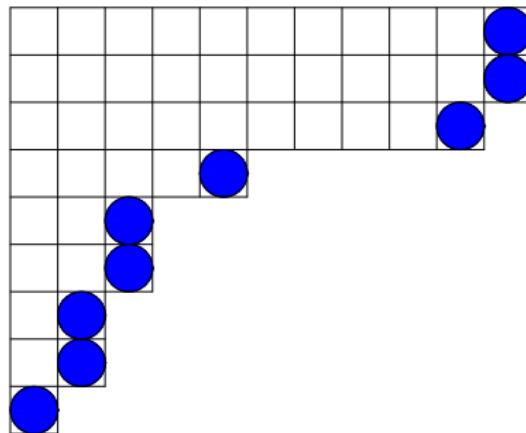
$$[11, 11, 10, 5, 3|4, 3, 1, 0, 0, 0, 0]$$

Basis for $\overline{V}(p)$

Use Gelfand-Zetlin basis (GZ) for $\mathfrak{u}(m|n)$, based on $\mathfrak{u}(m|n) \supset \mathfrak{u}(m|n-1) \supset \cdots \supset \mathfrak{u}(m|1) \supset \mathfrak{u}(m) \supset \mathfrak{u}(m-1) \supset \cdots \supset \mathfrak{u}(1)$
[Stoilova, Van der Jeugt 2010]

$$|p; \mu\rangle \equiv |\mu\rangle \equiv |\mu\rangle^r = \begin{pmatrix} [\mu]^r \\ |\mu\rangle^{r-1} \end{pmatrix} = \begin{pmatrix} \mu_{1r} & \cdots & \mu_{m-1,r} & \mu_{mr} & \mu_{m+1,r} & \cdots & \mu_{r-1,r} & \mu_{rr} \\ \mu_{1,r-1} & \cdots & \mu_{m-1,r-1} & \mu_{m,r-1} & \mu_{m+1,r-1} & \cdots & \mu_{r-1,r-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & & \ddots \\ \mu_{1,m+1} & \cdots & \mu_{m-1,m+1} & \mu_{m,m+1} & \mu_{m+1,m+1} \\ \mu_{1m} & \cdots & \mu_{m-1,m} & \mu_{mm} \\ \mu_{1,m-1} & \cdots & \mu_{m-1,m-1} \\ \vdots & & \ddots \\ \mu_{11} \end{pmatrix}$$

Decomposition $u(m|n)$ to $u(m|n-1)$



$$s_\lambda(\mathbf{x}|\mathbf{y}) = \sum_{\sigma} s_{\sigma}(\mathbf{x}|y_1, \dots, y_{n-1}) y_n^{|\lambda| - |\sigma|}$$

sum over all σ such that $\lambda - \sigma$ is a **vertical strip**
Transfer to weights:

$$[\mu]^r \rightarrow \bigoplus [\mu']^{r-1}$$

Basis for $\overline{V}(p)$

Use Gelfand-Zetlin basis (GZ) for $\mathfrak{u}(m|n)$, based on $\mathfrak{u}(m|n) \supset \mathfrak{u}(m|n-1) \supset \cdots \supset \mathfrak{u}(m|1) \supset \mathfrak{u}(m) \supset \mathfrak{u}(m-1) \supset \cdots \supset \mathfrak{u}(1)$
[Stoilova, Van der Jeugt 2010]

$$|p; \mu\rangle \equiv |\mu\rangle \equiv |\mu\rangle^r = \left| \begin{array}{ccccccc} [\mu]^r & & & & & & \\ & |\mu\rangle^{r-1} & & & & & \\ & & \ddots & & & & \\ & & & \mu_{1r} & \cdots & \mu_{m-1,r} & \mu_{mr} & \mu_{m+1,r} & \cdots & \mu_{r-1,r} & \mu_{rr} \\ & & & \mu_{1,r-1} & \cdots & \mu_{m-1,r-1} & \mu_{m,r-1} & \mu_{m+1,r-1} & \cdots & \mu_{r-1,r-1} & \\ & & & \vdots & \vdots & \vdots & \vdots & \vdots & & \ddots & \\ & & & \mu_{1,m+1} & \cdots & \mu_{m-1,m+1} & \mu_{m,m+1} & \mu_{m+1,m+1} & & & \\ & & & \mu_{1m} & \cdots & \mu_{m-1,m} & \mu_{mm} & & & & \\ & & & \mu_{1,m-1} & \cdots & \mu_{m-1,m-1} & & & & & \\ & & & \vdots & & \ddots & & & & & \\ & & & \mu_{11} & & & & & & & & \end{array} \right)$$

Basis for $\overline{V}(p)$

In such a μ -triangle, all $\mu_{ij} \in \mathbb{Z}_+$, satisfying conditions such as

- betweenness conditions ($1 \leq i \leq j \leq m-1$ or $m+1 \leq i \leq j \leq r-1$)

$$\mu_{i,j+1} \geq \mu_{ij} \geq \mu_{i+1,j+1}$$

- θ -conditions ($1 \leq i \leq m, m+1 \leq s \leq r$)

$$\mu_{is} - \mu_{i,s-1} \equiv \theta_{i,s-1} \in \{0, 1\}$$

Vacuum vector $|0\rangle$ is such a triangle of all zeros, has weight $[-\frac{p}{2}, \dots, -\frac{p}{2} | \frac{p}{2}, \dots, \frac{p}{2}]$

Weight of a general vector $|\mu\rangle$ follows from:

$$h_k |\mu\rangle = \left(\mp \frac{p}{2} + \sum_{j=1}^k \mu_{jk} - \sum_{j=1}^{k-1} \mu_{j,k-1} \right) |\mu\rangle,$$

(minus sign when $1 \leq k \leq m$; plus sign when $m+1 \leq k \leq m+n$)

Action of para-operators on this basis

$(c_1^+, c_2^+, \dots, c_r^+)$ is $\mathfrak{u}(m|n)$ tensor of rank $(1, 0, \dots, 0)$

$$c_j^+ \sim \begin{matrix} 10 \cdots 000 \\ 10 \cdots 00 \\ \cdots \\ 0 \cdots 0 \\ \cdots \\ 0 \end{matrix}$$

- row 1, row 2, ..., row $j - 1$ are zero (start from the bottom)
- other rows are $10 \cdots 0$

Tensor product rule in $\mathfrak{u}(m|n)$:

$$([\mu]^r) \otimes (10 \cdots 0) = ([\mu]_{+1}^r) \oplus ([\mu]_{+2}^r) \oplus \cdots \oplus ([\mu]_{+r}^r)$$

where

- $([\mu]^r) = (\mu_{1r}, \mu_{2r}, \dots, \mu_{rr})$
- $([\mu]_{\pm k}^r) = (\mu_{1r}, \dots, \mu_{kr} \pm 1, \dots, \mu_{rr})$

Action via reduced matrix elements

$$\begin{aligned}(\mu' | c_j^+ | \mu) &= \left(\begin{array}{c|c} [\mu]_{+k}^r & [\mu]^r \\ |\mu')^{r-1} & | \mu)^{r-1} \end{array} \right) \\ &= \left(\begin{array}{cc|c} [\mu]^r & 10 \cdots 00 & [\mu]_{+k}^r \\ |\mu)^{r-1} & 10 \cdots 0 & |\mu')^{r-1} \\ \cdots & 0 & \end{array} \right) \times ([\mu]_{+k}^r || c^+ || [\mu]^r) \\ &= (\mathfrak{u}(m|n) \text{ CGC}) \times \text{(reduced matrix element)}\end{aligned}$$

- These special $\mathfrak{u}(m|n)$ CGC's are explicitly known & have been computed recently [Stoilova, Van der Jeugt 2010]
- Unknown expressions:

$$G_k([\mu]^r) = G_k(\mu_{1r}, \mu_{2r}, \dots, \mu_{rr}) = ([\mu]_{+k}^r || c^+ || [\mu]^r)$$

Action via reduced matrix elements (ctd)

$$c_j^+|\mu) = \sum_{k,\mu'} \left(\begin{array}{c|c} [\mu]^r & \begin{array}{c} 10 \cdots 00 \\ 10 \cdots 0 \\ \cdots \\ 0 \end{array} \\ \hline |\mu)^{r-1} & |\mu')^{r-1} \end{array} \right) G_k([\mu]^r) \left| \begin{array}{c} [\mu]_{+k}^r \\ |\mu')^{r-1} \end{array} \right.$$

- add $+1$ in one position k of top row r
- from $|\mu)^{r-1}$ to $|\mu')^{r-1}$: add $+1$ in one position at rows $r-1, r-2, \dots, j$
- rows 1 upto $j-1$ remain unchanged
- pattern in rhs satisfies betweenness and θ -conditions

$$c_j^-|\mu) = \sum_{k,\mu'} \left(\begin{array}{c|c} [\mu]_{-k}^r & \begin{array}{c} 10 \cdots 00 \\ 10 \cdots 0 \\ \cdots \\ 0 \end{array} \\ \hline |\mu')^{r-1} & |\mu)^{r-1} \end{array} \right) G_k([\mu]_{-k}^r) \left| \begin{array}{c} [\mu]_{-k}^r \\ |\mu')^{r-1} \end{array} \right.$$

So all that is left is the determination of the unknown functions G_k .

Reduced matrix elements: main result

Very technical computation.

Started from the action:

$$\{c_r^-, c_r^+\}|\mu) = 2h_r|\mu) = \left(p + 2\left(\sum_{j=1}^r \mu_{jr} - \sum_{j=1}^{r-1} \mu_{j,r-1}\right) \right) |\mu)$$

Result for $k \leq m$ and k even:

$$G_k(\mu_{1r}, \mu_{2r}, \dots, \mu_{rr}) =$$

$$\left(-\frac{(\mathcal{E}_m(\mu_{kr} + m - n - k) + 1) \prod_{j \neq k=1}^m (\mu_{kr} - \mu_{jr} - k + j)}{\prod_{j \neq \frac{k}{2}=1}^{\lfloor m/2 \rfloor} (\mu_{kr} - \mu_{2j,r} - k + 2j)(\mu_{kr} - \mu_{2j,r} - k + 2j + 1)} \right)^{1/2}$$
$$\times \prod_{j=1}^n \left(\frac{\mu_{kr} + \mu_{m+j,r} + m - j - k + 2}{\mu_{kr} + \mu_{m+j,r} + m - j - k + 2 - \mathcal{E}_{m+\mu_{m+j,r}}} \right)^{1/2}$$

Similar expressions for $k \leq m$ and k odd, and for $k > m$.

Structure of $V(p)$

- All factors under square roots are positive. The only factor that may become zero is

$$p - \mu_{kr} + k - 1 \quad (k \leq m \text{ and } k \text{ odd})$$

- For $k = 1$ this is $p - \mu_{1r}$; here μ_{1r} is the largest integer in the first row of the GZ-pattern.
- Starting from the vacuum vector (GZ-pattern with zeros), one can raise the entries in the GZ-pattern by applying the c_j^+ .
- When μ_{1r} has reached the value p it can no longer be increased.
- As a consequence, all vectors $|\mu\rangle$ with $\mu_{1r} > p$ belong to the submodule $M(p)$.

Theorem: $V(p)$ and action

An orthonormal basis for the space $V(p)$ is given by the vectors $|\mu\rangle$ with $\mu_{1r} \leq p$. The action of the para-operators is as given earlier.

Character of $V(p)$

$\mu_{1r} \leq p$ is equivalent to $\lambda_1 \leq p$, therefore:

Theorem: $\text{char } V(p)$

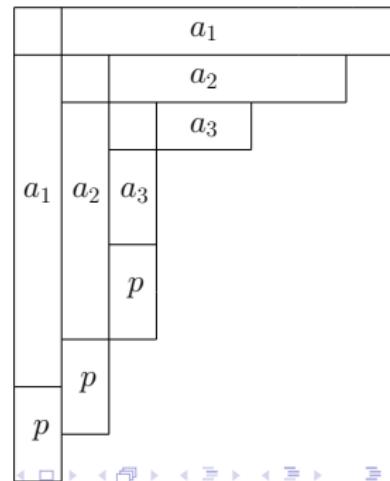
$$\text{char } V(p) = \mathbf{x}^{-p/2} \mathbf{y}^{p/2} \sum_{\lambda \in \mathcal{H}, \lambda_1 \leq p} s_\lambda(\mathbf{x}|\mathbf{y})$$

Character formula? As in $\mathfrak{osp}(1|2n)$ case.

\mathcal{P}_p is set of all partitions of the form

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_r \\ a_1 + p & a_2 + p & \cdots & a_r + p \end{pmatrix}$$

in Frobenius notation.



Character formula for $V(p)$

Theorem: character formula

$$\text{char } V(p) = \mathbf{x}^{-p/2} \mathbf{y}^{p/2} \times \frac{\prod_{i,j} (1 + x_i y_j) \sum_{\sigma \in \mathcal{H}_p} (-1)^{(|\sigma| - r(\sigma)(p-1))/2} s_{\sigma}(\mathbf{x}|\mathbf{y})}{\prod_i (1 - x_i) \prod_{i < k} (1 - x_i x_k) \prod_j (1 - y_j) \prod_{j < l} (1 - y_j y_l)}$$

Sum is over all partitions in $\mathcal{H}_p = \mathcal{H} \cap \mathcal{P}_p$.

Proof: product rule for supersymmetric Schur functions $s_{\lambda}(\mathbf{x}|\mathbf{y})$ is the same as product rule for ordinary Schur functions $s_{\lambda}(\mathbf{x})$ (Littlewood-Richardson rule).

(For ordinary case: identities proved by King in 2007 [King 2013]).
(See another proof of character formula in [Loday & Popov 2009]).

Outlook

What about combining m parafermions with n parabosons with relative paraboson relation?

- Tolstoy (2014): a $\mathbb{Z}_2 \times \mathbb{Z}_2$ graded superalgebra $\mathfrak{osp}(1, 2m|2n, 0)$.
- Representations? Structure?

System with an infinite number of parafermions and parabosons:
 f_i, b_i ($i = 1, 2, \dots$)?

- Clearly, in the basis $|p; \mu\rangle$ based upon $\mathfrak{u}(m|n)$ one cannot let m and n go to infinity (and use some stability).
- Idea: use a GZ-basis based on the branching

$$\mathfrak{osp}(2n+1|2n) \supset \mathfrak{u}(n|n) \supset \mathfrak{u}(n|n-1) \supset \mathfrak{u}(n-1|n-1) \supset \mathfrak{u}(n-1|n-2) \supset \mathfrak{u}(n-2|n-2) \supset \dots \supset \mathfrak{u}(1|1) \supset \mathfrak{u}(1)$$

Only Lie superalgebras. Branching is known: GZ-basis can be described.

- Action (even for $\mathfrak{u}(n|n)$ generators in this basis) is not yet known.
- Limit for n to infinity should be possible in this basis.

Overview

1 Introduction: parabosons and parafermions

- Ancient history
- Old history
- Recent history

2 Parastatistics algebra $\mathfrak{osp}(2m+1|2n)$

- The LSA $\mathfrak{osp}(2m+1|2n)$
- Subalgebras of $\mathfrak{osp}(2m+1|2n)$
- Induced module construction
- Basis of $\overline{V}(p)$
- GZ-basis for $\mathfrak{u}(m|n)$
- Action of para-operators on this basis
- Structure of $V(p)$
- Character of $V(p)$

3 Outlook