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Spin chain/QFT correspondence

» Low-energy excitations of gapless spin chains are described by QFTs.

spin operators 57, 7

J-W transf.
electron-orbit.

linear disp. rel.
= relativistic particles

fermions ¢}C’C, (¢f’C)T

» Inversely, time development of QFTs are given by transfer matrices of spin
chains.

transfer from down
to up states




History of spin chain/QFT correspondence

* From spin chains to QFTs
= fermionic representations of spin operators
= sigma models [Haldane 83]
= bosonization
= free Dirac fermion + Wess-Zumino term [Affleck 86]

* From QFTs to spin chains
= discretization of the L-operator
= quantum inverse scattering method (QISM) [Izergin-Korepin 82]
= light-cone reguralization
= nonlinear integral equations (NLIEs) [Destri-de Vega 87]



Limiting excitations from light-cone lattices

H-
o s=1/2 XXZ & SG model
odd even
even sector odd sector
> H
periodic o X [Feverati et al. 98] *
, dd
Dirichlet  (H-)(H+)>0  (H-)(H+) <0 [Ahn et al. 08] sven °
s=1/2 XXZ model with boundary magnetic fields
N-—1 . .
effectively 2N-1 sites
Hyxz = > (S350 + SY8Y,, + cos7S7 55, ) hi o ! |
,_Zf_l _______________________________________________ T I ! I i —> X
-I—, sin 7y cot —V(Hﬁl) ST +i smfycot —7<HN+1) iSX f 5 o N
hl hN arrested by boundary magnetic fields

sine-Gordon model with Dirichlet boundaries

m2
Agg = /dt/ dx (9 OOHP + — o Cosﬁq)) ®(0,t) = @y, ®(L,t) = Py,

boundary magnetic fields < Dirichlet boundaries



Limiting excitations from light-cone lattices

e s=1 XXZ < SSG model

NS, even NS, odd R, even R, odd

periodic o) X X X [Hegedus et al. 07]

Dirichlet o) ?7? [Ahn et al. 07, CM14]

s=1 XXZ model with boundary magnetic fields

N—-1
Hxxz = Y (Sj - Sji1 = (S5 Sj41)? = 2sin® (S; - i + (S7)% + (S741)° — (S75744)%)
j=1
: ’Y r QT zZ Q= zZ Q= X QI
o+ dsin? (S787.1 VS 1)S5 S50 + 57 S5 (S7571575%,)))
+hi(Hy ) S + ha(HL)(SF)? + ha(H-)S5 + ho(H-)(S%)?

hi(H) = 5 sin 27(cot % + cot @), ha(H) = 5 sin 27y(— cot % + cot —7(1_12—’_2))

h2(H)
- o H NS/R sector
separation?

h1(H)
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SSG model with Dirichlet boundaries

free boson free fermion  perturbation negligible in RG
| | | | [ 1 1

L . 2
1 _ )
Assa = /dt/ dw(—@“@@,ﬂ) + 2P0, T — 0 cos(B) T + 0 cos2(5c1>)>
. 3 2 2 252
o — &y, Uz t)—T -
(:L‘,t) 2=0.L 0,L> (CL‘,t) (:U,t) 2=0.1, 0

« SSG model is a CFT withc=3/2 < c=1 (boson) + c=1/2 (fermion)

c=1/2 +1/2 + 1/2 (fermions)
/ /
/ / periodic fermion
\ |
\ \
\ N

anti-periodic fermion




SSG model with Dirichlet boundaries

free boson free fermion  perturbation negligible in RG
l | | | [ 1 1

L 1 1 - mo - m?
Assa = /dt/ dx(—@“(l)@u(l) + 2P0, T — 0 cos(B) T + 0 cos2(B<I>)>
. 3 2 2 252
o — &y, Uz t)—T -
(:L‘,t) 2=0.L 0,L> (CL’,t) (:C,t) 2=0.1, 0

« SSG model is a CFT withc=3/2 < c=1 (boson) + c=1/2 (fermion)

c=1/2 +1/2 + 1/2 (fermions)
/ /
/ / periodic fermion
| | = NS sector
\ \
\ N

» SSG model has supersymmetry

anti-periodic fermion
= R sector

2
Aprp = 3 (ﬁ(@o — &)+ mR) : H excitation particles

Aprr =0, 3, = : NS sector/R sector

» SSG model is an integrable system



Light-cone regularization

left mover
T

L2,

* lines  =trajectories of particles

e vertices = scatterings

» integrable QFT < integrable spin chains
» Bethe ansatz is available



Scattering theory

« SSG kink A¢,(0) e: solitoncharge, €=+
a,b: RSOS index, a,b=0,%1; |a-b| =1
0: rapidity

AG(01)A72(6:) = ZZS:I:; 16(01 — 02) A2 (02) AL (61) 1 2

--------------------

S5 165(0) =555 (0))x [S55(0)

--------------------

SG part  SUSY part

* Yang-Baxter eq. el bez

E”3 f
€”2

Serer (61 — 92)56,1,6?(91 93)56,2,6?,(92—93) 56,26?(92—93)56}6?,(91—93)56,1,6%(91 02),
SEC(By — 02)S30(01 — 03)5%5 (2 — 03) = SV, (85 — 05)S¢¢ (01 — 03)S11 (61 — 65)




Scattering theory

« SSG kink A¢,(0) e: solitoncharge, €=+
a,b: RSOS index, a,b=0,%1; |a-b| =1

0: rapidity
=Y > R.|b.A5.(-0)B NG
’ d
C € b
----------------- \ C
RZ"CCLb( ) .RE (9) XIR (9) g’

-----------------

SG part SUSY part

o reflection relations

Elllz

&1
Seper (01— 92)3 (92)5 % ///(91 +02) R, ///(91) Ry (91)56/167( 01 — 92)3 (92)57/1///( 01 + 02),

Sec(6r — 92)359(92)55@(91 +02)R2(61) = Raf,(el)s,{g?(—el —0 )R (02)S551(—61 + 62)

different amplitudes for the NS/R sector



Scattering theory

* bootstrap relation

€1’

e S (0) = S (6 + iul)s§§,e€1,2 (0 + ius)
F5S56(0) = [ (0 + iur) SIE(O + dus)
* boundary bootstrap relation
el

g RS (0) = g% Sehd (0 — iun) Ry ,,,(0)56,2, fl (0 + ius)
GER54(0) = g} Spe(0 — iur) RS 5(0)S15 (0 + ius)
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Transfer matrix of LSSG model

double-row transf. matrix
W guantum space: 3-dim.
‘ \ [\ /

AN st A SNCAW AW RWAC
\ V] 7

left mover right mover

auxiliary space: 2 or 3-dim. = T1(6), T2(8)

* momentum

1
P=_—InT»(©) + %in InT2(—0)

2za

* energy

1 (d
E=_— ( InT 9)‘ | ——m:r2 9)‘ | )
6=0+ir 6=0—ir



Transfer matrix of LSSG model

double-row transf. matrix
W guantum space: 3-dim.
‘ \ [\ /

left mover right mover

AN st A SNCAW AW RWAC
\ V] 7

auxiliary space: 2 or 3-dim. = T1(6), T2(8)

T1(0) = sinh X (20 +im) B4 (0)¢(0 + im) Q(g(_@)m) + sinh X (20 — im) B_(0)$(0 — im) Q(g;;)m)

3im
T3(0) = sinh 2 (20 — 2im)B_ (6 — T)B_(0 + T)¢(6 — ) p(f — = Q(6 + 3ir)
T Q(9 _ z;r)

QO+ Q0 — %)
QO - F)QO + )

T 3im 271' (9 37:71-)
+sinh 2(26 + 2i7) B4 (0 — ) By (6 + ) (0 + 35)p(6 + )m

+sinh 2(20) B, (0 — T)B_(0 + ©)¢p(6 — (6 + “‘)



Analyticity structure of T-functions

green dots: roots

red dots : holes

H+=15H-=22, 149 "" } " ° T2(6)
V:O’N:n:S . L. b L. . Lol e oo ! ee ® b
10 1 4 %s 10 : 10 -0 H 10 :

He=15H-=03,  T1109) | T2(0)
v:O’N:nZS . . v ol . . . - - e 8 ! [ I ) [ o0
10 25 * 35 10 ey e e ——— 5§
H+ _ 15’ H- _ -1_8' Tl(e) ° om: o o ° . Tz(e) e o e o . .
y=0,N=n=8 . ' . T I
05 05 € 05" T o 05 &




Analyticity structure of T-functions green dots: roots

red dots : holes

H+=1.5,H-=2.2, T1(8) : e T2(6)
V:O’N:n:S 7 - o - e o8 ! ee o e
10 )4 %5 10 {Wwﬁ#%

He=15H-203, T19) | T2(6)
v:O,N:nZS 7 mmmeenee B = o, = o 8 | e e @ o0
10 25 05 10 IW._'_:_'_'_&W
H+=15H-=-18, 1108 ~ | =~ ° ‘2000 0 LT T
v:O,N:n:8 . i . °, ® o olf e o e °®

{ (] ® o005 @ @ (] 0\: i

s 05 (g




Nonlinear integral equations

» Cauchy theorem

7£ d@eke[lnTg(H)]”: 1 — e—7k (1+hZRekhj) io Co: a= 75 +¢,
1 je
2mk (1) ( ) Re 6
7€ WM InE) = (1 Y ) —
’ mhVe[-7,%
e T-systems

Ty (0 — T)T (0 + 5 ) = f(8) + To(0)T2(0),
To(0) = sinh %(29)

« T-Y relations (= Y-systems)

| Ty(0)Tu(0)
y(0) = ORE
Y(0)=14y(0), f(0)=10-"5)1(0+%)

T1(0 — 5)11(0 + F) = f(O)Y (0),




Nonlinear integral equations

Inb(0) = / 49 G0 — 0 —ie)In B(§' + ic) — / 40 G(0 — 0’ + i) In B(O/ — ic)

+ / d@l GK(Q - (9/ - % + i(—?) In Y(Q’ — iG) + iDbulk(Q) + ZDB(Q) + ZD(@)

+ C,

oo

In y/(6) :/ do’ GK(9—9’+%—z’e)lnB(@’—i—ie)Jr/ 40" Ge(0— 0 — = 4 ie) n B0 — ic)

— 0o

+iDggp(0) + iDx (0) + C,



Nonlinear integral equations

scattering amp.

Inb() = / T aelco—o - z’e)]lnB(H’ i) — / h de’[G(e — 0+ ie)]lnB(H’ e

— o0 —0o

N / - 40 (Gre(6— 0 — 5 +icnY (0 —ic) + Dy (6) i D (0) +{in(0)

— 0o

+ Cy bulk phase shift particle sources
In y/(6) :/ 40 (0 — 0+ = —ie) B0 + ic) +/ 40" Ge(0— 0 — = 4 ie) n B0 — ic)

HiDss(0)|+[iDk O+ C,

reflection amp.
= coming from boundary terms



Boundary-dependent terms

reglme (c) reglme(b) reglme( )

Dg(0) = F(0; Hy) + F(0; H-) + J(0) X ),
Dsp(0) = Fy(0; Hy) + Fy(6; H-) + Jx (6) 1 1

sinh(Z — H)ZE

2 cosh ZE sinh(% —2)Zk’

regime (a)  F(6; H) / d9’/ dk e~ k¢’

F,(0;H)
h H —2)™k
regime (b) / d@’/ Ik o~ k6’ sinh(Z + 7 )% |
2COSth81nh(— —2)Zk
Fy(0; H) = Gic(0 — Z51) + e (0 + =)

, h H
regime (c) / o’ / g SG )T :
2 cosh T smh(— —2)Zk

i

F,(0;H) =



Boundary energy

boundary magnetic fields

i Z6 4 -2
regime (c) regime (b) regime (a)
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Infrared limit

* The IR lim. is the large-volume lim. where the g.s. roots exactly form the
two-strings.

» Rapidity of b.b.s. approaches to the singular point of BAE.
» Compare the quantization conditions.

emol s iR, 6 ) - [ [ S(0; — 0)S(0; +61) - R(0;;¢-) =1 <— phase shifts

» reflection amplitudes regime (c) regime (b) regime (a)
X 1 1 '
iF(a)(H; H) =In R(h) holes
iF®")(0; H) = In R(0) + ig(6 —m(12_ H)) +ig(0 +m(12_H))

.......................................

boundary bootstrap relations



Infrared limit

soliton-antisoliton sym.

L 3
*

A

soliton-antisoliton sym.



Ultraviolet limit

e The UV limit is the small volume limit where the conformal structure
shows up.

» Conformal dimensions are read off from the system-size dependence of
energy.

Ecrr(L) = E(L) — (Epuik + EB) = Eex(L) + Ec (L),

N Mé _
j=1 9=1 evaluated from NLIEs
Ec(L) = QWLIm / df ¢ 1n BT (6) i



Evaluation of energy

e NLIEs in vector forms
bt (8) = G« IBT(9) + ig(

>
N—"

. energy Rogers’ dilogarithm

A )

___________________________________________________________________________________________

>
N
|
o~
()
+
—~
(a)
N
3
+
—~
>
N
N——




Evaluation of energy

e NLIEs in vector forms
bt () = G« IBT () +ig(

>
N—"

. energy Rogers’ dilogarithm

A )
Borr =2, / dé (lb+ (0) - 1B*(

___________________________________________________________________________________________

>
~
|
o~
()
+
—~
(A
~
3
+
—~
D5
~
N——

L(x):—%/oxdy(ln(l_y)Jr Iny )’ L+(x):L( x )

Yy 1—y 1+
L0)=0, L(})=7%, L(-o0)=-%, L()=L@)+Ll-2)=% zc[01]
n—1 n—1 o
2L(1) = 2L(ni1) + Z (W) L(l)n3——|?:b2 — L(sin2 =Gy ) T E Zxo



Evaluation of energy

e NLIEs in vector forms
bt () = G« IBT(9) +ig(0)

* energy

____________________________




Evaluation of energy

e NLIEs in vector forms
bt () = G« IBT(9) +ig(0)

* energy

____________________________

5 [N —Hil+Hy|x|1-H_|[1+H_|>0
&= |1-Hy|1+Hy|x[1-H_|1+H_|<0



Phase separation of NS/R sectors

» system—size dependence of energy
- 7.(. 3

ECFT(L) = —E(C — 24A), C = 5

 conformal dimension

1/®d, —d_ 2
A=—<+—+mR+ﬁ)

2 VT R
+% (%(sgn(l — Hy) +sgn(l — H_) +sgn(l+ Hy) +sgn(l + H))>m0d2
I—t+
| i
NS : R : NS Both of NS/R sector is realized under Dirichlet
S | I boundaries.
R l NS I R -H
-1, 01, Restriction on the winding number
““T‘_{"T“_' = NS: m = integer
NS 1 R 1 NS R :m = half-integer
! |




Summary

» We showed the complete analysis of the correspondence between the
spin-1 chain and the SSG model with boundary magnetic fields.

» The R sector, not only the NS sector which is known to be realized, is
obtained as well.

» The sector separation depends on boundary magnetic fields.
= What exactly is these fields in the QFT?

 We analyzed only in the IR and the UV limits.
= intermediate-volume analysis?

 How R sector can be obtained from a periodic lattice?
= “supercharge”, which connects even and odd systems.



Summary

» We showed the complete analysis of the correspondence between the
spin-1 chain and the SSG model with boundary magnetic fields.

» The R sector, not only the NS sector which is known to be realized, is
obtained as well.

» The sector separation depends on boundary magnetic fields.
= What exactly is these fields in the QFT?

 We analyzed only in the IR and the UV limits.
= intermediate-volume analysis?

 How R sector can be obtained from a periodic lattice?
= “supercharge”, which connects even and odd systems.

Thank you.



