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Spin	
  chain/QFT	
  correspondence	


•  Low-­‐energy	
  excitabons	
  of	
  gapless	
  spin	
  chains	
  are	
  described	
  by	
  QFTs.	
  	
  

•  Inversely,	
  bme	
  development	
  of	
  QFTs	
  are	
  given	
  by	
  transfer	
  matrices	
  of	
  spin	
  
chains.	
  	


S±
j , Sz

j

�f,c
j , (�f,c

j )†

spin	
  operators	


fermions	


J-­‐W	
  transf.	
  
electron-­‐orbit.	
  	
 -3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Fermi	
  sea	

linear	
  disp.	
  rel.	
  
⇒	
  relabvisbc	
  parbcles	


transfer	
  from	
  down	
  	
  
to	
  up	
  states	




History	
  of	
  spin	
  chain/QFT	
  correspondence	


•  From	
  spin	
  chains	
  to	
  QFTs	
  
▫  fermionic	
  representabons	
  of	
  spin	
  operators	
  
⇒	
  sigma	
  models	
  [Haldane	
  83]	
  
▫  bosonizabon	
  
⇒	
  free	
  Dirac	
  fermion	
  +	
  Wess-­‐Zumino	
  term	
  [Affleck	
  86]	
  
	
  

•  From	
  QFTs	
  to	
  spin	
  chains	
  
▫  discrebzabon	
  of	
  the	
  L-­‐operator	
  
⇒	
  quantum	
  inverse	
  scanering	
  method	
  (QISM)	
  [Izergin-­‐Korepin	
  82]	
  
▫  light-­‐cone	
  reguralizabon	
  
⇒	
  nonlinear	
  integral	
  equabons	
  (NLIEs)	
  [Destri-­‐de	
  Vega	
  87]	
  



Limi;ng	
  excita;ons	
  from	
  light-­‐cone	
  la?ces	
  

•  s=1/2	
  XXZ	
  ⇔	
  SG	
  model	
  

even	
  sector	
 odd	
  sector	


periodic	
 ○	
 ×	


Dirichlet	
 (H-­‐)(H+)	
  >	
  0	
 (H-­‐)(H+)	
  <	
  0	


[Feverab	
  et	
  al.	
  98]	


[Ahn	
  et	
  al.	
  08]	


s=1/2	
  XXZ	
  model	
  with	
  boundary	
  magnebc	
  fields	


sine-­‐Gordon	
  model	
  with	
  Dirichlet	
  boundaries	
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Limi;ng	
  excita;ons	
  from	
  light-­‐cone	
  la?ces	
  

•  s=1	
  XXZ	
  ⇔	
  SSG	
  model	
  

NS,	
  even	
 NS,	
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  even	
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SSG	
  model	
  with	
  Dirichlet	
  boundaries	


	
  
•  SSG	
  model	
  is	
  a	
  CFT	
  with	
  c=	
  3/2	
  

	
  

free	
  boson	
free	
  fermion	
 perturbabon	
 negligible	
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SSG	
  model	
  with	
  Dirichlet	
  boundaries	


	
  
•  SSG	
  model	
  is	
  a	
  CFT	
  with	
  c=	
  3/2	
  

•  SSG	
  model	
  has	
  supersymmetry	
  

•  SSG	
  model	
  is	
  an	
  integrable	
  system	
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Light-­‐cone	
  regulariza;on	


•  lines	
  	
  	
  	
  	
  	
  	
  =	
  trajectories	
  of	
  parbcles	
  
•  verbces	
  =	
  scanerings	
  
•  integrable	
  QFT	
  ⇔	
  integrable	
  spin	
  chains	
  
•  Bethe	
  ansatz	
  is	
  available	
  



ScaEering	
  theory	


•  SSG	
  kink	
  

•  Yang-­‐Baxter	
  eq.	


ε:	
  	
  	
  	
  soliton	
  charge,	
  	
  	
  	
  ε	
  =	
  ±	
  
a,b:	
  RSOS	
  index,	
  	
  	
  	
  	
  	
  	
  	
  a,b	
  =	
  0,	
  ±1;	
  |a-­‐b|	
  =	
  1	
  	
  
θ:	
  	
  	
  	
  rapidity	


A�
ab(�)

A�1
ab(�1)A

�2
bc(�2) =

�

��
1,��

2

�

d

S�1�2
��
1��

2
|ac
bd(�1 � �2)A

��
2

ad(�2)A
��
1

dc(�1)

S�1�2
��
1��

2
|ac
bd(�) = S�1�2

��
1��

2
(�) � Sac

bd (�)

θ1	
  –	
  θ2	
b	


d	

a	
 c	


ε1	
 ε2	


ε’1	
 ε’2	


S�1�2
��1��2

(�1 � �2)S
��1�3
���1 ��3

(�1 � �3)S
��2��3
���2 ���3

(�2 � �3) = S�2�3
��2��3

(�2 � �3)S
�1��3
��1���3

(�1 � �3)S
��1��2
���1 ���2

(�1 � �2),

Sac
bg (�1 � �2)Sgd

ce (�1 � �3)Sae
gf (�2 � �3) = Sbd

cg�(�2 � �3)Sag�

bf (�1 � �3)Sfd
g�e(�1 � �2)

a	

c	


b	


g	
 d	

e	


f	


d	

b	


c	


g’	
a	

f	


e	


=	


ε1	

ε2	


ε3	


ε”3	

ε”2	


ε”1	
 ε”1	


ε1	


ε2	

ε3	


ε”2	


ε”3	


SG	
  part	
 SUSY	
  part	




ScaEering	
  theory	


•  SSG	
  kink	
  

•  reflecbon	
  relabons	
  

ε:	
  	
  	
  	
  soliton	
  charge,	
  	
  	
  	
  ε	
  =	
  ±	
  
a,b:	
  RSOS	
  index,	
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  =	
  0,	
  ±1;	
  |a-­‐b|	
  =	
  1	
  	
  
θ:	
  	
  	
  	
  rapidity	
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ScaEering	
  theory	


•  bootstrap	
  relabon	
  

•  boundary	
  bootstrap	
  relabon	
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Transfer	
  matrix	
  of	
  LSSG	
  model	


•  momentum	
  

•  energy	
  

K+	
 K-­‐	


double-­‐row	
  transf.	
  matrix	


quantum	
  space:	
  3-­‐dim.	


auxiliary	
  space:	
  2	
  or	
  3-­‐dim.	
  ⇒	
  T1(θ),	
  T2(θ)	




Transfer	
  matrix	
  of	
  LSSG	
  model	


	
   K+	
 K-­‐	


double-­‐row	
  transf.	
  matrix	


quantum	
  space:	
  3-­‐dim.	


auxiliary	
  space:	
  2	
  or	
  3-­‐dim.	
  ⇒	
  T1(θ),	
  T2(θ)	
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Analy;city	
  structure	
  of	
  T-­‐func;ons	


H+	
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Nonlinear	
  integral	
  equa;ons	


•  Cauchy	
  theorem	
  

	
  
•  T-­‐systems	
  

	
  
•  T-­‐Y	
  relabons	
  (⇒	
  Y-­‐systems)	
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scanering	
  amp.	


bulk	
  phase	
  shi�	
   parbcle	
  sources	
  

reflecbon	
  amp.	
  	
  
⇒	
  coming	
  from	
  boundary	
  terms	
  



Boundary-­‐dependent	
  terms	


DB(�) = F (�;H+) + F (�;H�) + J(�)
DSB(�) = Fy(�;H+) + Fy(�;H�) + JK(�)
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  energy	


boundary	
  magnebc	
  fields	


boundary	
  energy	


regime	
  (a)	
regime	
  (c)	
 regime	
  (b)	




Outline	


①  Correspondence	
  between	
  spin	
  chains	
  and	
  QFTs	
  

②  Discrebzabon	
  of	
  integrable	
  QFTs	
  

③  Nonlinear	
  integral	
  equabons	
  (NLIEs)	
  

④  IR	
  and	
  UV	
  analysis	
  

⑤  Concluding	
  remarks	




Infrared	
  limit	


•  The	
  IR	
  lim.	
  is	
  the	
  large-­‐volume	
  lim.	
  where	
  the	
  g.s.	
  roots	
  exactly	
  form	
  the	
  
two-­‐strings.	
  	
  
•  Rapidity	
  of	
  b.b.s.	
  approaches	
  to	
  the	
  singular	
  point	
  of	
  BAE.	
  	
  
•  Compare	
  the	
  quanbzabon	
  condibons.	
  	
  

•  reflecbon	
  amplitudes	
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ECFT(L) = E(L)� (Ebulk + EB) = Eex(L) + EC(L),

Eex(L) =
1

2L
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eĥj � 1
2L

M+
C�

j=1

eĉj ,

EC(L) =
1

2�L
Im
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��
d�̂ e�̂ ln B̄+(�̂)

Ultraviolet	
  limit	


•  The	
  UV	
  limit	
  is	
  the	
  small	
  volume	
  limit	
  where	
  the	
  conformal	
  structure	
  
shows	
  up.	
  	
  
•  Conformal	
  dimensions	
  are	
  read	
  off	
  from	
  the	
  system-­‐size	
  dependence	
  of	
  
energy.	
  	
  

evaluated	
  from	
  NLIEs	




Evalua;on	
  of	
  energy	


•  NLIEs	
  in	
  vector	
  forms	
  

•  energy	
  

	


lb+(�̂) = G � lB+(�̂) + ig(�̂)

Rogers’	
  dilogarithm	
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Rogers’	
  dilogarithm	
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determines	
  the	
  NS/R	
  sector	
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Phase	
  separa;on	
  of	
  NS/R	
  sectors	


•  system-size	
  dependence	
  of	
  energy	
  	
  

•  conformal	
  dimension	


=3

ECFT(L) = � �

24L
(c� 24�), c =

3
2

Both	
  of	
  NS/R	
  sector	
  is	
  realized	
  under	
  Dirichlet	
  
boundaries.	
  	
  
	
  
Restricbon	
  on	
  the	
  winding	
  number	
  	
  
⇒	
  NS:	
  m	
  =	
  integer	
  
	
  	
  	
  	
  	
  	
  R	
  	
  :	
  m	
  =	
  half-­‐integer	
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+
1
16

�
1
2
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mod 2



Summary	


•  We	
  showed	
  the	
  complete	
  analysis	
  of	
  the	
  correspondence	
  between	
  the	
  
spin-­‐1	
  chain	
  and	
  the	
  SSG	
  model	
  with	
  boundary	
  magnebc	
  fields.	
  	
  
•  The	
  R	
  sector,	
  not	
  only	
  the	
  NS	
  sector	
  which	
  is	
  known	
  to	
  be	
  realized,	
  is	
  
obtained	
  as	
  well.	
  	
  

•  The	
  sector	
  separabon	
  depends	
  on	
  boundary	
  magnebc	
  fields.	
  	
  
⇒	
  What	
  exactly	
  is	
  these	
  fields	
  in	
  the	
  QFT?	
  	
  
•  We	
  analyzed	
  only	
  in	
  the	
  IR	
  and	
  the	
  UV	
  limits.	
  	
  
⇒	
  intermediate-­‐volume	
  analysis?	
  
•  How	
  R	
  sector	
  can	
  be	
  obtained	
  from	
  a	
  periodic	
  laRce?	
  
⇒	
  “supercharge”,	
  which	
  connects	
  even	
  and	
  odd	
  systems.	
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  you.	



