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Hervé Partouche

Ecole Polytechnique, Paris

In collaboration with Costas Kounnas and Alon Faraggi (arxiv:1410.6147)

20 June 2015

Lie theory and its applications in physics (LT-11)
Varna, 15 – 21 June 2015

1 / 27



Outline

1 Introduction

2 The class of models

3 Gauge coupling + Effective potential

4 Summary

2 / 27



Introduction

We want a theory : Realistic and analytically under control

Realistic

Gauge and gravitational interactions + matter content
⇒ String theory

In this talk, no cosmological issue ⇒ 4D flat backgrounds + 6
dimensional internal space.

Non supersymmetric: N = 1 susy is spontaneously broken at a low
scale (1 to 10 TeV) to solve hierarchy problem (Higgs mass
�MGUT ).
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Analytic control

In this talk, we want perturbation theory to be valid.

The 2D CFT on the worldsheet must be known enough to
compute quantum corrections.

In particular, the spontaneous N = 1→ N = 0 susy breaking
must be introduced at the string level. (Non perturbative gaugino

condensation could be considered but only at the level of the effective field

theory.)

The susy breaking scale is given by a characteristic size of the
internal space. For a single compact direction of radius R,

Msusy =
MPlanck

R
= O(10 TeV) =⇒ R ∼ 1015

[R. Rhom (84); C. Kounnas, Porrati, Ferrara, Zwirner (88),

C. Kounnas, B. Rostand (90), I. Antoniadis (91); ...]
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Problem

A full tower of light Kaluza-Klein states of masses n/R are charged
under the gauge group and contribute to the running gauge couplings.
In general, at 1–loop,

16π2

g2
YM(µ)

= k
16π2

g2
string

+ b log
M2

Planck

µ2
+ b

(π
3
R2 − logR2 +O(1)

)
b > 0 =⇒ gYM(µ)→ 0 : The theory is free.

b < 0 =⇒ gYM(µ)→∞ : The theory is non-perturbative.

This is the “decompactification problem”: low susy breaking scale
AND perturbation theory are hard to reconcile (for gauge,
gravitational, Yukawa couplings).

The problem is ubiquitous when one wants to interpret the internal
CFT as a geometrical space. This space must be “large” compared to
the Planck scale. E.g. Calabi-Yau compactifications, which lead to
N = 2 or N = 1 susy models.
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Idea

At 1–loop, the massive corrections to the gauge couplings are

∆ =

{
0 for N = 4

b
(π

3
R2 − logR2 +O(1)

)
for N = 2 .

Exception: When N = 2 is realized as a spontaneous breaking of
N = 4.
Msusy ∼MPlanck/R where R is a scalar with flat potential i.e.
arbitrary (modulus). For large R, N = 4 is recovered and ∆ is
expected to vanish. In fact,

∆ = b
(

− logR2 +O(1)
)

for N = 4→ N = 2 .

[E. Kiritsis, C. Kounnas, P.M. Petropoulos, Rizos (96)]

(This is non zero when charged states have masses cMsusy, with c < 1.)

6 / 27



Outline

1 Introduction

2 The class of models

3 Gauge coupling + Effective potential

4 Summary

7 / 27



The class of models

Heterotic string

A closed string theory, is defined by a choice of SCFT living on the
worldsheet. In heterotic string:

The holomorphic part is superconformal ⇒ 10 bosonic + 10
fermionic degrees of freedom.

The antiholomorphic part is conformal ⇒ 10+16 bosonic degrees
of freedom.

This leads to 4D Minkowski spacetime + 6D internal space, and
non-Abelian degrees of freedom.
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Free fermionic construction

In order to compute the 1–loop corrections to the gauge couplings, we
need the 1–loop partition function. In free fermionic construction :

Free SCFT on the worldsheet.

The bosonic d.o.f. are replaced by 2 Majorana-Weyl fermions.

A model is defined by a discrete choice of boundary conditions for
these worldsheet fermions along the closed string.

=⇒ Enormous number of models : Compact in any D, susy or not.

But discrete : In bosonic language, the radii of compactification
take fixed values O(1), e.g. R =

√
2.

[I. Antoniadis, C. Bachas, C. Kounnas, P. Windey (86);

A.E. Faraggi, C. Kounnas, C. Rizos (04); ...]
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Moduli deformation

However, we need Msusy ∝ MPlanck
R with R ∼ 1015 :

The SCFT admits marginal deformations.

We add operators on the worldsheet, whose effect is to deform the
continuous parameters that define the 6D compact space : Metric
Gij , antisymmetric tensor Bij and Wilson lines Y a

i .

These operators preserve the quadratic nature of the worldsheet
action in bosonic language : The partition function is exact.
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Compactification on torus T 6 =⇒ N = 4

Compactification on orbifold T 2 × T 4

Z2

=⇒ N = 2

Xi ≡ Xi + 2πRi for i = 4, 5, 6, 7, 8, 9
and
(X6, X7, X8, X9) ≡ (−X6,−X7,−X8,−X9)

The oscillating modes of the string living on this orbifold must be
invariant under the transformation X6,7,8,9 → −X6,7,8,9. This
reduces the number of d.o.f. from N = 4 to N = 2 multiplets.

The two ends of a closed string can also be identified up to this
transformation !

Xi(one string end) = −Xi(second string end)

=⇒ Untwisted sector (H = 0) and Twisted sector (H = 1).

Same thing for the quantum loop :
Closed in the usual sense (G = 0) or up to the twist (G = 1).

[L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten (85)]
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Compactification on orbifold
T 6

Z2 × Z2

=⇒ N = 1

Z(1)
2 : (X4, X5, X6, X7, X8, X9) −→ (X4, X5,−X6,−X7,−X8,−X9)

Z(2)
2 : (X4, X5, X6, X7, X8, X9) −→ (−X4,−X5, X6, X7,−X8,−X9)

The product fixes the third T 2 :

(X4, X5, X6, X7, X8, X9) −→ (−X4,−X5,−X6,−X7, X8, X9)

Three N = 2 sectors :

H2 = G2 = 0 (with H1, G1 arbitrary) ⇒ ∆ large when 1st T 2 is
large.

Same thing for H1 = G1 = 0, with the 2d T 2.

Same thing with H1 +H2 = G1 +G2 = 0, with the 3rd T 2.
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With a spontaneous breaking N = 4→ N = 2

Changing the action of Z(1)
2 for the breaking N = 4→ N = 2 to be

spontaneous, the 1st 2-torus large will be allowed to be large.

This is done by making free the action of Z(1)
2 :

(X4, X5, X6, X7, X8, X9) −→ (X4, X5 + πR5,−X6,−X7,−X8,−X9)

In the non-freely acting case, 2 gravitini remain massless and 2 are
projected out.

In the freely acting case, 2 gravitini remain massless, 2 are
projected out and 2 new arise from the twisted sector H1 = 1,
with masses M3/2 = MPlanck

R5
.

R5 →∞ =⇒ N = 4 recovered.
R5 → 0 =⇒ the 2 new gravitini decouple : the non-free case is
recovered.
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Spontaneous breaking N = 1→ N = 0

Implemented via a Scherk-Schwarz mechanism upgraded to string
theory. In field theory :

In 4D + 1 circle, a space-time field

φ(xµ, x4) =
∑
m

φm(xµ) e
im x4

R4 =⇒ �5 ≡ �4 + ∂2
4 = �4 +

(
m

R4

)2

leads to a massless state in 4D (m = 0) + a tower of massive
Kaluza-Klein states (m 6= 0).

If fermionic, we are free to impose instead antiperiodicity : m+ 1
2 .

All 4D modes have now masses ≥ MPlanck
2R4

.

Susy is broken, Msusy = O
(
MPlanck
R4

)
, where R4 is arbitrary (it is a

scalar with flat potential).

The models with spontaneous breaking N = 1→ N = 0 and Msusy

arbitrary are no-scale models. N = 1 is recovered when R4 →∞
and we want R4 ∼ 1015. [E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos (83);

J. Ellis, A.B. Lahanas, K. Tamvakis (84); ...]
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Partition function

For a = 0 (bosons) and a = 1 (fermions), the KK tower contributes as
a dressing ∑

m

e
− `

2

(
m+a2
R4

)
= 2R4

(π
`

) 1
2
∑
m̃

e−
(2πR4)

2

`
m̃2

(−1)am̃

In string theory, the boundary condition (−1)am̃ becomes
(−1)am̃+bn+m̃n, where

n is the winding number (the string can wrap the periodic
direction 4). b = 0, 1 implements a “GSO projection” needed for
consistency (e.g. spin/statistics).

It is convenient to define n = 2N + h and m̃ = 2M̃ + g, where h
and h are 0 or 1

=⇒ (−1)am̃+bn+m̃n = (−1)ag+bh+gh

The sector h = g = 0 is supersymmetric.

We can use (anti-)periodic B.C. up to any symmetry : Use the
conserved charge a+Q i.e. fermionic number + any other charge.
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String partition function

Essentially, its structure is:

Z =
1

2

∑
H1,G1

1

2

∑
H2,G2

1

2

∑
h,g

(−1)ag+bh+gh

1

2

∑
a,b

(−1)a+b+ab θ[
a
b ]

η

θ[a+H2
b+G2

]

η

θ[a+H1
b+G1

]

η

θ[a−H1−H2
b−G1−G2

]

η

ZMinkow Z4,5

[
h,H1

g, G1

∣∣∣H2
G2

]
Z6,7

[
H1
G1

]
Z8,9

[
H1+H2
G1+G2

]
Zgauge

[
h,H1, H2

g, G1, G2

]
,

H1, G1 =⇒ N = 4→ N = 2

H2, G2 =⇒ N = 1

h, g =⇒ N = 1→ N = 0

2d line : Organizes the states in N = 1 multiplets (a = 0 for
bosons, a = 1 for fermions).
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Z =
1

2

∑
H1,G1

1

2

∑
H2,G2

1

2

∑
h,g

(−1)ag+bh+gh

1

2

∑
a,b

(−1)a+b+ab θ[
a
b ]

η

θ[a+H2
b+G2

]

η

θ[a+H1
b+G1

]

η

θ[a−H1−H2
b−G1−G2

]

η

ZMinkow Z4,5

[
h,H1

g, G1

∣∣∣H2
G2

]
Z6,7

[
H1
G1

]
Z8,9

[
H1+H2
G1+G2

]
Zgauge

[
h,H1, H2

g, G1, G2

]
,

3rd line : spacetime bosons + gauge d.o.f. + 3 twisted T 2’s.
The first one also used to implement the spontaneous breaking
N = 4→ N = 2 (direction 5) and N = 1→ N = 0 (direction 4).

Z4,5, Z6,7, Z8,9 depend on moduli of each tori.

Redefine moduli T and U for the large 2-torus (the 1st) :

Gij =
ImT

ImU

(
1 ReU

ReU |U |2
)
, Bij = ReT

(
0 1
−1 0

)
, i, j = 4, 5

ImT is the large volume of the 2-torus and U parametrizes its
shape. 17 / 27
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Gauge coupling + Effective potential

1–loop gauge couplings

For a gauge group factor G,
16π2

g2
YM(µ)

= k
16π2

g2
string

+ b log
M2

Planck

µ2
+ ∆

∆ =

∫
F

d2τ

τ2

(
Q(v)

(
P2(w̄)− k

4πτ2

)
τ2 Z(v, w̄)− b

)∣∣∣∣∣
v=w̄=0

+b log
2 e1−γ

π
√

27

Z(v, w̄) is the refined partition function, on which

Q(v) (helicity operator) acts as a derivative operator on the
holomorphic part.

P(w̄) (the charge operator of G) acts on the antiholomorphic part.
[Kaplunovsky (88); Dixon, Louis (91); Antoniadis, Narain, Taylor (91); Kiritsis, Kounnas (95), ...]

1–loop effective potential

V = − 1

(2π)4

∫
F

d2τ

2τ2
2

Z|v=w̄=0
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Sector (H2, G2) = (0, 0)

Only the first Z2 (N = 4→ N = 2) and spontaneous breaking to
N = 0.

Sector A: (H1, G1) = (0, 0), (h, g) = (0, 0)

N = 4 susy is preserved =⇒ ∆A = VA = 0.

Sector B: (H1, G1) = (0, 0), (h, g) 6= (0, 0)

We have N = 4→ N = 0

∆B = −bB
4

log

(
π2

4

∣∣θ2(U)
∣∣4 ImT ImU

)
+O

(
1√

ImT

)
The KK states along the large 2-torus dominate. The modes of
masses O(MPlanck) are exponentially suppressed (

√
ImT ∼ 1015).

VB = −nbosons − nfermions

64π7

1

( ImT )2
E(U | 3) +O

(
e−c
√

ImT
)

where E(U| s) =
∑

m̃1,m̃2

(ImU)s

|m̃1+ 1
2
+m̃2U|2s

is a “shifted real analytic Eisenstein series”.
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Sector C: (H1, G1) 6= (0, 0), (h, g) = (0, 0)

We have N = 4→ N = 2 =⇒ VC = 0

∆C = −bC
4

log

(
π2

4

∣∣θ4(U)
∣∣4 ImT ImU

)
+O

(
1√

ImT

)
Sector D: (H1, G1) 6= (0, 0), (h, g) = (H1, G1)

In this sector, another N = 2′ supersymmetry is realized :
N = 4→ N = 2′ =⇒ VD = 0

∆D = −bD
4

log

(
π2

4

∣∣θ3(U)
∣∣4 ImT ImU

)
+O

(
1√

ImT

)

Sector E:
∣∣h H1
g G1

∣∣ 6= 0

In this sector, N = 2→ N = 0 and N = 2′ → N = 0′.

(h,H1) 6= (0, 0) =⇒ the winding numbers around the large
2-torus are non-zero (n4 = 2N4 + h, n5 = 2N5 +H1).

Super massive strings =⇒ exponentially suppressed contributions.
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Sectors (H2, G2) 6= (0, 0)

2d generator : (X4, X5, X6, X7, X8, X9) −→ (−X4,−X5, X6, X7,−X8,−X9)

1st × 2d : (X4, X5, X6, X7, X8, X9) −→ (−X4,−X5,−X6,−X7, X8, X9)

The first (and large) 2-torus is twisted.

In these sectors, there is no dependance in the moduli T,U .

∂X4,5 = constant mode + oscillating modes

where the constant mode contains the dependance on the shape
and volume. There are none here.

=⇒ At tree level, these sectors are independent of Msusy and are
supersymmetric. Susy is broken by gauge and gravitational
interactions with the non susy states in quantum loops.

However, these sectors depend either on T2, U2 or T3, U3. These
moduli must be close to 1 to not introduce the decompactification
problem back.
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For these sectors I = 2, 3 :

∆I =
bI
2

∆(TI , UI)−
k

2
Y (TI , UI)

where

∆(TI , UI) = − log
(

4π2
∣∣η(TI)

∣∣4 ∣∣η(UI)
∣∣4 ImTI ImUI

)
,

Y (TI , UI) =
1

12

∫
F

d2τ

τ2
Γ2,2(TI , UI)

[(
Ē2 −

3

πτ2

)Ē4Ē6

η̄24
− ̄+ 1008

]
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Summary

Effective potential

In total, we have

one N = 4→ N = 0 sector B, which contributes

4 susy sectors C, D, I = 2, 3

all other sectors are exponentially suppressed, O(e−c
√

ImT ).

V = VB ∝
1

( ImT )2
∝M4

susy

No M4
Planck correction : The cosmological constant is not of order

the Planck scale. Because N = 1→ N = 0.

No M2
susyM

2
Planck because with one freely acting Z2, the

N = 2→ N = 0 sectors are exponentially suppressed.
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Gauge couplings

Define moduli-dependent scales appearing in the ∆’s

MB

MPlanck
=
(∣∣θ2(U)

∣∣4 ImT ImU
)− 1

2 ∼ 10−15

MC

MPlanck
=
(∣∣θ4(U)

∣∣4 ImT ImU
)− 1

2 ∼ 10−15

MD

MPlanck
=
(∣∣θ3(U)

∣∣4 ImT ImU
)− 1

2 ∼ 10−15

MI

MPlanck
=
(

16
∣∣η(TI)|4

∣∣η(UI)|4 ImTI ImUI

)− 1
2 ∼ 1 , I = 2, 3
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16π2

g2YM(µ)
= k

(
16π2

g2string
− 1

2
Y (T2, U2)− 1

2
Y (T3, U3)

)

− bB
4

log

(
µ2

µ2 +M2
B

)
− bC

4
log

(
µ2

µ2 +M2
C

)
− bD

4
log

(
µ2

µ2 +M2
D

)

− b2
2

log

(
µ2

M2
2

)
− b3

2
log

(
µ2

M2
3

)
+O

(
1√

ImT

)

Written this way, for µ ≥MB,C,D the sector B,C,D decouples.

This expression is valid up to the Planck scale, µ ≤MPlanck.

It is universal, up to k and the β-function coeff.in each sectors

bB = −8

3
{C(AB)− C(RB)} b2 = −2 {C(A2)− C(R2)}

bC = −2 {C(AC)− C(RC)} b3 = −2 {C(A3)− C(R3)}
bD = −2 {C(AD)− C(RD)} where C(R)δab = Tr(TaT b)
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