

Thermoelectric characteristics of \mathbb{Z}_k parafermion Coulomb islands

Lachezar S. Georgiev

Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences (since 1869)

20 June 2015, Varna

L. Georgiev [INRNE-BAS Sofia]

Support: AvH, INRNE-BAS, NCSR-BG, ESF

OUTLINE

OUTLINE

- Non-Abelian anyons and topological QC

OUTLINE

- **Non-Abelian anyons and topological QC**

What is non-Abelian statistics?

OUTLINE

- **Non-Abelian anyons and topological QC**

- 👉 What is non-Abelian statistics?
- 👉 Why is it interesting?

OUTLINE

- **Non-Abelian anyons and topological QC**

- 👉 What is non-Abelian statistics?
- 👉 Why is it interesting?
- 👉 How can it be discovered?

OUTLINE

- **Non-Abelian anyons and topological QC**
 - 👉 What is non-Abelian statistics?
 - 👉 Why is it interesting?
 - 👉 How can it be discovered?
- **Coulomb island spectroscopy**

OUTLINE

- **Non-Abelian anyons and topological QC**

- 👉 What is non-Abelian statistics?
- 👉 Why is it interesting?
- 👉 How can it be discovered?

- **Coulomb island spectroscopy**

- 👉 Coulomb island's conductance–CFT approach

OUTLINE

- **Non-Abelian anyons and topological QC**

- 👉 What is non-Abelian statistics?
- 👉 Why is it interesting?
- 👉 How can it be discovered?

- **Coulomb island spectroscopy**

- 👉 Coulomb island's conductance–CFT approach
- 👉 Aharonov–Bohm flux and side-gate voltage

OUTLINE

- **Non-Abelian anyons and topological QC**

- 👉 What is non-Abelian statistics?
- 👉 Why is it interesting?
- 👉 How can it be discovered?

- **Coulomb island spectroscopy**

- 👉 Coulomb island's conductance–CFT approach
- 👉 Aharonov–Bohm flux and side-gate voltage
- 👉 Difficulties

OUTLINE

- **Non-Abelian anyons and topological QC**

- 👉 What is non-Abelian statistics?
- 👉 Why is it interesting?
- 👉 How can it be discovered?

- **Coulomb island spectroscopy**

- 👉 Coulomb island's conductance–CFT approach
- 👉 Aharonov–Bohm flux and side-gate voltage
- 👉 Difficulties

- **Thermopower: a finer spectroscopic tool**

- **Thermopower: a finer spectroscopic tool**

Average tunneling energy from edge states' CFT

- **Thermopower: a finer spectroscopic tool**

- ☞ Average tunneling energy from edge states' CFT
- ☞ \mathbb{Z}_k parafermion quantum Hall islands

- **Thermopower: a finer spectroscopic tool**

- 👉 Average tunneling energy from edge states' CFT
- 👉 \mathbb{Z}_k parafermion quantum Hall islands
- 👉 Thermoelectric power factor—the ultimate tool

- **Thermopower: a finer spectroscopic tool**

- 👉 Average tunneling energy from edge states' CFT
- 👉 \mathbb{Z}_k parafermion quantum Hall islands
- 👉 Thermoelectric power factor—the ultimate tool
- 👉 (Non-Abelian) Fibonacci anyons in $\nu_H = 12/5$ quantum Hall state: Y/N?

- **Thermopower: a finer spectroscopic tool**

- 👉 Average tunneling energy from edge states' CFT
- 👉 \mathbb{Z}_k parafermion quantum Hall islands
- 👉 Thermoelectric power factor—the ultimate tool
- 👉 (Non-Abelian) Fibonacci anyons in $\nu_H = 12/5$ quantum Hall state: Y/N?

Non-Abelian anyons and topological QC

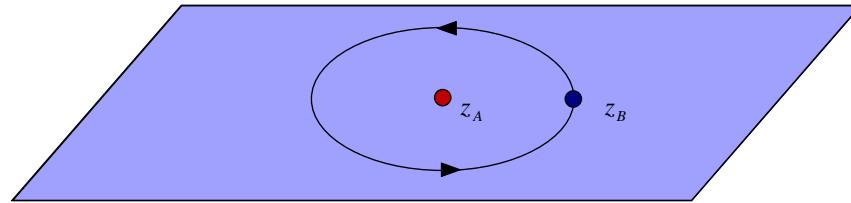
- **What is non-Abelian statistics?**

Non-Abelian anyons and topological QC

- **What is non-Abelian statistics?**

Distinguishable particles

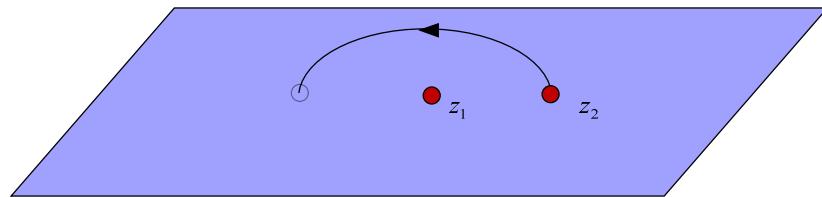
$$\langle \cdots \psi_A(z_A) \psi_B(z_B) \cdots \rangle \rightarrow e^{i2\theta_{AB}} \langle \cdots \psi_A(z_A) \psi_B(z_B) \cdots \rangle$$



where θ_{AB} is called the mutual statistical phase,

Indistinguishable particles: statistical angle θ_A/π

$$\langle \cdots \psi_A(z_1) \psi_A(z_2) \cdots \rangle \rightarrow \langle \cdots \psi_A(z_2) \psi_A(z_1) \cdots \rangle = e^{i\pi(\theta_A/\pi)} \langle \cdots \psi_A(z_1) \psi_A(z_2) \cdots \rangle$$



3D: only $\theta_A/\pi = 0$ (bosons) and $\theta_A/\pi = 1$ (fermions)

2D: Laughlin anyons $\theta_L/\pi = 1/3$

“bos-ons”	“any-ons”	“fermi-ons”
$\theta_A/\pi = 0$	$0 < \theta_A/\pi < 1$	$\theta_A/\pi = 0$

$SO(3)$ has a compact simply connected covering group $SU(2) \rightarrow$ any 4π -rotation is $\simeq \mathbb{I} \Rightarrow U(2\pi) = e^{-2\pi i J} = \pm \mathbb{I} \Rightarrow \theta/\pi = 2J = 0$ or $1 \bmod 2$.

$SO(2)$ does not have \Rightarrow NO fermion-boson alternative.

- **Construction of n -particle states:**

3D: representations of S_n (symmetric for bosons, antisymmetric for fermions)

- **Construction of n -particle states:**

3D: representations of S_n (symmetric for bosons, antisymmetric for fermions)

2D: representations of B_n .

Recall that S_n can be generated by σ_i , $1 \leq i \leq n - 1$,

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i - j| \geq 2$$

(disjoint transpositions commute) and

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad (\sigma_i)^2 = \mathbb{I}.$$

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
($B_i^{-1} \neq B_i$) *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
($B_i^{-1} \neq B_i$) *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

non-Abelian anyons: $\dim \text{IR}(\mathcal{B}_n) > 1$

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
($B_i^{-1} \neq B_i$) *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

non-Abelian anyons: $\dim \text{IR}(\mathcal{B}_n) > 1$

degenerate multiplet

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
($B_i^{-1} \neq B_i$) *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

non-Abelian anyons: $\dim \text{IR}(\mathcal{B}_n) > 1$

degenerate multiplet $\Rightarrow e^{i\theta_A}$ non-trivial matrix

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
 $(B_i^{-1} \neq B_i)$ *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

non-Abelian anyons: $\dim \text{IR}(\mathcal{B}_n) > 1$

degenerate multiplet $\Rightarrow e^{i\theta_A}$ non-trivial matrix

Non-Abelian!

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
 $(B_i^{-1} \neq B_i)$ *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

non-Abelian anyons: $\dim \text{IR}(\mathcal{B}_n) > 1$

degenerate multiplet $\Rightarrow e^{i\theta_A}$ non-trivial matrix

Non-Abelian!

- **Fusion paths: labeling anyonic states of matter**

\mathcal{B}_n : generated by B_i , $1 \leq i \leq n - 1$, and their inverses
 $(B_i^{-1} \neq B_i)$ *Artin relations*

$$B_i B_j = B_j B_i, \quad \text{for } |i - j| \geq 2$$

$$B_i B_{i+1} B_i = B_{i+1} B_i B_{i+1}, \quad i = 1, \dots, n-1.$$

non-Abelian anyons: $\dim \text{IR}(\mathcal{B}_n) > 1$

degenerate multiplet $\Rightarrow e^{i\theta_A}$ non-trivial matrix

Non-Abelian!

- **Fusion paths: labeling anyonic states of matter**
 states with many non-Abelian anyons **at fixed positions**:

specify the positions and q.n.s, (el. charge, single-particle energies and angular momenta)

specify the positions and q.n.s, (el. charge, single-particle energies and angular momenta) **NOT enough!**

specify the positions and q.n.s, (el. charge, single-particle energies and angular momenta) **NOT enough!**

More information is needed!

specify the positions and q.n.s, (el. charge, single-particle energies and angular momenta) **NOT enough!**

More information is needed!

Fusion channels:

$$\Psi_a \times \Psi_b = \sum_{c=1}^g N_{ab}^c \Psi_c, \quad (N_{ab})^c \text{ (symmetric and associative)}$$

non-Abelian anyons: $N_{ab}^c \neq 0$ for more than one c .

specify the positions and q.n.s, (el. charge, single-particle energies and angular momenta) **NOT enough!**

More information is needed!

Fusion channels:

$$\Psi_a \times \Psi_b = \sum_{c=1}^g N_{ab}^c \Psi_c, \quad (N_{ab})^c \text{ (symmetric and associative)}$$

non-Abelian anyons: $N_{ab}^c \neq 0$ for more than one c .

Example: Ising anyons: $\Psi_I(z) = \sigma(z) : e^{i \frac{1}{2\sqrt{2}} \phi(z)} :$

$$\sigma \times \sigma = \mathbb{I} + \psi.$$

Information encoding

Information encoding into the fusion channels

$$|0\rangle = (\sigma, \sigma)_{\mathbb{I}} \quad \longleftrightarrow \quad \sigma \times \sigma \rightarrow \mathbb{I}$$

$$|1\rangle = (\sigma, \sigma)_{\psi} \quad \longleftrightarrow \quad \sigma \times \sigma \rightarrow \psi.$$

topological quantity—it is independent of the fusion process details depending only on the topology

non-local – the fusion channel is independent of the anyon separation and is preserved

robust and persistent—if we fuse two particles and then split them again, their fusion channel does not change.

Information encoding into the fusion channels

$$|0\rangle = (\sigma, \sigma)_{\mathbb{I}} \quad \longleftrightarrow \quad \sigma \times \sigma \rightarrow \mathbb{I}$$

$$|1\rangle = (\sigma, \sigma)_{\psi} \quad \longleftrightarrow \quad \sigma \times \sigma \rightarrow \psi.$$

topological quantity—it is independent of the fusion process details depending only on the topology

non-local – the fusion channel is independent of the anyon separation and is preserved

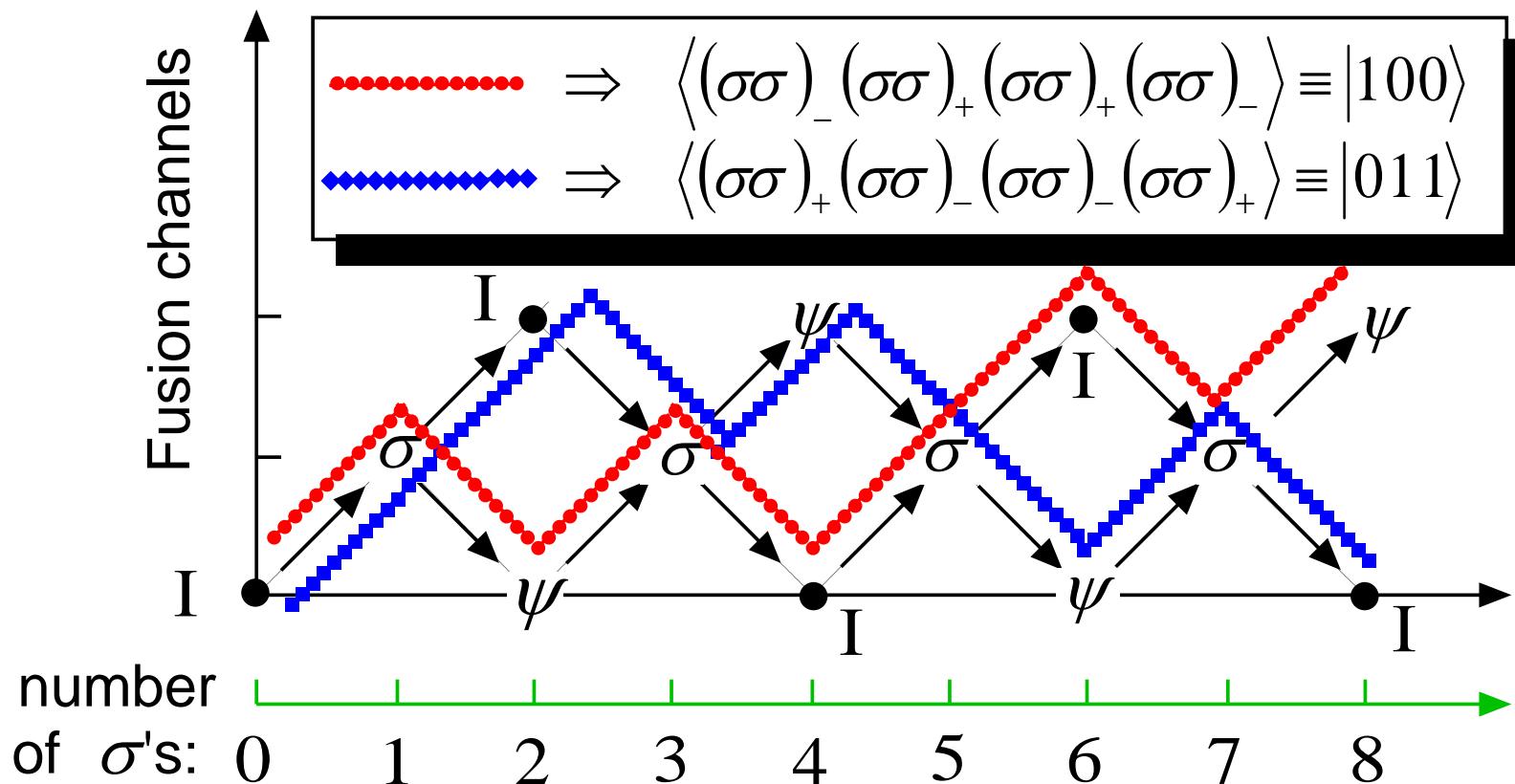
robust and persistent—if we fuse two particles and then split them again, their fusion channel does not change.

Fusion paths: concatenation of fusion channels in Bratteli diagrams

Fusion paths: concatenation of fusion channels in Bratteli diagrams

Message to be remembered:

quantum states with many non-Abelian anyons are specified/labeled by fusion paths



non-Abelian statistics (illustration): 8 Ising anyons

$$\begin{aligned}
 |000\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_+ [\sigma(\eta_3)\sigma(\eta_4)]_+ [\sigma(\eta_5)\sigma(\eta_6)]_+ [\sigma(\eta_7)\sigma(\eta_8)]_+ \rangle \\
 |001\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_+ [\sigma(\eta_3)\sigma(\eta_4)]_+ [\sigma(\eta_5)\sigma(\eta_6)]_- [\sigma(\eta_7)\sigma(\eta_8)]_- \rangle \\
 |010\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_+ [\sigma(\eta_3)\sigma(\eta_4)]_- [\sigma(\eta_5)\sigma(\eta_6)]_+ [\sigma(\eta_7)\sigma(\eta_8)]_- \rangle \\
 |011\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_+ [\sigma(\eta_3)\sigma(\eta_4)]_- [\sigma(\eta_5)\sigma(\eta_6)]_- [\sigma(\eta_7)\sigma(\eta_8)]_+ \rangle \\
 |100\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_- [\sigma(\eta_3)\sigma(\eta_4)]_+ [\sigma(\eta_5)\sigma(\eta_6)]_+ [\sigma(\eta_7)\sigma(\eta_8)]_- \rangle \\
 |101\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_- [\sigma(\eta_3)\sigma(\eta_4)]_+ [\sigma(\eta_5)\sigma(\eta_6)]_- [\sigma(\eta_7)\sigma(\eta_8)]_+ \rangle \\
 |110\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_- [\sigma(\eta_3)\sigma(\eta_4)]_- [\sigma(\eta_5)\sigma(\eta_6)]_+ [\sigma(\eta_7)\sigma(\eta_8)]_+ \rangle \\
 |111\rangle &\equiv \langle [\sigma(\eta_1)\sigma(\eta_2)]_- [\sigma(\eta_3)\sigma(\eta_4)]_- [\sigma(\eta_5)\sigma(\eta_6)]_- [\sigma(\eta_7)\sigma(\eta_8)]_- \rangle
 \end{aligned}$$

Transport adiabatically η_7 around η_6 (complete loop)

Transport adiabatically η_7 around η_6 (complete loop)
 ↗ L.G., J. Phys. A: Math. Theor. 42 (2009) 225203

$$\left(B_6^{(8,+)} \right)^2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

- **Why is non-Abelian statistics interesting?**

- **Why is non-Abelian statistics interesting?** New fundamental concept in 2D particle physics

Quantum information language:

- **Why is non-Abelian statistics interesting?** **New fundamental concept** in 2D particle physics

Quantum information language: 8 ising anyons = 3 qubits;

- **Why is non-Abelian statistics interesting?** New fundamental concept in 2D particle physics

Quantum information language: 8 ising anyons = 3 qubits; NOT gate on the third qubit, i.e., $(B_6^{(8,+)})^2 = X_3 = \mathbb{I}_2 \otimes \mathbb{I}_2 \otimes X$.

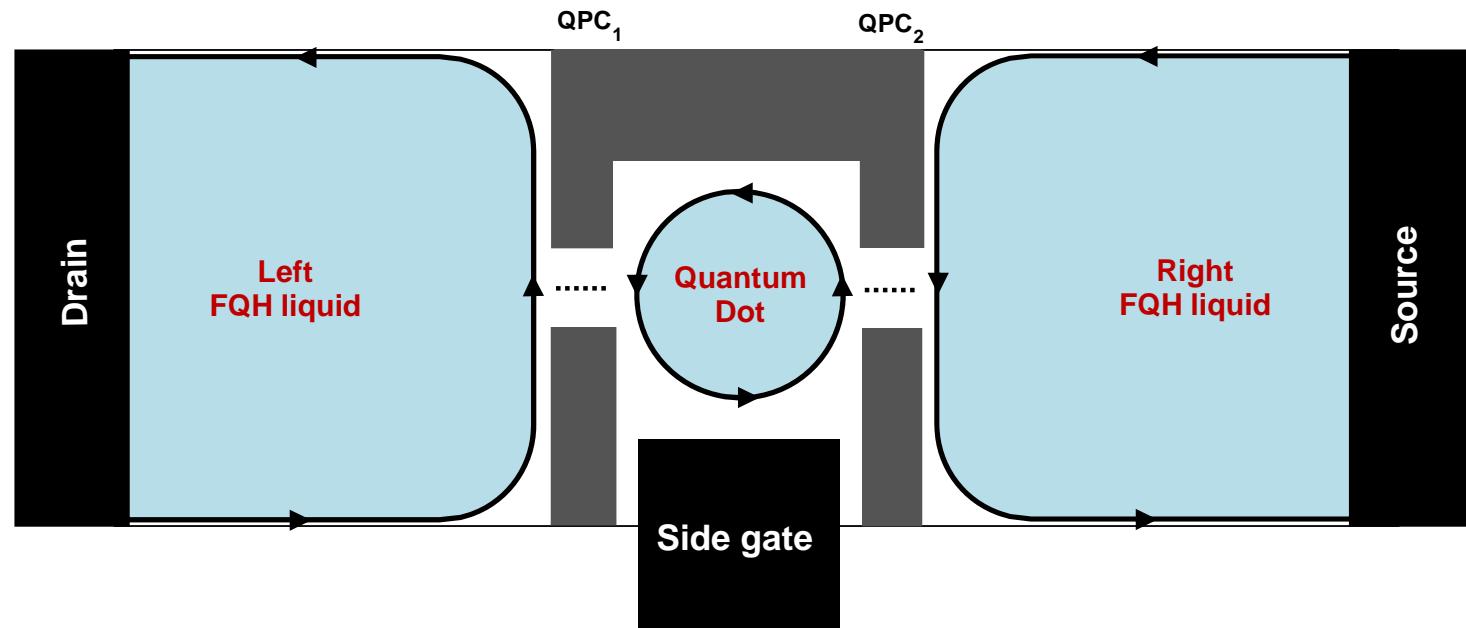
- **How can non-Abelian statistics be discovered?**

- **Why is non-Abelian statistics interesting?** **New fundamental concept** in 2D particle physics

Quantum information language: 8 ising anyons = 3 qubits; NOT gate on the third qubit, i.e., $(B_6^{(8,+)})^2 = X_3 = \mathbb{I}_2 \otimes \mathbb{I}_2 \otimes X$.

- **How can non-Abelian statistics be discovered?**
Coulomb-blockade conductance spectrometry

Coulomb-blockaded island: QD+gates=SET



- **Almost closed quantum system**

- **Almost closed quantum system**
- **Still discrete** energy levels

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)
- **highly tunable: AB flux and gate voltage**

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)
- **highly tunable: AB flux and gate voltage**
- **still purely a quantum system! (first approx.)**

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)
- **highly tunable: AB flux and gate voltage**
- **still purely a quantum system! (first approx.)**
- **tunneling conductance spectrometry – linear response**

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)
- **highly tunable: AB flux and gate voltage**
- **still purely a quantum system! (first approx.)**
- **tunneling conductance spectrometry – linear response**
- **Verify fundamental concepts of quantum theory**

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)
- **highly tunable: AB flux and gate voltage**
- **still purely a quantum system! (first approx.)**
- **tunneling conductance spectrometry – linear response**

- **Verify fundamental concepts of quantum theory**
- **Topological Quantum Computation**

- **Almost closed quantum system**
- **Still discrete** energy levels
- **large artificial atom** (1000 times bigger)
- **highly tunable: AB flux and gate voltage**
- **still purely a quantum system! (first approx.)**
- **tunneling conductance spectrometry – linear response**

- **Verify fundamental concepts of quantum theory**
- **Topological Quantum Computation**

Coulomb island's conductance–CFT approach

- **Grand canonical disk FQH partition function:**
inert bulk + mobile edge \Rightarrow rational unitary CFT

Coulomb island's conductance–CFT approach

- **Grand canonical disk FQH partition function:**
inert bulk + mobile edge \Rightarrow rational unitary CFT

$$\begin{aligned} Z_{\text{disk}}(\tau, \xi) &= \text{tr}_{\mathcal{H}_{\text{edge}}} e^{-\beta(H-\mu N)} \\ &= \text{tr}_{\mathcal{H}_{\text{edge}}} e^{2\pi i \tau (L_0 - c/24)} e^{2\pi i \xi J_0}, \end{aligned}$$

$H = \hbar \frac{2\pi v_F}{L} \left(L_0 - \frac{c}{24} \right)$, $N = -\sqrt{v_H} J_0$, v_H = FQH filling factor

$\mathcal{H}_{\text{edge}}$ = edge-states' Hilbert space with bulk quasiparticles

Coulomb island's conductance–CFT approach

- **Grand canonical disk FQH partition function:**
inert bulk + mobile edge \Rightarrow rational unitary CFT

$$\begin{aligned} Z_{\text{disk}}(\tau, \xi) &= \text{tr}_{\mathcal{H}_{\text{edge}}} e^{-\beta(H-\mu N)} \\ &= \text{tr}_{\mathcal{H}_{\text{edge}}} e^{2\pi i \tau(L_0 - c/24)} e^{2\pi i \xi J_0}, \end{aligned}$$

$H = \hbar \frac{2\pi v_F}{L} \left(L_0 - \frac{c}{24} \right)$, $N = -\sqrt{v_H} J_0$, v_H = FQH filling factor

$\mathcal{H}_{\text{edge}}$ = edge-states' Hilbert space with bulk quasiparticles

$$\text{Mod. param.: } \tau = i\pi \frac{T_0}{T}, \quad T_0 = \frac{\hbar v_F}{\pi k_B L}, \quad \zeta = i \frac{\mu}{2\pi k_B T}$$

$$\text{Mod. param.: } \tau = i\pi \frac{T_0}{T}, \quad T_0 = \frac{\hbar v_F}{\pi k_B L}, \quad \xi = i \frac{\mu}{2\pi k_B T}$$

- **CFT disk partition function in presence of AB flux:**
 - ☞ [L.G., Nucl. Phys. B 707 (2005) 347]

$$\xi \rightarrow \xi + \phi\tau, \quad Z_{\text{disk}}^\phi(\tau, \xi) = Z_{\text{disk}}(\tau, \xi + \phi\tau),$$

$$\text{Mod. param.: } \tau = i\pi \frac{T_0}{T}, \quad T_0 = \frac{\hbar v_F}{\pi k_B L}, \quad \xi = i \frac{\mu}{2\pi k_B T}$$

- **CFT disk partition function in presence of AB flux:**
 - ☞ [L.G., Nucl. Phys. B 707 (2005) 347]

$$\xi \rightarrow \xi + \phi\tau, \quad Z_{\text{disk}}^\phi(\tau, \xi) = Z_{\text{disk}}(\tau, \xi + \phi\tau),$$

- **Gate voltage:** affecting QD in the same way as the AB flux \Rightarrow through the externally induced electric charge on QD (continuous) $-C_g V_g/e \equiv \nu_H \phi = Q_{\text{ext}}$

$$\text{Mod. param.: } \tau = i\pi \frac{T_0}{T}, \quad T_0 = \frac{\hbar v_F}{\pi k_B L}, \quad \xi = i \frac{\mu}{2\pi k_B T}$$

- **CFT disk partition function in presence of AB flux:**
 - ☞ [L.G., Nucl. Phys. B 707 (2005) 347]

$$\xi \rightarrow \xi + \phi\tau, \quad Z_{\text{disk}}^\phi(\tau, \xi) = Z_{\text{disk}}(\tau, \xi + \phi\tau),$$

- **Gate voltage:** affecting QD in the same way as the AB flux \Rightarrow through the externally induced electric charge on QD (continuous) $-C_g V_g/e \equiv \nu_H \phi = Q_{\text{ext}}$
- **Grand potential (edge):** $\Omega(T, \mu) = -k_B T \ln Z_{\text{disk}}(\tau, \xi)$

$$\text{Mod. param.: } \tau = i\pi \frac{T_0}{T}, \quad T_0 = \frac{\hbar v_F}{\pi k_B L}, \quad \xi = i \frac{\mu}{2\pi k_B T}$$

- **CFT disk partition function in presence of AB flux:**
 - ☞ [L.G., Nucl. Phys. B 707 (2005) 347]

$$\xi \rightarrow \xi + \phi\tau, \quad Z_{\text{disk}}^\phi(\tau, \xi) = Z_{\text{disk}}(\tau, \xi + \phi\tau),$$

- **Gate voltage:** affecting QD in the same way as the AB flux \Rightarrow through the externally induced electric charge on QD (continuous) $-C_g V_g/e \equiv \nu_H \phi = Q_{\text{ext}}$
- **Grand potential (edge):** $\Omega(T, \mu) = -k_B T \ln Z_{\text{disk}}(\tau, \xi)$

- **Electron number** [L.G., EPL 91 (2010) 41001]

$$\begin{aligned}\langle N_{\text{el}}(\phi) \rangle_{\beta, \mu_N} &= -\frac{\partial \Omega_\phi(\beta, \mu_N)}{\partial \phi} + \nu_H \phi + \nu_H \left(\frac{\mu_N}{\Delta \epsilon} \right) \\ &= \nu_H \left(\phi + \frac{\mu_N}{\Delta \epsilon} \right) + \frac{1}{2\pi^2} \left(\frac{T}{T_0} \right) \frac{\partial}{\partial \phi} \ln Z_\phi(T, \mu_N)\end{aligned}$$

- **Electron number** [L.G., EPL 91 (2010) 41001]

$$\begin{aligned}
 \langle N_{\text{el}}(\phi) \rangle_{\beta, \mu_N} &= -\frac{\partial \Omega_\phi(\beta, \mu_N)}{\partial \phi} + \nu_H \phi + \nu_H \left(\frac{\mu_N}{\Delta \epsilon} \right) \\
 &= \nu_H \left(\phi + \frac{\mu_N}{\Delta \epsilon} \right) + \frac{1}{2\pi^2} \left(\frac{T}{T_0} \right) \frac{\partial}{\partial \phi} \ln Z_\phi(T, \mu_N)
 \end{aligned}$$

- **Edge conductance** [L.G., EPL 91 (2010) 41001]

$$G_{\text{is}}(\phi) = \frac{e^2}{h} \left(\nu_H + \frac{1}{2\pi^2} \left(\frac{T}{T_0} \right) \frac{\partial^2}{\partial \phi^2} \ln Z_\phi(T, 0) \right).$$

- **Difficulties:**

- **Difficulties:**

- (i) extreme conditions (B , T) over expensive samples
- (ii) many doppelgangers (look-alike models)
- (iii) differences in the nuclear sector

- **Difficulties:**

- (i) extreme conditions (B , T) over expensive samples
- (ii) many doppelgangers (look-alike models)
- (iii) differences in the nuclear sector G not sensitive

Thermopower: a finer spectroscopic tool

- **Seebeck coefficient:** potential difference V between the leads of the SET when $\Delta T = T_R - T_L \ll T_L$, under the condition that $I = 0$

Thermopower: a finer spectroscopic tool

- **Seebeck coefficient:** potential difference V between the leads of the SET when $\Delta T = T_R - T_L \ll T_L$, under the condition that $I = 0$

Usually $S = G_T/G$, where G and G_T are electric and thermal conductances, respectively.

Thermopower: a finer spectroscopic tool

- **Seebeck coefficient:** potential difference V between the leads of the SET when $\Delta T = T_R - T_L \ll T_L$, under the condition that $I = 0$

Usually $S = G_T/G$, where G and G_T are electric and thermal conductances, respectively. However,

$$S \equiv - \lim_{\Delta T \rightarrow 0} \frac{V}{\Delta T} \Big|_{I=0} = -\frac{\langle \varepsilon \rangle}{eT}, \quad \langle \varepsilon \rangle = \text{av. tun. energy}$$

is better for SET as $G_T \rightarrow 0$ and $G \rightarrow 0$ in the CB valleys.

- **CFT approach:** partition function for the FQH edge of QD

$$\langle \varepsilon \rangle_{\beta, \mu_N}^{\phi} = E_{\text{QD}}^{\beta, \mu_{N+1}}(\phi) - E_{\text{QD}}^{\beta, \mu_N}(\phi)$$

- **CFT approach:** partition function for the FQH edge of QD

$$\langle \varepsilon \rangle_{\beta, \mu_N}^\phi = E_{\text{QD}}^{\beta, \mu_{N+1}}(\phi) - E_{\text{QD}}^{\beta, \mu_N}(\phi)$$

- **Total QD energy** (Grand canonical ensemble)

$$E_{\text{QD}}^{\beta, \mu_N}(\phi) = \sum_{i=1}^{N_0} E_i + \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_N},$$

- **CFT approach:** partition function for the FQH edge of QD

$$\langle \varepsilon \rangle_{\beta, \mu_N}^{\phi} = E_{\text{QD}}^{\beta, \mu_{N+1}}(\phi) - E_{\text{QD}}^{\beta, \mu_N}(\phi)$$

- **Total QD energy** (Grand canonical ensemble)

$$E_{\text{QD}}^{\beta, \mu_N}(\phi) = \sum_{i=1}^{N_0} E_i + \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_N},$$

where E_i , $i = 1, \dots, N_0$ are the occupied single-electron states in the bulk of the QD,

- **CFT approach:** partition function for the FQH edge of QD

$$\langle \varepsilon \rangle_{\beta, \mu_N}^\phi = E_{\text{QD}}^{\beta, \mu_{N+1}}(\phi) - E_{\text{QD}}^{\beta, \mu_N}(\phi)$$

- **Total QD energy** (Grand canonical ensemble)

$$E_{\text{QD}}^{\beta, \mu_N}(\phi) = \sum_{i=1}^{N_0} E_i + \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_N},$$

where E_i , $i = 1, \dots, N_0$ are the occupied single-electron states in the bulk of the QD,

$\langle \dots \rangle_{\beta, \mu}$ is the Grand canonical average of H_{CFT} on the edge

$$\mu_N = -\frac{1}{2}\Delta\epsilon, \quad \mu_{N+1} = \frac{1}{2}\Delta\epsilon, \quad \Delta\epsilon = \hbar \frac{2\pi v_F}{L}$$

$$\mu_N = -\frac{1}{2}\Delta\epsilon, \quad \mu_{N+1} = \frac{1}{2}\Delta\epsilon, \quad \Delta\epsilon = \hbar \frac{2\pi v_F}{L}$$

☞ L.G., Nucl. Phys. B 894 (2015) pp. 284–306

$$\mu_N = -\frac{1}{2}\Delta\epsilon, \quad \mu_{N+1} = \frac{1}{2}\Delta\epsilon, \quad \Delta\epsilon = \hbar \frac{2\pi v_F}{L}$$

☞ L.G., Nucl. Phys. B 894 (2015) pp. 284–306

- The thermoelectric power factor \mathcal{P}_T :

$$\mu_N = -\frac{1}{2}\Delta\epsilon, \quad \mu_{N+1} = \frac{1}{2}\Delta\epsilon, \quad \Delta\epsilon = \hbar \frac{2\pi v_F}{L}$$

☞ L.G., Nucl. Phys. B 894 (2015) pp. 284–306

- **The thermoelectric power factor \mathcal{P}_T :**
electric power P generated by ΔT

$$P = V^2/R = \mathcal{P}_T(\Delta T)^2, \quad \mathcal{P}_T = S^2G,$$

where $R = 1/G$ is the electric resistance of the CB island.

Average tunneling energy: ↗ L.G., Nucl. Phys. B 894
(2015) pp. 284–306

$$\langle \varepsilon \rangle_{\beta, \mu_N}^\phi = \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_{N+1}} - \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_N}$$

Average tunneling energy: L.G., Nucl. Phys. B 894 (2015) pp. 284–306

$$\langle \varepsilon \rangle_{\beta, \mu_N}^\phi = \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_{N+1}} - \langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_N}$$

Edge energy average:

$$\langle H_{\text{CFT}}(\phi) \rangle_{\beta, \mu_N} = \Omega_\phi(T, \mu_N) - T \frac{\partial \Omega_\phi(T, \mu_N)}{\partial T} - \mu_N \frac{\partial \Omega_\phi(T, \mu_N)}{\partial \mu}$$

where $\Omega_\phi(T, \mu_N) = -k_B T \ln Z_\phi(T, \mu)$ is the Grand potential in presence of AB flux ϕ .

\mathbb{Z}_k parafermion quantum Hall islands

- CFT:

$$\left(\widehat{u(1)} \otimes \frac{\widehat{su(k)_1} \oplus \widehat{su(k)_1}}{\widehat{su(k)_2}} \right)^{\mathbb{Z}_k}$$

\mathbb{Z}_k parafermion quantum Hall islands

- CFT:

$$\left(\widehat{u(1)} \otimes \frac{\widehat{su(k)_1} \oplus \widehat{su(k)_1}}{\widehat{su(k)_2}} \right)^{\mathbb{Z}_k}$$

- **Total disk partition function:** ↗ A. Cappelli, L.G., I.T. Todorov, Nucl. Phys. B 599 (2001), pp. 499

$$\chi_{l,\rho}(\tau, \xi) = \sum_{s=0}^{k-1} K_{l+s(k+2)}(\tau, k\xi; k(k+2)) \text{ch}(\Lambda_{l-\rho+s} + \Lambda_{\rho+s})(\tau')$$

Labels: $l \bmod k+2, \rho \bmod k : l - \rho \leq \rho \bmod k$.

Experimental indication:

Different Fermi velocities of the charged and neutral modes:

$$v_n < v_c, \quad r = \frac{v_n}{v_c}, \quad \tau = i \frac{\hbar v_c}{k_B L T}, \quad \tau' = r \tau,$$

- **The Luttinger liquid partition function:** ($R_c = 1/m$)

$$K_l(\tau, \xi; m) = \frac{CZ}{\eta(\tau)} \sum_{n=-\infty}^{\infty} q^{\frac{m}{2} \left(n + \frac{l}{m} \right)^2} e^{2\pi i \xi \left(n + \frac{l}{m} \right)}$$

Experimental indication:

Different Fermi velocities of the charged and neutral modes:

$$v_n < v_c, \quad r = \frac{v_n}{v_c}, \quad \tau = i \frac{\hbar v_c}{k_B L T}, \quad \tau' = r \tau,$$

- **The Luttinger liquid partition function:** ($R_c = 1/m$)

$$K_l(\tau, \xi; m) = \frac{CZ}{\eta(\tau)} \sum_{n=-\infty}^{\infty} q^{\frac{m}{2} \left(n + \frac{l}{m} \right)^2} e^{2\pi i \xi \left(n + \frac{l}{m} \right)}$$

$$q = e^{-\beta \Delta \varepsilon} = e^{2\pi i \tau}, \quad \Delta \varepsilon = \hbar \frac{2\pi v_F}{L}$$

- **Dedekind function and Cappelli–Zemba factors:**

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad \text{CZ} = e^{-\pi \nu_H \frac{(\text{Im } \zeta)^2}{\text{Im } \tau}}$$

- **Neutral partition function:** $\text{ch}(\Lambda_\mu + \Lambda_\rho)(\tau)$

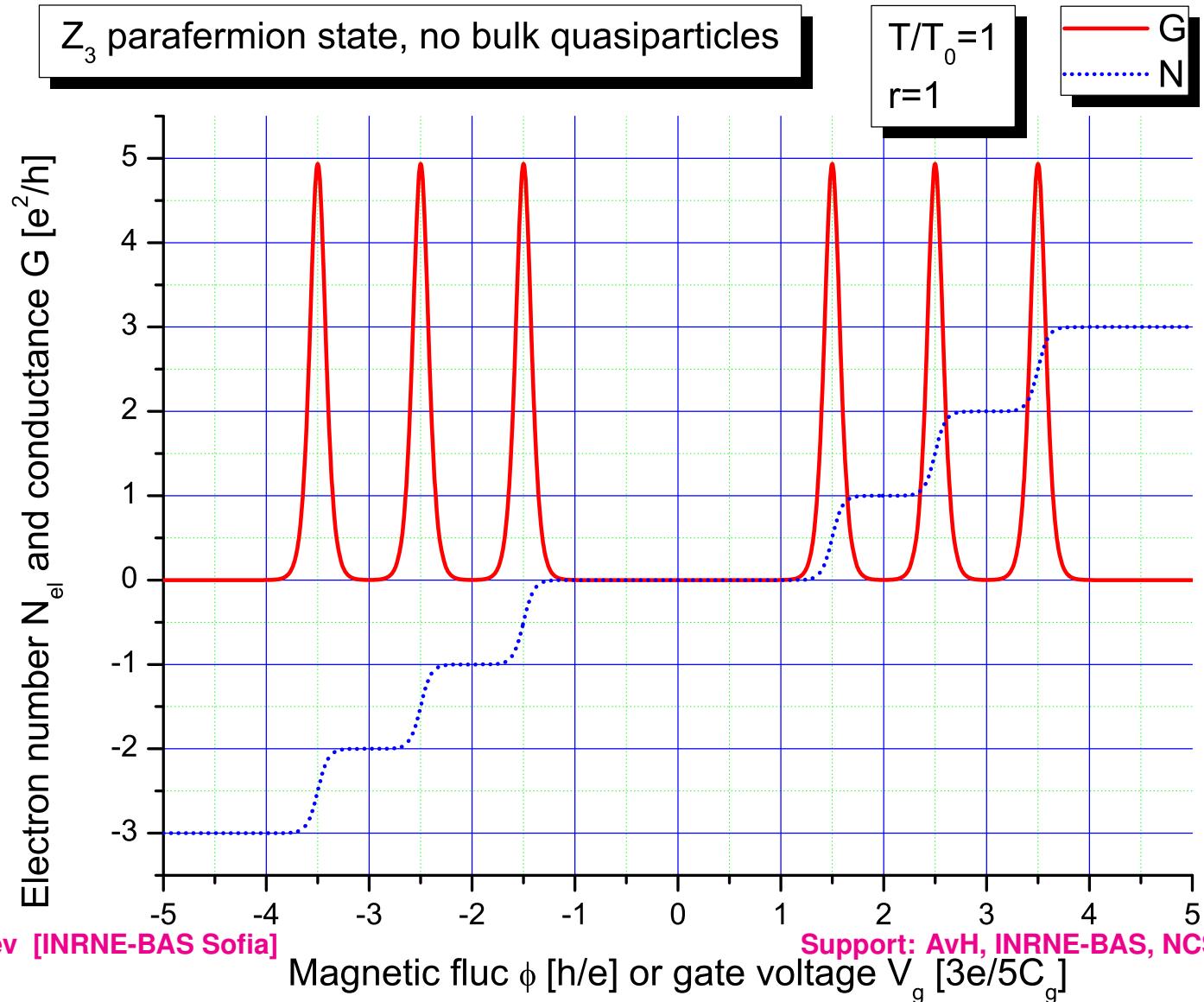
$$\text{ch}_{\sigma, Q}(\tau) = q^{\Delta(\sigma) - \frac{c}{24}} \sum_{\substack{m_1, m_2, \dots, m_{k-1} = 0 \\ \sum_{i=1}^{k-1} i m_i \equiv Q \pmod{k}}}^{\infty} \frac{q^{\underline{m} \cdot C^{-1} \cdot (\underline{m} - \Lambda_\sigma)}}{(q)_{m_1} \cdots (q)_{m_{k-1}}},$$

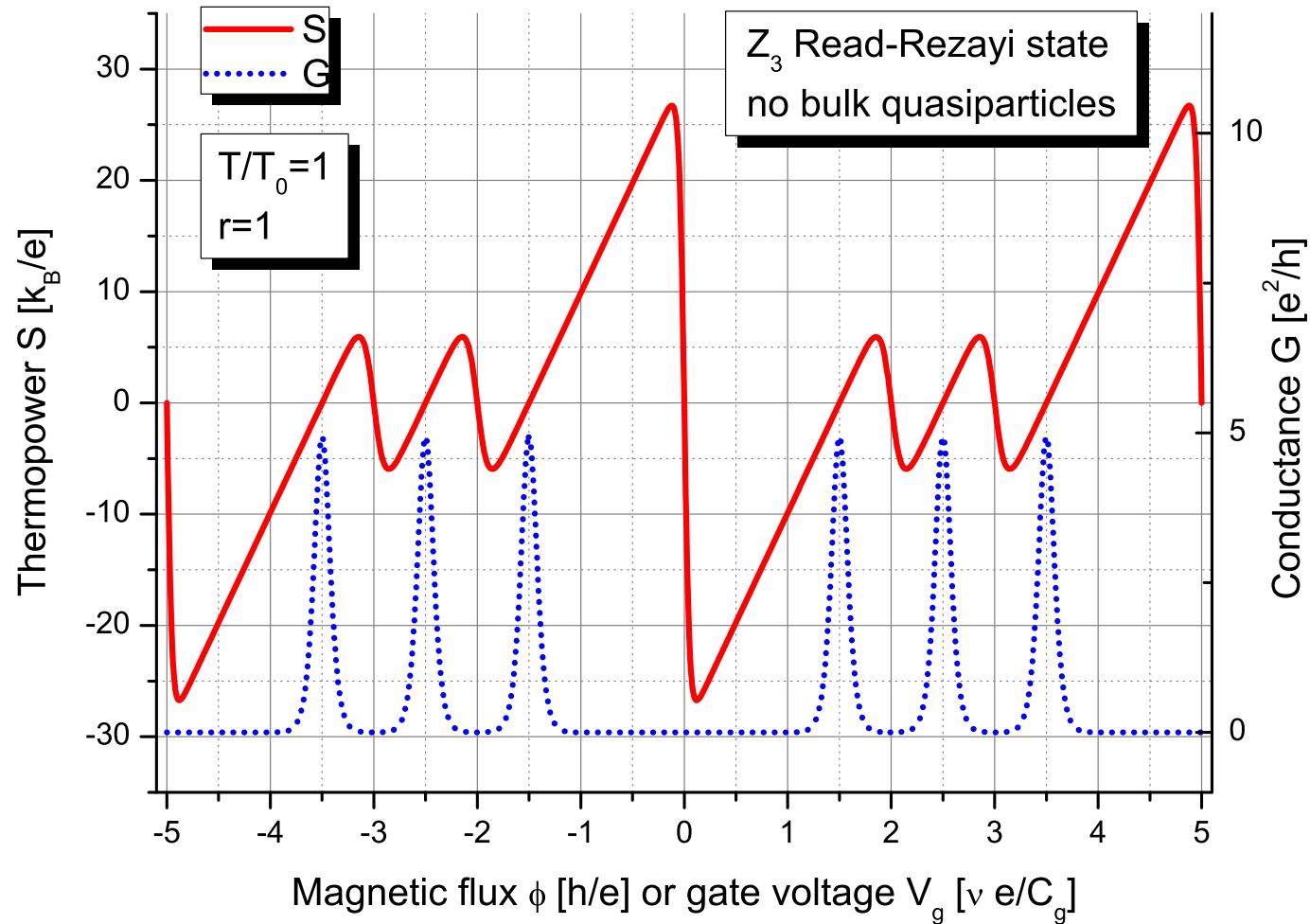
$$(q)_n = \prod_{j=1}^n (1 - q^j), \quad \Delta(\sigma) = \frac{\sigma(k - \sigma)}{2k(k + 2)}, \quad c = \frac{2(k - 1)}{k + 2}$$

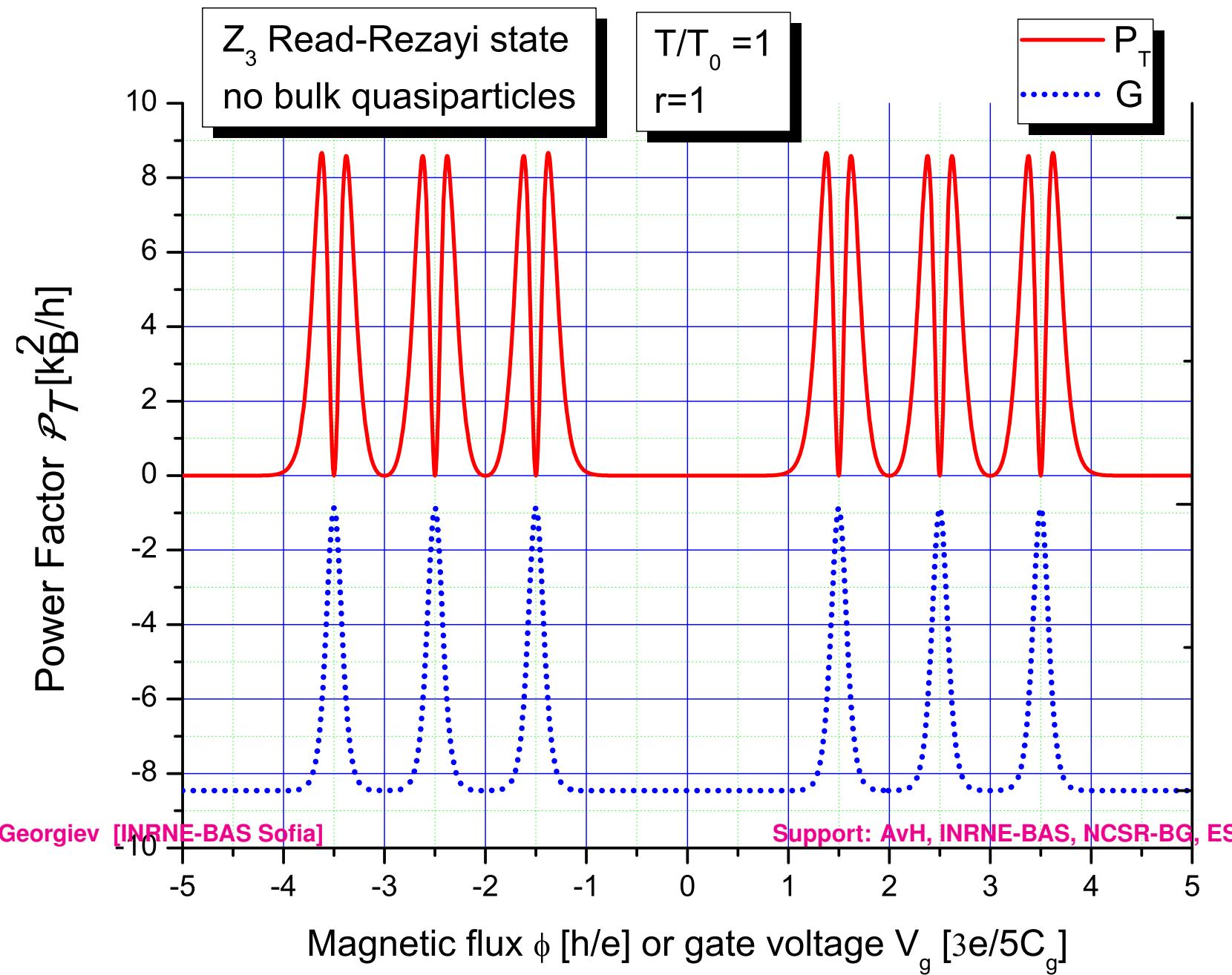
$$\underline{m} = (m_1, \dots, m_{k-1}), \quad 0 \leq \sigma \leq Q \leq k - 1.$$

(Lepowsky, Primc, Schilling)

Relation: $\mu = Q - \sigma, \quad \rho = Q$







Comparison with the experiment at $\nu_H = 2/3$

- **The experiment: “A new Hope”**

I. Gurman, R. Sabo, M. Heiblum, V. Umansky, D. Mahalu,
Extracting net current from an upstream neutral mode in the fractional quantum Hall regime, **Nature Communications** 3 (2012) 1289.

Comparison with the experiment at $\nu_H = 2/3$

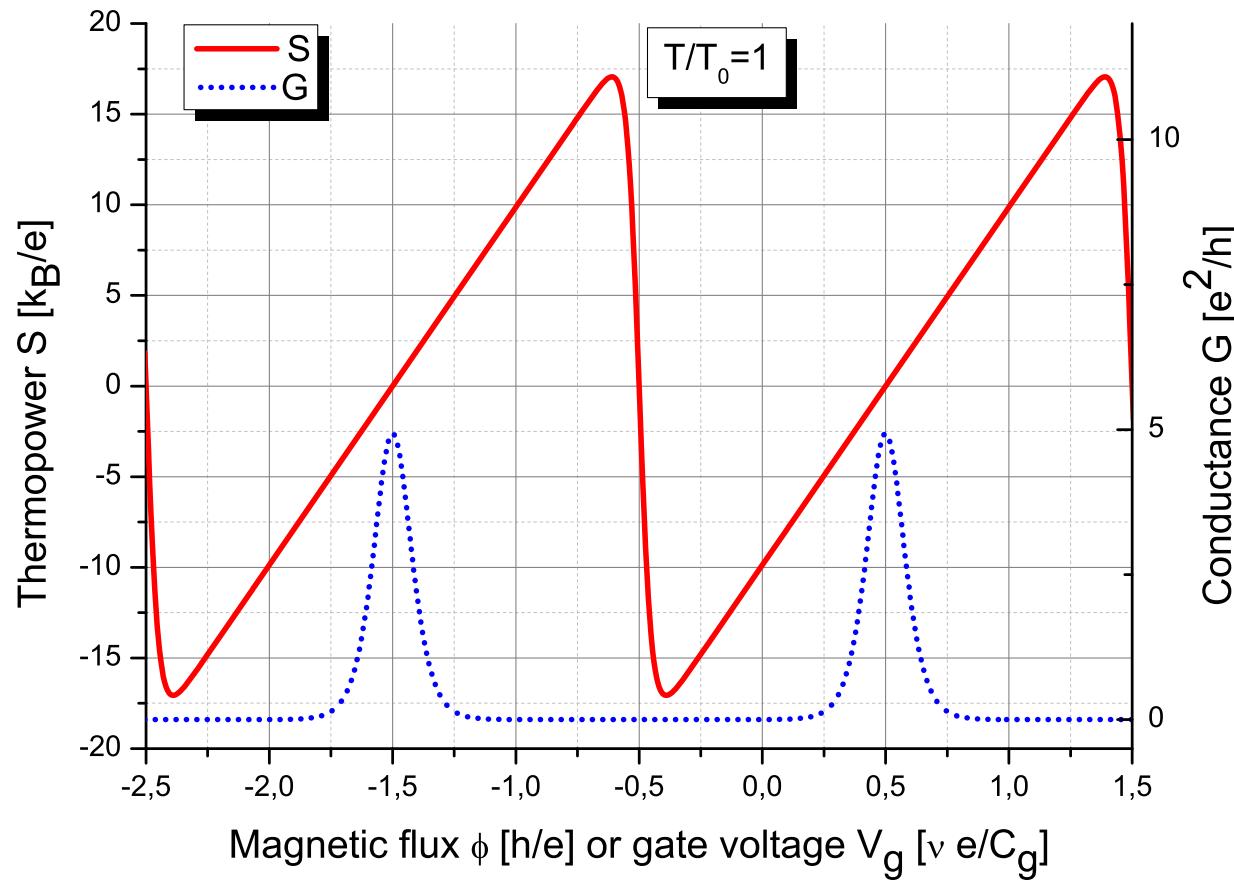
- **The experiment: “A new Hope”**

I. Gurman, R. Sabo, M. Heiblum, V. Umansky, D. Mahalu,
Extracting net current from an upstream neutral mode in the fractional quantum Hall regime, **Nature Communications** 3 (2012) 1289.

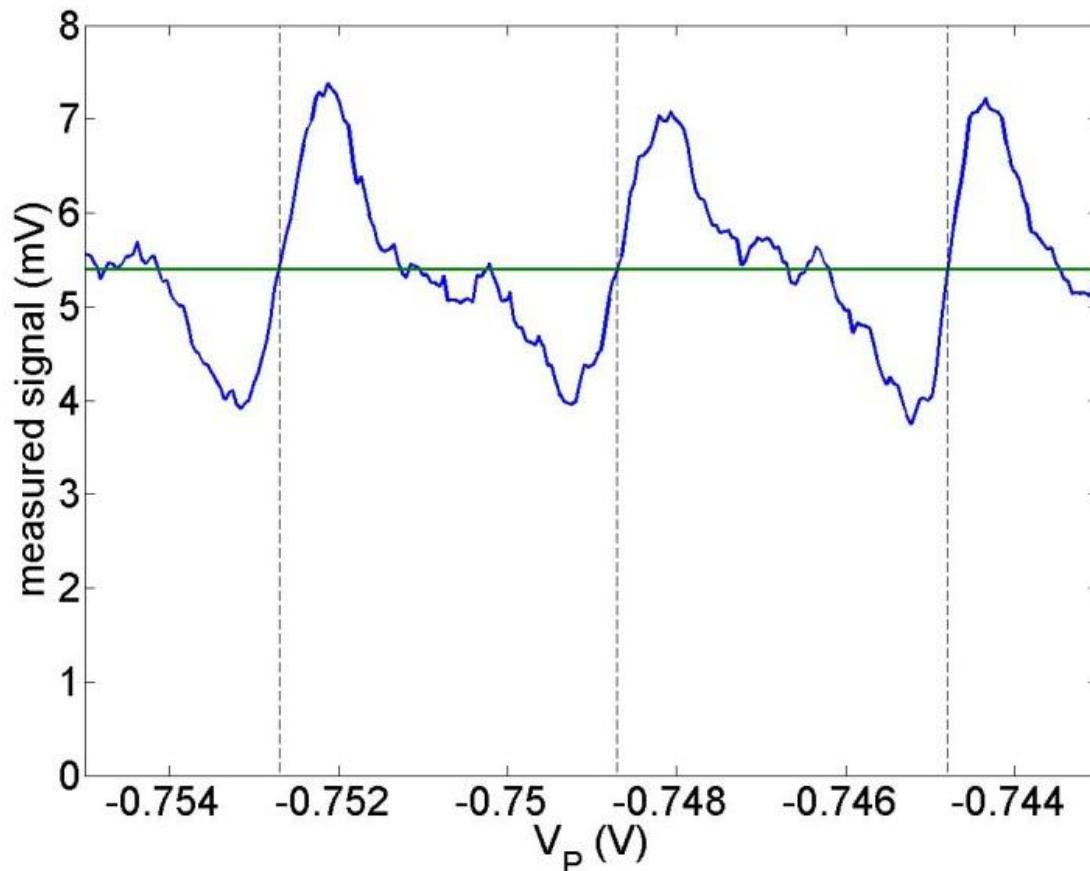
- **(Different) model to compare with: \mathbb{Z}_2 parafermion a.k.a (Moore–Read) Pfaffian state:**

Thermopower for odd number of bulk quasiparticles - the same as for the Abelian $\nu = 1/2$ Luttinger liquid ($R_c = 1/2$).

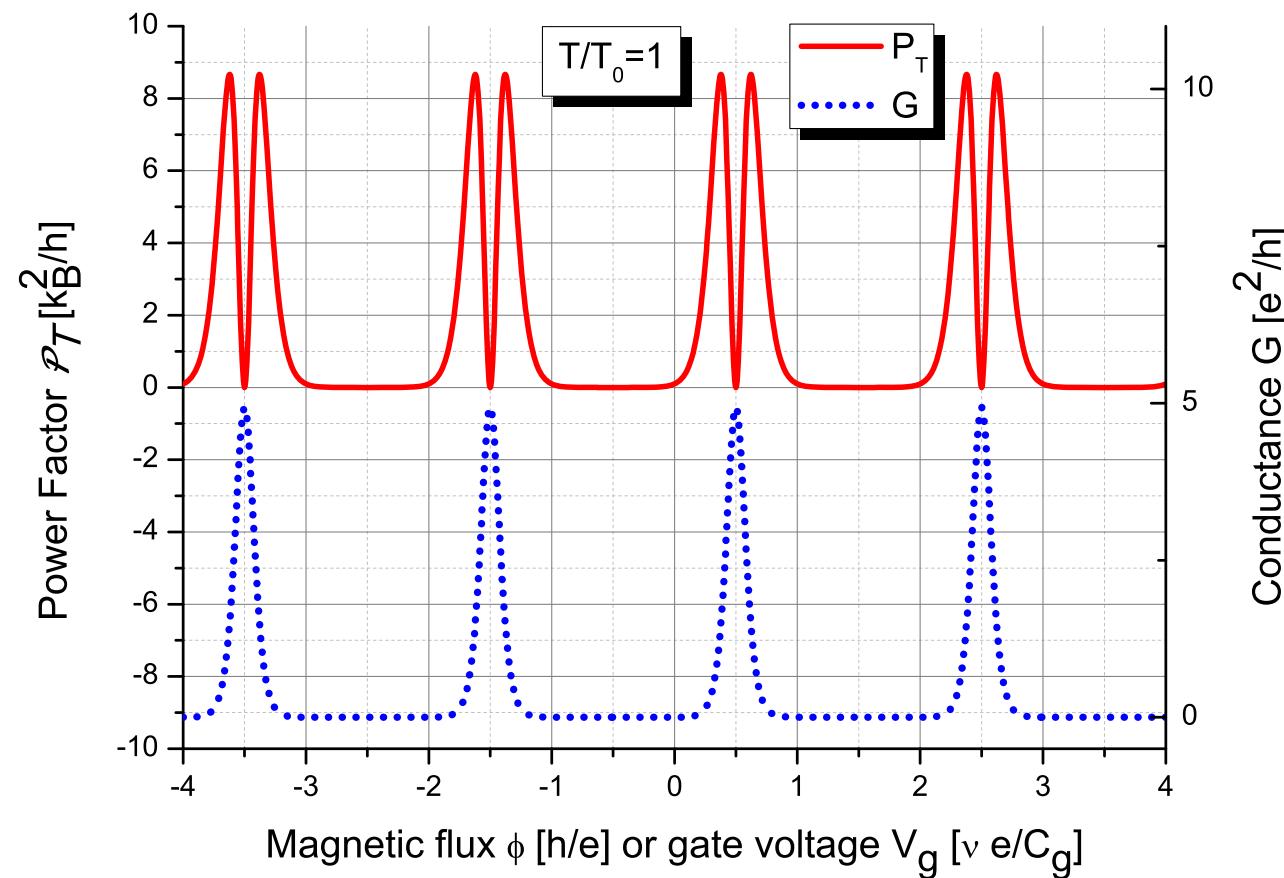
Theory: (Moore–Read) Pfaffian, odd



The experiment: Nature Communications 3 (2012) 1289.

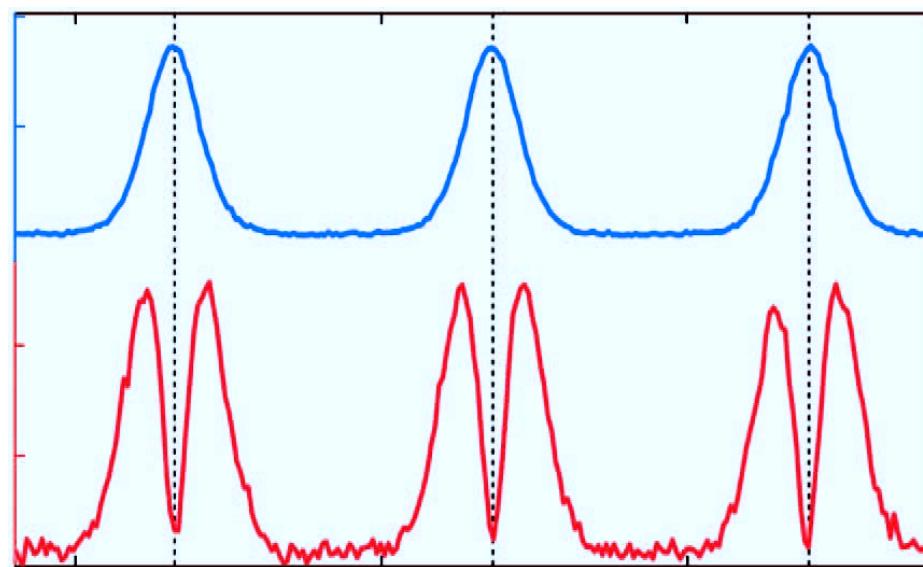


Power factor: theory (Moore–Read) Pfaffian state, odd



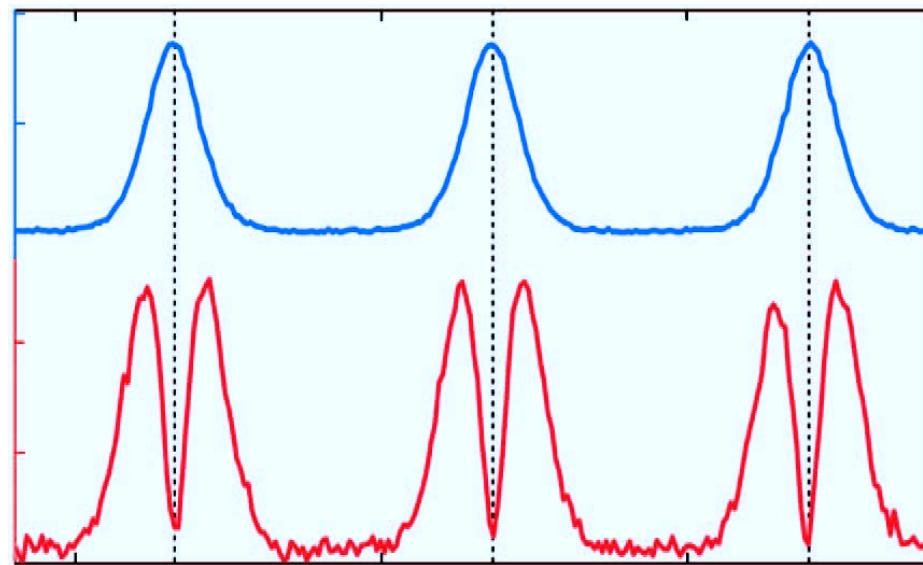
The experiment:

Nature Communications 3 (2012) 1289.



The experiment:

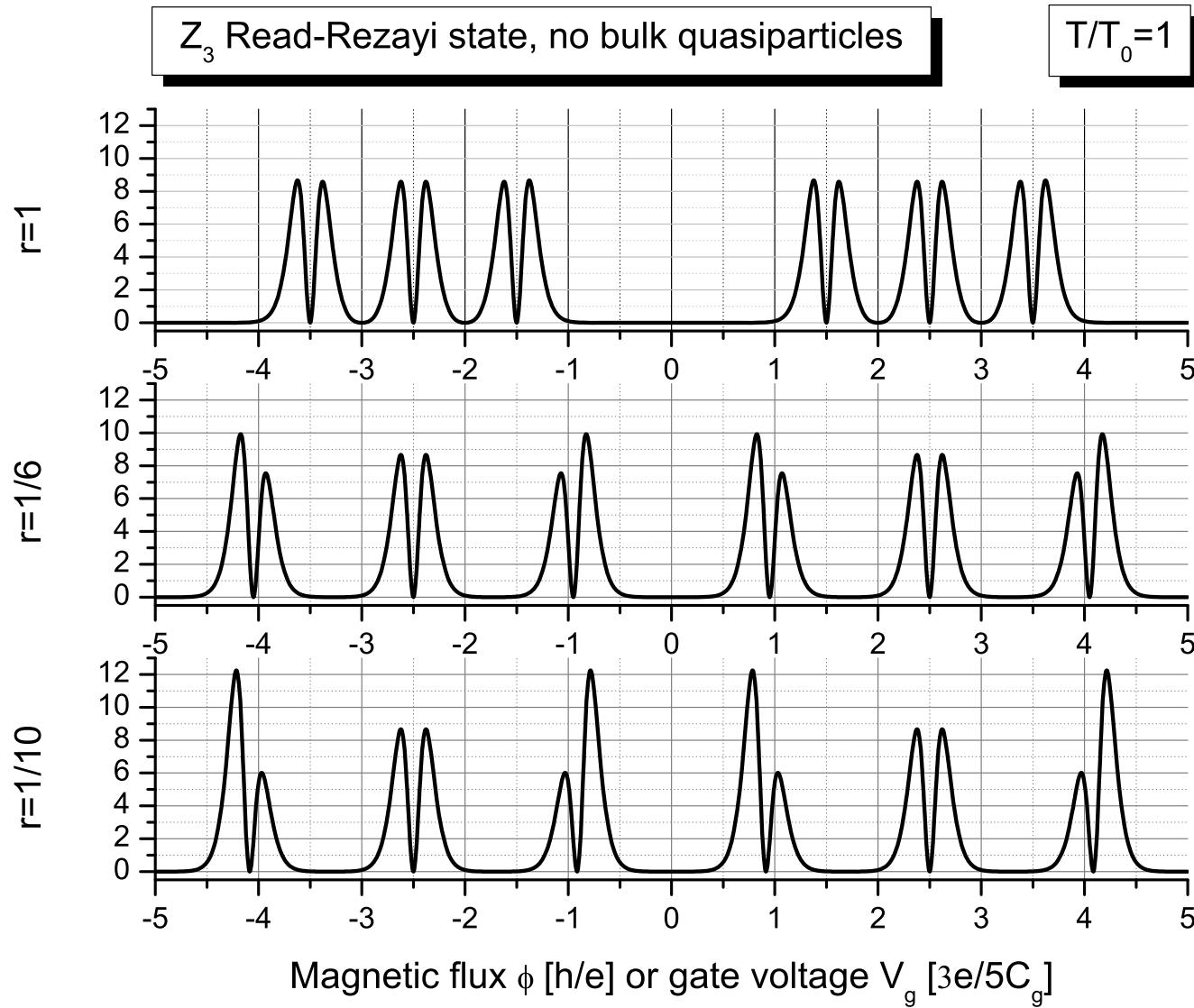
Nature Communications 3 (2012) 1289.

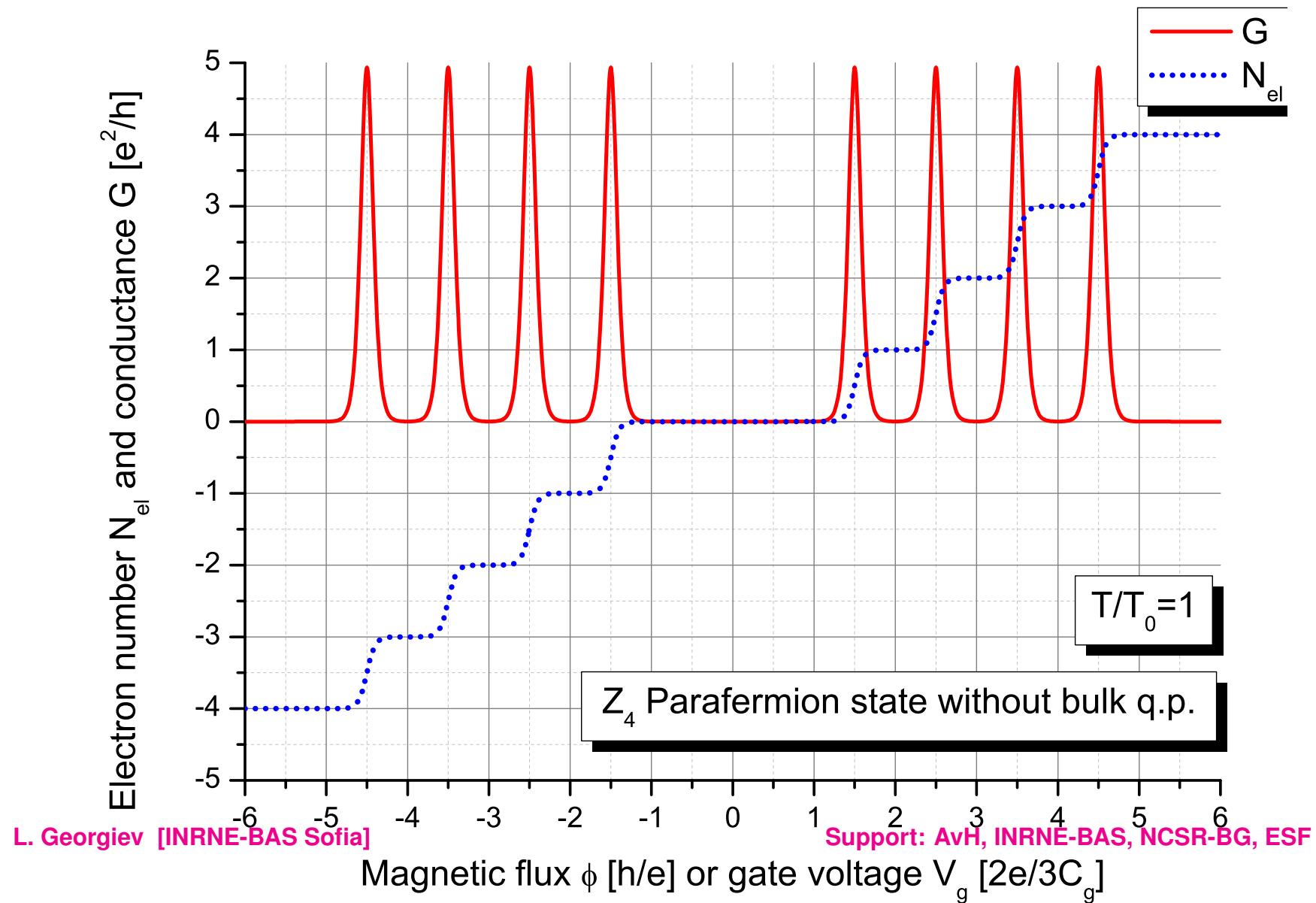


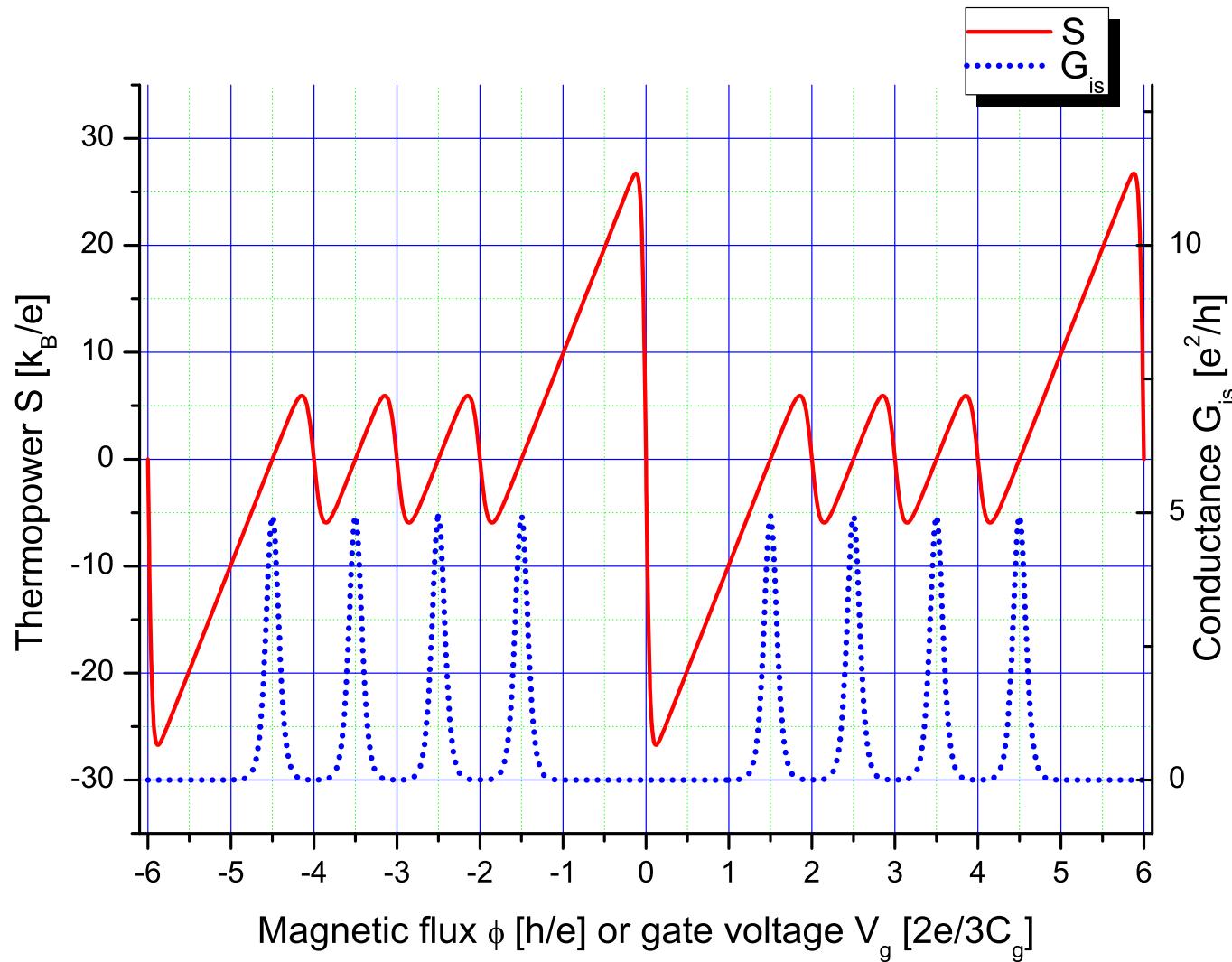
Power-factor profiles—the tool

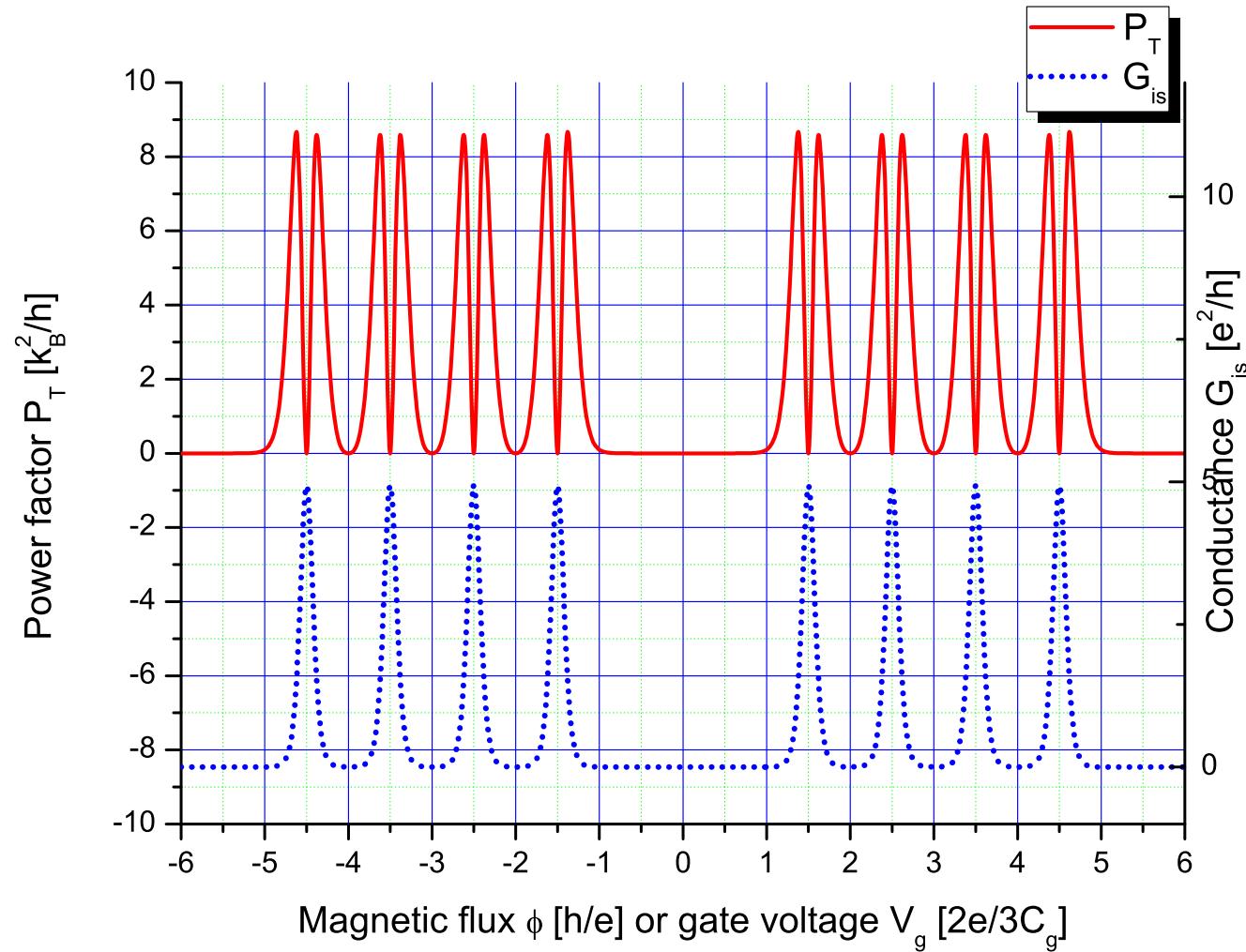
L. Georgiev [INRNE-BAS Sofia]

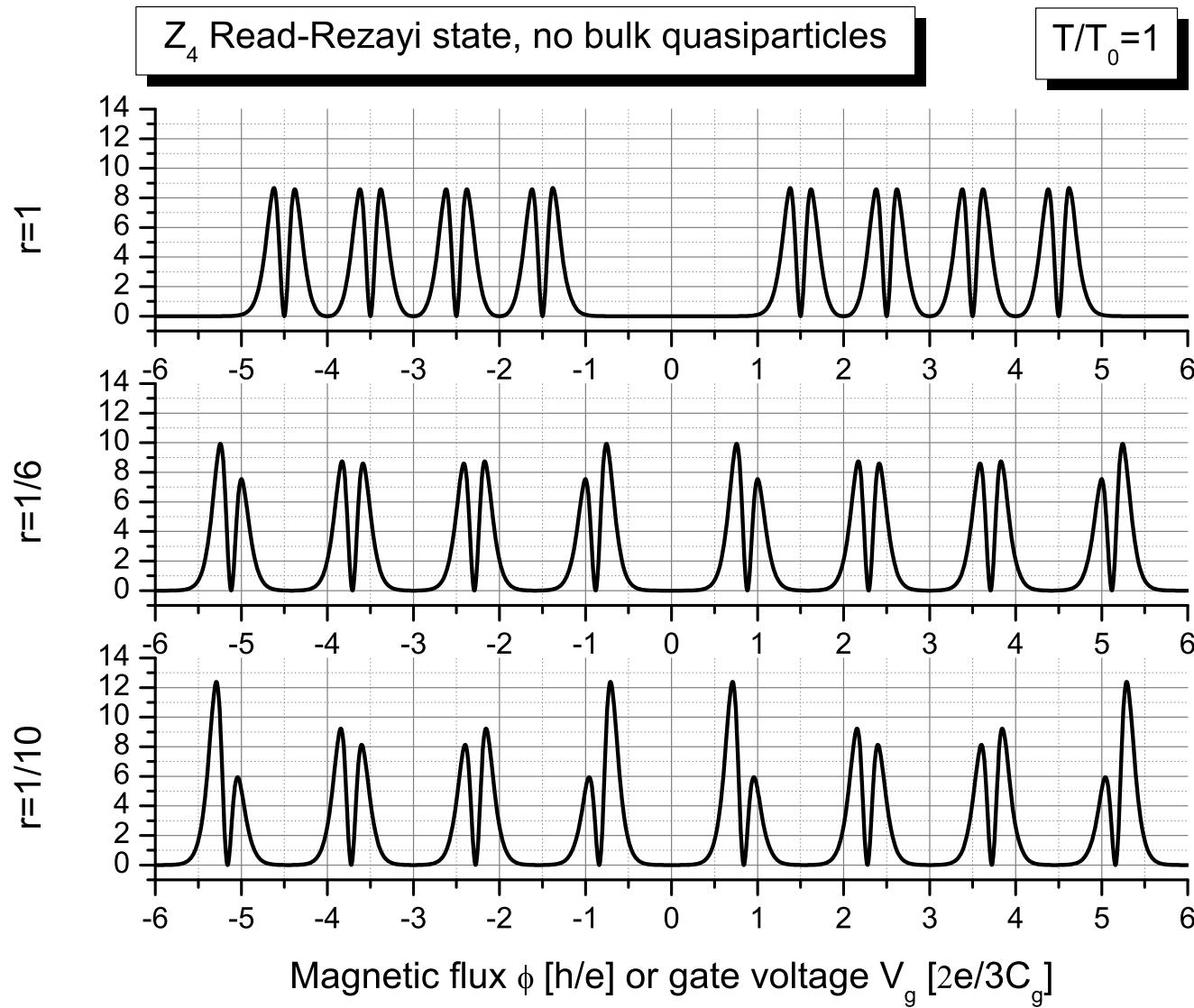
Support: AvH, INRNE-BAS, NCSR-BG, ESF











Conclusion and perspectives

- Power factor is highly sensitive to the neutral modes

Conclusion and perspectives

- Power factor is highly sensitive to the neutral modes
- Estimate $r = v_n/v_c$ from the dips in power factor

Conclusion and perspectives

- Power factor is highly sensitive to the neutral modes
- Estimate $r = v_n/v_c$ from the dips in power factor
- Distinguish between different FQH states - a chance to discover non-Abelian statistics

Conclusion and perspectives

- Power factor is highly sensitive to the neutral modes
- Estimate $r = v_n/v_c$ from the dips in power factor
- Distinguish between different FQH states - a chance to discover non-Abelian statistics

L. Georgiev [INRNE-BAS Sofia]

Support: AvH, INRNE-BAS, NCSR-BG, ESF

