

Localization and the Canonical Commutation Relations

Patrick Moylan, Penn State Univ., USA
Talk at Lie Theory IX, Varna, June 2015

ABSTRACT

Let $\mathbb{R}[x_i; \partial_j]$ denote the Weyl algebra with generators x_i and ∂_j satisfying the canonical commutation relations $[\partial_i, x_j] = \delta_{ij}$. It is well-known $so(3)$ or $so(1, 2)$ can be realized as quadratic polynomial algebras in the x_i and ∂_j ($i, j = 1, 2, 3$). What is not well-known is that by using localization the converse statements are also true. Here we construct a homomorphism of the Weyl algebra into a certain localization of the universal enveloping algebra, $U(so(1, 2))$, of $so(1, 2)$. Using this homomorphism we construct representations of the canonical commutation relations from certain representations of $so(1, 2)$ with the appropriate symmetry and skew-symmetry properties required by physical considerations. We have also established analogous results in higher dimensions.

Localization

Powerful tool in mathematics to relate different algebraic structures with underlying similarities.

- **Gelfand-Kirillov conjecture** (*Dokl. Akad. Nauk SSR* **167** 503 (1966))

The field of quotients of the universal enveloping algebra of a Lie algebra over an algebraically closed field is isomorphic to some skew field extension of a Weyl algebra. (The Weyl algebra of index n over a field k is $k[x_1, x_2, x_3, \dots, x_n; \partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3, \dots, \partial/\partial x_n]$ where the x_i are coordinate functions of an n dimensional vector space.)

- **Semisimple Lie Groups and Associated Semidirect Products**

P. Bozek, M. Havlíček, O. Navrátil, Charles Univ. Preprint (1985):
*-isomorphism between certain commutative algebraic extensions of the Lie fields of $SO(1, 4)$ and the Poincaré group. Similar results for all $SO(p, q)$ groups with $p + q \leq 5$ (p or $q \geq 1$) and for certain q groups and supergroups e.g. $U_q(so(2, 1))$, $U_q(\mathfrak{osp}(1|2))$.

$SO(p+2, q)$, $\mathfrak{so}(p+2, q)$ and the Weyl Algebras

Let M denote the real vector space \mathbb{R}^{p+q+2} of dimension $n = p + q + 2$ with quadratic form

$$Q(x) = x_{-1}^2 + x_0^2 + x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2$$

$\beta_0 = \text{diag}(1, 1, \dots, 1, -1, -1, \dots, -1)$ ($p+2$ entries being $+1$'s and q entries being -1 's)

- $SO(p+2, q) = \{g \in SL(n, \mathbb{R}) \mid g^\dagger \beta_0 g = \beta_0\}$
- Connected component: $SO_0(p+2, q)$
- $\mathfrak{so}(p+2, q)$: $X \in \mathfrak{sl}(n, \mathbb{R})$ such that $X^\dagger \beta_0 + \beta_0 X = 0$
- Weyl Algebra of index m : $\mathbb{R}[x_1, x_2, \dots, x_m; \partial_1, \partial_2, \dots, \partial_m]$

Some Facts about $SO_0(p+2, q)$ and $\mathfrak{so}(p+2, q)$

- Basis of $\mathfrak{g} = \mathfrak{so}(p+2, q)$: \mathbf{L}_{ij} ($i, j = -1, 0, \dots, p+q$, $i < j$).
Let $\mathbf{L}_{ij} = -\mathbf{L}_{ji}$ for $i > j$, and the \mathbf{L}_{ij} satisfy the following commutation relations:

$$[\mathbf{L}_{ab}, \mathbf{L}_{bc}] = -e_b \mathbf{L}_{ac}$$

with

$$e_{-1} = e_0 = e_1 = e_2 = \dots = e_p = 1, \quad e_{p+q} = e_{p+2} = \dots = e_{p+q} = -1.$$

All other commutators vanish.

- Quadratic Casimir Operator: $\mathbf{C}_2 = \frac{1}{2} \sum_{i,j=-1}^{p+q} \mathbf{L}_{ij} \mathbf{L}^{ji} =$
$$- \frac{1}{2} \sum_{i,j=-1}^p \mathbf{L}_{ij} \mathbf{L}_{ij} - \frac{1}{2} \sum_{i,j=p+1}^{p+q} \mathbf{L}_{ij} \mathbf{L}_{ij} + \sum_{i=-1}^p \sum_{j=1}^q \mathbf{L}_{i,p+j} \mathbf{L}_{i,p+j} .$$

- **Cartan Involution** (β_0 presentation)

$\theta(g) = g^{-1\dagger}$ for $g \in G = SO_0(p+2, q)$ and the corresponding Cartan involution on \mathfrak{g} is $\theta(X) = -X^\dagger$ ($X \in \mathfrak{g}$).

- Let $\mathcal{K} = \{X \in \mathcal{G} | \theta(X) = X\}$, and $\mathcal{P} = \{X \in \mathcal{G} | \theta(X) = -X\}$.
- Let K and P be the subgroups of G whose Lie algebras are \mathcal{K} and \mathcal{P} .
- In β_0 presentation $K = \left\{ g \in G \mid g = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \right\}$ where $k_1 \in SO(p+2)$ and $k_2 \in SO(q)$.
- Let A be the one parameter subgroup of G generated by $\mathbf{L}_{-1, p+1}$
- **Fact:** G is generated by K and A i.e. all possible products of elements of K and A are dense in G .

Embedding of $\mathfrak{so}(p+2, q)$ into $\mathbb{R}[x_1, x_2, \dots, x_{p+q+2}; \partial_1, \partial_2, \dots, \partial_{p+q+2}]$

- G acts naturally on M as pseudo-rotations of pseudo-Euclidean space:
 - (i) $SO(p+2)$ rotations with generators \mathbf{L}_{ij} ($i, j = -1, 0, \dots, p$, $i < j$)
 - (ii) $SO(q)$ rotations with generators $\mathbf{L}_{k\ell}$ ($k, \ell = p+1, \dots, p+q$, $k < \ell$)
 - (iii) a hyperbolic rotation in the $-1, p+q$ plane of M with generator $\mathbf{L}_{-1, p+q}$ (scaling transformation).
- This action of G on M gives rise to the left regular action of G on $C^\infty(M)$ i.e.

$$G \ni g \rightarrow \pi(g) : \pi(g)f(x) = f(g^{-1}x)$$

where $x \in M$ and $f(x) \in C^\infty(M)$. Denote by $d\pi$ the corresponding action of \mathfrak{g} on $C^\infty(M)$.

- **Proposition:** $d\pi$ defines an isomorphism of $\mathfrak{so}(p+2, q)$ onto its image in $\mathbb{R}[x_1, x_2, \dots, x_n; \partial_1, \partial_2, \dots, \partial_n]$ for $n = p+q+2$.

SO(2,1) and Some of its Subgroups

- $SO(2) = \left\{ \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \middle| \theta \in [-\pi, \pi) \right\}$

- $SO_0(1, 1) = \left\{ \begin{bmatrix} \operatorname{ch} \beta & \operatorname{sh} \beta \\ \operatorname{sh} \beta & \operatorname{ch} \beta \end{bmatrix} \middle| \beta \in \mathbb{R} \right\}$

- Some Subgroups of $SO_0(2, 1)$:

$$K = \left\{ k(u) = \begin{bmatrix} u_1 & u_2 & 0 \\ -u_2 & u_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \middle| u = \begin{pmatrix} u_1 & u_2 \\ -u_2 & u_1 \end{pmatrix} \in SO(2) \right\}$$

$$A = \left\{ a(\tau) = \begin{bmatrix} \operatorname{ch}(\tau) & 0 & \operatorname{sh}(\tau) \\ 0 & 1 & 0 \\ \operatorname{sh}(\tau) & 0 & \operatorname{ch}(\tau) \end{bmatrix} \middle| \tau \in \mathbb{R} \right\}$$

• Some Additional Subgroups

$$H = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \hat{p}_0 & \hat{p} \\ 0 & \hat{p} & \hat{p}_0 \end{bmatrix} \middle| \begin{pmatrix} \hat{p}_0 & \hat{p} \\ \hat{p} & \hat{p}_0 \end{pmatrix} \in SO_0(1, 1) \right\}$$

$$N = \left\{ n(a) = \begin{bmatrix} 1 - \frac{a^2}{2} & a & \frac{a^2}{2} \\ -a & 1 & a \\ -\frac{a^2}{2} & a & 1 + \frac{a^2}{2} \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

$$\tilde{N} = \left\{ \tilde{n}(x) = \begin{bmatrix} 1 - \frac{x^2}{2} & -x & -\frac{x^2}{2} \\ x & 1 & x \\ \frac{x^2}{2} & x & 1 + \frac{x^2}{2} \end{bmatrix} \middle| x \in \mathbb{R} \right\}$$

$$M = C_A(K) = \left\{ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}.$$

Decompositions of $SO(2,1)$

- Iwasawa Decomposition

$$SO_0(2,1) \cong KAN$$

- Bruhat Decomposition

$$SO_0(2,1) \cong \tilde{N}MAN$$

- Parabolic Subgroup: $P = MAN$ (Langlands Decomposition)
- Hannabuss/Sekiguchi Decomposition

(Hannabuss: $SO(1, n)$, 1971; Sekiguchi: $SO(p, q)$, $Sp(n, \mathbb{R})$ etc., 1980)

$$SO_0(2,1) \cong H'AN \quad (H' = N_H(G))$$

- Let $Q = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $H' = H \cup HQ$ where $H = SO_0(1, 1)$.

Relationship between Various Decompositions

- For $h \in SO_0(1, 1)$, Iwasawa decomposition gives:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \hat{p}_0 & \hat{p} \\ 0 & \hat{p} & \hat{p}_0 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & 0 \\ -u_2 & u_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \text{ch}(\tau) & 0 & \text{sh}(\tau) \\ 0 & 1 & 0 \\ \text{sh}(\tau) & 0 & \text{ch}(\tau) \end{bmatrix} \begin{bmatrix} 1 - \frac{a^2}{2} & a & \frac{a^2}{2} \\ -a & 1 & a \\ -\frac{a^2}{2} & a & 1 + \frac{a^2}{2} \end{bmatrix}$$

- Solve for \hat{p}_0 , \hat{p} , τ and a in terms of u_1 , $u_2 \in K/M$:

$$\begin{aligned} \hat{p}_0 &= \frac{1}{u_1} & \Rightarrow u_1 > 0 \\ \hat{p} &= \frac{u_2}{u_1} \\ e^\tau &= \frac{1}{u_1} \\ a &= u_2 \end{aligned}$$

- Similarly Iwasawa decomposition for $h' \in H \cap Q$ gives:

$$\begin{aligned} \hat{p}_0 &= -\frac{1}{u_1} & \Rightarrow u_1 < 0 \\ \hat{p} &= -\frac{u_2}{u_1} \\ e^\tau &= -\frac{1}{u_1} \\ a &= -u_2 \end{aligned}$$

- Relationship between the Bruhat and Iwasawa decompositions of $SO_0(2, 1)$:

$$\begin{bmatrix} 1 - \frac{x^2}{2} & -x & -\frac{x^2}{2} \\ x & 1 & x \\ \frac{x^2}{2} & x & 1 + \frac{x^2}{2} \end{bmatrix} =$$

$$= \begin{bmatrix} u_1 & u_2 & 0 \\ -u_1 & u_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \text{ch}(\tau) & 0 & \text{sh}(\tau) \\ 0 & 1 & 0 \\ \text{sh}(\tau) & 0 & \text{ch}(\tau) \end{bmatrix} \begin{bmatrix} 1 - \frac{a^2}{2} & a & \frac{a^2}{2} \\ -a & 1 & a \\ -\frac{a^2}{2} & a & 1 + \frac{a^2}{2} \end{bmatrix}$$

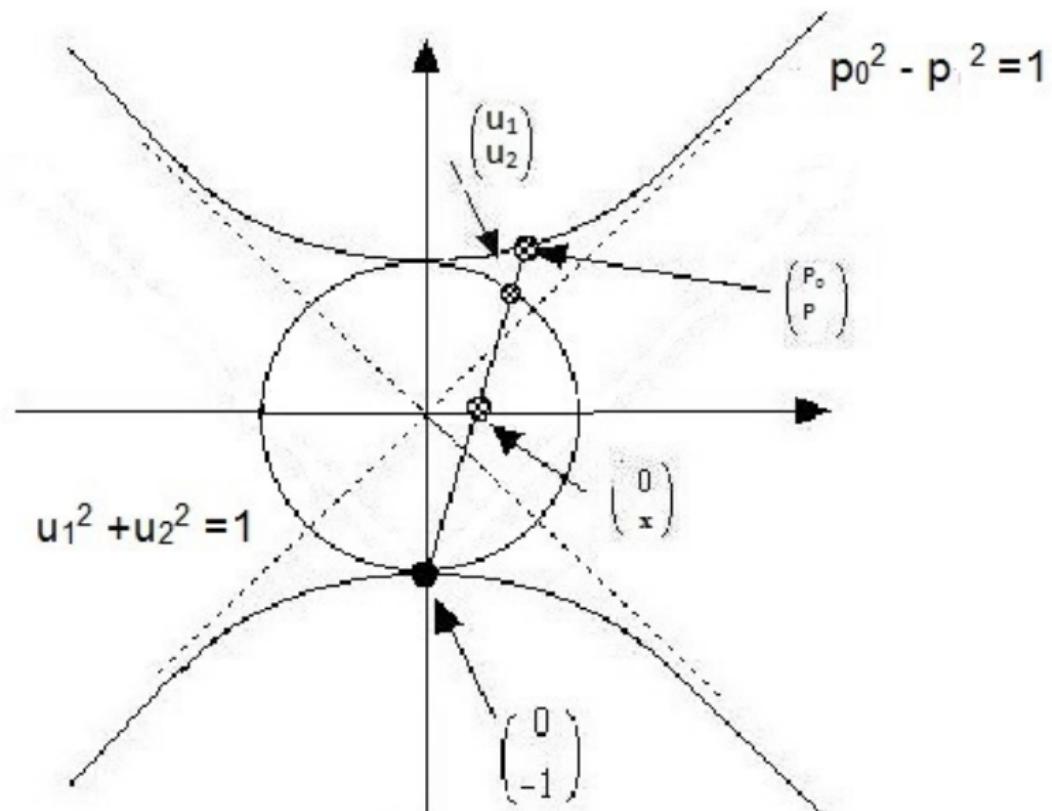
\implies

$$x = \frac{u_2}{1 + u_1}.$$

$$a = \frac{u_2}{2}$$

$$e^\tau = \frac{2}{1 + u_1}.$$

- Stereographic projections showing relationship between various decompositions



Generalized Principal Series of $SO_0(1, 2)$

- **Characters of A :** A character of A is a homomorphism $\chi : A \rightarrow \mathbb{C}$. Let A^* be the space of all characters.

For $\sigma \in \mathbb{C}$ let $\chi_\sigma \in A^* \ni \chi_\sigma(a(\tau)) = e^{-(\sigma+1/2)\tau}$

- **Irreducible Representations of M :** $\rho(I) = (+1)$ ($M = \{I\}$). (So $\rho = 1$.)
- **Representations of the Inducing Subgroup**

Consider $1 \otimes \chi_\sigma : MA \rightarrow \mathbb{C}$ and extend this mapping to a mapping from the parabolic subgroup $P = MAN$ to \mathbb{C} by requiring that it act trivially on N : for $p = ma(\tau)n \in P$

$$1 \otimes \chi_\sigma \otimes 1 : P \rightarrow \mathbb{C} \ni (1 \otimes \chi_\sigma \otimes 1)(p) = \chi_\sigma(a(\tau)).$$

- **Generalized Principal Series**

$$\begin{aligned} \text{Ind}_P^G(1 \otimes \chi_\sigma \otimes 1) &= \{\mathcal{F} \in C^\infty(G) | \mathcal{F}(gp) = (1 \otimes \chi_\sigma \otimes 1)(p)\mathcal{F}(g), g \in G, p \in P\} \\ &= \{\mathcal{F} \in C^\infty(G) | \mathcal{F}(gp) = e^{-(\sigma+1/2)\tau}\mathcal{F}(g), g \in G, p = ma(\tau)n \in P\}. \end{aligned}$$

G acts in this space by left translation: $\mathcal{F}(g) \xrightarrow{g_1} \mathcal{F}(g_1g)$.

Parallelizations of $\text{Ind}_P^G(1 \otimes \chi_\sigma \otimes 1)$ associated with the decompositions

- $L^{(\sigma)}(G/P)$ is the line bundle over $u \in G/P$ whose elements are equivalence classes of ordered pairs $(u, s) \in G \times \mathbb{C}$ with respect to the equivalence relation $(p = ma(\tau)n \in P)$:

$$(u, s) \sim (up, \rho(m)\chi_\sigma(a(\tau))s).$$

- Let $C^\infty(G/P, L^{(\sigma)})$ be the space of all C^∞ sections of $L^{(\sigma)}(G/P)$. The Iwasawa decomposition gives us the isomorphism

$$C^\infty(G/P, L^{(\sigma)}) \ni \Psi \longrightarrow \phi \in C^\infty(K/M).$$

This defines a parallelization of the bundle $L^{(\sigma)}(G/P)$, which we call the “spherical parallelization.”

Action of Induced Representation on $C^\infty(K/M)$

We have the following formula for the action of the representation $\text{Ind}_P^G(1 \otimes \chi_\sigma \otimes 1)$ on $C^\infty(K/M)$: (spherical parallelization)

$$\pi^\sigma(g)\phi(u) = e^{-(\sigma+1/2)\tau} \phi(g^{-1}u) = e^{-(\sigma+1/2)\tau} \phi(g^{-1}u)$$

where

$$u \in K/M \ \cong \ K,$$

and

$$g^{-1}k(u) = k(u')a(\tau)n,$$

with

$$g^{-1}u := u'.$$

Other parallelizations and their relationship to the spherical parallelization

The Hannabuss/Sekiguchi and Bruhat decompositions lead to:

- “Hyperbolic parallelization”

$$\tilde{\phi}(\hat{p}_0, \hat{p}) = \left(\frac{1}{u_1}\right)^{-(\sigma+1/2)} \phi(u) \quad (u_0 > 0)$$

$$\tilde{\phi}(-\hat{p}_0, \hat{p}) = \left(\frac{1}{-u_1}\right)^{-(\sigma+1/2)} \phi(u) \quad (u_0 < 0)$$

- “Flat parallelization”

$$\psi(x) = \left(\frac{2}{1+u_1}\right)^{-(\sigma+1/2)} \phi(u)$$

Some Results about the action of $\mathfrak{g} = so(2, 1)$ in the Representations $\text{Ind}_P^G(1 \otimes \chi_\sigma \otimes 1)$

Let $L_{ij}f = d\pi^\sigma(\mathbf{L}_{ij})f := \frac{d\pi^\sigma(e^{t\mathbf{L}_{ij}})}{dt} \Big|_{t=0} f$ for f a C^∞ function on one of the spaces defined by any one of the three parallelizations. The results are summarized in the Table.

TABLE. Presentations of the infinitesimal generators in various parallelizations. ($S = x\partial_x$, and $w = \sigma + \frac{1}{2}$)

generator	spherical	flat	hyperbolic
$\mathbf{L}_{-1,1}$	$\sin \theta \partial_\theta + w \cos \theta$	$(S + w)$	$\text{sh} \beta \partial_\beta + w \text{ch} \beta$
$\mathbf{L}_{0,1}$	$\cos \theta \partial_\theta - w \sin \theta$	$\frac{1}{2}(1 - x^2)\partial_x + x(S + w)$	$-\partial_\beta$
$\mathbf{L}_{-1,0}$	$-\partial_\theta$	$\frac{1}{2}(1 + x^2)\partial_x - x(S + w)$	$\text{ch} \beta \partial_\beta - w \text{sh} \beta$

The Generator \mathbf{P}_0 :

From the Table we obtain (with $x = \frac{1}{2}x_0$) for the action of the three basic generators of $SO(2, 1)$ in the representation $d\pi^\sigma(so(2, 1))$:

$$d\pi^\sigma(\mathbf{L}_{-10}) = -\left(1 - \frac{x_0^2}{4}\right)\partial_0 - \frac{1}{2}x_0(S + w) = -\partial_0 - \frac{1}{4}x_0^2\partial_0 - \frac{w}{2}x_0 \quad (1a)$$

$$d\pi^\sigma(\mathbf{L}_{01}) = -\left(1 + \frac{x_0^2}{4}\right)\partial_0 + \frac{1}{2}x_0(S + w) = -\partial_0 + \frac{1}{4}x_0^2\partial_0 + \frac{w}{2}x_0 \quad (1b)$$

$$d\pi^\sigma(\mathbf{L}_{-1,1}) = (S + w) = (x_0\partial_0 + w) \quad (1c)$$

From these expressions we see that

$$\partial_0 = -\frac{1}{2}[d\pi^\sigma(\mathbf{L}_{-10}) + d\pi^\sigma(\mathbf{L}_{01})] \quad (2)$$

So define the abstract translation generator \mathbf{P}_0 to be:

$$\mathbf{P}_0 := -\frac{1}{2}(\mathbf{L}_{-10} + \mathbf{L}_{01}) \quad (3)$$

The Generator \mathbf{Q}_0 :

Similarly, based on Eq. (1c) we define \mathbf{Q}_0 as follows. Replace w by an indeterminate Y and take as the defining equation for the position operator \mathbf{Q}_0 the following:

$$\mathbf{L}_{-1,1} = \mathbf{Q}_0 \mathbf{P}_0 + Y \cdot \mathbf{I} \quad (4)$$

where \mathbf{I} is the identity operator in the abstract enveloping algebra of $so(2, 1)$. Solving this equation for \mathbf{Q}_0 (on the left!) we take:

$$\mathbf{Q}_0 := -2(\mathbf{L}_{-1,1} - Y \cdot \mathbf{I}) \left(\frac{\mathbf{I}}{\mathbf{L}_{-10} + \mathbf{L}_{01}} \right). \quad (5)$$

Consistency Condition: Y must be such that

$$-\mathbf{C}_2 = \mathbf{L}_{01}^2 + \mathbf{L}_{-1,1}^2 - \mathbf{L}_{-1,0}^2 = (Y^2 - Y) \cdot \mathbf{I}. \quad (6)$$

Proposition I: Let $\mathfrak{Loc}(U(so(2,1); Y))$ be a commutative algebraic extension (in Y) of a localization of $U(so(2,1))$ for which

$$\mathbf{Q}_0 := -2(\mathbf{L}_{-1,1} - Y \cdot \mathbf{I}) \left(\frac{\mathbf{I}}{\mathbf{L}_{-10} + \mathbf{L}_{01}} \right)$$

and

$$\mathbf{P}_0 := -\frac{1}{2}(\mathbf{L}_{-10} + \mathbf{L}_{01}).$$

Then we have

$$[\mathbf{P}_0, \mathbf{Q}_0] = \mathbf{I}.$$

Proposition II: Let $*$ denote the usual star structure on $U(so(2,1))$. Extend this $*$ structure to one on $\mathfrak{Loc}(U(so(2,1); Y))$ for which

$$Y^\dagger + Y = \mathbf{I}.$$

Then

$$\mathbf{Q}_0^\dagger = \mathbf{Q}_0.$$

Main Theorem:

Let Y commutes with all elements of $U(so(2, 1))$ and be such that

$$\mathbf{L}_{01}^2 + \mathbf{L}_{-1,1}^2 - \mathbf{L}_{-1,0}^2 = (Y^2 - Y) \cdot \mathbf{I}.$$

We define $\tau : \mathbb{R}[x_0; \partial_0] \rightarrow \mathfrak{Loc}(U(so(2, 1)); Y)$ so that

$$\tau(\partial_0) = \mathbf{P}_0 \ ; \ \tau(x_0) = \mathbf{Q}_0$$

and extend this mapping by linearity to all of $\mathbb{R}[x_0; \partial_0]$. Then τ is a homomorphism from $\mathbb{R}[x_0; \partial_0]$ into $\mathfrak{Loc}(U(so(2, 1)); Y)$ which preserves the $*$ structure on $\mathbb{R}[x_0; \partial_0]$ provided

$$Y^\dagger + Y = \mathbf{I}.$$

Proof: The homomorphism property follows from the Proposition 1. By preserves the $*$ structure we mean

$$\tau(x_0)^\dagger = \tau(x_0^\dagger) \ , \ \tau(\partial_0)^\dagger = \tau(\partial_0^\dagger) \ .$$

These are an immediate consequence of Proposition 2.

Applications:

In order to construct representations of $\mathbb{R}[x_0; \partial_0]$ out of representations of $U(so(2, 1))$ by using our just established results, we need the following result:

Lemma: Suppose $f : R \longrightarrow R_1$ is a ring homomorphism and Q is a left (resp. right) quotient ring of R with respect to S . If $f(s)$ is a unit in R_1 for every $s \in S$, then there exists a (unique) ring homomorphism $g : Q \longrightarrow R_1$ which extends f .

Roughly speaking, this criterion implies for our case that the action of \mathbf{P}_0 in a given representation $d\pi$ of $U(so(2, 1))$ must be invertible. For Hilbert space representations this means that zero should lie in the resolvent set of $d\pi(\mathbf{P}_0)$.

Likely candidates for such representations are highest or lowest weight representations. The reason for this is because:

$d\pi(\mathbf{P}_0)$ is a positive, self adjoint operator $\iff d\pi(so(2, 1))$ is an (infinitesimally) unitarizable lowest weight representation of $so(2, 1)$.

Unitary Irreducible Representations of $SO_0(2, 1)$

- ~~x~~ trivial representation
- ~~x~~ ✓ principal series: $\text{Ind}_P^G(1 \otimes \chi_{\sigma=i\rho} \otimes 1)$ ($0 < \rho < \infty$)
- ✓ ~~x~~ D_0^+ and D_0^- : $V_K = V^+ \oplus V^- \subset \text{Ind}_P^G(1 \otimes \chi_{\sigma=-\frac{1}{2}} \otimes 1)$ (V^+ positive & V^- negative energy). $U(\mathfrak{g})$ acts on the quotient module V_K/Y_0 via the quotient action of \mathfrak{g} on V_K/Y_0 and $D_0^+ = V^+/Y_0$, $D_0^- = V^-/Y_0$.

Furthermore

$$0 \rightarrow Y_0 \xrightarrow{\iota} V_K \xrightarrow{\pi} V_K/Y_0 \rightarrow 0$$

is short exact sequence of \mathfrak{g} equivariant $U(\mathfrak{g})$ module homomorphisms.

- ✓ ~~x~~ discrete series: D_ℓ^+ and D_ℓ^- ($\ell = 1, 2, 3, \dots$): (*ditto*)
- ? ~~x~~ complementary series: $\text{Ind}_P^G(1 \otimes \chi_{\sigma=-c} \otimes 1)$ ($0 < c \leq \frac{1}{2}$)

- In order to find a representation with two \checkmark s, i.e. it satisfies all conditions of the Main Theorem and also of the Lemma, we found it necessary to go to a covering space of $SO_0(2, 1)$.
- **Theorem (Ørsted, Segal (IES)):** Let $\bar{\bar{G}}$ denote the four-fold cover $G = SO_0(2, 1)$ and consider the representation of $\bar{\bar{G}}$ induced from \bar{P} of weight $w = \frac{1}{2}$ ($\sigma = 0$). This representation is equivalent to the direct sum of two irreducible, unitary positive and negative energy irreducible representations of $\bar{\bar{G}}$.
- **Proposition:** Let $\mathcal{H}_{1/2}^+$ and $\mathcal{H}_{1/2}^-$ respectively denote the positive and negative energy subspaces of the Hilbert space associated with the representation in the above Theorem. Then on either $\mathcal{H}_{1/2}^+$ or $\mathcal{H}_{1/2}^-$ \mathbf{P}_0 acts as a skew-symmetric operator and \mathbf{Q}_0 acts as a well-defined symmetric operator.
- We have on $\mathcal{H}_{1/2}^+$ or $\mathcal{H}_{1/2}^-$ representations of $\mathbb{R}[x_0, \partial_0]$ in which x_0 and ∂_0 act, respectively, as symmetric and skew-symmetric operators.

Concluding Remarks

- We also have results for $U_q(so(2, 1))$ i.e. we construct representations of $\mathbb{R}[x_0, \partial_0]$ from $U_q(so(2, 1))$ modules.
- Almost everything generalizes to $SO(2, q)$ and we have similar results for representations i.e. representations for which x_i and ∂_j act as symmetric and skew-symmetric operators.
- We have analogous but somewhat different results for $SO(1, n)$.
- Generalizations of Eqs.(3) and (5) to $SO(p, q)$ ($p > 1$).
- What happens under contraction of group representations e.g. when $\mathfrak{g} \xrightarrow{c \rightarrow \infty} \mathfrak{h}$, what happens to the representations of $\mathbb{R}[x_0, \partial_0]$?