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ABSTRACT

Let R[x;; 0;] denote the Weyl algebra with generators x; and 0; satisfying the
canonical commutation relations [0;, x;] = 0. It is well-known so(3) or so(1,2)
can be realized as quadratic polynomial algebras in the x; and 0; (i,j =1,2,3).
What is not well-known is that by using localization the converse statements are
also true. Here we construct a homomorphism of the Weyl algebra into a certain
localization of the universal enveloping algebra, U(so(1,2)), of so(1,2). Using
this homomorphism we construct representations of the canonical commutation
relations from certain representations of so(1,2) with the appropriate symmetry
and skew-symmetry properties required by physical considerations. We have also
established analogous results in higher dimensions.



Localization

Powerful tool in mathematics to relate different algebraic strucures with
underlying similarities.

o Gelfand-Kirillov conjecture (Dokl. Akad. Nauk SSR 167 503 (1966))

The field of quotients of the universal enveloping algebra of a Lie
algebra over an algebraically closed field is isomorphic to some skew
field extension of a Weyl algebra. (The Weyl algebra of index n over a
field k is k[x1,x2,X3, . . .,Xp; 0/0x1,0/0x2,0/0x3, . . .,0/0xp] where
the x; are coordinate functions of an n dimensional vector space.)

@ Semisimple Lie Groups and Associated Semidirect Products

P. Bozek, M. Havlitek, O. Navratil, Charles Univ. Preprint (1985):
x-isomorphism between certain commutative algebraic extensions of
the Lie fields of SO(1,4) and the Poincaré group. Similar results for
all SO(p, q) groups with p+ g <5 (p or g > 1) and for certain g
groups and supergroups e.g. Ug(so(2,1)), Ug(osp(1]2)).



SO(p+2,q), so(p+2,q) and the Weyl Algebras

Let M denote the real vector space RPT92 of dimension n = p+ g+ 2

with quadratic form
Qx) = X2+ +x2+x5+ .. +X3—Xg+1 — . —x2,

fo = diag(l, 1, ..1, —1, —1, .., —1)(p—+ 2 entries being +1's
and q entries being —1's)

° SO(p+2,q) = {g € SL(n,R)|g"fog = fo}

@ Connected component: SOy(p + 2, q)

e so(p+2,q): X €sl(nR) such that XT8y + X =0
o Weyl Algebra of index m: R[xy, X2, ...Xm; 01, 02, ...Om]



Some Facts about SOy(p + 2, ) and so(p + 2, q)

@ Basisof g=s0(p+2,q): Lj(i,j = —-1,0,...,p+q, i <))
Let Lj = —Ljfori>j, and the L satisfy the following
commutation relations:

[Lab, L] = —ep Lac
with
e1=e=€e=e=...=¢=1eig=€t2=...=€1q=—1

All other commutators vanish.

@ Quadratic Casimir Operator: C, = ij_qfl U=

p+q

p 1 P q
Z LjLy — 2 Z LjL; + Z Z Lip+j Liptj -

ij=—1 ij=p+1 i=—1 j=1



Cartan Involution (8 presentation)

0(g) = g HforgeG= SOu(p + 2, q) and the corresponding
Cartan involution on g is (X) = — X' (X € g).

Let € = {XegGld(X)=X},and P = {XeGlo(X)=—-X}.
Let K and P be the subgroups of G whose Lie algebras are K and P.

In Bp presentation K = {g eG ' g = <k6 k0> } where
2
ki € SO(p + 2) and k» € SO(q).
Let A be the one parameter subgroup of G generated by L_1 541

Fact: G is generated by K and A i.e. all possible products of
elements of K and A are dense in G.



Embedding of so(p + 2, ) into R [xi, 5, .- Xp1q12i 01,8, ...0p1q12)

@ G acts naturally on M as pseudo-rotations of pseudo-Euclidean space:
(i) SO(p + 2) rotations with generators Lj (i,j = —1,0,...p, i <)
(i) SO(q) rotations with generators Lys (k,{ =p+1,..p+q, k <)

(iii) a hyperbolic rotation in the —1, p + g plane of M with generator
L_1 p+q (scaling transformation).

@ This action of G on M gives rise to the left regular action of G on
C>®(M) i.e.

G>g—m(g):m(g)f(x) =flg 'x)

where x € M and f(x) € C*°(M). Denote by dr the corresponding
action of g on C*(M).

@ Proposition: dr defines an isomorphism of so(p + 2, g) onto its
image in R[xy, x2, ...xn; 01, 02, ...0p] for n=p+ q + 2.



SO(2,1) and Some of its Subgroups

) S0(2) = {[ cos S‘"Q] ’9 € [—7r,7r)}

—sinf cosf

SOp(1,1) = { [‘i‘g iﬁg]

ﬁe]R{}

@ Some Subgroups of SOy(2,1):

uu u 0
K=qk(u)=|-u uv1 O
0 01

u

(_“;2 Zi) € 50(2)}




@ Some Additional Subgroups

Po
1—"”72 a 372
N=<nla)=| —a 1 a aeR
—"2—2 a 14—"72
N 1—X72 X —X;_
N =< ii(x) = X 1 x€eR




Decompositions of SO(2,1)

@ lwasawa Decomposition

S00(2,1) = KAN

@ Bruhat Decomposition

S00(2,1) = NMAN

e Parabolic Subgroup: P = MAN (Langlands Decomposition)
@ Hannabuss/Sekiguchi Decomposition
(Hannabuss: SO(1, n), 1971; Sekiguchi: SO(p, q), Sp(n,R) etc., 1980)
S00(2,1) = HAN  (H = Ny(G))
-1 0 O

o Let Q= { 0 -1 0] then H = HUHQ where H = S0(1,1).
0 0 1



Relationship between Various Decompositions

@ For h € S0Oy(1,1), Iwasawa decomposition gives:

1 0 0 vy up O [ch(r) 0 sh(r)| [1- %2 a "”72
0 /30 [3 = |—Uu U 0 0 1 0 —a 1 a
0 5 ho 0 0 1f[sh(r) 0 oh(n)] [ -2 a4 142

@ Solve for po, p, 7 and a in terms of vy, ux € K/M:

A 1
Po = m =u >0
) - 2
p m
T — =
e = m
a u»

@ Similarly Iwasawa decomposition for h' € H Q gives:

— _1
= u =um <0
_

U1

u
= —_ u2

v o P
I



@ Relationship between the Bruhat and lwasawa decompositions of
S50(2,1):

2 2
X X
1-% —x =%
X 1 X =
2 2
% x 1+%

up w 0] [ch(r) 0O sh(7) 1—"22 a "”;
= |—uy up 0 0 1 0 —a 1 a
0 0 1] |sh(r) 0 ch(r)] | -2 4 142
_
14w
Y
2

1—{—U1.



@ Stereographic projections showing relationship between various
decompositions




Generalized Principal Series of SOy(1, 2)

@ Characters of A: A character of A is a homomorphism x : A — C. Let
A* be the space of all characters.

For o € C let x, € A* 2 x,(a(7)) = e~ (o+/2)7
@ Irreducible Representations of M: p(/) = (+1) (M = {l}). (So p=1.)
@ Representations of the Inducing Subgroup

Consider 1 ® x, : MA — C and extend this mapping to a mapping from the
parabolic subgroup P = MAN to C by requiring that it act trivially on N:
for p=ma(t)n € P

1®xe®1:P—=C3(1®x,®1)(p) = xo(a(7)).
@ Generalized Principal Series
Indg (10x,®1) = {F € C*(G)|F(gp) = (10x,@1)(p)F(g).8 € G,p € P}
= {F € C*(G)| F(gp) = e /" F(g),g € G,p = ma(r)n € P}.

&1
G acts in this space by left translation: F(g) —  F(g18).



Parallelizations of Ind§(1 ® y, ® 1) associated with the

decompositions

o L(?)(G/P) is the line bundle over u € G/P whose elements are
equivalence classes of ordered pairs (u,s) € G x C with respect to the
equivalence relation (p = ma(7)n € P):

(u,5) ~ (up, p(m)xo(a(7))s).

o Let C°(G/P, L(9)) be the space of all C* sections of L(?)(G/P).
The lwasawa decomposition gives us the isomorphism

C¥(G/P, L)Y 5 W — ¢ e C°(K/M).

This defines a parallelization of the bundle L(?)(G/P), which we call
the “spherical parallelization.”



Action of Induced Representation on C*°(K /M)

We have the following formula for the action of the representation
IndS(1® xo ® 1) on C®(K/M): (spherical parallelization)

77 (g)p(u) = e~ T g(g7 ) = e~ (HDT (g1 y)

where

ue K/M = K,
and

g " k(u) = k(u')a(r)n,
with



Other parallelizations and their relationship to the spherical

parallization

The Hannabuss/Sekiguchi and Bruhat decompositions lead to:

@ “Hyperbolic parallelization”
A —(0+1/2)
&(po.p) = (&) é(u) (o > 0)

)7(0+1/2)

Ao, ) = (2 o(u) (w0 <0)

o “Flat parallelization”

Y(x) = <I—Eu1

)—(0+1/2) o)



Some Results about the action of g = s0(2,1) in the

Representations Ind$(1 ® y, ® 1)

o AtLji
Let Ljf = dn?(Lj)f := W f for f a C* function on one of the

spaces defined by the any one of the three parallelizations. The results are
summarized in the Table.

TABLE. Presentations of the infinitesmal generators in various
parallelizations.(S = x0x, and w = o + )

generator ‘ spherical ‘ flat ‘ hyperbolic
Loi1 sin 9y + w cos 6§ (S+w) shB0s + wchf
Lo.1 cos0dy — wsin6 | 1(1—x2)0, +x(S +w) -0s
Lo1o 0 (1 +x2)0x — x(S+ w) | chBdz — wshp



The Generator Py:

From the Table we obtain ( with x = %xo) for the action of the three basic
generators of SO(2, 1) in the representation dn?(so(2,1)):

1 1
d7TU(|.,10) = — ( — XO) Jo — EXO(S + W) = —0p — ngao — gXO (18)

4 2
dﬂ'U(L_Ll) = (5 + W) = (Xoao + W) (].C)

o x3 1 1, w
dm (L01) =—(1+ 0o + fXO(S + W) =—0p + Zxoﬁo + EXQ (1b)

From these expressions we see that
1
Oy = —5 [dTrU(L_lo) + dﬂ'g(l.()l)] (2)
So define the abstract translation generator Pg to be:

1
Po := —E(L—m + Lo1) (3)



The Generator Qq:

Similarly, based on Eq. (1c) we define Qg as follows. Replace w by an
indeterminate Y and take as the defining equation for the position
operator Qg the following:

Lo11=QoPo+ Y-I (4)

where | is the identity operator in the abstract enveloping algebra of
so(2,1). Solving this equation for Qg (on the left!) we take:

Qo = —2('._171 -Y. |) <|._10|+|.01> . (5)

Consistency Condition: Y must be such that

—Co =15+, L2 o= (Y?=-Y)-L (6)



Proposition I: Let Loc(U(s0(2,1); Y) be a commutative algebraic
extension (in Y') of a localization of U(so(2,1)) for which

|
U Gy

and 1
Py = _E(L_lo -+ L01)~

Then we have
[Po, Qo] = I.

Proposition Il: Let x denote the usual star structure on U(so(2,1)).
Extend this * structure to one on £oc(U(so(2,1); Y) for which

Yity=1

Then
Q(T) = Qo.



Let Y commutes with all elements of U(so(2,1)) and be such that
L+ L2 — L2 =(Y>=Y)-L
We define 7 : R[xg; o] — Loc(U(so(2,1); Y) so that
7(0o) = Po ; 7(x0) = Qo

and extend this mapping by linearity to all of R[xp; dg]. Then 7 is a
homomorphism from R[xg; Jp] into Loc(U(so(2,1); Y) which preserves the
* structure on R[xp; 0] provided

Yity=1
Proof: The homomorphism property follows from the Proposition 1. By
preserves the x structure we mean
r(x0) =7(d) , 7(d0)t =7(d}) .

These are an immediate consequence of Proposition 2.



Applications:

In order to construct representations of R[xp; Jg] out of representations of
U(so(2,1)) by using our just established results, we need the following
result:

Lemma: Suppose f : R — Ry is a ring homomorphism and @ is a left
(resp. right) quotient ring of R with respect to S. If f(s) is a unit in Ry
for every s € S, then there exists a (unique) ring homomorphism

g : @ — Ry which extends f.

Roughly speaking, this criterion implies for our case that the action of Py
in a given representation d7 of U(so(2,1)) must be invertible. For Hilbert

space representations this means that zero should lie in the resolvent set of
dn(Po).

Likely candidates for such representations are highest or lowest weight
representations. The reason for this is because:

dm(Pp) is a positive, self adjoint operator <= dn(so(2,1)) is an
(infinitesimally) unitarizable lowest weight representation of so(2,1).



Unitary Irreducible Representations of SOy(2,1)

X X trivial representation
x v principal series: Ind§(1 ® xo—ip ® 1) (0 < p < 0)

Vx Dy and Dy :Vk = V¥ @V C IndB(1@ x,__1 @ 1) (V' positive
& V'~ negative energy). U(g) acts on the quotient module Vi /Yy via
the quotient action of g on Vi /Yy and DJ =VT/Y, Dy =V~ /Y.
L T

Furthermore = Yo - Vk — Vk/Yo —0

is short exact sequence of g equivariant U(g) module homomorphisms.
v'x discrete series: D, and D, (¢ =1,2,3,...): (ditto)

? x complementary series: Indg(l ® Xo=—ec®1) (0<c < %)



@ In order to find a representation with two v's, i.e. it satisfies all
conditions of the Main Theorem and also of the Lemma, we found it
necessary to go to a covering space of SOp(2,1).

o Theorem (@rsted, Segal (IES)): Let G denote the four-fold cover
G = S00(2,1) and consider the representation of G induced from P
of weight w = 1 (0 = 0). This representation is equivalent to the
direct sum of two irreducible, unitary positive and negative energy

irreducible representations of G.

@ Proposition: Let ’pr and Hf/z respectively denote the positive and
negative energy subspaces of the Hilbert space associated with the
representation in the above Theorem. Then on either Hf2 or ’HI/Q
Py acts as a skew-symmetric operator and Qg acts as a well-defined
symmetric operator.

@ We have on ’Hf/z or 7-[1_/2 representations of R[xg, Jp] in which xp and
0o act, respectively, as symmetric and skew-symmetric operators.



Concluding Remarks

@ We also have results for Ug(so(2,1)) i.e. we construct representations
of R[xp, o] from Uq(so(2, 1)) modules.

@ Almost everything generalizes to SO(2, q) and we have similar results
for representations i.e. representations for which x; and 9; act as
symmetric and skew-symmetric operators.

@ We have analogous but somewhat different results for SO(1, n).
e Generalizations of Eqgs.(3) and (5) to SO(p, q) (p > 1).

@ What happens under contraction of group representations e.g. when

g Cﬁo b, what happens to the representations of R|[xg, Jp]?



