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ABSTRACT

Let R[xi ; ∂j ] denote the Weyl algebra with generators xi and ∂j satisfying the

canonical commutation relations [∂i , xj ] = δij . It is well-known so(3) or so(1, 2)

can be realized as quadratic polynomial algebras in the xi and ∂j (i , j = 1, 2, 3).

What is not well-known is that by using localization the converse statements are

also true. Here we construct a homomorphism of the Weyl algebra into a certain

localization of the universal enveloping algebra, U(so(1, 2)), of so(1, 2). Using

this homomorphism we construct representations of the canonical commutation

relations from certain representations of so(1, 2) with the appropriate symmetry

and skew-symmetry properties required by physical considerations. We have also

established analogous results in higher dimensions.



Localization

Powerful tool in mathematics to relate different algebraic strucures with
underlying similarities.

Gelfand-Kirillov conjecture (Dokl. Akad. Nauk SSR 167 503 (1966))

The field of quotients of the universal enveloping algebra of a Lie
algebra over an algebraically closed field is isomorphic to some skew
field extension of a Weyl algebra. (The Weyl algebra of index n over a
field k is k[x1, x2, x3, . . ., xn; ∂/∂x1, ∂/∂x2, ∂/∂x3, . . ., ∂/∂xn] where
the xi are coordinate functions of an n dimensional vector space.)

Semisimple Lie Groups and Associated Semidirect Products

P. Bozek, M. Havĺıček, O. Navrátil, Charles Univ. Preprint (1985):
∗-isomorphism between certain commutative algebraic extensions of
the Lie fields of SO(1, 4) and the Poincaré group. Similar results for
all SO(p, q) groups with p + q ≤ 5 (p or q ≥ 1) and for certain q
groups and supergroups e.g. Uq(so(2, 1)), Uq(osp(1|2)).



SO(p + 2, q), so(p + 2, q) and the Weyl Algebras

Let M denote the real vector space Rp+q+2 of dimension n = p + q + 2
with quadratic form
Q(x) = x2−1 + x20 + x21 + x22 + . . + x2p − x2p+1 − . . . − x2p+q

β0 = diag(1, 1, . . 1, − 1, − 1, . . , − 1) (p + 2 entries being +1’s
and q entries being −1’s)

SO(p + 2, q) = {g ∈ SL(n,R)|g †β0g = β0}

Connected component: SO0(p + 2, q)

so(p + 2, q): X ∈ sl(n,R) such that X †β0 + β0X = 0

Weyl Algebra of index m: R[x1, x2, ...xm; ∂1, ∂2, ...∂m]



Some Facts about SO0(p + 2, q) and so(p + 2, q)

Basis of g = so(p + 2, q): Lij (i , j = − 1, 0, . . . , p + q, i < j).
Let Lij = − Lji for i > j , and the Lij satisfy the following
commutation relations:

[Lab, Lbc ] = − eb Lac

with

e−1 = e0 = e1 = e2 = . . . = ep = 1, ep+q = ep+2 = . . . = ep+q = −1.

All other commutators vanish.

Quadratic Casimir Operator: C2 = 1
2

∑p+q
i ,j=−1 Lij Lji =

− 1

2

p∑
i ,j=−1

Lij Lij −
1

2

p+q∑
i ,j=p+1

Lij Lij +

p∑
i=−1

q∑
j=1

Li ,p+j Li ,p+j .



Cartan Involution (β0 presentation)

θ(g) = g−1† for g ∈ G = SO0(p + 2, q) and the corresponding
Cartan involution on g is θ(X ) = − X † (X ∈ g).

Let K = {X ∈ G|θ(X ) = X} , and P = {X ∈ G|θ(X ) = −X} .

Let K and P be the subgroups of G whose Lie algebras are K and P.

In β0 presentation K =

{
g ∈ G

∣∣∣∣ g =

(
k1 0

0 k2

) }
where

k1 ∈ SO(p + 2) and k2 ∈ SO(q).

Let A be the one parameter subgroup of G generated by L−1,p+1

Fact: G is generated by K and A i.e. all possible products of
elements of K and A are dense in G .



Embedding of so(p + 2, q) into R [x1, x2, ...xp+q+2; ∂1, ∂2, ...∂p+q+2]

G acts naturally on M as pseudo-rotations of pseudo-Euclidean space:

(i) SO(p + 2) rotations with generators Lij (i , j = −1, 0, ...p, i < j)

(ii) SO(q) rotations with generators Lk` (k , ` = p + 1, ...p + q, k < `)

(iii) a hyperbolic rotation in the −1, p + q plane of M with generator
L−1,p+q (scaling transformation).

This action of G on M gives rise to the left regular action of G on
C∞(M) i.e.

G 3 g → π(g) : π(g)f (x) = f (g−1x)

where x ∈ M and f (x) ∈ C∞(M). Denote by dπ the corresponding
action of g on C∞(M).

Proposition: dπ defines an isomorphism of so(p + 2, q) onto its
image in R[x1, x2, ...xn; ∂1, ∂2, ...∂n] for n = p + q + 2.



SO(2,1) and Some of its Subgroups

SO(2) =

{[
cos θ sin θ
− sin θ cos θ

]∣∣∣∣θ ∈ [−π, π)

}

SO0(1, 1) =

{[
chβ shβ
shβ chβ

]∣∣∣∣β ∈ R
}

Some Subgroups of SO0(2, 1):

K =

k(u) =

 u1 u2 0
−u2 u1 0

0 0 1

∣∣∣∣∣∣ u =

(
u1 u2
−u2 u1

)
∈ SO(2)


A =

a(τ) =

ch(τ) 0 sh(τ)
0 1 0

sh(τ) 0 ch(τ)

∣∣∣∣∣∣τ ∈ R





Some Additional Subgroups

H =


1 0 0

0 p̂0 p̂
0 p̂ p̂0

∣∣∣∣∣∣
(
p̂0 p̂
p̂ p̂0

)
∈ SO0(1, 1)



N =

n(a) =

1− a2

2 a a2

2
−a 1 a

−a2

2 a 1 + a2

2


∣∣∣∣∣∣∣a ∈ R


Ñ =

ñ(x) =

1− x2

2 −x − x2

2
x 1 x
x2

2 x 1 + x2

2


∣∣∣∣∣∣∣x ∈ R


M = CA(K ) =

I =

1 0 0
0 1 0
0 0 1

 .



Decompositions of SO(2,1)

Iwasawa Decomposition

SO0(2, 1)
∼
= KAN

Bruhat Decomposition

SO0(2, 1)
∼
= ÑMAN

Parabolic Subgroup: P = MAN (Langlands Decomposition)

Hannabuss/Sekiguchi Decomposition

(Hannabuss: SO(1, n), 1971; Sekiguchi: SO(p, q), Sp(n,R) etc., 1980)

SO0(2, 1)
∼
= H ′AN (H ′ = NH(G ))

Let Q =

−1 0 0
0 −1 0
0 0 1

 then H ′ = H ∪ HQ where H = SO0(1, 1).



Relationship between Various Decompositions

For h ∈ SO0(1, 1), Iwasawa decomposition gives:1 0 0
0 p̂0 p̂
0 p̂ p̂0

 =

 u1 u2 0
−u2 u1 0

0 0 1

ch(τ) 0 sh(τ)
0 1 0

sh(τ) 0 ch(τ)

1− a2

2 a a2

2
−a 1 a

− a2

2 a 1 + a2

2


Solve for p̂0, p̂, τ and a in terms of u1, u2 ∈ K/M:

p̂0 = 1
u1

⇒ u1 > 0

p̂ = u2
u1

eτ = 1
u1

a = u2

Similarly Iwasawa decomposition for h′ ∈ H Q gives:

p̂0 = − 1
u1

⇒ u1 < 0

p̂ = − u2
u1

eτ = − 1
u1

a = −u2



Relationship between the Bruhat and Iwasawa decompositions of
SO0(2, 1): 1− x2

2 −x − x2

2
x 1 x
x2

2 x 1 + x2

2

 =

=

 u1 u2 0
−u1 u2 0

0 0 1

ch(τ) 0 sh(τ)
0 1 0

sh(τ) 0 ch(τ)


1− a2

2 a a2

2
−a 1 a

−a2

2 a 1 + a2

2


=⇒

x =
u2

1 + u1
.

a =
u2
2

eτ =
2

1 + u1
.



Stereographic projections showing relationship between various
decompositions

Figure: Stereographic projection from the unit sphere and the unit
hyperboloid onto the plane.



Generalized Principal Series of SO0(1, 2)

Characters of A: A character of A is a homomorphism χ : A→ C. Let
A∗ be the space of all characters.

For σ ∈ C let χσ ∈ A∗ 3 χσ(a(τ)) = e−(σ+1/2)τ

Irreducible Representations of M: ρ(I ) = (+1) (M = {I}). (So ρ = 1.)

Representations of the Inducing Subgroup

Consider 1⊗ χσ : MA→ C and extend this mapping to a mapping from the
parabolic subgroup P = MAN to C by requiring that it act trivially on N:
for p = ma(τ)n ∈ P

1⊗ χσ ⊗ 1 : P → C 3 (1⊗ χσ ⊗ 1)(p) = χσ(a(τ)).

Generalized Principal Series

IndG
P (1⊗χσ⊗1) = {F ∈ C∞(G )|F(gp) = (1⊗χσ⊗1)(p)F(g), g ∈ G , p ∈ P}
= {F ∈ C∞(G )| F(gp) = e−(σ+1/2)τF(g), g ∈ G , p = ma(τ)n ∈ P}.

G acts in this space by left translation: F(g)
g1
−→ F(g1g).



Parallelizations of IndGP (1⊗ χσ ⊗ 1) associated with the
decompositions

L(σ)(G/P) is the line bundle over u ∈ G/P whose elements are
equivalence classes of ordered pairs (u, s) ∈ G ×C with respect to the
equivalence relation (p = ma(τ)n ∈ P):

(u, s) ∼ (up, ρ(m)χσ(a(τ))s).

Let C∞(G/P, L(σ)) be the space of all C∞ sections of L(σ)(G/P).
The Iwasawa decomposition gives us the isomorphism

C∞(G/P, L(σ)) 3 Ψ −→ φ ∈ C∞(K/M).

This defines a parallelization of the bundle L(σ)(G/P), which we call
the “spherical parallelization.”



Action of Induced Representation on C∞(K/M)

We have the following formula for the action of the representation
IndG

P (1⊗ χσ ⊗ 1) on C∞(K/M): (spherical parallelization)

πσ(g)φ(u) = e−(σ+1/2)τφ(g−1u) = e−(σ+1/2)τφ(g−1u)

where
u ∈ K/M

∼
= K ,

and
g−1k(u) = k(u′)a(τ)n,

with
g−1u := u′.



Other parallelizations and their relationship to the spherical
parallization

The Hannabuss/Sekiguchi and Bruhat decompositions lead to:

“Hyperbolic parallelization”

φ̃(p̂0, p̂) =
(

1
u1

)−(σ+1/2)
φ(u) (u0 > 0)

φ̃(−p̂0, p̂) =
(

1
−u1

)−(σ+1/2)
φ(u) (u0 < 0)

“Flat parallelization”

ψ(x) =
(

2
1+u1

)−(σ+1/2)
φ(u)



Some Results about the action of g = so(2, 1) in the

Representations IndGP (1⊗ χσ ⊗ 1)

Let Lij f = dπσ(Lij)f := dπσ(e
tLij )

dt

∣∣∣
t=0

f for f a C∞ function on one of the

spaces defined by the any one of the three parallelizations. The results are
summarized in the Table.

TABLE. Presentations of the infinitesmal generators in various
parallelizations.(S = x∂x , and w = σ + 1

2)

generator spherical flat hyperbolic

L−1,1 sin θ∂θ + w cos θ (S + w) shβ∂β + wchβ

L0,1 cos θ∂θ − w sin θ 1
2 (1− x2)∂x + x(S + w) -∂β

L−1,0 −∂θ 1
2 (1 + x2)∂x − x(S + w) chβ∂β − wshβ



The Generator P0:

From the Table we obtain ( with x = 1
2x0) for the action of the three basic

generators of SO(2, 1) in the representation dπσ(so(2, 1)):

dπσ(L−10) = −
(

1− x20
4

)
∂0 −

1

2
x0(S + w) = −∂0 −

1

4
x20∂0 −

w

2
x0 (1a)

dπσ(L01) = −
(

1 +
x20
4

)
∂0 +

1

2
x0(S + w) = −∂0 +

1

4
x20∂0 +

w

2
x0 (1b)

dπσ(L−1,1) = (S + w) = (x0∂0 + w) (1c)

From these expressions we see that

∂0 = −1

2
[dπσ(L−10) + dπσ(L01)] (2)

So define the abstract translation generator P0 to be:

P0 := −1

2
(L−10 + L01) (3)



The Generator Q0:

Similarly, based on Eq. (1c) we define Q0 as follows. Replace w by an
indeterminate Y and take as the defining equation for the position
operator Q0 the following:

L−1,1 = Q0P0 + Y · I (4)

where I is the identity operator in the abstract enveloping algebra of
so(2, 1). Solving this equation for Q0 (on the left!) we take:

Q0 := −2(L−1,1 − Y · I)
(

I

L−10 + L01

)
. (5)

Consistency Condition: Y must be such that

−C2 = L2
01 + L2

−1,1 − L2
−1,0 = (Y 2 − Y ) · I. (6)



Proposition I: Let Loc(U(so(2, 1);Y ) be a commutative algebraic
extension (in Y ) of a localization of U(so(2, 1)) for which

Q0 := −2(L−1,1 − Y · I)
(

I

L−10 + L01

)
and

P0 := −1

2
(L−10 + L01).

Then we have
[P0,Q0] = I.

Proposition II: Let ∗ denote the usual star structure on U(so(2, 1)).
Extend this ∗ structure to one on Loc(U(so(2, 1);Y ) for which

Y † + Y = I.

Then
Q†0 = Q0.



Main Theorem:

Let Y commutes with all elements of U(so(2, 1)) and be such that

L2
01 + L2

−1,1 − L2
−1,0 = (Y 2 − Y ) · I.

We define τ : R[x0; ∂0]→ Loc(U(so(2, 1);Y ) so that

τ(∂0) = P0 ; τ(x0) = Q0

and extend this mapping by linearity to all of R[x0; ∂0]. Then τ is a
homomorphism from R[x0; ∂0] into Loc(U(so(2, 1);Y ) which preserves the
∗ structure on R[x0; ∂0] provided

Y † + Y = I.

Proof: The homomorphism property follows from the Proposition 1. By
preserves the ∗ structure we mean

τ(x0)† = τ(x†0) , τ(∂0)† = τ(∂†0) .

These are an immediate consequence of Proposition 2.



Applications:

In order to construct representations of R[x0; ∂0] out of representations of
U(so(2, 1)) by using our just established results, we need the following
result:

Lemma: Suppose f : R −→ R1 is a ring homomorphism and Q is a left
(resp. right) quotient ring of R with respect to S . If f (s) is a unit in R1

for every s ∈ S , then there exists a (unique) ring homomorphism
g : Q −→ R1 which extends f .

Roughly speaking, this criterion implies for our case that the action of P0

in a given representation dπ of U(so(2, 1)) must be invertible. For Hilbert
space representations this means that zero should lie in the resolvent set of
dπ(P0).

Likely candidates for such representations are highest or lowest weight
representations. The reason for this is because:

dπ(P0) is a positive, self adjoint operator ⇐⇒ dπ(so(2, 1)) is an
(infinitesimally) unitarizable lowest weight representation of so(2, 1).



Unitary Irreducible Representations of SO0(2, 1)

x x trivial representation

x X principal series: IndG
P (1⊗ χσ=iρ ⊗ 1) (0 < ρ <∞)

Xx D+
0 and D−0 :VK = V+ ⊕ V−⊂ IndG

P (1⊗ χσ=− 1
2
⊗ 1) (V+ positive

& V− negative energy). U(g) acts on the quotient module VK/Y0 via
the quotient action of g on VK/Y0 and D+

0 = V+/Y0, D−0 = V−/Y0.

Furthermore
ι π

0 → Y0 → VK → VK/Y0 → 0

is short exact sequence of g equivariant U(g) module homomorphisms.

Xx discrete series: D+
` and D−` (` = 1, 2, 3, ...): (ditto)

? x complementary series: IndG
P (1⊗ χσ=−c ⊗ 1) (0 < c ≤ 1

2)



In order to find a representation with two Xs, i.e. it satisfies all
conditions of the Main Theorem and also of the Lemma, we found it
necessary to go to a covering space of SO0(2, 1).

Theorem (Ørsted, Segal (IES)): Let ¯̄G denote the four-fold cover

G = SO0(2, 1) and consider the representation of ¯̄G induced from P̄
of weight w = 1

2 (σ = 0). This representation is equivalent to the
direct sum of two irreducible, unitary positive and negative energy
irreducible representations of ¯̄G .

Proposition: Let H+
1/2 and H−1/2 respectively denote the positive and

negative energy subspaces of the Hilbert space associated with the
representation in the above Theorem. Then on either H+

1/2 or H−1/2
P0 acts as a skew-symmetric operator and Q0 acts as a well-defined
symmetric operator.

We have on H+
1/2 or H−1/2 representations of R[x0, ∂0] in which x0 and

∂0 act, respectively, as symmetric and skew-symmetric operators.



Concluding Remarks

We also have results for Uq(so(2, 1)) i.e. we construct representations
of R[x0, ∂0] from Uq(so(2, 1)) modules.

Almost everything generalizes to SO(2, q) and we have similar results
for representations i.e. representations for which xi and ∂j act as
symmetric and skew-symmetric operators.

We have analogous but somewhat different results for SO(1, n).

Generalizations of Eqs.(3) and (5) to SO(p, q) (p > 1).

What happens under contraction of group representations e.g. when
g c→∞
−→ h, what happens to the representations of R[x0, ∂0]?


