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Abstract

Abstract

The Lie groups preserving degenerate quadratic forms appear in
various contexts related to spacetime. The homogeneous Galilei
group is the intersection of two such groups. The structure group
of sub-Riemannian geometry and of singular semi-Riemannian ge-
ometry, as well as of some submanifolds of semi-Riemannian mani-
folds, is of this kind. Such groups are shown to replace the Lorentz
group at a very large class of singularities in General Relativity.
Also, these groups are shown to be fundamental in Kaluza-Klein
theory and in gauge theory.
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Degenerate quadratic forms

Degenerate quadratic forms

Let (V , q) be a vector space with a quadratic form q.
Let g be the symmetric bilinear form associated to q by polarization,

g(u, v) =
1

4
(q(u + v)− q(u − v))

for any u, v ∈ V .
We will call g metric.

The signature of q is (r , s, t) if g can be diagonalized to

g =

 −It 0 0
0 Is 0
0 0 Or

 .

We denote by O(t, s, r) the group of transformations of the vector space
Rn which preserve this bilinear form.
The metric g and the quadratic form q are called degenerate if r > 0.
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Degenerate quadratic forms

Degenerate quadratic forms

Examples:

The orthogonal group O(n) = O(0, n, 0) preserves a non-degenerate
form diag(1, . . . , 1).
The Lorentz group O(1, 3) = O(1, 3, 0) preserves the Lorentz metric
diag(−1, 1, 1, 1), which is non-degenerate.
The general linear group GL(n) = preserves the degenerate form
g = 0.

The interesting cases will be in the following O(t, s, r) with r > 0.
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Degenerate quadratic forms

(V,g) V*

u
u+w

w (V●,g●)

(V●,g●)V●=V/V○

u●

(V , g) is an inner product vector space.

The morphism [ : V → V ∗ is defined by
u 7→ u• := [(u) = u[ = g(u, ). The radical V ◦ := ker [ = V⊥ is the set of isotropic
vectors in V . V • := im [ ≤ V ∗ is the image of [. The inner product g induces on V • an
inner product defined by g•(u

[
1, u

[
1) := g(u1, u2), which is the inverse of g iff det g 6= 0.

The quotient V • := V /V ◦ consists in the equivalence classes of the form u + V ◦. On
V •, g induces an inner product g•(u1 + V ◦, u2 + V ◦) := g(u1, u2).
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Galilean relativity

Galilean relativity and degenerate metrics

Just like rotations and translations act on an Euclidean space, Galilei trans-
formations act on spacetime, with coordinates (x , y , z , t).

Just like rotations and translations preserve the metric in an Euclidean space,
Galilei transformations preserve two degenerate metrics:
the metric giving the distances (on the dual spacetime)

g ij
space =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


and the metric giving the durations

gtime ij =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


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Galilean relativity

Galilean relativity and degenerate metrics
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
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
We can’t combine these two metrics in a 4-dimensional metric, since gtime ij

is defined on the entire spacetime, while gspace ij on a subspace.

However, we can select a 1-dimensional subspace named time complemen-
tary to space. This amounts to choosing an absolute space.
Now spacetime is split as space+time. The degenerate metric gtime ij

induces a metric on the time subspace, say ĝtime. One may think to combine
the metrics on space and time in a 4-dimensional metric,

gspacetime = gspace + v ĝtime,

where v has the dimensions of a speed.
But this would make v a special, absolute speed, and this is not allowed in
Galilean relativity (unlike in the relativistic spacetime).
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Sub-Riemannian geometry

Degenerate metrics in sub-Riemannian geometry

A sub-Riemannian manifold is a manifold endowed with a non-degenerate
symmetric biliniar form on a nonintegrable distribution of its tangent bundle.

This is equivalent to a degenerate metric on the cotangent bundle.

Its study was originated in

G. Vrănceanu. “Sur les espaces non holonomes”. C.R. Acad. Sci. Paris 183 (1926);
G. Vrănceanu. “Studio geometrico dei sistemi anolonomi”. Annali di Matematica Pura ed
Applicata 6.1 (1929);
G. Vrănceanu. “Sur les trois points de vue dans l’étude des espaces non holonomes”. CR Acad.
Sci. Paris 188 (1929);
G. Vrănceanu. “Sur une théorie unitaire non holonome des champs physiques”. J. Phys. Radium
7.12 (1936)
P.K. Rashevskii. “About connecting two points of complete nonholonomic space by admissible
curve [Russian]”. Uch. Zapiski Ped. Inst. Libknexta 2 (1938);
Wei-Liang Chow. “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”.
Math. Ann 117.1 (1939);

Lars Hörmander. “Hypoelliptic second order differential equations”. Acta Mathematica 119.1
(1967);

Mikhael Gromov. Carnot-Carathéodory spaces seen from within. Springer, 1996
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G. Vrănceanu. “Sur une théorie unitaire non holonome des champs physiques”. J. Phys. Radium
7.12 (1936)
P.K. Rashevskii. “About connecting two points of complete nonholonomic space by admissible
curve [Russian]”. Uch. Zapiski Ped. Inst. Libknexta 2 (1938);
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Semi-Riemannian geometry

Degenerate metrics in singular semi-Riemannian geometry

Einstein disliked for long time singularities, and rejected the idea of black
holes predicted by his theory. However, when he and Rosen used wormholes
to explain the electric charge, they obtained a singularity. They mentioned
the possibility that the infinities can be eliminated from the equations, with-
out giving an invariant solution which makes geometric and physical sense.

A. Einstein and N. Rosen. “The Particle Problem in the General Theory of
Relativity”. Phys. Rev. 48.1 (1935)
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Semi-Riemannian geometry

Degenerate metrics in singular semi-Riemannian geometry

Spaces with degenerate metrics were studied by
Dan Barbilian. “Galileische Gruppen und quadratische Algebren”. Bull.
Math. Soc. Roumaine Sci. (1939);
G. C. Moisil. “Sur les géodésiques des espaces de Riemann singuliers”.
Bull. Math. Soc. Roumaine Sci. 42 (1940);
K. Strubecker. “Differentialgeometrie des isotropen Raumes. I. Theorie der
Raumkurven”. Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt.
IIa 150 (1941);
K. Strubecker. “Differentialgeometrie des isotropen Raumes. II. Die Flächen
konstanter Relativkrümmung K = rt − s2”. Math. Z. 47.1 (1942);
K. Strubecker. “Differentialgeometrie des isotropen Raumes. III. Flächentheorie”.
Math. Z. 48.1 (1942);

K. Strubecker. “Differentialgeometrie des isotropen Raumes. IV. Theorie
der flächentreuen Abbildungen der Ebene”. Math. Z. 50.1 (1944);
G. Vrănceanu. “Sur les invariants des espaces de Riemann singuliers”.
Disqu. Math. Phys. Bucureşti 2 (1942)
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Semi-Riemannian geometry

Degenerate metrics in singular semi-Riemannian geometry

Until recently, the state of the art was the work of D. Kupeli
D. Kupeli. “On Null Submanifolds in Spacetimes”. Geom. Dedicata 23.1
(1987);
D. Kupeli. “Degenerate Manifolds”. Geom. Dedicata 23.3 (1987);
D. Kupeli. “Degenerate Submanifolds in Semi-Riemannian geometry”.
Geom. Dedicata 24.3 (1987);
D. Kupeli. Singular Semi-Riemannian Geometry. Kluwer Academic Pub-
lishers Group, 1996

But there were two limitations:

the signature was constant, while in general relativity has to change,
the method was not invariant, and it depended on the choice of a
distribution transversal to ker g .

The results from
O. C. Stoica. “On Singular Semi-Riemannian Manifolds”. Int. J. Geom.
Methods Mod. Phys. 11.5 (2014)
apply to changing signature, are invariant, and don’t rely on a particular
choice. The particular cases of Kupeli and Riemann are obtained.

11 / 39



Semi-Riemannian geometry

Degenerate metrics in singular semi-Riemannian geometry

Until recently, the state of the art was the work of D. Kupeli
D. Kupeli. “On Null Submanifolds in Spacetimes”. Geom. Dedicata 23.1
(1987);
D. Kupeli. “Degenerate Manifolds”. Geom. Dedicata 23.3 (1987);
D. Kupeli. “Degenerate Submanifolds in Semi-Riemannian geometry”.
Geom. Dedicata 24.3 (1987);
D. Kupeli. Singular Semi-Riemannian Geometry. Kluwer Academic Pub-
lishers Group, 1996
But there were two limitations:

the signature was constant, while in general relativity has to change,
the method was not invariant, and it depended on the choice of a
distribution transversal to ker g .

The results from
O. C. Stoica. “On Singular Semi-Riemannian Manifolds”. Int. J. Geom.
Methods Mod. Phys. 11.5 (2014)
apply to changing signature, are invariant, and don’t rely on a particular
choice. The particular cases of Kupeli and Riemann are obtained.

11 / 39



Semi-Riemannian geometry

Degenerate metrics in singular semi-Riemannian geometry

Until recently, the state of the art was the work of D. Kupeli
D. Kupeli. “On Null Submanifolds in Spacetimes”. Geom. Dedicata 23.1
(1987);
D. Kupeli. “Degenerate Manifolds”. Geom. Dedicata 23.3 (1987);
D. Kupeli. “Degenerate Submanifolds in Semi-Riemannian geometry”.
Geom. Dedicata 24.3 (1987);
D. Kupeli. Singular Semi-Riemannian Geometry. Kluwer Academic Pub-
lishers Group, 1996
But there were two limitations:

the signature was constant, while in general relativity has to change,
the method was not invariant, and it depended on the choice of a
distribution transversal to ker g .

The results from
O. C. Stoica. “On Singular Semi-Riemannian Manifolds”. Int. J. Geom.
Methods Mod. Phys. 11.5 (2014)
apply to changing signature, are invariant, and don’t rely on a particular
choice. The particular cases of Kupeli and Riemann are obtained.

11 / 39



Degenerate metrics in gauge theory

Fiber bundles – metric on the base space

Let (E ,M, π,F ) be a fiber bundle with total space E , fiber F , base space
M, and projection π.

If M is a semi-Riemannian manifold with metric g , then the total space E
has a structure of a singular semi-Riemannian manifold (E , g̃), where
the degenerate metric g̃ is uniquely defined as the pull-back of g ,

g̃ = π∗g .

Let V < TE be the vertical bundle, V := ker(dπ). Then, at every point
p ∈ E , the vertical tangent space Vp is the radical of g̃p. So we have

ker(dπ) = ker g̃ .
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Degenerate metrics in gauge theory
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Suppose now that the typical fiber F is endowed with a metric h.

For any x ∈ M, the metric h defines a metric h̃x on the fiber at x .

The metric h̃ is a sub-Riemannian metric on E , defined on the distribution
V .

The metrics g and h are in the same relation as the metrics gtime ij and g ij
space

in the Galilean spacetime, since the radical of one of them is the distribution
on which the other one is defined.
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Degenerate metrics in Kaluza-Klein theory

Gauge theory and Kaluza-Klein theory

Let (E ,M, π,F ,G ) be a principal G-bundle, where the typical fiber F is a
G-torsor (hence is diffeomorphic with G and G acts freely and transitively
on F ), and g is the Lie algebra of the group G .

Let H < TE be a horizontal distribution defining a gauge connection.

The metric g̃ induces a metric ĝ on the horizontal distribution H.
From H,V and ĝ one can recover g̃ as

g̃(X ,Y ) = ĝ(πHX , πHY ).
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Degenerate metrics in Kaluza-Klein theory

Gauge theory and Kaluza-Klein theory

The Kaluza-Klein theory can be seen now as combining the two metrics ĝ
on H and h on V in a metric on E , by

gE (X ,Y ) = ĝ(πHX , πHY ) + h(πVX , πVY ).

We can identify E at least locally with the product E = M × F . Then to
obtain the metric gE on M × F we apply a transformation that leaves the
fibers invariant, and projects the horizontal space Hp to the space TpM,

S =

(
I4 A
0 Id

)
, (1)

where A = Aµa is the connection determined by H, and d = dimG .
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Degenerate metrics in Kaluza-Klein theory

Gauge theory and Kaluza-Klein theory

Then,

gE
0 = SgEST =

(
gab + hµνA

µ
aAνb hµβA

µ
a

hανA
ν
b hαβ

)
, (2)

where gab is the Lorentzian metric on M.

We recover thus the generalized Kaluza-Klein theory for an arbitrary non-
abelian gauge group (
R Kerner. Generalization of the Kaluza–Klein theory for an arbitrary non-
abelian gauge group. Tech. rep. Univ., Warsaw, 1968).
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Degenerate metrics in Kaluza-Klein theory

Gauge theory and Kaluza-Klein theory

To obtain the original Kaluza-Klein theory, which unifies gravity with elec-
tromagnetism, one takes G = U(1) and h = 1:

gE
0 =

(
gab + AaAb Aa

Ab 1

)
. (3)

By imposing the condition that gE
0 satisfies the vacuum Einstein equation

Ric(g (5)) = 0, i.e. that the five-dimenisonal manifold is Ricci flat, one
obtains the Einstein-Maxwell equations, that is, the source-free Maxwell
equations, and the Einstein equation for the four-dimensional metric gab
with the stress-energy tensor

Tab =
1

µ0

(
FasFb

s − 1

4
FstF

stgab

)
(4)

sourced by the electromagnetic field.
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Degenerate metrics in Kaluza-Klein theory

Gauge theory and Kaluza-Klein theory

On the one hand, considering a metric h on V and identifying the metric
on E with

gE = ĝ + h

allows us to obtain from the vacuum 4 + d-dimensional Einstein equation
the source-free Einstein-Maxwell (for G = U(1)) and Einstein-Yang-Mills
equations.

On the other hand, it is natural to consider the metrics ĝ and h as of
different nature (as in the case of Galilean spacetime). This implies that
the extra dimensions can’t be detected by measuring distances along them,
and this is in accord with the current experimental results without needing
to make them compact to undetectable sizes.
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Degenerate metrics in singular general relativity

Signature change in cosmology

In some cosmological models in General Relativity, the initial singularity of
the Big Bang is replaced, by making the metric of the early Universe Rie-
mannian. Such models, constructed in connection to the Hartle-Hawking
no-boundary approach to Quantum Cosmology, assume that the metric was
Riemannian, and it changed, becoming Lorentzian, when traversing a hy-
persurface, on which the metric becomes degenerate

A. D. Sakharov. “Cosmological Transitions with a Change in Metric Signature”. Sov.
Phys. JETP 60 (1984),
G. F. R. Ellis et al. “Change of Signature in Classical Relativity”. Classical Quantum
Gravity 9 (1992),
S. A. Hayward. “Signature Change in General Relativity”. Classical Quantum Gravity 9
(1992),
T. Dereli and R. W. Tucker. “Signature Dynamics in General Relativity”. Classical
Quantum Gravity 10 (1993),
T. Dray, C. A. Manogue, and R. W. Tucker. “Particle production from signature change”.
Gen. Relat. Grav. 23.8 (1991);

T. Dray et al. “Gravity and Signature Change”. Gen. Relat. Grav. 29.5 (1997).
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Degenerate metrics in singular general relativity

Singular general relativity

General relativity predicts the occurrence of singularities. Despite the fact
that the predictions of general relativity were confirmed by experiments,
singularities are considered a threat to general relativity.

There are two types of singularities:

1 Malign singularities: some of the components gab →∞.
2 Benign singularities: gab are smooth and finite, but det g → 0.
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Degenerate metrics in singular general relativity

Singular general relativity

The main problem with the singularities is that the mathematics normally
used for general relativity breaks down.

Connection:

Γc
ab =

1

2
g cs(∂agbs + ∂bgsa − ∂sgab)

Curvature:

Rd
abc = Γd

ac,b − Γd
ab,c + Γd

bsΓs
ac − Γd

csΓs
ab

Einstein tensor:

Gab = Rab −
1

2
Rgab

Rab = Rs
asb, R = gpqRpq
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Degenerate metrics in singular general relativity

Singular general relativity

However, recently, I generalized the geometric theory of spacetime to include
benign singularities
O. C. Stoica. “On Singular Semi-Riemannian Manifolds”. Int. J. Geom.
Methods Mod. Phys. 11.5 (2014);
O. C. Stoica. “Warped Products of Singular Semi-Riemannian Manifolds”.
Arxiv preprint math.DG/1105.3404 (2011);

O. C. Stoica. “Cartan’s Structural Equations for Degenerate Metric”.
Balkan J. Geom. Appl. 19.2 (2014).

This led to a geometric description named Singular semi-Riemannian Ge-
ometry, which uses finite and well-defined quantities which remain so even
at singularities due to degenerate metrics.

For such singularities, there are finite geometric descriptions.

Moreover, the equations which previously gave infinite or undefined quanti-
ties, now can be rewritten in terms of finite quantities only.
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Degenerate metrics in singular general relativity

Singular general relativity

Basically, what I did was to replace some geometric objects which become
infinite at singularities, with others “synonymous” with them, but which
remain finite:

Singular Non-Singular When g is...

Γc
ab (2-nd) Γabc (1-st) smooth

Rd
abc Rabcd semi-regular

Rab = Rs
asb Rab

√
|det g |W , W ≤ 2 semi-regular

R = g stRst R
√
|det g |W , W ≤ 2 semi-regular

Ric Ric ◦ g quasi-regular

R Rg ◦ g quasi-regular
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Degenerate metrics in singular general relativity

The Friedmann-Lemâıtre-Robertson-Walker spacetime

In the formulation I proposed, the solutions given by Friedmann-Lemâıtre-
Robertson-Walker extends beyond the Big-Bang singularity, and the geo-
metric and physical quantities stay finite.

O. C. Stoica. “The Friedmann-Lemâıtre-Robertson-Walker Big Bang Sin-
gularities are Well Behaved”. Int. J. Theor. Phys. (2015);
O. C. Stoica. “Beyond the Friedmann-Lemâıtre-Robertson-Walker Big
Bang singularity”. Commun. Theor. Phys. 58.4 (2012)

This led to a generalization of the Einstein equation at singularities

O. C. Stoica. “Einstein equation at singularities”. Cent. Eur. J. Phys 12
(2 2014)
and to a large class of Big-Bang solutions which remain finite, and satisfy
in addition Penrose’s Weyl curvature hypothesis

O. C. Stoica. “On the Weyl Curvature Hypothesis”. Ann. of Phys. 338
(2013)
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Degenerate metrics in singular general relativity

Singular general relativity

Einstein’s equation is
Gab + Λgab = κTab.

and a generalized version I obtained is

Gab
√
−g + Λgab

√
−g = κTab

√
−g .

which works at a class of singularities too.

This is equation actually obtained when deriving Einstein’s equation, but
one should not divide by

√
−g , which at singularities becomes 0.
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Degenerate metrics in singular general relativity

Black hole singularities

But the solution I used for the Big-Bang, where the singularities were benign,
seemed not to apply to the black hole singularities, which are malign.

In particular, the Schwarzschild’s solution has a singularity at r = 0, and an
apparent singularity at r = 2m.

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dσ2,

——————

K. Schwarzschild. “Über das Gravitationsfeld eines Massenpunktes nach der
Einsteinschen Theorie”. Sitzungsber. Preuss. Akad. d. Wiss. (1916);
K. Schwarzschild. “Über das Gravitationsfeld eines Kugel aus inkompress-
ibler Flüssigkeit nach der Einsteinschen Theorie”. Sitzungsber. Preuss.
Akad. d. Wiss. (1916)
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Degenerate metrics in singular general relativity

Black hole singularities

The apparent singularity can be solved by changing the atlas. In the new
atlas the metric becomes regular, as shown by Eddington and Finkelstein.

But no atlas can make the singularity r = 0 regular.
However, the Schwarzschild metric, which is singular,

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dσ2,

in the coordinates (ξ, τ),

{
r = τ2

t = ξτ4 becomes:

ds2 = − 4τ4

2m − τ2
dτ2 + (2m − τ2)τ4 (4ξdτ + τdξ)2 + τ4dσ2

which is benign at r = 0.
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Degenerate metrics in singular general relativity

Black hole singularities

I did this for the Schwarzschild solution,

O. C. Stoica. “Schwarzschild Singularity is Semi-Regularizable”. Eur.
Phys. J. Plus 127.83 (7 2012)

but also for the other types of black holes

O. C. Stoica. “Analytic Reissner-Nordström Singularity”. Phys. Scr. 85.5
(2012);
O. C. Stoica. “Kerr-Newman Solutions with Analytic Singularity and no
Closed Timelike Curves”. U.P.B. Sci Bull. Series A 77 (1 2015);
O. C. Stoica. “The Geometry of Black Hole Singularities”. Advances in
High Energy Physics 2014 (2014)
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Degenerate metrics in singular general relativity

Evaporating Schwarzschild black hole and information loss

A. Standard evaporating black hole, whose singularity destroys the information.
B. Evaporating black hole extended through the singularity preserves information.
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Evaporating Schwarzschild black hole and information loss

O. C. Stoica. “Schwarzschild Singularity is Semi-Regularizable”. Eur.
Phys. J. Plus 127.83 (7 2012);
O. C. Stoica. “Spacetimes with Singularities”. An. Şt. Univ. Ovidius
Constanţa 20.2 (2012);
O. C. Stoica. “The geometry of singularities and the black hole infor-
mation paradox”. Spacetime - Matter - Quantum Mechanics, Seventh
International Workshop DICE2014 (2014)
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Degenerate metrics in singular general relativity

Quantum gravity

There are two main reasons why it is said that general relativity should be
replaced with something else:

Singularities (infinities appear).
Gravity couldn’t be quantized in a generally acceptable way, because
infinities appear (not the same infinities as at singularities).

It is hoped by many that quantum gravity would also solve the problem of
singularities, by avoiding their occurrence.

But singularities are not that harmful as was thought.

What if they also help in the quantum gravity problem?
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Degenerate metrics in singular general relativity

Singular quantum gravity

If spacetime would have a smaller number of dimensions, quantizing gravity
would not be a problem.

That’s why many attempts to quantize gravity work if at small scales space-
time has fewer dimensions (dimensional reduction to < 4 dimension).

But usually the various sorts of dimensional reduction are introduced ad
hoc, without justification.
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Degenerate metrics in singular general relativity

Singular quantum gravity

Fractal universe

Calcagni, “Quantum field theory, gravity and cosmology in a fractal uni-
verse”;
Calcagni, “Fractal universe and quantum gravity”, based on a Lebesgue-
Stieltjes measure or a fractional measure
Calcagni, “Geometry of fractional spaces”, fractional calculus, and fractional
action principles
El-Nabulsi, “A fractional action-like variational approach of some classical,
quantum and geometrical dynamics”;
El-Nabulsi and Torres, “Fractional actionlike variational problems”;
Udrişte and Opriş, “Euler-Lagrange-Hamilton dynamics with fractional ac-
tion”.
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Degenerate metrics in singular general relativity

Singular quantum gravity

Topological dimensional reduction

Shirkov, “Coupling running through the looking-glass of dimensional reduc-
tion”;
Fiziev and Shirkov, “Solutions of the Klein-Gordon equation on manifolds
with variable geometry including dimensional reduction”;
Fiziev, “Riemannian (1+d)-Dim Space-Time Manifolds with Nonstandard
Topology which Admit Dimensional Reduction to Any Lower Dimension and
Transformation of the Klein-Gordon Equation to the 1-Dim Schrödinger Like
Equation”;
Fiziev and Shirkov, “The (2+1)-dim Axial Universes – Solutions to the
Einstein Equations, Dimensional Reduction Points, and Klein–Fock–Gordon
Waves”;
Shirkov, “Dream-land with Classic Higgs field, Dimensional Reduction and
all that”.
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Degenerate metrics in singular general relativity

Singular quantum gravity

Other approaches
Vanishing Dimensions at LHC
Anchordoqui et al., “Vanishing dimensions and planar events at the LHC”.
Dimensional reduction in Quantum Gravity
Carlip, “Lectures in (2+ 1)-dimensional gravity”;
Carlip et al., “Spontaneous Dimensional Reduction in Short-Distance Quan-
tum Gravity?”;
Carlip, “The Small Scale Structure of Spacetime”.
Asymptotic safety
Weinberg, “Ultraviolet divergences in quantum theories of gravitation.”
Causal dynamical triangulations
Ambjørn, Jurkiewicz, and Loll, “Nonperturbative Lorentzian path integral
for gravity”.
Hǒrava-Lifschitz gravity
Hǒrava, “Quantum Gravity at a Lifshitz Point”.
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Degenerate metrics in singular general relativity

Singular quantum gravity

Fortunately, singularities lead automatically to the dimensional reduction
postulated ad hoc in several different approaches to quantum gravity.
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Degenerate metrics in singular general relativity

Singular quantum gravity

O. C. Stoica. “Metric dimensional reduction at singularities with implica-
tions to Quantum Gravity”. Ann. of Phys. 347.C (2014)
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Thank you!



Selected references

O. C. Stoica. Singular General Relativity – Ph.D. Thesis. Minkowski
Institute Press, 2013
O. C. Stoica. “On Singular Semi-Riemannian Manifolds”. Int. J. Geom.
Methods Mod. Phys. 11.5 (2014)
O. C. Stoica. “Schwarzschild Singularity is Semi-Regularizable”. Eur.
Phys. J. Plus 127.83 (7 2012)
O. C. Stoica. “Analytic Reissner-Nordström Singularity”. Phys. Scr. 85.5
(2012)
O. C. Stoica. “Beyond the Friedmann-Lemâıtre-Robertson-Walker Big
Bang singularity”. Commun. Theor. Phys. 58.4 (2012)
O. C. Stoica. “Einstein equation at singularities”. Cent. Eur. J. Phys 12
(2 2014)
O. C. Stoica. “On the Weyl Curvature Hypothesis”. Ann. of Phys. 338
(2013)
O. C. Stoica. “Metric dimensional reduction at singularities with implica-
tions to Quantum Gravity”. Ann. of Phys. 347.C (2014)
O. C. Stoica. “The Geometry of Black Hole Singularities”. Advances in
High Energy Physics 2014 (2014)
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Z. 48.1 (1942), pp. 369–427. issn: 0025-5874.

– .“Differentialgeometrie des isotropen Raumes. IV. Theorie der flächentreuen
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