Bethe vector construction for ABCD serias

A.Liashyk, S. Z. Pakuliak, E. Ragoucy

King's College London

August 20, 2022



Contents

e Bethe vectors

o Y(gl,) as basic example
o Ding-Frenkel isomorphism (gl(N)-Yangians case)
o s50(NN), sp(2n)-Yangians.

e On scalar products



Y (gly) as basic example
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R-matrix

Let's start with the most basic R-matrix
u+c 0 0 0
0 u c 0
R(u)I= 0 c u 0
0 0 0 u+tc




Y (gly) as basic example
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Monodromy matrix of Y (gl,)

Monodromy matrix

Monodromy matrix is 2 x 2 matrix with nocommutative elements

o (43 59)

that satisfy RTT relation

Rio(u — )Ty (u)Ta(v) = To(v)T1(u) Ria(u — v),

where T1(u) = T(u) ® 1 and Th(v) = 1 @ T'(v).
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Bethe vector

Vacuum

Let's suppose existence of special vector called pseudovacuum
vector (2, such that

D(u)Q = Aa(u)2,
where \;(u) are some scalar functions.

Standart construction

Then, usual construction for Bethe vector is

B(u) = B(uy) - ... B(up)Q




Y (gly) as basic example
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Bethe vector becomes an eigenvector
t(z)B(a) = 7(z|u)B(a)
with eigenvalue

r(al) = M (2) [ HEl 4 ag(e) [ 2t

U; — 2 Z — Uy
i=1 v i=1 v

Bethe equations

if Bethe equations are satisfied
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Gauss decomposition of Y (gls)

Monodromy matrix

Let's consider change coordinates on monodromy matrix

o (A BY_(k  Fk
~\C D) kE ko +FkiE)°

We call operators k;, E, F' by semicurrent.

This reparametrisation can be write in compact form

where t is transposition by the second diagonal, and

(1 F (k0 (10
F=(01) ®=(5 n) ==(1)
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Current representation

New commutation relations

We can rewrite RT T-relation for new coordinates
[ki(u), ks (0)] = 0, ij=12,
Fluki(v) = =5 (0) F(w) - — I (0) F(0),
F(w)ka(v) = ———ks(0) F(u) + ——ka(0) F(v),
R()B@) = Bk (0) - —— B(o)k (v),
ka(0) E(u) = ———B(u)ka(v) + ——E(0)ka(0),
] o 1),




And two more relations

(u—v—c)E()E(w) =
(u—v+c)E(u)EMW) —c (E(u)2 + E(v)Q) ,

(u—v—c)F(v)F(u) =
(u—v+c)F(v)F(u) —c (F(u)2 + F(v)Q) .
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Semicurrent representation of Bethe vectors

In terms of semicurrents Bethe vector can be rewrite as

B(a) = H M(u) [ f(uil o)

i<j
F(up) - F(ug;uy) - ... Fup;ut, ... un—1)%,

where

e )

F(uk;ul, 500 ,uk,l) = F(un) —
e f(ujv ’LLk)

We used functions
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Double Yangian

Two copies of RTT

Let us consider two monodromy matrices 7+ (u) that satisfy 4
(four!) sets RTT relations

Rua(u, v)TT () T3 (v) = T3 ()T} (u) Riz(w,v),  pv ==+

Full currents

| 5\

For two monodromy matrices 7+ (u) there are two sets of Gauss
coordinates k;t, E* F*. Then we define full currents

Fu) = F*(u) — F (u), E(u) = ET(u) — B~ (u).
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Current construction of Bethe vector

Let's define projection P]T. The projection is a linear operator. On
the normal ordered term the projection acts as
P (F~.F-Ft...F") =0,

Pf(FY...F*)=F*. . F*

Normal ordering

We call term ordered if term has form F~..F~ - F* .. .F*. One
can make normal ordering using FF-commutation relation

(u—v—c)FT(v)F (u) =
(u—v+c)F (V)FT(u) —c (F_(u)2 +F+(’U)2)

v
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Projection formula

B@) = [[ ) ] e x P (Flw) . Flu) )2

e S (ui, uj)

And dropping the prefactor we can write

B(a) ~ P; (F(ul) o f(un)>(2.
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RTT and RRR

Monodromy matrix

The monodromy matrix T'(u) is N x N matrix which satisfies
bilinear relations called RTT-relation

R12 (u, ’U)Tl (U)TQ (’U) = T2 (U)Tl (u)ng(u, U),

where Rpo acts in (graded) tensor product of two spaces,
Ti(u) =T(u)®1 and Ta(v) = 1@ T'(v).

| \

Yang-Baxter equation
Consistency condition of this algebra is Yang-Baxter equation

ng(u, v)ng(u, w)R23 (’U, w) = R23 (U, w)R13 (’LL, w)ng(u, U).

v




General definitions
0®00

Transfer matrix

The transfer matrix is defined as the trace of the monodromy
matrix

t(u) =tr T'(u) = Z Tii(u).

It defines an integrable system, due to the relation [t(u), t(v)] = 0.

Hamiltonian

Usually, Hamiltonian is one of the coefficient of series expansion of
the transfer matrix ¢(u) or some combination of them.
For example, local Hamiltonian for spin chains

_lit(u)

H = t(u) T .
u=0

Other coefficients are called symmetries or higher Hamiltonians.
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Algebraic Bethe ansatz framework

Vacuum

Using this approach requires the existence of special vector called
pseudovacuum vector €2, such that

CE‘J(U)Q = 0, 1> j:
TM(U)Q = )\Z(U)Q,

where \;(u) are some scalar functions.

Bethe vectors belong to the space H in which the monodromy
matrix entries act. We do not specify this space. However, we
assume that it contains the pseudovacuum vector ().
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Bethe vectors

Bethe vector

Typically, the Bethe vector can be represented as a polynomial in
the elements of the monodromy matrix with different spectral
parameters acting on the vacuum.

B(ui, ..., un) = Pol(Tij(u1), ..., Tij(un))S2

Eigenvector

The most important property of the Bethe vector is that it
becomes an eigenvector

when the spectral parameters satisfy certain constraints, called the
Bethe equations.
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R-matrix

gl,, R-matrix

Let's consider the most typical R-matrix

Cc

R(u,v) =1+ P,

uU—v
where P is the permutation operator

n
P = Z eij ® €js.

ij=1

RTT-relation

For this R-matrix one can RTT relation in components

Cc

[Tij(u), Tra(v)] =

(T (w)Tu(v) — Tij(v)Tu(u)) -

u—v
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Gauss decomposition

gl,, — Yangian

For n x n monodromy matrix the Gauss decomposition is

where t is transposition by the second diagonal, F is
uppertriangular matrix, K is diagonal matrix, and E is
lowerdiagonal matrix.

Ding-Frenkel isomorphism

| \

Gauss decomposition describes isomorphism between RT T-algebra
and new realisation of Yangian discovered by Drinfeld.

N
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Ding-Frenkel isomorphism

New commutation relations

We can rewrite RT T-relation for new coordinates
[ki(u), k;j(v)] =0, i,j=1,...n,
Fi(whki(v) = ki) Fiw) - — k() Fi(0)
Fi(u)hia (v) = ki1 () Fi(w) + —— ki (0) Fi(v),
k(o) Bi(w) = “— = Bi(wki(v) = —Ei(0)hi(v)
ki1 (0) By(w) = ———B; (ki1 (v) + —— Bi(v)kor1 (0)
i), Ey)] = 24 ( h gff)‘) - k,jg()))

Here we use notation F; = Fi1; and E; = E; ;1. J




And few more relations

(u—v—c)E;(u)E;(v) =
(v — v+ ) Ei(w)E;(v) — ¢ (Ei(u)? + Ei(v)?),

(u—v+c)E;(v)Eiz1(u) = (u —v)Ejp1(u) E;(v)+
¢ (Biy1(w)Ei(u) + Eiiv2(u) — Eiiv2(v)),

(u—v—c)F;(v)Fi(u) =
(u—v+c)F;(v)Fi(u) —c (Fl(u)2 + Fi(v)2) ,

(u—v+ )i (w)Fi(v) = (u—v)F5(v) Fiy1(u)+
¢ (Fi(u)Fip1(u) + Fitoi(u) — Fito,(v)) -
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Projection formula

. R + _ =
Here we also use notation for full current F; = F}'; | — Fi . J
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gl,-eigenvector

And this Bethe vector becomes eigenvector of the transfer matrix

with eigenvalue

where 10 = " = (),

when Bethe equations are satisfied

N(ty) _ f(st) fETL )

Nipa(ty)  f(B ) (G, T




Ding-Frenkel isomorphism
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Notation

we use notation of rational function f

r—y+c

f(z,y) = pr—

Subindex means no element

We also used shorthand notation for product over set

f(z,fo) - H f(z’ui)a uk7 H f Uiy 2

U EU w; EU,i#£k
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R-matrix

§09,+1,502,,5Ps,, R-matrices

Let's consider the most typical R-matrix

c c

R(u,v) =1+ P —

(u,v) u—v u—fu—i—ch’
where P is the permutation operator
n n

t

P=) e;®e¢, Q=P" = e ej0 Q ey,
=il 4,j=1

where i/ = N +1—1i, ¢, = 1 for soy and ¢; = sign(i — n + 1/2)
for sp,,,
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Center

Quantum orthogonality condition

Considering the residue at the point of the equation, we can prove
the existence of the center

2(u) = T(u + ck)'T(u)

4

Constrains

This center implies constraints

Fi(u) = —Fy(u+c(k — 1)), Ei(u)=—Ey(u+c(k— 1)),
ki) kva(uct efs = 1)
kiv1(u) ki(u+c(k—1))

N,
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Gauss decomposition

We consider Gauss decomposition J




s0(5) case

1 Fl(u) *

0 1 F>(u) * *
Fluy=(0 0 1 —Fy(u+c¢/2) *

0 0 0 1 —Fi(u—¢/2)

0 0 0 0 1

(u—v+c)Fi(v)Fi(u) = (u—v—c)F1(v)F1(u) + ...,
(u—v+c/2)Fa(v)Fa(u) = (u—v —¢/2)Fa(v)Fa(u) + ...,
(u—v+c)F1(u)Fo(v) = (u—v)Fa(v)Fi(u) + .. ..




(u—v+c)Fi(v)Fi(u) =(u—v—c)F1(v)Fi(u) + ...,

(u—v+2c)Fr(v)Fa(u) = (u—v—2c)Fa(v)Fa(u) + ...,
(u—v+2c)F1(u)Fa(v) = (u—v)Fa(v)Fi(u) + . ...




(]
]
o]
O
—~
N—
=)
o

(u—v—Cc)F1(v)F1(u)+ ...
(u—v—c)Fe(v)Fo(u) + ...,

[Fi(u), F>(v)] = 0.

(u — U+ C)Fl(U)Fl(u)
(u = v + ) Fo(v) Fa(u)
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Projection formula

For all the cases 502,11, 502,, 5p5,, construction of Bethe vector is

B(al,...,an)NP;(fl(ub-..,.fl(ul Yoo

T1
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Eigenvalues of the transfer matrices

so(n + 1) case

Eigenvalue is

7(2|8) = Ans1 f(@",2) f (20, 0") +

n

> (2 F@, 20 f (2,87 + A (2) (@, 20) f (701, 871))

s=1

where 2 = 2 + c{i — 1/2).




sp(2n) case

Eigenvalue is

7(2|@) = M (2)f(@", 2)f(2, @) + Anr1(2)f(2, @)@, 21)+

n—1

S (@I @, 2) (2,8 + A (D) (@ 20) (o1, 87 1))

s=1
where z; = z + ¢(i + 1) and

z—y+2

f(xay): —y




so(n) case

Eigenvalue is

7(2|@) = An-1(2) F(@" 7, 2) F (3", 2) f (2, 0" 72)+
M(2) f(2, @) F(@", 2) + Ang1 (2) F(@" 7, 2) f(2,3")+
Ans2(2)f (2, a7 (2, @) f (@~ 2,22)+
n—2
Y (@) f(@,2)F (2,857 + Aot (2) £ (@, 25) (251,
s=1

where z; = z + ¢(i — 1).

,asfl))




Off-shell-off-shell Scalar products
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Sum formula in gl(/N + 1) case

Let B(%) be a generic Bethe vector and C(5) be a generic dual
Bethe vector such that #t* = #5" = r;, k =1,..., N. Then their
scalar product S(3]t) = C(3)B(t) is given by

251t Z(fu\sgkﬁl () (B5) £ (55, ) £ (2. 2)
s =2 L A ) FE )

Here all the sets of the Bethe parameters t* and 5* are divided
into two subsets % = {tF %} and 5* = {5¥ &*}, such that
#1F = 45% The sum is taken over all possible partitions of this

type.
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Co-product formula

Co-product on algebra

We can divide spin-chain in two pieces
() = T T ),

or in terms of the monodromy matrix entries

ZTm u) @ Tjr(u).

Co-product on Bethe vector

This division of spinchain implies division of Bethe vector
(Co-product formula)

(2) v v
{) Z H 1 a,,2 ( 1) (t11’t1) B(l)(fi) Q ]B(2)(Eii).

1
l/ 1 (t—l1/1+ ty>




Off-shell-off-shell Scalar products
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Projection as integral

Projection formula

Bethe vector is

Integral form

And it can be rewrited as integral

Pt (fl,.._,n(a)) - /dw Z(aw) Fi.. n(w),

where integral kernel Z coincides with the highest coefficient.
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Thank you for your attention! J
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