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Introduction:

Count the number of consistent string vacua »

Vast landscape with N, = 10°907 1990 yacual

(Kawai, Lewellen, Tye (1986); Lerche, Lust, Schellekens (1986);
Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Two strategies to find something interesting:
® Explore all mathematically consistent possibilities:

top down approach (quite hard), string statistics.

® Do not look randomly - look for green (promising) spots
in the landscape ™ model building, bottom up approach.
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Effective field theory description:

Non-flat moduli potential after turning on fluxes and non-
perturbative effects:

V(o)
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Effective field theory description:

Non-flat moduli potential after turning on fluxes and non-
perturbative effects:

® VWhat can we learn about our vacuum?

dS-vacuum ® What can we learn about other vacua?
(inflation)
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Multiverse picture: . s
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Multiverse picture:

Transition amplitudes between different vacua (wave
function of the universe):

\VQAQV/
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Multiverse picture: e s

Transition amplitudes between different vacua (wave
function of the universe): (Hartle, Hawking, 1983)
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— Eternal, self-producing unlverse
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Multiverse picture: e s

Transition amplitudes between different vacua (wave
function of the universe): (Hartle, Hawking, 1983)

AN

— Eternal, self-producing unlverse.
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General feature of string theory:
Geometrization of particles and their interactions!
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General feature of string theory:
Geometrization of particles and their interactions!
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What do we want to learn:
e Our vacuum: how is the Standard Model realized ?

® What is the likelihood for vacua with the SM-like
properties!?
® What is the physics beyond the SM!?

® What is the physics of early universe (inflation,..) ?

Can we make model independent predictions!?

Can we test of our vacuum (geometry)?

e Can we see inside the landscape?

= information about other vacua?

Bottum-up approach has to meet
top-down approach!




Outline

® Stringy signatures at LHC

Intersecting brane models

(The LHC string hunter’s companion)

(D. Lust, S. Stieberger, T. Taylor, arXiv:0807.3333)

(Anchordoqui, Goldberg, Lust, Nawata, Stieberger,
T.Taylor, arXiv:0808.0497 [hep-ph])

® Seeing into the landscape
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) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Gorlich, Kors, Lust (2000);
Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez,
Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...)

Alternative constructions: heterotic strings

(Braun, He, Ovrut, Pantev; Bouchard, Donagi; Buchmiiller, Hamaguchi, Lebedey, Nilles,
Ramos-Sanchez, Ratz,Vaudrevange; Faraggi, Kounnas, Rizos, ...)

F-theo ry (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa;
Donagi, Wijnholt, ...)
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) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Gorlich, Kors, Lust (2000);
Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez,
Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...)

Alternative constructions: heterotic strings

(Braun, He, Ovrut, Pantev; Bouchard, Donagi; Buchmiiller, Hamaguchi, Lebedey, Nilles,
Ramos-Sanchez, Ratz,Vaudrevange; Faraggi, Kounnas, Rizos, ...)

F-theo ry (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa;
Donagi, Wijnholt, ...)

Consider open string compactifications with
intersecting D-branes " Type |[|A/B orientifolds:

Features:

® Non-Abelian gauge bosons live as open strings on
lower dimensional world volumes 7 of D-branes.

e Chiral fermions are open strings on the intersection
locus of two D-branes: N, =1, = #(r.nm) =m, 07
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Intersecting D6-brane models:

D6 wrapped on 3-cycles 7 ,intersect at angles 0,

Tadpole condition: Z NoTa = TO6
a
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Intersecting D6-brane models:

D6 wrapped on 3-cycles 7 ,intersect at angles 0,

Tadpole condition: Z NoTa = TO6
a

(¢) right

(Ibanez,Marchesano, Rabadan, (2001);
Blumenhagen, Kors, List, Ott, (2001);
Antoniadis, Kiritsis, Rizos, Tomaras, (2002))
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Intersecting D6-brane models:

D6 wrapped on 3-cycles 7 ,intersect at angles 0,

Tadpole condition: Z NoTa = TO6
a

(¢) right

(Ibanez,Marchesano, Rabadan, (2001);
Blumenhagen, Kors, List, Ott, (2001);
Antoniadis, Kiritsis, Rizos, Tomaras, (2002))

Explicit orbifold constructions and their statistics =

(Blumenhagen, Gmeiner, Honecker, Lust, Stein, Weigand (2004,2005); related work: Anastasopoulos,
Dijkstra, Huiszoon, Kiritsis, Schellekens (2005,2006)) (Gmeiner, Honecker, arXiv:0806.3039)

Millions of standard models without chiral exg;glcs!

meeting Varna, 2008




LHC String Hunter’s Companion -

Test of D-brane models at the LHC:

New stringy physics of beyond the SM:

New massive particles:

_Z’

- Massive black holes
- Regge excitations of higher spin l

- Kaluza Klein (KK) and winding modes
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Low string scale and large extra dimensions (ADD):

2 Y
MPlanck — Mstrmg Ve

V@M 0(1052) — Mstring = (9(1 TeV)

string

1/2
g%p Mpianck = strlng <H RJ_) (

BLOW-UP

U2)

o« SMlives on small
(Balasubramanian, & e o C)’Cles of the CY!

Berglund, Conlon,
Quevedo, hep-th/
0502058)
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Parton model cross sections of SM-fields:
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Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields (¢.1,9,7, 2°, W™)
AP, 0%, 0%, 1) =< Va1 (21) Vo2 (22) Vs (23) Vo (24) >disk

(a) baryonic

(d) leptonic
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Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields (¢.1,9,7, 2°, W™)
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Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields (¢,1. 9.7, Z2°, W™) ;
A(®, %, 8%, B%) =< Vi1 (21) Vipz (22) Vi (23) Vapa(24) >aisk
These amplitudes are dominated by the following poles:

® Exchange of SM fields

Exchange of string Regge resonances (Veneziano like ampl.)
= new contact Interactions:

Ak, ko, ks, ky; o) ~ —

(1 o S/ strlng) (1 o U/ strlng)
(1 o t/ strlng)

o
2
6

Vs (Oﬁl) — =1- Mst;ll:ng Mstrlng

- —> 1‘0/_)0
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Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields (¢,1. 9.7, Z2°, W™) ;
A(®, %, 8%, B%) =< Vi1 (21) Vipz (22) Vi (23) Vapa(24) >aisk
These amplitudes are dominated by the following poles:

® Exchange of SM fields

Exchange of string Regge resonances (Veneziano like ampl.)
= new contact Interactions:

ff% - @

1_
A(kr, ko, kg, kas o) ~ — o'u) Z %tuoz +o

F( a’'s — a'u) —

(1 o S/ strlng) (1 o U/ strlng) T2 4
(1 _ t/ Strmg) =1- FMstrlngsu o C(B)Mstrlng

® Exchange of KK and winding modes (model deNE)enden

meeting Varna, 2008
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4 gauge boson amplitudes:

Disk amplitude:
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4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged =

These amplitudes are completely model independent!
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4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged =

These amplitudes are completely model independent!

Examples:
Migg = 990 =8 (35 + 35 + 1) | V@) = (V@) (5. )+ (5. )

(Stieberger, Taylor) = d Ij et events

MR

Mlgg — g1 (Z)P = g2 Q4 (5 + 5 + 3 ) (sVa(e!) + Vi) + uViu(a))
(Anchordoqui,Goldberg,
Nawata, Taylor,

Observable at LHC for Mt ine = 3 TeV  axivorizo3se)

RTN meeting Varna, 2008
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4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged =

These amplitudes are completely model independent!

Examples:
o' — 0 : agreement with SM!

(M99 — 99)[a—0 — 1)9( 2412+ u?)

u?/ 4

M(gg — v(Z°))]2,
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2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged =
These amplitudes are completely model independent!

s + u? , , 4 1 , ,
M(qg — q9)|” = g3 3 Vi(@)WVu(a') — ——(sVi(a') + uVyu(a'))?

9 su

M(qg — qv(Z°))]? = ” uVu (o))

RTN meeting Varna, 2008



2 gauge boson - two fermion amplitude:

Fermions: boundary
changing operators!

Note: Cullen, Perelstein, Peskin (2000)
considered: 4+ —
ete” —

Only string Regge resonances are exchanged =
These amplitudes are completely model independent!

s + u? , , 4 1 , ,
M(qg — q9)|” = g3 3 Vi(@)WVu(a') — ——(sVi(a') + uVyu(a'))?

9 su

M(qg — qv(Z°))]? = ” uVu (o))
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2 gauge boson - two fermion amplitude:

z3

Fermions: boundary
changing operators!

Note: Cullen, Perelstein, Peskin (2000)
considered: 4+ —
ete” —

Only string Regge resonances are exchanged =

These amplitudes are completely model independent!

o' — 0 : agreement with SM !

45 + u? 4 1

’M(qgﬁqg)aﬁo—gs 2 1_5@(54“0

M(qg — qv(Z°) |2 o = ——9362

23 + u?
ut?

(5 + u)?

RTN meeting Varna, 2008



4 fermion amplitudes:

X a

Exchange c;f Regge, KK and winding resonances.

These amplitudes are more model dependent
and test the internal CY geometry.

Constrained by FCNC’s and/or proton decay.

(Klebanov, Witten, hep-th/0304079; Abel, Lebedeyv, Santiago, hep-th/0312157)

21 bb 2

+ 55 (T (@)

4 82 be / be / Fcc / Fcc /
_2_75 tu(CM) ut(a)—i_ tu(&) ut(&))

X

depend on internal geometry
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4 fermion amplitudes:

X a

Exchange o4f Regge, KK and winding resonances.

These amplitudes are more model dependent
and test the internal CY geometry.

Constrained by FCNC’s and/or proton decay.

E (Klebanov, Witten, hep-th/0304079; Abel, Lebedey, Santiago, hep-th/0312157)
8.
o' — 0: agreement with SM !
415+ u? 4 rs? 4t
Miga — a0l = 5| =] +3]|

RTN meeting Varna, 2008
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These stringy corrections can be
seen in dijet events at LHC:

! ‘ ! ‘ ! ‘
signal + SM background
— — SM background

(Anchordoqui, Goldberg, Lust, Nawata,
Stieberger, Taylor, arXiv:0808.0497[hep-ph])

do/dM (fb/GeV)

P T T T
°

MRegge = 2 TeV
TRegge = 15 — 150 GeV

Widths can be computed in a
model independent way !

~
™~ o

¥

NNy

I \\\HH‘

(Anchordoqui, Goldberg, Taylor,
arXiv:0806.3420)
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These stringy corrections can be
11 seenin dijeteventsat LHC:

dijet, S/L dt = 100 fb™’
—e—.—dijet, SLdt = 30 b
_ _ _dijet, /L dt = 100 pb~’

y+jet, /L dt = 100 fb~’

—to—Noise
el T T T AT

chordoqui, Goldberg, List, Nawata,
berger, Taylor, arXiv:0808.0497[hep-ph])

Signal
\/N\HH‘ .

=

wnn —~
P \\\\\Hg.g

Regge — 2 TeV
oo = 15 — 150 GeV

\ \\HH‘
=
| \E\H‘

Widths can be computed in a
del independent way !

Anchordoqui, Goldberg, Taylor,
rXiv:0806.3420)

NN ®
[ ‘ L1 ‘ [ ‘ [ ‘ AN \“ ‘ [ ‘ \. [\
1 2 ) 4 5 6 / 8

Ms(TeV)
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—to—Noise

Signal

(@)
~

O
W

These stringy corrections can be

T T T2
L d y‘

Pl \HH‘

L d

seenin dijet events at LHC:

dijet, S/L dt = 100 fb™’
—e—.—dijet, SLdt = 30 b
_ _ _dijet, /L dt = 100 pb~’

y+jet, /L dt = 100 fb~’

chordoqui, Goldberg, List, Nawata,

Stieperger, Taylor, arXiv:0808.0497[hep-ph])

| \\\\Hg.g

Regge — 2 TeV
ege = 15 — 150 GeV

hs can be computed in a
del independent way !

Anchordoqui, Goldberg, Taylor,
rXiv:0806.3420)

N N ®
\\\‘\\\‘\\\‘\\\‘\N\‘“\\\‘\.\\

]
1

2 3

4 5 6 7 8
There are possible also stringy Drell-Yan processes like

ch%ll
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Intermediate summary:

® Tree amplitudes with at least two gluons are
completely model independent.

= Information about the string Regge spectrum.
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Intermediate summary:

® Tree amplitudes with at least two gluons are
completely model independent.

= Information about the string Regge spectrum.

e KK modes are seen in fermion scattering processes.

= Information about the internal geometry.

Now we want to make use of other gravitational
effects in order to get more informations about the
landscape.
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Outline

® Stringy signatures at LHC

Intersecting brane models

(The LHC string hunter’s companion)
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® Stringy signatures at LHC

Intersecting brane models

(The LHC string hunter’s companion)

» ® Seeing into the landscape
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V) Seeing into the landscape
(G. Dvali, D. Lust, arXiv:0801.1287)
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theories by consistent embedding in quantum gravity
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V) Seeing into the landscape
(G. Dvali, D. Lust, arXiv:0801.1287)

a) Vacuum transitions provide informations on
the stability (life-time) of vacua.

V(o)

= Constraints on the cosmological constant.

b) In general: constraints on the landscape of effective
theories by consistent embedding in quantum gravity
(swampland approach)

= Bounds on the landscape from decays of black holes!
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a) Bounds from vacuum transitions:

Coleman, De Luccia;

Transitions are described by the creation of a
bubble of vacuum (a) inside vacuum (b).
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a) Bounds from vacuum transitions:

Coleman, De Luccia;

Transitions are described by the creation of a
bubble of vacuum (a) inside vacuum (b).

E.g. Transition from dS4 to M4:

N A
o -
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a) Bounds from vacuum transitions:

Coleman, De Luccia;

Transitions are described by the creation of a
bubble of vacuum (a) inside vacuum (b).

E.g. Transition from dS4 to M4:

N A
0 -

The transition amplitudes are computed using the
interpolating (Euclidean) metrics from vacuum (a) to
vacuum (b):

247T2Mf_f)>
A(o)

'~ Mpexp<—
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Stringy transitions between different flux vacua:

(C. Kounnas, D. Lust, M. Petropoulos, D. Tsimpis, work in progress)

Interpolating (4d) domain walls separating
vacuum (a) from vacuum (b):

They can be constructed from flux vacua as
intersecting brane systems: e.g (D4. NS5, D8)

(C. Kounnas, D. Lust, M. Petropoulos, D. Tsimpis, arXiv:0707.4270)

(Koerber, List, Tsimpis, arXiv:0804.06 1 4)
(Caviezel, Koerber, Kors, Lust, Tsimpis, Zagermann, arXiv:0806.3458)
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Stringy transitions between different flux vacua:
(C. Kounnas, D. Lust, M. Petropoulos, D. Tsimpis, work in progress)

Interpolating (4d) domain walls separating
vacuum (a) from vacuum (b):

They can be constructed from flux vacua as
intersecting brane systems: e.g (D4. NS5, D8)

(C. Kounnas, D. Lust, M. Petropoulos, D. Tsimpis, arXiv:0707.4270)

(Koerber, Lust, Tsimpis, arXiv:0804.06 | 4)
(Caviezel, Koerber, Kors, Lust, Tsimpis, Zagermann, arXiv:0806.3458)

Me

From M4 to AdS4:

DwW My
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From M4 to AdS4:
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Stringy transitions between different flux vacua:
(C. Kounnas, D. Lust, M. Petropoulos, D. Tsimpis, work in progress)

Interpolating (4d) domain walls separating
vacuum (a) from vacuum (b):

They can be constructed from flux vacua as
intersecting brane systems: e.g (D4. NS5, D8)

(C. Kounnas, D. Lust, M. Petropoulos, D. Tsimpis, arXiv:0707.4270)

(Koerber, List, Tsimpis, arXiv:0804.06 1 4)
(Caviezel, Koerber, Kors, Lust, Tsimpis, Zagermann, arXiv:0806.3458)

Me

From M4 to AdS4:

non-zero fluxes —
AdVR '
DW '(M4
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Domain wall supergravity solution from

intersecting branes:

A
S

Iy
=

A
N

Y

iUl

372

ZUB

®

®

®

®

®
®

X QXRXRXQ
X QXXX XX
X QXRXXXQ
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Explicit form of the solution:

1
2

dsiy = {HD8 (Hi:1 HaD4) } M dgH dg”
+ (T, BYS°) {18 (TToz, HRY)}E dy?

D4 pyD4
T 53}3451)8 {HNS5HNS5 (dZC ) +H%\IS5HNS5 (d$2)2}

HD4HD4
etz (SO HES® (da®)? + HYSPHYSS (dat)?)

HD4HD4
i HiMH?DS {H%\ISBH};ISB (d:z:5)2 i Hi\ISSHé\ISE) (da:6)2};

_ (H4 HNSS) (H3 HD4)_% (HDS)—%.
= \1la=1 a=1 ,
— —8yH%\IS5 (HDS)_ ] Hx2:c3:c5 = —(%;H%\ISE) (HDS)
— —9,HNS (HP®) ™' Hyipaps = —0, HNS5 (HD8)
= O, HP*Y  Fpi245,6 = 0, HY?;
= 9,HPY; F = 0,0 (]]
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Properties of this solution:

RTN meeting Varna, 2008



Properties of this solution:

® Smeared (thick) branes:
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Properties of this solution:

® Smeared (thick) branes:

D4y{1—%( Y < Yo
Do, Y = Yo

e Near horizon limit ¥ — 0 : AdS, x T°

RTN meeting Varna, 2008



Properties of this solution:

® Smeared (thick) branes:
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e For y—o00: R>xT®

RTN meeting Varna, 2008



Properties of this solution:

® Smeared (thick) branes:

Yy < Yo
Y = Yo

e Near horizon limit ¥y — 0: AdS, x T°

e For y—o00: R>xT®

® All moduli take finite, fixed values at horizon, agree
with those from minimizing the flux superpotential.
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Properties of this solution:

® Smeared (thick) branes:

Yy < Yo
Y = Yo

e Near horizon limit ¥y — 0: AdS, x T°

e For y —o0o: R» xT®

® All moduli take finite, fixed values at horizon, agree
with those from minimizing the flux superpotential.

® Non-vanising tadpole: need (smeared) Dé-branes
and Oé6-plane.
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Transition amplitude from M4 to AdS4

V(¢)

(see also: Brown, Teitelboim (1988); Ceresole,
Dall‘Agata, Giryavets, Kallosh, Linde, hep-th/0605266;)

\ 6
N

ADS
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Transition amplitude from M4 to AdS4

V(¢)

(see also: Brown, Teitelboim (1988); Ceresole,
Dall‘Agata, Giryavets, Kallosh, Linde, hep-th/0605266;)

N ’
ADS

4D metric of domain wall:

ds* = a(r)?(—dt* + dz* + dy?) + dr?,
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Transition amplitude from M4 to AdS4

V(¢)

(see also: Brown, Teitelboim (1988); Ceresole,
Dall‘Agata, Giryavets, Kallosh, Linde, hep-th/0605266;)

N ’
ADS

4D metric of domain wall:

ds* = a(r)?(—dt* + dz* + dy?) + dr?,
Tension of domain wall;

0~ (|Z]r=00 — | Z]r=0), Aaps = —3|Z|>_,
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Transition amplitude from M4 to AdS4

V(¢)

(see also: Brown, Teitelboim (1988); Ceresole,
Dall‘Agata, Giryavets, Kallosh, Linde, hep-th/0605266;)

N @
\/AADS
4D metric of domain wall:
ds* = a(r)?(—dt* + dz* + dy?) + dr?,
Tension of domain wall;
~ o 2
0 — (‘Z‘Tzoo T \Z\r:()) : AADS — _S‘Z‘r:O

Transition amplitude:

247T2CMf5> (247T2C'Mj‘3>
5 = exp
o AaDs

[' ~ exp <—
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= Constraints on A4pg in order to avoid

too fast decay into neighboring AdS vacua:

~ lapcicies|(|moereses])®?

<< 1

(e1e0e3)?

= (’)(mg/z) the lifetime of our universe
is still long enough!
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b) Bounds from black hole decays:

(G. Dvali, arXiv:0706.2050)

Consider a theory with N species of particles with mass M:

2
MPpranch M: scale of new physics
M2
(A quantum black hole can emit at most N .« different
particles)

N<Nmaac:

This bound must be satisfied in every effective string
vacuum that is consistently coupled to gravity!

E.g. if a scalar field in the effective potential gives mass to
N particles via the Higgs effect: N/ = M (¢)

M) < M

N RTN meeting Varna, 2008

lanck




— M < 10_16Mplanck ~ 1 TeV

This bound gives also a possible explanation of
the hierarchy problem:

M can be seen as the fundamental scale of gravity, which
is diluted by the presence on the N particle species.

(Large extra dimensions: N KK-states of mass M.)

RTN meeting Varna, 2008



Further applications of this bound:

RTN meeting Varna, 2008



Further applications of this bound:
® Metastable vacua - susy breaking
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Further applications of this bound:
® Metastable vacua - susy breaking
e De Sitter vacua - inflation: Consider inflaton field ¢

b+ 3Ho+ V() =0

@ is coupled to species of mass M:

Mp
(H-'(¢)Mp)3

Black hole bound: 1/ (¢) <




Further applications of this bound:
® Metastable vacua - susy breaking
e De Sitter vacua - inflation: Consider inflaton field ¢

b+ 3Ho+ V() =0

@ is coupled to species of mass M:

Black hole bound:  1/(¢) < Mp :
Chaotic inflation: (H=Y(¢)Mp)s

V(g) = %m2¢2 + g slow roll condition: o> Mp

) ¢ cannot be arbitrarily large!

Bound forbids essentially large trans-planckian vevs:
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Further applications of this bound:
® Metastable vacua - susy breaking
e De Sitter vacua - inflation: Consider inflaton field ¢

b+ 3Ho+ V() =0

@ is coupled to species of mass M:

Black hole bound:  1/(¢) < Mp :
Chaotic inflation: (H=Y(¢)Mp)s

V(g) = %m2¢2 + g slow roll condition: o> Mp

> ¢ cannot be arbitrarily large!

Bound forbids essentially large trans-planckian vevs:

= Problem to see gravitational waves!
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Further applications of this bound:
® Metastable vacua - susy breaking
e De Sitter vacua - inflation: Consider inflaton field ¢

b+ 3Ho+ V() =0

@ is coupled to species of mass M:

Black hole bound:  1/(¢) < Mp :
Chaotic inflation: (H=Y(¢)Mp)s

V(g) = %m2¢2 + g slow roll condition: o> Mp

) ¢ cannot be arbitrarily large!

Bound forbids essentially large trans-planckian vevs:

(Silverstein, Westphal: large field range due to monodromy!)
(arX|v08033085) RTN meeting Varna, 2008




Similar bounds can be derived for D-term inflation.

¢ ool
1602 Q)

V(p) ~ p*

Black hole bound: ¢ ¢~ < M}
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Similar bounds can be derived for D-term inflation.

ol

Black hole bound: ¢ ¢~ < M}

e String inflation on concrete |IA/IIB orientifolds:
K3 xT2 orientifold with D3/D7-branes -

(Dasgupta, Herdeiro, Hirano Kallosh (2002); FI D7
Haack, Kallosh, Krause, Linde, Lust, Zagermann, arXiv:0804.3961)

252 2 ¢ m2 5
V= (HEI \/g>_7¢
7 \

D-term n.p. F-term
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Chaotic Inflation

———————
IIA on Nil manifolds
mp2 (O) —  prondes

MANK-PLANCK-CESELLECHAFT

N= 50

} Aot @)
N=50 (dash) @ m2¢2 o
N=60 (solid) @ _

N=70 (dash-dot) N-flation m?¢* o

IIIIIIIIIIIIIIIIIIIIIIIII,’IIIlIl/Illlll‘I‘I

~0.94 0.96 0.98
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K3 x T2 orientifold

o
NS}




Chaotic Inflation

IlA on Nil manifolds _
n72¢2 (O) — IJ1°’1¢2’3 }I:Iq)_45_0
o
VI 8 mo
— SOll . 2,9
N=70 (dash-dot) N-flation m=¢= o

MANK-PLANCK-CESELLECHAFT

IIIIIIIIIIIIIIIIIIIIIIIII,’IIIlIl/Illlll‘I‘I

~0.94 0.96

o
NS}

ng

K3 x T2 orientifold

.. : : —7
In addition cosmic strings G = 7 x 10
(Bevis, Hindmarsh, Kunz, Urrestilla, arXiv:astro-ph/0702223))
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Conclusions
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Conclusions

® There exists many ISB models with SM like spectra
without chiral exotics.
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(Independent of amount of (unbroken) supersymmetry!)

String tree level, 4-point processes with 2 or 4 gluons
@ observable at LHC ?? - Mtring /7
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without chiral exotics.

® One can make some model independent predictions:
(Independent of amount of (unbroken) supersymmetry!)

String tree level, 4-point processes with 2 or 4 gluons

@ observable at LHC ?? - Mtring /7

Computations done at weak string coupling !

M rin
Black holes are heavier than Regge states: My n. = string

Jstring
Question: do loop and non-perturbative corrections

change tree level signatures! Onset of n.p. physics: My, j,

® Further informations about landscape from black holes
(string inflation)
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Conclusions

There exists many ISB models with SM like spectra
without chiral exotics.

INTERESTING TIMES FOR STRING
PHENOMENOLOGY ARE AHEAD OF US.

THANK YOU ! string

Jstring

change tree level signatures! Onset of n.p. physics: Mb h.

® Further informations about landscape from black holes
(string inflation)
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