Commutative Poisson algebras from deformations of noncommutative algebras and non-Abelian Hamiltonian systems

A.V. Mikhailov University of Leeds

Based on: AVM and Pol Vanhaecke Commutative Poisson algebras from deformations of noncommutative algebras. arXiv:2402.16191v2, 2024.

> CaLISTA General Meeting Sofia 27-30 May 2024

Outline

Classical limits of Quantum systems

Motivating examples Definition of Poisson algebra Some noncommutative history remarks Formal deformation $(\mathcal{A}[[\nu]], \star)$ of and associative algebra \mathcal{A} Poisson subalgebra, ideal and quotient algebra

Commutative Poisson algebras from deformations of noncommutative algebras Deformation of a noncommutative algebra \mathcal{A} and Poisson structures Commutative Poisson algebra $\Pi(\mathcal{A}) = Z(\mathcal{A}) \times \frac{\mathcal{A}}{Z(\mathcal{A})}$ Heisenberg and Hamiltonian derivations Definition of Poisson module Non-Abelian Hamiltonian Equations The advantage to have a commutative Poisson algebra and module Example: quantum plane at $q = -1 + \nu$ What is integrability of non-Abelian Hamiltonian systems?

ション ふゆ さい シャリン しょうくしゃ

Motivating example: A simple system on the quantum plane

The quantum plane: $\mathcal{A}_q = \mathbb{C}(q)\langle x, y \rangle / \langle yx - qxy \rangle$. Hamiltonian:

$$\hat{H}=(y-qx)^2=y^2-q(q+1)xy+q^2x^2\in\mathcal{A}_q$$

the Heisenberg equation

$$\frac{dx}{dt} = \frac{1}{q^2 - 1}[\hat{H}, x] = xy^2 - qx^2y, \quad \frac{dy}{dt} = \frac{1}{q^2 - 1}[\hat{H}, y] = \cdots$$

In the classical limit $q = 1 + \nu \rightarrow 1$, $\mathcal{A}_q \rightarrow \mathbb{C}[x, y]$, $(\nu = i\hbar)$

$$\{a,b\} = \lim_{\nu \to 0} \frac{1}{\nu} [a,b] = (a_y b_x - b_y a_x) xy, \quad a,b \in \mathbb{C}[x,y].$$
$$\frac{dx}{dt} = \frac{1}{q^2 - 1} [\hat{H},x] \to xy^2 - x^2 y = \{H,x\}, \quad H = \frac{1}{2} (y-x)^2$$

In the limit: $q \to -1, \ \mathcal{A}_q \to \mathbb{C}\langle x, y \rangle / \langle yx + xy \rangle$

$$\frac{dx}{dt} = \frac{1}{q^2 - 1} [\hat{H}, x] \to xy^2 + x^2 y \stackrel{?!}{=} \{\mathbf{H}; x\}, \quad \mathbf{H} = ?!$$

Volterra type hierarchy

Volterra type system on the algebra $\mathcal{A}_q := \mathbb{C}(q) \langle x_i \, ; \, i \in \mathbb{Z} \rangle / J_q$

$$J_q = \langle x_{i+1}x_i - (-1)^i q \, x_i x_{i+1}, \, x_i x_j + x_j x_i \, ; \, i, j \in \mathbb{Z}, \, |i-j| \neq 1 \rangle.$$

 $\begin{aligned} \frac{dx_{\ell}}{dt_2} &= \frac{1}{q^2 - 1} [\hat{H}_2, x_{\ell}] = x_{\ell} x_{\ell+1}^2 - x_{\ell-1}^2 x_{\ell} + x_{\ell}^2 x_{\ell+1} - x_{\ell-2} x_{\ell-1} x_{\ell} + x_{\ell} x_{\ell+1} x_{\ell+2} - x_{\ell-1} x_{\ell}^2 \\ \hat{H}_2 &= \sum_{k \in \mathbb{Z}} \left(x_k^2 + (1 + (-1)^k q) x_k x_{k+1} \right) \end{aligned}$

There is a quantum hierarchy of symmetries (SC,AVM,JPW):

$$\frac{dx_{\ell}}{dt_{2m}} = \frac{1}{q^{2m}-1} [\hat{H}_{2m}, x_{\ell}], \quad [\hat{H}_{2m}, \hat{H}_{2n}] = 0.$$

There is a well defined limit $q \rightarrow 1$:

$$\mathcal{A}_q \to \mathcal{A} = \mathbb{C}\langle \ldots, x_{-1}, x_0, x_1, \ldots \rangle / \langle x_{i+1}x_i - (-1)^i x_i x_{i+1}, x_i x_j + x_j x_i; |i-j| > 1 \rangle.$$

What Poisson structure, Hamiltonian derivations, if any, correspond to this limit? Can we present this hierarchy on \mathcal{A} in the Hamiltonian form:

$$\frac{dx_{\ell}}{dt_{2m}} = \{\mathbf{H}_{2m}; x_{\ell}\}, \quad \{\mathbf{H}_{2m}, \mathbf{H}_{2n}\} = 0?$$

Definition

Let \mathcal{A} be any (unitary) associative algebra over a commutative ring \mathcal{R} . A skew-symmetric \mathcal{R} -bilinear map $\{\cdot, \cdot\} : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is said to be a Poisson bracket on \mathcal{A} when it satisfies the Jacobi and Leibniz identities: for all $a, b, c \in \mathcal{A}$,

(1)
$$\{\{a,b\},c\}+\{\{b,c\},a\}+\{\{c,a\},b\}=0$$
, (Jacobi identity),
(2) $\{a,bc\}=\{a,b\}c+b\{a,c\}$, (Leibniz identity).

 $(\mathcal{A}, \{\cdot, \cdot\})$ or $(\mathcal{A}, \cdot, \{\cdot, \cdot\})$ is then said to be a Poisson algebra (over \mathcal{R}). When \mathcal{A} is commutative one says that the Poisson algebra $(\mathcal{A}, \{\cdot, \cdot\})$ is commutative.

Any associative algebra \mathcal{A} has a natural Poisson bracket, given by the commutator $\{a, b\} := [a, b]$. Thus, $(\mathcal{A}, [\cdot, \cdot])$ is a Poisson algebra.

1998: Farkas and Letzter proved that for any prime Poisson algebra \mathcal{A} , which is not commutative, the Poisson bracket must be the commutator in \mathcal{A} , up to an appropriate scalar factor.

2004: Van den Bergh introduced double Poisson bracket $\{\{\cdot,\cdot\}\}$: $\mathcal{A} \times \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ satisfying a modified skew-symmetry condition and modified Jacobi identity, and defined a double Poisson algebra.

2005: Croawley-Boevey studied non-commutative Poisson structures 2007: Croawley-Boevey, Etingof and Ginzburg introduced double derivations and Hamiltonian reductions

1998: Olver and Sokolov, 2000: Olver and Wang introduced and studied Hamiltonian structure of integrable PDEs on free associative algebras

2000: AVM and Sokolov introduced and studied Hamiltonian structure of ODEs on free associative algebras and "Poisson brackets" on $\mathcal{A}^{\natural} = \mathcal{A}/[\mathcal{A}, \mathcal{A}]$.

2019: De Sole, Kac, Valeri and Wakimoto introduced Local and Non-local Multiplicative Poisson Vertex Algebras.

Kontsevich, Efimovskaya, Wolf, Chalykh, Fairon, Casati, Wang, ...

[yet unfinished paper]: Reshetikhin with Liashyk and Sechin.

Let \mathcal{A} be any associative algebra over R.

 $\mathcal{A}[[\nu]]$, the $R[[\nu]]$ -module of formal power series in ν . Any element $A \in \mathcal{A}[[\nu]]$ can be written in a unique way as

$$\mathbf{A} = \mathbf{a}_0 + \nu \mathbf{a}_1 + \nu^2 \mathbf{a}_2 + \cdots, \qquad \mathbf{a}_i \in \mathcal{A}.$$

Definition

Suppose that $\mathcal{A}[[\nu]]$ is equipped with the structure of an associative algebra over $R[[\nu]]$, with product denoted by \star . Then $(\mathcal{A}[[\nu]], \star)$, or simply $\mathcal{A}[[\nu]]$, is said to be a (formal) deformation of \mathcal{A} if for any $a, b \in \mathcal{A}$, $a \star b = ab + \mathcal{O}(\nu)$, i.e., $a \star b - ab \in \nu \mathcal{A}[[\nu]]$.

The commutator in $\mathcal{A}[[\nu]]$ is denoted by $[A, B]_{\star} := A \star B - B \star A$.

The *R*-bilinear maps $(\cdot, \cdot)_i, \{\cdot, \cdot\}_i : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ are defined by

$$\begin{array}{ll} a \star b = ab + \nu(a,b)_1 + \nu^2(a,b)_2 + \cdots, & a, b \in \mathcal{A} \subset \mathcal{A}[[\nu]] \\ [a,b]_{\star} = [a,b] + \nu \left\{a,b\right\}_1 + \nu^2 \left\{a,b\right\}_2 + \cdots, & \left\{a,b\right\}_i = (a,b)_i - (b,a)_i. \end{array}$$

うして ふゆ く は く は く む く し く

Poisson subalgebra, ideal and quotient algebra

- ▶ When $(\mathcal{A}, \{\cdot, \cdot\})$ is a Poisson algebra and \mathcal{B} is a subalgebra of \mathcal{A} which is also a Lie subalgebra of $(\mathcal{A}, \{\cdot, \cdot\})$, then $(\mathcal{B}, \{\cdot, \cdot\})$ is a Poisson algebra; we say that $(\mathcal{B}, \{\cdot, \cdot\})$ is a Poisson subalgebra of \mathcal{A} .
- Similarly, if \mathcal{I} is an ideal of \mathcal{A} which is also a Lie ideal of $(\mathcal{A}, \{\cdot, \cdot\})$ then \mathcal{I} is a Poisson ideal of \mathcal{A} and \mathcal{A}/\mathcal{I} is a Poisson algebra; we say that it is a quotient Poisson algebra of \mathcal{A} .

Example: Let $\mathcal{A}[[\nu]]$ be a deformation of a commutative R-algebra \mathcal{A} . $(\mathcal{A}[[\nu]], [\cdot, \cdot]_{\star})$ is the corresponding natural Poisson algebra. $\left[\mathcal{A}[[\nu]], \mathcal{A}[[\nu]]\right]_{\star} \subset \nu \mathcal{A}[[\nu]]$. Thus $(\mathcal{A}[[\nu]], [\cdot, \cdot]_{\nu})$ is a Poisson algebra, where the bracket $[\mathcal{A}, \mathcal{B}]_{\nu} = \frac{1}{\nu} [\mathcal{A}, \mathcal{B}]_{\star}$ is well defined. The ideal $\nu \mathcal{A}[[\nu]] \subset (\mathcal{A}[[\nu]], [\cdot, \cdot]_{\nu})$ is also a Lie ideal:

$$\left[\nu\mathcal{A}[[\nu]],\mathcal{A}[[\nu]]\right]_{
u} = \left[\mathcal{A}[[\nu]],\mathcal{A}[[\nu]]\right]_{\star} \subset \nu\mathcal{A}[[\nu]].$$

Thus $\mathcal{A}[[\nu]]/\nu \mathcal{A}[[\nu]] = \mathcal{A}$ is a Poisson algebra with the Poisson bracket

$$\{a,b\} = \{a,b\}_1 \quad \left(=\lim_{\nu\to 0}\frac{a\star b-b\star a}{\nu}\right).$$

Algebra \mathcal{A} which is not necessarily commutative, and $Z(\mathcal{A})$ is its centre. $\mathcal{A}[[\nu]]$ is a deformation of \mathcal{A} and $(\mathcal{A}[[\nu]], [\cdot, \cdot]_*)$ is its natural Poisson algebra. Since $\left[\mathcal{A}[[\nu]], \mathcal{A}[[\nu]]\right]_* \subset \mathcal{A}[[\nu]]$, and not $\nu \mathcal{A}[[\nu]]$, we cannot introduce $[\cdot, \cdot]_{\nu}$.

We define $\mathcal{H}_{\nu} = Z(\mathcal{A}) + \nu \mathcal{A}[[\nu]].$

Quantum Hamiltonians live in \mathcal{H}_{ν} .

We proved the following statements:

- ▶ \mathcal{H}_{ν} is a Poisson subalgebra of $(\mathcal{A}[[\nu]], [\cdot, \cdot]_{\star})$, i.e. $[\mathcal{H}_{\nu}, \mathcal{H}_{\nu}]_{\star} \subset \mathcal{H}_{\nu}$.
- $\begin{array}{l} \blacktriangleright \quad (\mathcal{H}_{\nu}, [\cdot, \cdot]_{\nu}) \text{ is a Poisson algebra, i.e.} \\ [\mathcal{H}_{\nu}, \mathcal{H}_{\nu}]_{\star} \subset \nu \mathcal{H}_{\nu} \Leftrightarrow \{Z(\mathcal{A}), Z(\mathcal{A})\}_{1} \subset Z(\mathcal{A}). \end{array}$
- $\nu^2 \mathcal{A}[[\nu]]$ is a Poisson ideal of $(\mathcal{H}_{\nu}, [\cdot, \cdot]_{\nu})$.
- ▶ $\mathcal{H}_{\nu}/\nu^2 \mathcal{A}[[\nu]] \simeq Z(\mathcal{A}) \times \mathcal{A}$ is a (noncommutative) Poisson algebra.
- $\nu \mathcal{H}_{\nu}$ is a Poisson ideal of $(\mathcal{H}_{\nu}, [\cdot, \cdot]_{\nu})$.
- ► $\mathcal{H}_{\nu}/\nu\mathcal{H}_{\nu} \simeq Z(\mathcal{A}) \times \frac{\mathcal{A}}{Z(\mathcal{A})}$ is a commutative Poisson algebra.

Commutative Poisson algebra $\Pi(\mathcal{A}) = Z(\mathcal{A}) \times \frac{\mathcal{A}}{Z(\mathcal{A})}$

$$A \in \mathcal{H}_{\nu} = Z(\mathcal{A}) + \nu \mathcal{A}[[\nu]] \Rightarrow A = a_0 + \nu a_1 + \nu^2 a_2 + \cdots, \quad a_0 \in Z(\mathcal{A}), a_1, a_2, \dots \in \mathcal{A}.$$

$$\pi_{\Pi} : \mathcal{H}_{\nu} / \nu \mathcal{H}_{\nu} \rightarrow \Pi(\mathcal{A}) := Z(\mathcal{A}) \times \frac{\mathcal{A}}{Z(\mathcal{A})} \quad \text{(Canonical projection)}.$$

$$A \in \Pi(\mathcal{A}) \Rightarrow A = (a_0, a_1 + Z(\mathcal{A})) = (a_0, \overline{a_1}), \quad a_0 \in Z(\mathcal{A}), \ a_1 \in \mathcal{A}$$

Proposition

 $(\Pi(\mathcal{A}), \{\cdot, \cdot\})$ is a commutative Poisson algebra with associative multiplication \cdot and Poisson bracket $\{\cdot, \cdot\}$:

$$(a,\overline{a_1})\cdot(b,\overline{b_1})=\left(ab,\overline{ab_1+a_1b+(a,b)_1}\right),$$

$$\begin{split} & \left\{(a,\overline{a_1}),(b,\overline{b_1})\right\} = \left(\{a,b\}_1,\overline{\{a,b\}_2 + \{a_1,b\}_1 + \{a,b_1\}_1 + [a_1,b_1]}\right) \ , \\ & \text{for all } (a,\overline{a_1}), (b,\overline{b_1}) \in \Pi(\mathcal{A}). \end{split}$$

When \mathcal{A} is commutative, $Z(\mathcal{A}) = \mathcal{A}$ and $\mathcal{H}_{\nu} = \mathcal{A}[[\nu]]$ $\Pi(\mathcal{A}) \simeq \mathcal{H}_{\nu} / \nu \mathcal{H}_{\nu} \simeq \mathcal{A}[[\nu]] / \nu \mathcal{A}[[\nu]] \simeq \mathcal{A}, \quad \{\cdot, \cdot\} = \{\cdot, \cdot\}_{1}.$

Heisenberg and Hamiltonian derivations

The Heisenberg derivation $\delta_{\hat{H}} : \mathcal{A}[[\nu]] \to \mathcal{A}[[\nu]]:$

$$\delta_{\hat{H}}(\boldsymbol{a}) := rac{1}{
u} [\hat{H}, \boldsymbol{a}]_{\star}$$

with $\hat{H} = H_0 + \nu H_1 + \nu^2 H_2 + \cdots \in \mathcal{A}[[\nu]]$ is well defined (admits a finite limit, as $\nu \to 0$, for any $a \in \mathcal{A}$) if and only if $H_0 \in Z(\mathcal{A})$.

Thus $\hat{H} \in \mathcal{H}_{\nu}$, and

$$\lim_{\nu \to 0} \delta_{\hat{H}}(a) = \lim_{\nu \to 0} \frac{1}{\nu} [H_0 + \nu H_1 + \nu^2 H_2 + \cdots, a]_{\star} = \{H_0, a\}_1 + [H_1, a].$$

For $\mathbf{H} = (H_0, \overline{H_1}) \in \Pi(\mathcal{A})$ we define a Hamiltonian derivation $\partial_{\mathbf{H}} : \mathcal{A} \to \mathcal{A}$

$$\partial_{\mathbf{H}}(a) = \{H_0, a\}_1 + [H_1, a].$$

We have shown that \mathcal{A} is a Poisson module over $(\Pi(\mathcal{A}), \cdot, \{\cdot, \cdot\})$, with actions given for $(a, \overline{a_1}) \in \Pi(\mathcal{A})$ and $b \in \mathcal{A}$ by

$$(a,\overline{a_1}) \cdot b = b \cdot (a,\overline{a_1}) = ba = ab, \quad \{(a,\overline{a_1}); b\} = \{a,b\}_1 + [a_1,b].$$

Definition

Let $(\mathcal{A}, \cdot, \{\cdot, \cdot\})$ be a Poisson algebra over R and let M be an R-module. Then M is said to be a \mathcal{A} -Poisson module (or Poisson module over \mathcal{A} or over $(\mathcal{A}, \{\cdot, \cdot\})$) when M is both a (\mathcal{A}, \cdot) -bimodule and a $(\mathcal{A}, \{\cdot, \cdot\})$ -Lie module, satisfying the following derivation properties: for all $a, b \in \mathcal{A}$ and $m \in M$,

$$\begin{array}{ll} \{a; b \cdot m\} &= \{a, b\} \cdot m + b \cdot \{a; m\} \\ \{a; m \cdot b\} &= m \cdot \{a, b\} + \{a; m\} \cdot b \\ \{a \cdot b; m\} &= a \cdot \{b; m\} + \{a; m\} \cdot b . \end{array}$$

In the above formulas, the three actions of \mathcal{A} on M have been written $a \cdot m$, $m \cdot a$ and $\{a; m\}$ for $a \in \mathcal{A}$ and $m \in M$. In this notation, the fact that M is a \mathcal{A} -bimodule (respectively a $(\mathcal{A}, \{\cdot, \cdot\})$ -Lie module), takes the form

$$a \cdot (b \cdot m) = (a \cdot b) \cdot m , \quad (m \cdot a) \cdot b = m \cdot (a \cdot b) , \quad a \cdot (m \cdot b) = (a \cdot m) \cdot b ,$$
$$\{\{a, b\} ; m\} = \{a; \{b; m\}\} - \{b; \{a; m\}\} ,$$

for $a, b \in \mathcal{A}$ and $m \in M$.

Non-Abelian Hamiltonian Equations

In our setting, let a Hamiltonian $\mathbf{H} = (H_0, \overline{H_1}) \in \Pi(\mathcal{A})$. Then the corresponding non-Abelian Hamiltonian equation on \mathcal{A} is defined as

$$\frac{da}{dt} = \{\mathbf{H}; a\} = \{H_0, a\}_1 + [H_1, a].$$

Proposition

Suppose that $\mathbf{F} = (F_0, \overline{F_1}), \mathbf{G} = (G_0, \overline{G_1}) \in \Pi(\mathcal{A}).$ Then

$$\partial_{\mathbf{F}}\partial_{\mathbf{G}} - \partial_{\mathbf{G}}\partial_{\mathbf{F}} = \partial_{\{\mathbf{F},\mathbf{G}\}}.$$

In particular, if **F** and **G** are in involution, $\{F, G\} = 0$, their associated derivations ∂_F and ∂_G of \mathcal{A} commute.

We have two types of derivations:

$$\partial_{\mathbf{H}} = \{\mathbf{H}; \cdot\} : \mathcal{A} \to \mathcal{A}, \text{ and } \partial'_{\mathbf{H}} = \{\mathbf{H}, \cdot\} : \Pi(\mathcal{A}) \to \Pi(\mathcal{A})$$

When \mathcal{A} is commutative, ∂_{H} and ∂'_{H} are both derivations of \mathcal{A} and $\partial_{H} = \partial'_{H}$. When \mathcal{A} is not commutative, these derivations are defined on different algebras and none of the two determines the other one.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへの

In the case of a commutative Poisson algebra $(\Pi(\mathcal{A}), \{\cdot, \cdot\})$ generated by the set X_1, \ldots, X_M , it is sufficient to find the Poisson brackets $\{X_i, X_j\}$. Then for any $P, Q \in \Pi(\mathcal{A})$

$$\{P, Q\} = \sum_{i,j=1}^{M} \frac{\partial P}{\partial X_i} \frac{\partial Q}{\partial X_j} \{X_i, X_j\}$$

うして ふゆ く は く は く む く し く

To compute Hamiltonian derivations, it is sufficient to find the table $\partial_{X_i}(y_k) = \{X_i ; y_k\}$, where y_1, \ldots are generators of the algebra \mathcal{A} .

Example: quantum plane at $q = -1 + \nu$

Quantum plane:

$$\mathcal{A}_q = rac{\mathbb{C}(q)\langle x, y
angle}{\langle yx - q \, xy
angle}.$$

If $q^N \neq 1$ for some $N \in \mathbb{N}$, then $Z(\mathcal{A}_q) = \mathbb{C}$.

Quantum plane at $q=-1+\nu$

$$\frac{\mathbb{C}[[\nu]]\langle x,y\rangle}{\langle yx-(\nu-1)xy\rangle}\simeq \mathcal{A}[[\nu]] \ , \ \mathrm{where} \ \mathcal{A}:=\frac{\mathbb{C}\langle x,y\rangle}{\langle yx+xy\rangle}$$

The product \star on $\mathcal{A}[[\nu]]$ is defined by

$$y \star x = (\nu - 1)x \star y = (\nu - 1)xy,$$

 $a \star b =: ab:$, for example $(xy^2) \star (x^3y + y^2) = (\nu - 1)^6 x^4 y^3 + xy^4$.

 \mathcal{A} is generated by x, y, satisfying the condition yx = -xy. $Z(\mathcal{A})$ is generated by x^2, y^2 . $\mathcal{A}/Z(\mathcal{A})$ is generated as a $Z(\mathcal{A})$ -module by $\overline{x}, \overline{y}$ and \overline{xy} . $\Pi(\mathcal{A})$ is generated by 5 elements:

$$X = \left(x^2, \overline{0}\right)$$
, $Y = \left(y^2, \overline{0}\right)$, $U = (0, \overline{x})$, $V = (0, \overline{y})$, $W = (0, \overline{xy})$,

うして ふゆ く は く は く む く し く

 $\Pi(\mathcal{A}) \simeq \mathbb{C}[X, Y, U, V, W] / \langle U^2, V^2, W^2, UV, VW, UW \rangle.$ Poisson brackets between the generators of $\Pi(\mathcal{A})$:

$\{\cdot,\cdot\}$	X	Y	U	V	W
Х	0	$4X \cdot Y$	0	$2X \cdot V$	$2X \cdot W$
Y	$-4X \cdot Y$	0	$-2U \cdot Y$	0	$-2Y \cdot W$
U	0	$2U \cdot Y$	0	2 <i>W</i>	$2X \cdot V$
V	$-2X \cdot V$	0	-2 <i>W</i>	0	$-2Y \cdot U$
W	$-2X \cdot W$	$2Y \cdot W$	$-2X \cdot V$	$2Y \cdot U$	0

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Example: quantum plane at $q = -1 + \nu$

In the $\Pi(\mathcal{A})$ -Poisson module \mathcal{A} we have:

	x	У	$\{\cdot;\cdot\}$	x	у
X	<i>x</i> ³	<i>x</i> ² <i>y</i>	X	0	$2x^2y$
Y	x ³ xy ² 0 0 0	У ³	Y	0 $-2xy^{2}$ 0 $-2xy$ $-2x^{2}y$	0
U	0	0	U	0	2 <i>xy</i>
V	0	0	V	-2 <i>xy</i>	0
W	0	0	W	$-2x^2y$	$2xy^2$

$$\hat{H} = -\frac{1}{2-\nu}(y^2 - \nu(-1+\nu))xy + (-1+\nu)^2x^2)$$

$$\mathbf{H} = -\frac{1}{2}(X + Y + W), \quad \frac{dx}{dt} = {\mathbf{H}; x} = xy^2 + x^2y.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

In the commutative classical world, a Hamiltonian system in \mathbb{R}^N is Liouville integrable if it has n functionally independent first integrals H_1, \ldots, H_n in involution $\{H_p, H_k\} = 0, \ 1 \leq p, k \leq n$ and N - 2n functionally independent Casimir elements of the Poisson bracket.

In the corresponding quantum system, the integrability is often identified with the existence of n commuting and algebraically independent elements of the quantum algebra \mathcal{A}_{\hbar} and N - 2n generators of its center $Z(\mathcal{A}_{\hbar})$.

It is evident that the central elements of $\mathcal{A}[[\nu]]$ give rise to Casimir elements within the Poisson algebra $\Pi(\mathcal{A})$. It would be logical to propose a definition of integrability for a non-Abelian Hamiltonian system, requiring the existence of n algebraically independent elements $\mathbf{H}_k \in \Pi(\mathcal{A})$ in involution $\{\mathbf{H}_p, \mathbf{H}_k\} = 0, \ 1 \leq p < k \leq n$, along with N - 2n independent Casimir elements within the Poisson algebra $\Pi(\mathcal{A})$.

The problem of solutions for non-Abelian Hamiltonian systems is wide open.