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(Rational) conformal field theory

Euclidean CFT on the Riemann sphere

two commuting Virasoro algebras

T(z) =
∑

n

L−nzn−2 , T̄ (z̄) =
∑

n

L̄−nz̄n−2

central extension of the algebra generating the 2d con-

formal transformations - arbitrary analytic coordinate

transformations z → ǫ(z) , z̄ → ǭ(z̄);

z = x1+ix2, z̄ = x1−ix2 - extend to C2 - cover Minkowski

case as well

Steps:

• Chiral data – specify the chiral algebra A - Vir, or

some extension, affine KM algebra, {Ja(z)} etc.,

finite set I of irreps for a fixed value of the central

charge, Vi = Vi(h, c) , i ∈ I,

h.w. reps - primary field - lowest value h of L0,

[L0, L−n] = nL−n, descendants, h+ n

• characters

χi(q) = trVi
qL0− c

24 = q−
c

24

∞∑

n=0

multVi
(n)qh+n

as functions of q = e2πiτ , Im τ > 0 span a finite dim

unitary rep of the modular group of the torus, SL(2;Z).



• infinite symmetry - restricts the possible 3-point cou-

plings

chiral vertex operators (CVO)

φki,j;t(z) : Vi ⊗ Vj → Vk , z ∈C

i
j

z,t

k

basis label t = 1,2, . . .Nij
k = dim of vector space of

CVO fusion rule multiplicities Nij
k,

Vi ⋆ Vj = ⊕kNij
k Vk

fusion algebra - assoc., commut., identity, N 1
ij = δij∗

NiNj =
∑

k

N k
ijNk

Verlinde formula:

Nij
k =

∑

ℓ∈I

Sil Sjl S
∗
kl

S1l

∈ N,

the (symmetric) modular matrices Sij = S(k)
ij : repre-

senting the generator τ → −1/τ

n–point correlators, multivalued functions

• duality matr. - braiding B and fusing F
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F define the OPE of the chiral vertex operators,

associativity - pentagon eqn
∑

FFF = FF

B - hexagon eqn,

Moore-Seiberg torus identity for the 2-point chiral corre-

lator - expresses the 1-point mod matrix Sij(p) in terms

of F ⇒ implies Verlinde formula;

Spectral data - 2d theory

• Spectrum organized by irreps of two copies of A :

HP = ⊕j,̄j ∈I Zj j̄ Vj ⊗ V̄j̄
Zj j̄ : multiplicities of (j, j̄), determined by a consistency

condition:

the torus partition function

Z(τ) = trHqL0−c/24q∗L̄0−c/24 =
∑

j,̄j ∈I
Zjj̄ χj(τ)χj̄(τ)

∗

Z must be a modular invariant function of the modular

parameter τ , MZM∗ = Z, with Z11 = 1.

For a fixed central charge there might be several solu-

tions - with different physical operator content.

• Physical fields, chiral factorisation of correlators

Φ(i,̄i)(z, z̄) =
∑

k,k̄,t,t̄

d
(k,k̄);t,t̄
(i,̄i)(j,̄j)

φki,j;t(z) ⊗ φk̄ī,̄j;t̄(z̄)

OPE coeffs d(k,k̄);t,t̄
(i,̄i)(j,̄j)

restricted by locality requirements

(symmetry) ∑
d d F F̄ = d d



In general - ”diagonal” solution Zj,̄j = δj,̄j,

relative OPE coeffs in the non-diagonal cases - com-

puted only for sl(2) since F known - quantum group

6j symbols (pentagon eqn solved in terms of basic 4φ3

hypergeometric function)

This spectral data – encoded in graphs G,

ADE Dynkin diagrams classify mod inv partition func-

tions in the ŝl(2)k related conformal theories [CIZ], [Pasquier],

higher rank generalisations [K, DiFZ]

the sets of A-D-E exponents parametrise the scalar fields

at any value of the level k = h− 2

“Exponents” : diagonal part of the spectrum

E = {j ∈ I|j = j̄, Zjj 6= 0}
counted with a multiplicity Zjj ,

• parametrise the eigenvalues γj =
S2j

S1j
of the adja-

cency matrices Gab = 2δab − Cab

Gab =
∑

j∈E

S2j

S1j
ψjaψ

j∗
b

a ∈ V - nodes of the graph, ψ - unitary (eigenvector)

matrix

in the diagonal case G identified with the fundamental

fusion matrix N2 (here integrable reps 1 ≤ r ≤ k+ 1);

using that the ratios
Sij
S1j

furnish 1- dim reps of Verlinde

fusion algebra, and the unitarity of the eigenvector ma-

trix ψja - one generates nbja, n2 = G

ni nj =
∑

k

N k
ij nk , i, j ∈ I (∗)



a matrix representation of the Verlinde fusion algebra

with integer valued matrix elements.

• strc constants of Pasquier algebra coincide with

relative (the same Coxeter number h = k + 2) scalar

field OPE coeff

d(k,k)
(i,i)(j,j)

= M (k,γ)
(i;α) (j,β)

=
∑

a∈V

ψ(i;α)
a ψ(j,β)

a ψ(k,γ) ∗
a

ψ1
a

(∗∗)

(i, i) ≡ (i;α) ∈ E , α = 1, . . . , Zii

note a closely related paper [Todorov, Rehren, Stanev]

• Boundary CFT – an alternative “chiral”

approach in which these graphs and the related

algebraic structures become manifest

• ”physical” interpretation of the sets V of graph nodes

parametrise conformally invariant boundary conditions -

matrix representation (*) recovered

• formula for OPE coeffs (**) derived



CFT in the presence of boundaries

• should restrict to conformal transformations which

preserve the boundaries;

(upper) half plane H+ with the real axis as a boundary -

real analytic coordinate transformations, ǫ(z) = ǭ(z̄) for

real z = z̄)

only one copy of the chiral algebra

T(z) = T̄ (z̄)

the only algebra acts on the primary fileds as a sum of

the two differential operators in z and z̄ e.g. LH−1 acts

as ∂x = ∂z + ∂z̄;

non-vanishing 1-point function

〈0|φh,h̄(z, z̄)|0〉 =
Ch

(z − z̄)2h
δh,h̄ =

Ch

(2y)2h
δh,h̄ , Im z > 0

Can also expect physical fields living on the boundary,

separating different boundary conditions.

extended to theories with additional symmetry, like the

WZW models - the ”gluing” of the right and left cur-

rents - can be done up to some automorphism ω so that

on the real line Ja = ω(J̄a).



CFT on a cylinder - strip L× T , w = w+ T ,

boundaries labelled by a, b

• The partition function Zb|a is now linear in the charac-

ters since the space of states

Hb|a = ⊕
j∈Inib

a Vi
decomposes into representations of the only chiral alge-

bra

Zb|a = TrHba
e−THba = TrHba

qL0− c

24 =
∑

i∈I
nia

bχi(τ) ,

q = e−π
T

L = e2πiτ , τ = i
T

2L
− pure imaginary

• the partition function Zb|a represents a periodic time

evolution e−THba, on the cylinder, whence the trace, with

boundary conditions a, b.

• We can compute the same partition function in a dif-

ferent alternative way,

b

a

L

T

(a) (b)

a b

T

L

namely, as a matrix element of the evolution operator

e−LH
(cyl)

between some boundary states |a〉 and 〈b|, yet

to be determined.

Zb|a(τ) = 〈b|e−LH(cyl)|a〉 = 〈b|e−πi
τ
(LP

0+LP
0− c

12
)|a〉



b a
0

z

πw/L
z e ζ e

-2iπw/T

a
0

iL

T

b
w

b

a

ζ

Hamiltonians - generators of translations in the two di-

rections - the two maps w → ζ and w → z convert these

generators into zero Vir modes on the plane, or the half-

plane respectively; shifts by ∼ c due to inhomogeneous

transformation of the stress tensor T , Schwartz deriva-

tive terms.

• The two alternative ways of computation (related by a

modular transformation) - consistency condition on the

multiplicities nib
a ∈ Z≥0 , Cardy eqn, adaptation of a

string theory argument;



boundary states |a〉 determined as solutions of the gluing

condition

(Ln − L̄−n)|a〉 = 0

solutions - linear combinations

|a〉 =
∑

j∈E

ψaj√
S1j

|j〉〉

Ishibashi states (diagonal spectrum on the plane)

|j〉〉 =
∑

N

|j,N〉 ⊗ |j,N〉

one computes the trace on the Ishibashi states

〈〈k, α|(q̃ 1

2
(L0+L̄0− c

12
)|j, β〉〉 = δkjδαβχj(−1/τ)

⇒ nia
b =

∑

(j,α)∈E

Sij

S1j
ψ(j,α)
a ψ(j,α) ∗

b = ni∗b
a

ψ - unitary - complete set of bound. conds

n1a
b = δab , nj∗ = nTj

The multiplicities {ni = nbia , i ∈ I} , form a representa-

tion of the Verlinde fusion algebra

ni nj =
∑

k∈I
Nij

k nk (∗)

Thus the classification of a complete set of conformal

boundary conds is reduced to the classification of the

NIMreps, the non-negative integer valued matrix repre-

sentations of the Verlinde algebra.

Associate graph G, a, b ∈ V (collection of graphs), the



vertices of which parametrise the conf. inv. bound.

conds. Diagonal case: ni = Ni , I = V = E

• In sl(2) related RCFT – reduces to the classification of

the symmetric, irred, non-negative integer valued matri-

ces of spectrum |γj| < 2, with the tadpole graph

A2n/Z2 discarded; ⇒ parallels the ADE classification of

the corresponding modular invariants;

• Many examples solved;

still open: e.g., the general case of conformal

embeddings, nead branching coeffs. naj1.

Fields and relations in the boundary CFT

Boundary conditions (a, b) created by insertions of fields

on the boundary (boundary fields)

aΨb
j;β(x), β = 1,2, . . . najb , x =Re z, z ∈ H+.

OPE of boundary fields - new ”3j symbols”, (1)F ,

F
(1)

cp

1αx1 2x 2α 2x

t12x
i j

i
jp

b aab c
β



• Associativity of the product ⇒ pentagon identity
∑

F (1)F (1)F = (1)F (1)F (P1)

where F are the 6j-symbols. In the diagonal case F and
(1)F are identified (possibly up to a gauge), recovering

the conventional pentagon identity
∑

F F F = F F (P0)

Thus the constants (1)F - determine the 3-point bound-

ary field function.

Bulk fields

Half-plane bulk fields ΦH
(j,̄j)

(z, z̄) - compositions of chiral

vertex operators at points z and z̄ obtained by reflection

in the real axis

• for small distance z − z̄ = 2i y ≈ 0, i.e., approaching

the boundary - decomposes into boundary fields

(p)
(i,i)

Φ
p

aa

i

 zα,

t, z−z
(i,i)

i
Ra

new const, R =
∑

C (1)F – the bulk-boundary

reflection coeffs

ΦH
(i,̄i)(z, z̄)|a =

∑

p ,a ,α ,t

R(i,̄i;t)
(a;α)

(p) 〈p|φp
i ī∗;t

(2iy)|̄i∗〉 aΨa
p,α(x) + . . .



which fields appear appear dictated by the multiplicities

Nīi
pnpab

• comparing different decompositions of correlators

with bulk and boundary fields related by braiding - two

bulk-boundary eqs for the constants R [Cardy-Lewellen]

• one of these eqs - from the 2-point bulk correlator

Φ(i,̄i)(z1, z̄1)Φ(j,̄j)(z2, z̄2)

written as a linear combination of 4-point chiral blocks:

- either use the OPE expansion for small distances z12, z̄12
and then decompose to boundary fields

- or, take both fields close to the boundary zi − z̄i → 0

- the two representations are related by braid transfor-

mation B, → get a quadratic relation for the constants

R
(i,i∗)
a (p)

R R ∼
∑

dF R

The special choice p = 1 for R(i,i∗)
a (1) ∼ ψi

a

ψ1
a

in this eqn

corresponds in terms of the 4-point correlators correlator

to the contribution in the leading order of the identity

boundary field

⇒ - one recovers the Pasquier algebra formula for the

scalar bulk 3-point OPE coeffs.



ψia
ψ1
a

ψja

ψ1
a

=
∑

k

d(k,k)
(i,i)(j,j)

ψka
ψ1
a

R(i,i∗)
a (1) ∼ ψi

a

ψ1
a

- 1-dim reps of Pasquier algebra

this derivation - first in the example D5

[Pradisi,Sagnotti, Stanev]

• On the other hand the second bulk-boundary eqn -

linear in R
(i,i∗)
a (p) - in the diagonal case yields an

expression in terms of the 6j symbols F [Runkel];

one observes that actually this expression is proportional

to the 1-point mod. matrix

R(i,i∗)
a (p) ∼ Sai(p)

and that the CL eqn itself is equivalent to the Moore-

Seiberg torus identity; the second CL eqn is a

consequence

⇒ no new constants in the diagonal boundary theory, all

the data provided by the usual chiral CFT formulation.



• Boundary fields can be defined as linear combinations

of standard CVO - tensoring the CVO with an inter-

twining operator

P k,α;j,γ
ab,cb = |ek,αab 〉〈 e

j,γ
cb | , V j → V k

in auxiliary finite dim spaces, of dim mj =
∑

a,b nja
b

aΨc
i,β;I(z) =

∑

j,k,t

∑

b,α,γ

(1)F ck

[
i j

a b

]α t

β γ

φkij,t;I(z) ⊗ P k,α;j,γ
ab,cb

reps of Ocneanu “graph quantum symmetry” (or weak

C∗-Hopf algebra [BSz]), A, associated to any solution

for {ni , i ∈ I}; (1)F and F - the 3j and 6j symbols;

together with its dual algebra Â structure.

States aΨc
j,β(0) |0〉 ⊗ |e1cc〉 = φjj1(0)|0〉 ⊗ |ej,βac 〉 =: |j , β〉

Half-plane bulk fields - compositions of such generalised

CVO.



• Up to now - we have exploited essentially the scalar

field spectrum

Question: do these algebraic structures, e.g., the deter-

mination of the OPE coeffs generalise to the non-trivial

(integer) spin fields described by the modular invariants?

another motivation - physical interpretation of the dual

structure of Ocneanu DTA – based on graphs general-

ising the ADE diagrams, with a set of vertices

Ṽ ∋ x, |Ṽ| = ∑
i,j Z

2
ij.

One is led to construct torus partition functions but

with the periodic boundary conditions modified by the

insertion of operators Xx - topological defects

(”twists, defect lines, seams”) along non contractible

cycles [VB-Zuber],

by definition:

[Ln, X] = [L̄n, X] = 0

Vir operators - generators of infinitesimal diffeomor-

phisms, this condition ensures that each operator X is

invariant under a distorsion of the line to which it is

attached.

The solution

Xx =
∑

jj̄,α,α′

Ψ
(j,̄j;α,α′)
x√
S1jS1j̄

P (j,̄j;α,α′)



linear combinations of projectors

P (j,̄j;α,α′) =
∑

n,n̄

(|j,n〉 ⊗ |̄j, n̄〉)(α)(〈j,n| ⊗ 〈̄j, n̄|)(α′)

(Vj ⊗ V j̄)(α′) → (Vj ⊗ V j̄)(α) α, α′ = 1, · · · , Zjj̄

P (j,̄j;α,α′) play the rôle of Ishibashi states,

”exponents” Ẽ = {j, j̄, α, α′}, |Ẽ| = ∑
j,̄j Z

2
jj̄

Xx=1 = Id ⇒ Ψ
(j,̄j;α,α′)
1 =

√
S1jS1j̄ δαα′

Partition function in the presence of operators X com-

puted in two ways, analogous to the derivation of Cardy

eq, now on a “double” cylinder T × 2L with identified

ends.

First the trace of the translation operator in the “space”

direction –

Zx|y = tr (X+
x Xy e

−2LH) = trHP
(X+

x Xy q̃
L0−c/24 q̃L̄0−c/24) ,

using that

tr HP
(P (j,̄j;α,α′)q̃L0−c/24 q̃L̄0−c/24) = χj(q̃)χj̄(q̃) δαα′

Next, mapping w → z = e
πw

L , compute the trace of the

time evolution operator in the Hilbert space

Hx|y = ⊕i,̄i∈I Ṽīi∗; x
y Vi ⊗ V ī ,



Ṽīi;x
y – multiplicities, Ṽīi∗; 1

1 = Zīi.

Zx|y = tr Hx|y q
L0−c/24 qL̄0−c/24 =

∑

i,̄i∈I
Ṽīi;x

y χi(q)χī(q) .

Identify the two expressions for Zx|y using the modular

transformation of the characters ⇒

Ṽīi;x
y =

∑

j,̄j,α,α′

Sij

S1j

Sī̄j

S1j̄

Ψ(j,̄j;α,α′)
x Ψ(j,̄j;α,α′) ∗

y , Ṽ11; x
y = δxy ,

spectral decomposition, Ψ unitary, implies new set of

NIMreps

Ṽii′Ṽjj ′ =
∑

k,k′

Nij
kNi′j ′

k′
Ṽkk′ (∗∗)

In general Zy|z =
∑

x Ñyx
z Z1|x ,

Ñyx
z =

∑

j,̄j;α

∑

β,γ

Ψ(j,̄j;α,β)
y

Ψ
(j,̄j;β,γ)
x

Ψ
(j,̄j)
1

Ψ(j,̄j;α,γ) ∗
z

The matrices Ñx = {Ñyx
z} span an associative algebra

(non-commutative if some Zjj̄ > 1), realised as well by

the operators Xx

Xx Xy =
∑

z

Ñxy
z Xz

“fusion algebra of defects” (Ocneanu graph algebra)



• Examples of solutions:

diagonal case x ∈ I , Ṽij = NiNj, e.g., the diagonal case

(A2, A3), of the minimal theories, i.e., Ising model, with

Vir irreps labelled by the central charge c = 1
2

and the

dimensions h1 = 0 , h2 = 1
16
, h3 = 1

2
; (x = 1,2,3)

Z1|x =
∑

j

Sxj

S1j
|χj(q̃)|2 =

∑

i,j

Nx
ij χi(q)χj(q)

∗

Z1|1 = |χ1(q̃)|2+|χ3(q̃)|2+|χ2(q̃)|2 = |χ1(q)|2+|χ3(q)|2+|χ2(q)|2

Z1|3 = |χ1(q̃)|2+|χ3(q̃)|2−|χ2(q̃)|2=χ1(q)χ3(q)
∗+c.c.+|χ2(q)|2

Z1|2 =
√

2(|χ1(q̃)|2−|χ3(q̃)|2) = (χ1(q)+χ3(q))χ2(q)
∗+c.c.

Z1|1 - the mod invariant obtained as a system with pe-

riodic boundary conditions, or V 1
ij;1 = N1

ij = δij.

The second Z1|3 = Z1|ǫ(1) reproduces the simplest of

the torus partition functions with Z2 twisted boundary

conditions, and is an example of a defect related to a

group.

Describes the operator content - half-spin operators, ap-

pearing in the OPE of an order σ and disorder µ scalar

operator, both of dimension 1
16

; this can be now inter-

preted as an OPE of one scalar operator in the presence

of a defect σXσ σ = σ µ.



• On a cylinder - both defects and boundaries

a

X+
x

b

anni x
~( )b

i

Xx|a >=
∑

c

ñax
c|c >

i.e., the defects map conformal boundary conditions into

conformal boundary conditions, where

ñax
c =

∑

j,α,β

ψ(j,α)
a

Ψ
(j,j;α,β)
x√
S1jS1j̄

ψ(j,β)∗
c .

Repeating the derivation of Cardy equation one finds a

partition function a cylinder with one defect line Xx and

boundary states a and b

Zb|x a
∑

i∈I
(niñx)a

b χī(q)

The new set of multiplicities provide a representation of

Ñ
∑

b

ñbax ñ
c
by =

∑

z

Ñ z
xy ñ

c
az ,

the multiplicities ñx , Ñx – dual analogs of nj ,Nj,

complete the combinatorial data in the construction of

the Ocneanu quantum algebra.



• Defects on the cylinder - interpreted as source of

boundary perturbations (deformations) of conformal mod-

els [Graham, Watts].

Up to now - defects treated in a formal purely alge-

braic way - explicit realisations?

• Examples of WZW defects

Diagonal defects, γ - h.w. of integrable representation

of KM algebra

Xγ =
∑

µ

Sγµ

S1µ
P (µ,µ)

Explicit realisation - by Wilson loop operators,

[Bachas, Gaberdiel (2004)]; earlier in condensed mat-

ter physics such operators encountered [Affleck et al]

in the CFT interpretation of Kondo effect (screening of

magnetic impurities in a metal).

O(λ;R) = TrRP exp(iλ

∮

C

dx+Jata) , λ = λ∗ = −1

k

J(x+) = −ik∂+gg
−1 , J̄(x−) = ikg−1∂−g , g(x+, x−) ∈ G

WZW currents, generate the symmetry of the WZW

model

g → u(x+)−1 g ū(x−)

and transform as (gauge fields)

J → u−1Ju+ ik u−1∂+u



Quantum operators - need regularisation - analysed per-

turbatively to some order in the powers of λ

k → k+ h∨

Eigenvalues in Hµ ⊗ H̄µ

O(λ∗;Rγ) =
Sγµ

S1µ

Non-perturbative quantisation - [Alekseev, Monier (2007)]

• Wilson loops - identified with central elements in (com-

pletion) of the universal enveloping algebra U(ĝ) of the

affine KM algebra ĝ; - ”generalised Casimir operators”

constructed by [Kac (1984)].

• boundary perturbations - RG flows relating conformal

boundary conditions.



• Correlators in the presence of defects

〈0|Φ(J∗;β)Φ(I∗;α)XxΦ(I;α′)Φ(J;β′)X
†
x|0〉

For z12 → 0 we use the standard expansion, the defect

contributes by its eigenvalue; alternatively in

〈0|Φ(I∗;α)XxΦ(I;α′)Φ(J;β′)X
†
xΦ(J∗;β)|0〉

we need to compute the OPE of Φ(J∗,α)XxΦ(J,β)

take the leading, identity field contribution and use that

2-point function

〈0|Φ(J∗,α)XxΦ(J ′,β)|0〉 = δj,j ′δj̄,j̄ ′
Ψ

(J;α,β)
x

ΨJ
1

〈0|Φ(J∗,α)Φ(J,β)|0〉

once again the two chiral blocks are the identity contri-

bution is related by simple particular and known fusion

coeffs Fk1F̄k̄1 and we get from this cluster expansion

Ψ
(I;α,α′)
x

Ψ
(1)
x

Ψ
(J;β,β′)
x

Ψ
(1)
x

=
∑

k,k̄,γ,γ ′

∑

t,t̄

d(K
∗;γ;t,t̄)

(I∗;α)(J∗;β)
d(K;γ ′;t,t̄)
(I;α′)(J;β′)

Ψ
(K;γ,γ ′)
x

Ψ
(1)
x

these ratios - 1-dim reps of a generalised Pasquier

algebra (dual to Ñ) with structure constants

M̃(I;α,α′) (J;β,β′)
(K;γ,γ ′) =

∑

x

Ψ
(i,̄i;α,α′)
x

Ψ1
x

Ψ(j,̄j;β,β′)
x Ψ(k,k̄;γ,γ ′) ∗

x

⇒ formula for the relative spin - field OPE coeffs

M̃(i,̄i;α,α) (j,̄j; β,β)
(k,k̄; γ,γ) = |d(i,̄i;α)(j,̄j;β)(k,k̄; γ)|2 (⋆)

confirmed by the ADE cases - Ψ
(i,̄i;α,α′)
x computed.



• Full OPE coeffs in the presence of defects?

Expect some defect field analog of the boundary fields

with multiplicity described by Ṽij;xx; studied later exten-

sively by [FFRS - Fröhlich, Fuchs, Runkel, Schweigert]

• Crossing relation in the presence of defects generalis-

ing the cluster relation?

Diagonal case: ansatz for - related to mod matrix of

2-point chiral correlator on the torus, ∼ S(y)⊗ I)F - the

check is reduced to the use of the pentagon equation,

• Other important developments:

• ”Duality defects” (in the sense of Kramers-Wannier)

[FFRS]

(realise only some of the order-order disorder correlators

in the minimal, c < 1 Vir models)

• Boundaries (and recently defects) - have been also

generalised to Liouville theory -

the c > 25 Virasoro theory with continuous spectrum

[FZZ -Fateev,Zamolodchikov2, ZZ, Ponsot-Teschner]

and the main strc constants computed.

• applications in open and closed 2d non-critical string

theories - combine generic level c < 1 and c > 25 Vir

theories.

• defects - equivalently described as ”permutation branes”;

? other applications in string theory?


