A few simple observations about YP1 holoraphic
background

H. Dimov*, R.C.Rashkov*', T. Vetsov*

* Department of Physics, Sofia University,

T ITP, Vienna University of Technology

New Mathematical Methods in Solvable Models and Gauge/String
Dualities

Varna, August, 2022



@ Why Y4 and holographic correspondence?

© Sasaki-Einstein Y79 background, Schédinger equation and separation
of variables

© A little holography of point-like string
@ A side remark on Schwarz-Christoffel map and ...

© Other issues

© Summary



Why Sasaki-Einstein and holography

e The AdS/CFT: relates a SUGRA in the AdS® x X3 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R*! of AdS®.



Why Sasaki-Einstein and holography

e The AdS/CFT: relates a SUGRA in the AdS® x X3 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R31 of AdSP.

e In the general setting of minimal SUSY, the SUGRA vacuum is encoded
by a Sasaki—Einstein metric gp; on a 5-d compact manifold M.



Why Sasaki-Einstein and holography

e The AdS/CFT: relates a SUGRA in the AdS® x X3 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R31 of AdSP.

e In the general setting of minimal SUSY, the SUGRA vacuum is encoded
by a Sasaki—Einstein metric gp; on a 5-d compact manifold M.

e On the gauge theory side: the N = 1 superconformal symmetry is
encoded by a complex cone Y of 6 real dim.



Why Sasaki-Einstein and holography

e The AdS/CFT: relates a SUGRA in the AdS® x X3 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R31 of AdSP.

e In the general setting of minimal SUSY, the SUGRA vacuum is encoded
by a Sasaki—Einstein metric gp; on a 5-d compact manifold M.

e On the gauge theory side: the N = 1 superconformal symmetry is
encoded by a complex cone Y of 6 real dim.

e The low-energy dynamics of a general SCFT: controlled by the moduli
space of classical vacua M.

- The space M: defined as the critical points (modulo complex gauge
equivalence) of the superpotential W.

- the BPS operators of the gauge theory: the local operators preserving
half of the supercharges (holomorphic, polynomial functions on M forming
chiral ring)



Why Sasaki-Einstein and holography

e The AdS/CFT: relates a SUGRA in the AdS® x X3 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R31 of AdSP.

e In the general setting of minimal SUSY, the SUGRA vacuum is encoded
by a Sasaki—Einstein metric gp; on a 5-d compact manifold M.

e On the gauge theory side: the N = 1 superconformal symmetry is
encoded by a complex cone Y of 6 real dim.

e The low-energy dynamics of a general SCFT: controlled by the moduli
space of classical vacua M.

- The space M: defined as the critical points (modulo complex gauge
equivalence) of the superpotential W.

- the BPS operators of the gauge theory: the local operators preserving
half of the supercharges (holomorphic, polynomial functions on M forming
chiral ring)

e Holographic dual of Sasaki-Einstein: quiver theories



Why Sasaki-Einstein and holography

e The AdS/CFT: relates a SUGRA in the AdS® x X3 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R31 of AdSP.

e In the general setting of minimal SUSY, the SUGRA vacuum is encoded
by a Sasaki—Einstein metric gp; on a 5-d compact manifold M.

e On the gauge theory side: the N = 1 superconformal symmetry is
encoded by a complex cone Y of 6 real dim.

e The low-energy dynamics of a general SCFT: controlled by the moduli
space of classical vacua M.

- The space M: defined as the critical points (modulo complex gauge
equivalence) of the superpotential W.

- the BPS operators of the gauge theory: the local operators preserving
half of the supercharges (holomorphic, polynomial functions on M forming
chiral ring)

e Holographic dual of Sasaki-Einstein: quiver theories

e Recently: metric gp; on M emerges from the canonical ensemble (of N
"point particles”)in the large N-limit = emergent Saski-Einstein



Sasaki-Einstein YP4

The metric tensor of Y4 parameterized by two positive integers p, ¢
(p>q)
1-— 1
ds? = ——Y (d02 + sin? 9d¢2) + ————dy? + ay )(dib cos fdg)?
6 w(y
+w(y) [da + f(y)(dp — cos8dg)]* = ds®(B) + w(y)(da + A)*.

The functions are

2(b—y?)

b— 3y2 + 23 b—2y+y?
w(y) = =y q(y) = ——5—

b— 12 ’f(w:W’
_— E_M 4p2 — 32 (1)
5 1 \V &P q° -

The coordinates {y, 0, ¢, 9, a} have the following ranges (0 < b < 1):

Y1 <y<y2, 0<O<m,0<¢p<2rm,0<9<2r,0<a<2nl. (2



Schrédinger equation CO0® = —E® with

— o (L= e

+ <2QR)2+ w(y)lq(y) (880[ +3yQR)2+ 1% [f(— (;;)2] - (3)

The R-symmetry operator is Qr = 20y — 1/30, and K is the second
Casimir of SU(2) - a part of the isometry SU(2) x U(1)2,

A 1 0 0 1 0 d\? d\?
K_751n0%8 089+Sln29(8¢+00591/}> +(8’(/}) (4)

Due to the isometry, the eigenfunction takes the form

©(.0.6,0.0) = exp i (Poo+ P+ “2a) | YWO®) (9

with Py, Py, P, € Z, K acting on SU(2) part.



The regular solutions of the equation below are given by Jacobi
polynomials.

kPt P0)g(6) = —J(J + 1) P+ Peb)e(9) ©)
SU(2) part
The rest
2
1fy;;kl—yﬁwwqwxiyxm}—[(iQR)-+

Pa+3yQ3>2 +jy (J(J+1) —P[f) —E} Y(y)=0.

converts into Fuchsian-type with four regular singularities at y = y1, y2, y3
and oo, i.e. Heun's equation;

L v+ (> =) Ly ) + o)y — o ™
O L) Y@ ey =0,



The functions and parameters

1 3 yi 3
© - 1 Z Py = Y—Yi),
O ) [“ ; = ] () g( )

E 3 3 /2P, 2
=] — —_ 1 _ il — R
b= T-IU+D+3 (375 - Qr)
— q
where | = 34— 2p%+pr/4p? 3L and

L[ 1
o = 7 |F (p+q—> QR]:

1: 1
ap = +7|Fa (p q+31>+QR] ,

1, (=2P+ @+ /P37 1
a = * P q — | —Qr| -

1 1 4p? — 342
Y12 = 4p<2p:|:3q—\/zm> 7y3:2+\/7_

2p



It is convenient to transform the singularities from {y1,y2, y3, 0} to

{0,1,t = ﬁ, oo}. This is achieved by the transformation

together with the rescaling

¥ =2 (1 - 2)™(t—2)q(x) ,

which transforms (7) to the standard form of Heun's equation

d? d afr —k

@q($)+ (;+ xil + xe—t> %qm) * x(x — 1)($_t)q(;v) =0




Bunch of Heun's parameters

3 3
a=-A+Y |ail, B=2+A+ |ail,
=1 =1
=14+2a1,0=142a2, e=1+42a3, (15)

The parameter k, the "accessory” parameter, is
ko= (Joa| +les))(laa] + |as] +1) — azf?
+t{(lo1| + laa)(ju| + oa] + 1) — |asP} =& (16)

with
io= A+ 2)
- g Ba —y)AA+2) = J(J +1) + 11—6 (;J\lr“ - QRﬂ 17)
t = ;<1+@>. (18)

Note that the parameter t satisfies the inequality £ > 1 reflecting p > q.



A little holography of point-like string

e Point-like strings

S = \f / dr (— + gapi®i®) . (19)

The standard equations of motion are supplemented also with the Virasoro
constraint

12 4 gapi®i® = 0. (20)
For the metric at hand the action is reduces to
_ VA / 1 W), ; -
dr 92 +sin? 0¢?) + 7+ 2 — cos O¢?
)+ w(y)q(y) g )

+w(y) [a + F(y)(& - cos99)]2]. (21)
The Hamiltonian for the point-like string is

1
H = 2" PuP,. (22)



The conjugate momenta to the coordinates (6, ¢, y, a, 1)) are:

\15\]39 = 1_Ty0',

\%Py B 6pty)y’

T Pa = w(y) (6-+ £0) (3 = cos03))

TPo = w)f@)a+ [ s w)2w) (b-cos0d) . (@9)
\% — Y sin® 0 — cos 0P,

— Y in? 0¢ — cos Ow(y)f(y)a — cosb {Q(gy) + w(y)f2(y)] (0

+eos? [T 4wy )] 6,

where p(y) = w(y)q(y)/6 = (b — 3y* + 2y%)/[3(1 — y)] and dot means
proper time derivative.



e The momentum P, conjugate to t is the energy of the string =—> equal

to the conformal dimension A of the dual operator:
A=P=H=V)x

e The R-charge:

1
Qr = 2Py — gPa

e The energy/dispersion relations

2 2 _ p2
A? = @QR) R Cichin /) ;;ZZ?R)Q +6p(y) Py + =25

e Minimizing H = P, = 0; yo = _3%3 = A= %QR = BPS

(24)



e The momentum P, conjugate to t is the energy of the string =—> equal

to the conformal dimension A of the dual operator:
A=P=H=V)x

e The R-charge:

1
Qr = 2Py — gPa

e The energy/dispersion relations

35\ 4 (Pat3yQn)” 6(.> — P})
AZ=|(Z% NG VR p2y Ty
<2QR> + 65) +6p(y) By + —7 = ”
e Minimizing H = P, = 0; yo = _3%3 = A= %QR = BPS
Summary:

a) The full set of point-like strings moving only in the transverse SE
manifold is completely described by eq. (26);
b) for all BPS geodesics motion we obtain:

1

3
Py =-3yQr, Qr=02J—-ZF,) & A= iQR, Qr =2FP;, —

3

(24)

1p
3
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Schlesinger and Heun

Statement: Painlevé VI associated with Heun equation (15) describes the
isomonodromic flow of the Fuchsian system
e Let us have a closer look at the Fuchsian equation

W [, A, ]y

dz z z—1 z-—t
where, without loss of generality, the coefficient matrices A,,v = 0,1, 2,
are traceless, and the system is diagonal at z = oo, i.e.,

(27)

TrA, =6, v=0,1,2 Aoo:_AO_Al_A2:<IB1 :) (28)
2.

Let us denote the eigenvalues of A, by
to; £6, 7, 20, 2B, 2y ¢ Z.
In a compact form Schlesinger equations reads

OA; [A;, Aj]

AZaAk
hualni’ 1— .
Oa; = 0 )a —aj 5]2

az_ak



e The second order ODE for the first component of ¥ = (¢, ¥)7:

a§¢1 — (Tr A(2) 4+ 0. log A12(2))0.11

+ (det A(z) + A1 (2); log jig) W1 =0. (29)




e The second order ODE for the first component of ¥ = (¢, ¥)7:

a§¢1 — (Tr A(2) 4+ 0. log A12(2))0.11

det M, =1,

I (det A(z) + A11(2)0; log

Ai2(2)
A11 (Z)

) Y1 =0. (29)

The monodromy group IN; the
base point J\g; the branch cuts
[)\0,0]; [/\0,1]; [)\Q,a]; [)\0,00} and
the corresponding loops 79,71, Yas Yoo-
The complete monodromy data - in
M,, v = 0,1,a,00 realizing repre-
sentation of SL(2,Z) of the loops 7.
Conditions on monodromy matrices are:

v=0,1,a,00 My MM My=1, (cyclic condition)

627ri5 0
Mo = < 0 e—27r725 (30)



e Monodromy data (M = Ms, Mo = Ms) w/ inv. coordinates on it

a, = Tr M,, = 2cos 2ma,, r=20,1,2,3 (31)
tyw =Tr M, M, =2coso,, w,v=0,1,2.

e For Heun equation - take tr A; = 6; and fix

K1 0
A = — Zz‘:o,u Ai = 0

K2
+ Fricke-Jimbo relation (leaves two independent ¢;;):
W (tot, tie, tor) = tort1etor +oy+t3,+t51 —tor(a1a00+aoar) —tir(aoace+aiat,
— to1(atas + apar) + a(2) i CL% I at2 + aio + apa1a1a00 = 4.

Thus 2000 = K1 — ko — 1 and k1 + ke = —2(0p + 01 + 6;). These last
conditions can be solved as

1 1
K1 =0 + 5 — E 0;, k9= —0 — 5 = 0;. (32)
i=0,1,t i=0,1,t
p; + 20; z—A
= E ;A =k—, keC 33
a A—a;’ 12(2) 2(z=1)(z —¢)’ St (33)

i=0,1,t



Canonical form of deformed Heun equation

21 + g1(2)0:1 + g2(2)1h1 = 0, (34a)
1-200 1-—264 1— 26, 1
= — 4b
91(2) . TS 1t v (34b)
Kl(HQ + 1) t(t = 1)K )\()\ = 1),u
_ _ 4
2 =T T oD DN &
with the accessory parameter K = K (0;x, u,t) given by
A =1)(A—1)
. t —
, (200 . 26, 29t—1> K (k2 + 1)
X[“ (A i v v Ehsvownyal RGO,




e Define

Az, t) = Bf% h | A

Ay

} U(z,x); Bl(z,t)=— t\I/(z,t). (36)

z—1 z-—t

Zero-curvature cond 9,A — 0B — [A, B] = 0 is satisfied if A; satisfy
Schlesinger egs.
— Write Schlesinger for deformed Heun and parmetrize A; as

pi +20;  Dpigi k1 O
A= (_(pi+20i) _p), Ay, = — Z A; = <O :

i c i=0,1,t k2

where p; and ¢; now are functions of (\,¢) and the fixed parameters.
e Compatibility condition for (36)

dr

Potkn), Poimmw, () =00 - 00

dt

- a change of the true singularity t = a change in the parameters.

- p and A are canonically conjugated coordinates in the phase space of
isomonodromic deformations.



Explicitly

. AA=D(\A—1) 20, 20, 20,—1
A= tt—1) [2 _</\O+A—11+ A—t)] (37)

f={[=3N22(1 + )X — t] 42 + 202X — 1 = )0 + 2(2X — )61
+(2A = 1)(20; — )] — K1(K2).} (38)



Explicitly

. AA=D(\A—1) 20, 20, 20,—1
A= tt—1) [2 _(/\O+A—1lJr A—t)] (37)

f={[=3N22(1 + )X — t] 42 + 202X — 1 = )0 + 2(2X — )61
+(2A =1)(20; — )] — K1(k2).} (38)
Equivalently, for A only this is Painleve VI
« 1 /1 1 1 9 1 1 1 :
)\_2<)\+)\—1+)\ )A <t+t—1>\—t))\

AA = 1D)(A— 1) f—1 1 tt—1)
e (TR IRt G n ) O

where
1
= 5(2900 —1)2 y=20), B=207, 6=20,6;—1) (40)

e Painleve VI equation describes isomonodromy flow!



Reductions of Painleve VI

Degeneration of Painlevé equations [Chekhov, Mazzocco, Rubtsov, '15]

&
'

Pm

P“‘ !

Figure: The table of confluences of Riemann surfaces from the Painlevé
perspective.



e Degeneration of surfaces corresponding to reductions of Painleve
equations (from [Chekhov, Mazzocco, Rubtsov 15'].)
PE w/ 4 singular points have reps

m Au—» ) f in terms of Riemann surfaces. Ge-
ometric transition between differ-
v ent Painleve’s - different types de-
ﬂlk___,, jig_,ﬁ generation of the corresponding
Riemann surfaces.
For instance, degeneration as in the first line of the figure gives

Pyr — Py it — 1+ €ty B—)—Bl, ’7—>51€_2—|—’}/16
§— =612, (e —=0)

-1



e Degeneration of surfaces corresponding to reductions of Painleve
equations (from [Chekhov, Mazzocco, Rubtsov 15'].)
PE w/ 4 singular points have reps

m Au—» ) f in terms of Riemann surfaces. Ge-
ometric transition between differ-
v ent Painleve's - different types de-
ﬂl jig_,ﬁ generation of the corresponding
Riemann surfaces.

For instance, degeneration as in the first line of the figure gives

Pyr—> Pyt —>1+4¢€ety, p— —p1, ’7—>51€_2—|—’}/1E_1
§— =612, (e —=0)

e Functions corresponding to some surfaces

Gauss Whittaker Bessel

Figure: Gauss hypergeometric (3 regular punctures), Whittaker (1 regular + 1 of
Poincaré rank 1) and Bessel (1 regular + 1 of rank 1/2) [Gavrilenko, Lisovyy 16'].



A side remark on Schwarz-Christoffel map and ...

Schwarz-Christoffel accessory parameters. We start with the formula
of Christoffel-Schwarz mapping

df(w) =7 ﬁ(w o wi)&;fl7 (41)

dw =1

where w; are called pre-vertices (on the line), and z; - the pre-images of
the vertices (vertices of the polygon, z; = f(w;)).



A side remark on Schwarz-Christoffel map and ...

Schwarz-Christoffel accessory parameters. We start with the formula
of Christoffel-Schwarz mapping

df(w) =7 ﬁ(w o wi)&;fl7 (41)

dw =1

where w; are called pre-vertices (on the line), and z; - the pre-images of
the vertices (vertices of the polygon, z; = f(w;)).
The Schwarzian differential equation

o= (5] 30 S ]|

i=1 W= Wi

where n is the number of vertices and 76; are the interior angles at each
vertex z;.



The solutions of the above equation is given by z = f(w) which can be

written as | f(w) = §1 /92 | Here g; are the two independent solutions of

n

7'(w)+

=1

1067 LB

4w —w)?  w—w;

j(w) = 0. (43)

Requiring that the solutions behave well at w = oo imposes algebraic
constraints on the accessory parameters

Zﬁz = Z (wifs +1 — 92) = Z(leﬁf + w;(1 — 012)) =0. (44)

7 7

By applying the transformation

jw) = w PP (w = 1)"" 2w — )"y (w), (45)

we find the Heun equation in canonical form

y"<w)+(1‘9°+1“9"+1‘91)y’(w>+<”"‘* _ e DKo )y<w>:o. (46)

w w—t w—1 w(w — 1) w(w —1)(w —t)



The constants and undefomed Hamiltonian K are

0:)(1—0;)

1 1 -
Ki:1—§(90+0t+01i900) K0:—5t+z( 5

it (wi =)

Examples of Schwarz-Christoffel maps
@ The straight line passing through z; and 29

21 — 2 2129 — 29Z
225(2)21 22+12 21‘

21— 22 21 — 22

@ The circle of radius r, center at zg

e The ellipse (2%/a?) + (y?/b*) =1, (a > b)

2, 32
_ +b 2ab
z=_8(z) = ZQ_b22+a2ib2\/z2+b2—a2.

(47)

(48)



As a map from UHP to a polycircular-shaped domain




As a map from UHP to a polycircular-shaped domain

Schwarz-Christoffell graph

For f(w) = y1(w)/y2(w)

Tz 41— |z)?
Z— T '

The centers of circle arcs C;: x;;
radius: r;; angles: 70;.
In terms of the single monodromy parameters (M; = Si+15'i)

- 2 2, - 2 2
ZiTit1 + 1y — |zi|® + Tixiva + 781 — |Zita]
2cos; = ¢ Lai )

TiTi41
= Schwarz-Christoffel graph is built out from the single monodromy
parameters.



(Non)integrability issues

@ For PVI non-integrability:
Theorem 1. Let 0, = 01 + 62 + 0; and at least one 0; € Z and at
least one 0, ¢ Q . Then the sixth Painleve equation is not integrable.
Theorem 2. Let 0, = 01 + 62 + 0; and at least two 0; are integers.
Then the sixth Painleve equation is not integrable.
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@ For non-integrability of strings in YP:¢ background:
- Basu & Pando Zayas 11’ considered Y with the simplest ansatz

0=0(r), n=p(), y=y[), ¢=mo, P=ap.  (50)

- 0(t) = 0(t) = 0 solves string EoM.
- for remaining y-eq

. P o P 2, 2 _
y—g +7(a2+ca1) +§p(a2+ca1)(y(a2+ca1)—oq)—O. (51)
- the Normal Variational Equation takes the form
. CUs . cp 2
=7 _yzyanrm <a1 - 1_(‘22)8(042 +cayr) — g((ozz +car)ys — a1)) n=20



(Non)integrability issues

- wrining ormal Variational Equation in appropriate form and ppplying
systematically Kovacic' algorithm fails to yield a solution pointing to the
fact that the system is generically non-integrable.

- consider the simper geometry 7!

ds* = R? (— cosh? p dt* + dp? + sinh? de2

1 2
6 Z (d6? + sin’ 0;dp?) + dw + Zcose de;) ) . (52)

=1

with tha ansatz
¢1 = 10, ¢2 = (20, t= t(T)a 1/} = 1/}(7—)7 01 = 91(7—)

= Kovacic’ algorithm fails again for generic values of constants.

e For these solutions, we found that the condition for firts theorem for
non-integrability of Painleve VI is satisfied!

e Conjecture: There exist correspondence between string non-integrability
in strings in Y9 background and PVI non-integrability.
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- Different SE backgrounds — different Heun equation — Painleve equations —
different sinularity

e Conjecture: Confluent limits of Painleve VI encode the changes of background
geometry.
Again: the confluent limit PVl — PV

Pyr—=Py:t—=1+¢€t;, B— -5, 77— dre 2 —1—716_1
§— =612 (e—0)

The corresponding confluent Heun equation is

" 1-26, 1-20, 1 ,
y(z)—i—[ z + Z=1 zZ—A y ()
1 200 —1 te A _
+{4+ 2z 7z(z—t)+z(z—)\) y(z) =0.

Thus

] <1+ VAp? =342
-5 VAT S

) — 1 = YP4 — TPP(THY)
q
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@ Painleve VI equation describes isomonodromy flow for parameters
defining the background
@ Schwarz-Christoffel map is constructed out of the single monodromy
parameters.
@ Conjecture: There exist a correspondence between non-integrability of
strings in Y72 background and PVI non-integrability.
@ Conjecture: Confluent limits of Painleve VI encode the changes of
background geometry.
Future directions:
- (black hole) backgrounds w/ monodromies associaed to other Painleve's
- Scattering and S-matrix
- Seiberg-Witten curves?

THANK YOU!
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