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Subfactors and coset models1

Karl-Henning Rehren

[. . . ]

The “fusion rules” which are read off the local solution are

[3][3] = [0] + [3]

in contrast to the standard fusion rules

[3][3] = [0] + [1] + [2] + [3] + [4].

This seems to contradict the message from the general theoryof superselection sectors
[2] that the fusion rules areintrinsic to a given local quantum field theory. Moreover,
the isospin 3 sector is known to have non-trivial braid groupstatistics, so here is the
surprising fact that one can associate it with local correlation functions.

[. . . ]

1Talk at the Workshop on “Generalized Symmetries in Physics”, Clausthal (FRG), July 1993, to appear
in the proceedings, eds. H.-D. Doebneret al.
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Conformal fields

Conformal quantum fields are classified according to
unitary PE representations of the conformal group
SO(2,D) (Mack 1977) (D = spacetime dimension)

Distinguished fields:

conserved tensor fields (currents, SET, . . . )

have “twist” D − 2 (twist := scaling dimension − spin)

decompose into local chiral fields in D = 2

are generated by bi-harmonic bi-fields V (x1, x2) in
D = 4, arise in OPE in globally conformal QFT.
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Bi-harmonic bi-fields

Scaling dimension (1, 1), bi-harmonicity:

�1V(x1, x2) = 0 = �2V(x1, x2),

regular at x1 = x2, rational leading part (in (12) = (x1 − x2)
2)

of correlation functions.

These properties are highly restrictive. The leading part
determines the full correlation (“harmonic completion”). ⇔ It
can exhibit at most “cross double poles”

. . .

(1k)p(1l)q · (2k)r (2l)s
,

(with (kl) = (xk − xl)
2), but no triple poles:

. . .

(1k)p(1l)q(1m)r . . .
.
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Example (6 points)

Leading singularity: 〈VφφV 〉 = u0 + . . .

u0 =

[
1
2 (15)(26)(34)− (15)(23)(46)− (15)(24)(36)

(13)(14)(23)(24) · (34) · (35)(36)(45)(46)

]
[1,2],[5,6]

.

Harmonic completion v = u0 + O((12)) =

u0·g(t, s)g(t ′, s ′)+

[
(13)(24) · (35)(46)

· · · · (34)2 · . . .

]
[1,2],[5,6]

·
(
1− g(t, s)g(t ′, s ′)

)
,

where

g(t, s) =
1

s
·
[
Li2(u) + Li2(v)− Li2(u + v − uv)

]
+ perm’s

with s = (12)(34)
(13)(24) , t = (14)(23)

(13)(24) , s ′ and t ′ similar with 1, 2 → 5, 6, and

u(s, t) and v(s, t) the “4D chiral” variables defined by s = uv and

t = (1− u)(1− v).
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Pole structure

Signal for non-triviality:

Cross double poles cannot arise from free fields.

If they occur: transcendental correlations, violation of Huygens
locality, presumably local wrt interval (x1, x2).

Classification of admissible cross double pole structures (M.
Bischoff):

no 5-point CDP’s, at least 6-point functions

arise in multipletts of sl(2,R)

Open problem:

Admissible by Hilbert space positivity??? PWE for 6 points?



Conformal
QFT in
various

dimensions:
some new
results and

ideas

Karl-Henning
Rehren

Introduction

Dimension
Hopping

Group Theory

Double Pole
Positivity ?

Conclusion

Dimension Hopping

DIMENSION HOPPING
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Passing from D to D ′

Reducing dimensions should simplify the analysis.

Options:

Restriction to hypersurfaces
distinguished (twist D − 2) fields do not pass to
distinguished fields.

Restriction to subgroups
There are subgroups Conf (D ′) of Conf (D) which do not
come from hypersurfaces.
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Timelike hypersurfaces

Prop. (Borchers 1964): Quantum fields can be restricted to
timelike hypersurfaces (in the axiomatic sense).

Drawback: time-slice property will be lost.

Consolation: Non-free conformal fields do not fulfil the
time-slice property anyway.

Lemma (Folklore): Restricted conformal fields remain
conformal.
More precisely:

Derivatives of conformal fields are not conformal.

Transverse derivatives are conformal on the hypersurface.

Representations split according “naive counting” of tensor
components and transverse Taylor expansion.
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Example:

φ = massless free field in D = 4.

Restricts to dimension 1 scalar in D = 2:

y=z=0−→ lim
N→∞

( 1√
N

N∑
ψ

(n)
L (t + x)⊗ ψ

(n)
R (t − x)

)
belonging to 2D CFT with c = ∞.

Surprise: this field restricts further to the time axis, D = 1:

x=0−→ j(t)

= chiral current, c = 1.

(trivially checked by inspection of correlation functions)
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Inducing D → D ′ > D

Prop. (Bakalov, Nikolov): A low-dimensional CFT induces a
higher-dimensional CFT on the same Hilbert space, provided
the “missing part” of the higher-dimensional conformal group is
present as an inner symmetry (suitable field multipletts).

Are there solutions with finite c?
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Restriction to null hypersurfaces

Restriction to null hypersurfaces (x− = x0 − x1 = 0) is not
covered by Borchers’ result.

Yet:

In D = 2,

〈φφ〉 =
1

x2dL
+ x2dR

−

A restriction to x− = 0 is possible when dR = 0. This is
precisely the case when φ is a chiral component of one of the
“distinguished fields” (= conserved tensors).
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. . . continued

In D = 4,

〈φφ〉 =
1

(x+x− − y2)d

does not admit a restriction to x− = 0.

Yet, for d = 1 (free massless field)

〈∂+φ∂+φ〉 =
x2
−

(x+x− − y2)3

restricts (as x− → 0, taking care of iε) to

〈∂+φ∂+φ〉|x−=0 =
1

x2
+

· δ(y).

This is an infinite-component (c = ∞) chiral field. The
transverse directions have turned into inner symmetries.
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Is this the only example?

Is this the only example?

The restriction already fails for Wick products : φ2(x) :.

But it works for bi-fields V (x1, x2) =: φ(x1)φ(x2) :!

Conjecture: It works for all bi-harmonic bi-fields (related
to the “distinguished” twist-2 fields) in D = 4.
Their correlation functions are of the form

〈V (x1, x2)V (x3, x4)〉 =
1

(13)(24)

f (u)− f (v)

u − v
,

where u and v restrict in D = 2 to chiral cross ratios.

Recall that ∂+ separates the L- and R-runner solutions of

�2D = ∂+∂− = 0.

Understand how the factor 1/(u − v) “intertwines” this mechanism,

upon restriction, for solutions of �4D = ∂+∂− −∆y = 0!
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Group Theory

GROUP THEORY
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An exotic excursion

Embedding of conformal groups

D = 2 : so(2, 2) = so(2, 1)⊕ so(2, 1) chiral
∩

D = 4 : so(2, 4)

∪
so(1, 2)⊕ so(1, 2) “exotic” 2D

Is the exotic embedding potentially useful?



Conformal
QFT in
various

dimensions:
some new
results and

ideas

Karl-Henning
Rehren

Introduction

Dimension
Hopping

Group Theory

Double Pole
Positivity ?

Conclusion

An exotic excursion

Embedding of conformal groups

D = 2 : so(2, 2) = so(2, 1)⊕ so(2, 1) chiral
∩

D = 4 : so(2, 4)

∪
so(1, 2)⊕ so(1, 2) “exotic” 2D

Is the exotic embedding potentially useful?



Conformal
QFT in
various

dimensions:
some new
results and

ideas

Karl-Henning
Rehren

Introduction

Dimension
Hopping

Group Theory

Double Pole
Positivity ?

Conclusion

The exotic embedding

The exotic embedding has three-dimensional rather than
two-dimensional orbits within 4D conformal space.

Yet, one could attempt to define 2D fields algebraically by
selecting a suitable operator “φ(0)” and “transporting it
around” by the 2D conformal group.

Check list:

Locality?

Positive energy?

Indeed, PE representations of so(2, 4) split into a continuum of
non-PE rep’s of so(1, 2)⊕ so(1, 2) (D. Meise).
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Double Pole Positivity ?

DOUBLE POLE POSITIVITY ?
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The problem

Positivity of 〈VφφV 〉 is equivalent to positivity of all partial
wave coefficient matrices B(Λ) in

〈V Π2,L φΠΛ φΠ2,L′V 〉 = B
(Λ)
LL′ · β

(Λ)
LL′ (x1, . . . , x6).

Need to know the partial waves β
(Λ)
LL′ in order to expand a

given correlation function and read off the coefficients.

Problem:

6-point partial waves in 4D are very difficult to obtain.
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First idea

First idea:

4D positivity implies positivity of the 2D restriction (necessary
but not sufficient). 2D partial waves are easier to obtain.

β4D
k,L − ck+L β

4D
k+1,L −

[L/2]∑
ν=1

dk,L,ν β
4D
k+ν+1,L−2ν =

∑
m,n≥0
m+n=L

β2D
k+m,k+n

(2k = twist, L = spin,

ck = k2

4(4k2−1)
, dk,L,ν = ck+L−ν − ck+ν−1 ≥ 0).

shows that 2D positivity is weaker than 4D positivity

allows recursive computation of 4D partial waves

reflects branching of repn’s

6 points? (D. Meise)
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Second idea

“Twist” is an algebraic function of the three Casimir operators
⇔ no PDE to single out the twist in general. But twist-2
bi-fields are characterized by bi-harmonicity
�y 〈V (y , z)A(x1) · · ·C (xn)〉 = 0 = �z〈V (y , z)A(x1) · · ·C (xn)〉.

Second idea:

Use conformal cross ratios as “collective variables” to turn
PDE’s wrt y , z into PDE’s wrt x1, . . . , xn. These latter PDE’s
should then hold also for, eg,

〈C (yn) · · ·A(y1)Πtwist 2A(x1) · · ·C (xn)〉.

Strategy works well for 4 points (quite non-trivial if dA 6= dB).
For 6 points only partial results (I. Wagner).
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Conclusions

Twist D − 2 fields are “distinguished” due to conservation
laws.

In D = 4: as a consequence, twist-2 bi-field correlations
are highly constrained.

Correlation structures can be classified.

Nontrivial structures arise at ≥ 6 points.

Hilbert space positivity is a big challenge.

Several new ideas, but only partial results sofar.
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Thank you

THANK YOU

AND ALL THE BEST, IVAN
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