Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Subfactors and coset models 1

Karl-Henning Rehren

[...]

The "fusion rules" which are read off the local solution are

[3][3] = [0] + [3]

in contrast to the standard fusion rules

[3][3] = [0] + [1] + [2] + [3] + [4].

This seems to contradict the message from the general theory of superselection sectors [2] that the fusion rules are *intrinsic* to a given local quantum field theory. Moreover, the isospin 3 sector is known to have non-trivial braid group statistics, so here is the surprising fact that one can associate it with local correlation functions.

[...]

¹Talk at the Workshop on "Generalized Symmetries in Physics", Clausthal (FRG), July 1993, to appear in the proceedings, eds. H.-D. Doebner *et al.*

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Institut für Theoretische Physik, Universität Göttingen

References

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Joint work with Nikolay Nikolov, Ivan Todorov [1,2,3] and joint work in progress with diploma students: Marcel Bischoff, Ingo Wagner, Daniel Meise (2009)

- Partial wave expansion and Wightman positivity in conformal field theory, Nucl. Phys. B 722, 266–296 (2005)
- Harmonic bilocal fields generated by globally conformal invariant scalar fields, Commun. Math. Phys. 279, 225-250 (2008)
- Ole structure and biharmonic fields in conformal QFT in four dimensions, Bulg. J. Phys. 35 s1, 113 (2008)

Introduction

some new
results and
ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

INTRODUCTION

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Conformal fields

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping Crown The

Double Pole Positivity ?

Conclusion

Conformal quantum fields are classified according to **unitary PE representations of the conformal group** SO(2, D) (Mack 1977) (D = spacetime dimension)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Conformal fields

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Conformal quantum fields are classified according to **unitary PE representations of the conformal group** SO(2, D) (Mack 1977) (D = spacetime dimension)

Distinguished fields:

- conserved tensor fields (currents, SET, ...)
- have "twist" D 2 (twist := scaling dimension spin)

- decompose into local chiral fields in D = 2
- are generated by **bi-harmonic bi-fields** $V(x_1, x_2)$ in D = 4, arise in OPE in globally conformal QFT.

Bi-harmonic bi-fields

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Scaling dimension (1, 1), bi-harmonicity:

 $\Box_1 V(\mathsf{x}_1,\mathsf{x}_2) = \mathbf{0} = \Box_2 V(\mathsf{x}_1,\mathsf{x}_2),$

regular at $x_1 = x_2$, rational leading part (in $(12) = (x_1 - x_2)^2$) of correlation functions.

Bi-harmonic bi-fields

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping Group Theor Double Pole Positivity ?

Conclusion

Scaling dimension (1, 1), bi-harmonicity:

 $\Box_1 V(\mathsf{x}_1,\mathsf{x}_2) = \mathbf{0} = \Box_2 V(\mathsf{x}_1,\mathsf{x}_2),$

regular at $x_1 = x_2$, rational leading part (in $(12) = (x_1 - x_2)^2$) of correlation functions.

These properties are highly restrictive. The leading part determines the full correlation ("harmonic completion"). \Leftrightarrow It can exhibit at most "cross double poles"

$$\frac{\ldots}{(1k)^p(1l)^q\cdot(2k)^r(2l)^s},$$

(with $(kl) = (x_k - x_l)^2$), but no triple poles:

 $\frac{1}{(1k)^p(1l)^q(1m)^r\dots}.$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Example (6 points)

_

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Leading singularity:
$$\langle V\phi\phi V\rangle = u_0 + \dots$$

$$u_{0} = \left[\frac{\frac{1}{2}(15)(26)(34) - (15)(23)(46) - (15)(24)(36)}{(13)(14)(23)(24) \cdot (34) \cdot (35)(36)(45)(46)}\right]_{[1,2],[5,6]}$$

٠

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Example (6 points)

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping Group Theo Double Pole

Conclusion

Leading singularity:
$$\langle V\phi\phi V\rangle = u_0 + \dots$$

$$u_{0} = \left[\frac{\frac{1}{2}(15)(26)(34) - (15)(23)(46) - (15)(24)(36)}{(13)(14)(23)(24) \cdot (34) \cdot (35)(36)(45)(46)}\right]_{[1,2],[5,6]}$$

Harmonic completion $v = u_0 + O((12)) =$

$$u_0 \cdot g(t,s)g(t',s') + \left[\frac{(13)(24) \cdot (35)(46)}{\cdots (34)^2 \cdot \cdots}\right]_{[1,2],[5,6]} \cdot (1 - g(t,s)g(t',s')),$$

where

$$g(t,s) = \frac{1}{s} \cdot \left[Li_2(u) + Li_2(v) - Li_2(u + v - uv) \right] + \text{perm's}$$

with $s = \frac{(12)(34)}{(13)(24)}$, $t = \frac{(14)(23)}{(13)(24)}$, s' and t' similar with $1, 2 \to 5, 6$, and
 $u(s,t)$ and $v(s,t)$ the "4D chiral" variables defined by $s = uv$ and
 $t = (1-u)(1-v)$.

Pole structure

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

croup meery

Double Pole Positivity ?

Conclusion

Signal for non-triviality:

Cross double poles cannot arise from free fields.

If they occur: transcendental correlations, violation of Huygens locality, presumably local wrt interval (x_1, x_2) .

Classification of admissible cross double pole structures (M. Bischoff):

- no 5-point CDP's, at least 6-point functions
- arise in multipletts of $sl(2,\mathbb{R})$

Open problem:

Admissible by Hilbert space positivity??? PWE for 6 points?

Dimension Hopping

some new
results and
ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

DIMENSION HOPPING

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Passing from D to D'

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Reducing dimensions should simplify the analysis.

Options:

- Restriction to hypersurfaces
 - distinguished (twist D-2) fields do not pass to distinguished fields.
- Restriction to subgroups
 - There are subgroups *Conf*(*D*') of *Conf*(*D*) which do not come from hypersurfaces.

Timelike hypersurfaces

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Prop. (Borchers 1964): Quantum fields can be restricted to timelike hypersurfaces (in the axiomatic sense).

- Drawback: time-slice property will be lost.
- Consolation: Non-free conformal fields do not fulfil the time-slice property anyway.

Lemma (Folklore): Restricted conformal fields remain conformal.

More precisely:

- Derivatives of conformal fields are **not** conformal.
- Transverse derivatives are conformal on the hypersurface.
- Representations split according "naive counting" of tensor components and transverse Taylor expansion.

Example:

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

- $\phi =$ massless free field in D = 4.
 - Restricts to dimension 1 scalar in D = 2:

$$\stackrel{y=z=0}{\longrightarrow} \lim_{N\to\infty} \left(\frac{1}{\sqrt{N}}\sum_{k=1}^{N}\psi_{k}^{(n)}(t+x)\otimes\psi_{R}^{(n)}(t-x)\right)$$

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

belonging to 2D CFT with $c = \infty$.

Example:

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

- $\phi =$ massless free field in D = 4.
 - Restricts to dimension 1 scalar in D = 2:

$$\stackrel{y=z=0}{\longrightarrow} \lim_{N\to\infty} \left(\frac{1}{\sqrt{N}}\sum_{k=1}^{N}\psi_{k}^{(n)}(t+x)\otimes\psi_{k}^{(n)}(t-x)\right)$$

belonging to 2D CFT with $c = \infty$.

• Surprise: this field restricts further to the time axis, D = 1:

$$\xrightarrow{x=0} j(t)$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

= chiral current, c = 1.

(trivially checked by inspection of correlation functions)

Inducing $D \rightarrow D' > D$

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Prop. (Bakalov, Nikolov): A low-dimensional CFT induces a higher-dimensional CFT on the same Hilbert space, provided the "missing part" of the higher-dimensional conformal group is present as an inner symmetry (suitable field multipletts).

• Are there solutions with finite c?

Restriction to null hypersurfaces

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Restriction to null hypersurfaces $(x_- = x^0 - x^1 = 0)$ is not covered by Borchers' result.

In D = 2.

Yet:

$$\langle \phi \phi
angle = rac{1}{x_+^{2d_L} x_-^{2d_R}}$$

A restriction to $x_{-} = 0$ is possible when $d_{R} = 0$. This is precisely the case when ϕ is a **chiral component** of one of the "distinguished fields" (= conserved tensors).

... continued

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

 $\ln D = 4,$

$$\langle \phi \phi \rangle = rac{1}{(x_+ x_- - y^2)^d}$$

does not admit a restriction to $x_{-} = 0$.

Yet, for d = 1 (free massless field)

$$\langle \partial_+ \phi \partial_+ \phi \rangle = rac{x_-^2}{(x_+ x_- - y^2)^3}$$

restricts (as $x_{-} \rightarrow 0$, taking care of $i\varepsilon$) to

$$\langle \partial_+ \phi \partial_+ \phi
angle |_{x_-=0} = rac{1}{x_+^2} \cdot \delta(y).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

This is an **infinite-component** $(c = \infty)$ chiral field. The transverse directions have turned into inner symmetries.

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Is this the only example?

• The restriction already fails for Wick products : $\phi^2(x)$:.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Is this the only example?

• The restriction already fails for Wick products : $\phi^2(x)$:.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• But it works for bi-fields $V(x_1, x_2) =: \phi(x_1)\phi(x_2) :!$

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Is this the only example?

- The restriction already fails for Wick products : $\phi^2(x)$:.
- But it works for bi-fields $V(x_1, x_2) =: \phi(x_1)\phi(x_2) :!$
- **Conjecture:** It works for all bi-harmonic bi-fields (related to the **"distinguished"** twist-2 fields) in *D* = 4. Their correlation functions are of the form

$$\langle V(x_1, x_2)V(x_3, x_4)\rangle = \frac{1}{(13)(24)}\frac{f(u) - f(v)}{u - v},$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

where u and v restrict in D = 2 to chiral cross ratios.

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Is this the only example?

- The restriction already fails for Wick products : $\phi^2(x)$:.
- But it works for bi-fields $V(x_1, x_2) =: \phi(x_1)\phi(x_2) :!$
- **Conjecture:** It works for all bi-harmonic bi-fields (related to the **"distinguished"** twist-2 fields) in *D* = 4. Their correlation functions are of the form

$$\langle V(x_1, x_2) V(x_3, x_4) \rangle = \frac{1}{(13)(24)} \frac{f(u) - f(v)}{u - v}$$

where u and v restrict in D = 2 to chiral cross ratios.

Recall that ∂_+ separates the *L*- and *R*-runner solutions of $\Box_{2D} = \partial_+ \partial_- = 0.$ Understand how the factor 1/(u - v) "intertwines" this mechanism,

upon restriction, for solutions of $\Box_{4D} = \partial_+ \partial_- - \Delta_y = 0!$

Group Theory

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

GROUP THEORY

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

An exotic excursion

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Embedding of conformal groups

D = **2**:
$$so(2,2) = so(2,1) \oplus so(2,1)$$
 chiral
 \cap
D = **4**: $so(2,4)$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

An exotic excursion

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Embedding of conformal groups

$$D = 2: so(2,2) = so(2,1) \oplus so(2,1) \text{ chira}$$

$$O = 4: so(2,4)$$

$$\cup so(1,2) \oplus so(1,2) \text{ "exotic" } 2D$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Is the exotic embedding potentially useful?

The exotic embedding

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

The exotic embedding has three-dimensional rather than two-dimensional orbits within 4D conformal space.

Yet, one could attempt to define 2D fields **algebraically** by selecting a suitable operator " $\phi(0)$ " and "transporting it around" by the 2D conformal group.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

The exotic embedding

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

The exotic embedding has three-dimensional rather than two-dimensional orbits within 4D conformal space.

Yet, one could attempt to define 2D fields **algebraically** by selecting a suitable operator " $\phi(0)$ " and "transporting it around" by the 2D conformal group.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Check list:

- Locality?
- Positive energy?

The exotic embedding

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

The exotic embedding has three-dimensional rather than two-dimensional orbits within 4D conformal space.

Yet, one could attempt to define 2D fields **algebraically** by selecting a suitable operator " $\phi(0)$ " and "transporting it around" by the 2D conformal group.

Check list:

• Locality?

• Positive energy?

Indeed, PE representations of so(2, 4) split into a continuum of non-PE rep's of $so(1, 2) \oplus so(1, 2)$ (D. Meise).

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Double Pole Positivity ?

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

DOUBLE POLE POSITIVITY ?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The problem

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Positivity of $\langle V\phi\phi V\rangle$ is equivalent to positivity of all partial wave coefficient matrices $B^{(\Lambda)}$ in

$$\langle V \Pi_{2,L} \phi \Pi_{\Lambda} \phi \Pi_{2,L'} V \rangle = B_{LL'}^{(\Lambda)} \cdot \beta_{LL'}^{(\Lambda)}(x_1,\ldots,x_6).$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Need to know the **partial waves** $\beta_{LL'}^{(\Lambda)}$ in order to expand a given correlation function and read off the coefficients.

Problem:

6-point partial waves in 4D are very difficult to obtain.

First idea

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

First idea:

4*D* positivity implies positivity of the 2*D* restriction (necessary but not sufficient). 2*D* partial waves are easier to obtain.

$$\beta_{k,L}^{4D} - c_{k+L} \beta_{k+1,L}^{4D} - \sum_{\nu=1}^{[L/2]} d_{k,L,\nu} \beta_{k+\nu+1,L-2\nu}^{4D} = \sum_{m,n \ge 0 \atop m+n=L} \beta_{k+m,k+n}^{2D}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

$$(2k = \text{twist}, L = \text{spin}, c_k = \frac{k^2}{4(4k^2-1)}, d_{k,L,\nu} = c_{k+L-\nu} - c_{k+\nu-1} \ge 0).$$

- shows that 2D positivity is weaker than 4D positivity
- allows recursive computation of 4D partial waves
- reflects branching of repn's
- 6 points? (D. Meise)

Second idea

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

"Twist" is an algebraic function of the three Casimir operators \Leftrightarrow no PDE to single out the twist in general. But twist-2 bi-fields are characterized by bi-harmonicity $\Box_V \langle V(y, z)A(x_1) \cdots C(x_n) \rangle = 0 = \Box_z \langle V(y, z)A(x_1) \cdots C(x_n) \rangle.$

Second idea:

Use conformal cross ratios as "collective variables" to turn PDE's wrt y, z into **PDE's wrt** x_1, \ldots, x_n . These latter PDE's should then hold also for, eg,

 $\langle C(y_n)\cdots A(y_1)\Pi_{\mathsf{twist}\,2}A(x_1)\cdots C(x_n)\rangle.$

Strategy works well for 4 points (quite non-trivial if $d_A \neq d_B$). For 6 points only partial results (I. Wagner).

Conclusion

some new
results and
ideas

Karl-Henning Rehren

Introduction

Dimensior Hopping

Group Theory

Double Pole Positivity ?

Conclusion

CONCLUSION

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Conclusions

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Conclusions

• Twist D - 2 fields are "distinguished" due to conservation laws.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• In *D* = 4: as a consequence, twist-2 bi-field correlations are highly constrained.

Conclusions

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Conclusions

• Twist D - 2 fields are "distinguished" due to conservation laws.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- In *D* = 4: as a consequence, twist-2 bi-field correlations are highly constrained.
- Correlation structures can be classified.
- Nontrivial structures arise at ≥ 6 points.

Conclusions

QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

Conclusions

• Twist D - 2 fields are "distinguished" due to conservation laws.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- In *D* = 4: as a consequence, twist-2 bi-field correlations are highly constrained.
- Correlation structures can be classified.
- Nontrivial structures arise at ≥ 6 points.
- Hilbert space positivity is a big challenge.
- Several new ideas, but only partial results sofar.

Thank you

some new
results and
ideas

Karl-Henning Rehren

Introduction

Dimension Hopping

Group Theory

Double Pole Positivity ?

Conclusion

THANK YOU

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Thank you

Conformal QFT in various dimensions: some new results and ideas

Karl-Henning Rehren

Introduction

Dimensior Hopping

Group Theory

Double Pole Positivity ?

Conclusion

THANK YOU

AND ALL THE BEST, IVAN

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ