On intransitive 3-nondegenerate CR manifolds in dimension 7

Andrea Santi University of Rome "Tor Vergata"

Calista 2nd Annual Meeting, 27 May 2024 Bulgarian Academy of Sciences (Sofia)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

Plan of the talk:

- Holomorphic nondegeneracy for CR mnfds $(\mathcal{M}, \mathcal{D}, \mathcal{J})$
- 3-nondegenerate CR mnfds in $\dim \mathcal{M} = 7$: the transitive case
- 3-nondegenerate CR mnfds in $\dim \mathcal{M}=7:$ the intransitive case

First Part

History of the problem

- In 1907 H. Poincaré proved that two generic real hypersurfaces M and M' in C² are not biholomorphically equivalent
- É. Cartan realized that $\mathcal{M} \subset \mathbb{C}^2$ has non-trivial geometric structure given by maximal complex distribution $\mathcal{D} \subset T\mathcal{M}$ with $\mathcal{J} : \mathcal{D} \to \mathcal{D}$
- He solved equivalence problem for 3-dimensional Levi nondegenerate
 (M, D, J) in 1932 by associating bundle π : P → M with absolute
 parallelism Φ s.t. Aut (M, D, J) ≅ Aut (P, Φ)
- The construction was generalized by S.-S. Chern and J. Moser to Levi nondegenerate hypersurfaces M ⊂ Cⁿ, n ≥ 2, in 1974

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tanaka method (70's)

Let \mathcal{M} be mnfd with distribution $\mathcal{D} \subset T\mathcal{M}$. Consider *filtration* of Lie algebra of vector fields defined by $\underline{\mathcal{D}}^{-1} = \underline{\mathcal{D}}$ and for any k > 1 by

$$\underline{\mathcal{D}}^{-k} = \underline{\mathcal{D}}^{-k+1} + [\underline{\mathcal{D}}, \underline{\mathcal{D}}^{-k+1}]$$

Evaluating at $x \in \mathcal{M}$, we get flag

$$\dots = \mathcal{D}^{-\mu-1}(x) = \mathcal{D}^{-\mu}(x) \supset \mathcal{D}^{-\mu+1}(x) \supset \dots \supset \mathcal{D}^{-2}(x) \supset \mathcal{D}^{-1}(x) = \mathcal{D}(x)$$

and assuming $T_x \mathcal{M} = \mathcal{D}^{-\mu}(x)$, the commutator of v.f. induces a structure of nilpotent graded Lie algebra on $\mathfrak{m}(x) = \operatorname{gr}(T_x \mathcal{M}) = \mathfrak{m}(x)_{-\mu} + \cdots + \mathfrak{m}(x)_{-1}$.

Def. \mathcal{D} is strongly regular if we have flag $T\mathcal{M} = \mathcal{D}^{-\mu} \supset \cdots \supset \mathcal{D}^{-1} = \mathcal{D}$ of distributions and all $\mathfrak{m}(x)$ are isomorphic to $\mathfrak{m} = \mathfrak{m}_{-\mu} + \cdots + \mathfrak{m}_{-1}$

Strongly-regular Levi nondegenerate CR mnfds

Thm[N. Tanaka '70s] Let $(\mathcal{M}, \mathcal{D}, \mathcal{J})$ be a strongly regular CR mnfd with CR symbol (\mathfrak{m}, J) and set $\mathfrak{g}_0 = \operatorname{der}(\mathfrak{m}, J)$. Then:

- 1 dim $\mathfrak{g}_{\infty} < \infty$ iff for any nonzero $v \in \mathfrak{m}_{-1}$, there is a $w \in \mathfrak{m}_{-1}$ s.t. $[v, w] \neq 0$ (i.e, the Levi form is nondegenerate); in this case
- **2** $\exists \pi : P \to \mathcal{M}$ and parallelism Φ s.t. dim Aut $(\mathcal{M}, \mathcal{D}, \mathcal{J}) \leq \dim(\mathfrak{g}_{\infty})$

Strictly-pseudoconvex hypersurface case

- $\Phi: TP \to \mathfrak{g} \cong \mathfrak{su}(n+1,1)$ is Cartan connection
- $S^{2n+1} \cong G/H$ projectivization of null cone in \mathbb{C}^{n+2}
- G = SU(n + 1, 1), H = stabilizer of isotropic line
- Locally isomorphic to tube over hyperquadric

$$\mathcal{M} = \{ z \in \mathbb{C}^{n+1} : \operatorname{Re} z_0 = (\operatorname{Re} z_1)^2 + \dots + (\operatorname{Re} z_n)^2 \}$$

Levi degenerate CR mnfds

$$\mathcal{M} = \{ z \in \mathbb{C}^3 : (\operatorname{Re} z_1)^2 + (\operatorname{Re} z_2)^2 - (\operatorname{Re} z_3)^2 = 0, \operatorname{Re} z_3 > 0 \} \subset \mathbb{C}^3$$

- It is Levi degenerate at all points (its completion in CP⁴ is homogeneous for G = SO^o(3,2)), foliated by complex leaves (the future light cone is union of real half-lines, so M is union of complex half-lines), yet it admits no CR straightening
- This can be seen by checking the necessary condition for local CR straightenings found by Freeman (1977)

Freeman sequence

The *Freeman sequence* is a sequence

$$\underline{\mathcal{F}}^{-1} \supset \underline{\mathcal{F}}^{0} \supset \underline{\mathcal{F}}^{1} \supset \cdots \supset \underline{\mathcal{F}}^{p-1} \supset \underline{\mathcal{F}}^{p} \supset \underline{\mathcal{F}}^{p+1} \supset \cdots$$

of complex vector fields $\underline{\mathcal{F}}^p = \underline{\mathcal{F}}_{10}^p \oplus \overline{\mathcal{F}}_{10}^p$ given by $\underline{\mathcal{F}}^{-1} = \underline{\mathcal{D}}^{\mathbb{C}}$ and $\underline{\mathcal{F}}_{10}^p$ for $p \ge 0$ is the left kernel of the *higher order Levi form*

$$\mathcal{L}^{p+1}: \underline{\mathcal{F}}_{10}^{p-1} \otimes \underline{\mathcal{D}}_{01} \longrightarrow \mathfrak{X}(\mathcal{M})^{\mathbb{C}} / (\underline{\mathcal{F}}_{10}^{p-1} \oplus \underline{\mathcal{D}}_{01})$$
$$(X, Y) \longrightarrow [X, Y] \mod \underline{\mathcal{F}}_{10}^{p-1} \oplus \underline{\mathcal{D}}_{01}$$

Def.

- (M, D, J) is regular if we have flags of distributions corresponding to the Tanaka and Freeman sequences.
- 2 (M, D, J) is k-nondegenerate if F^p≠0 for all -1 ≤ p ≤ k 2 and F^{k-1}=0. Otherwise, we say it is holomorphically degenerate.

Classification of 2-nondegenerate homogeneous hypersurfaces of \mathbb{C}^3

The classification of all locally homogeneous 2-nondegenerate CR-mnfds in dimension 5 was achieved in 2008 by the celebrated work of Fels-Kaup. All such CR mnfds are tubes $\mathcal{M} = S + i\mathbb{R}^3$ over surfaces $S \subset \mathbb{R}^3$:

1 S the future light cone,
2 S = {
$$r(\cos t, \sin t, e^{\omega t})$$
} (for any fixed $\omega > 0$)
3 S = { $r(1, t, e^t)$ }
4 S = { $r(1, e^t, e^{\theta t})$ } (for any fixed $\theta > 2$)
5 S = { $c(t) + rc'(t)$ }, with $c(t) := (t, t^2, t^3)$ the *twisted cubic*

where $r \in \mathbb{R}^+$, $t \in \mathbb{R}$. For every $\mathcal{M} = S + i\mathbb{R}^3$ in (2) - (5), the symmetry algebra is solvable and it has dimension 5.

Beloshapka's conjecture

- The lowest manifold dimension for which 3-nondegenerate CR-mnfds can exist is 7. Beloshapka '21 showed that the *upper bound* for the dimension of symmetry algebra of all 3-nondegenerate 7-dimensional CR-hypersurfaces is 20
- There is evidence supporting conjecture that CR hypersurfaces with maximal finite dimensional symmetry algebra are Levi nondegenerate:

Conjecture (V. Beloshapka) For any real-analytic and connected holomorphically nondegenerate CR-hypersurface $(\mathcal{M}, \mathcal{D}, \mathcal{J})$ with CR-dimension n one has $\dim \inf(\mathcal{M}, \mathcal{D}, \mathcal{J}) \leq n^2 + 4n + 3$, with the maximal value attained only if \mathcal{M} is everywhere spherical.

Second Part

・ロト ・ 西 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

Model $\mathcal{R}^7 \subset \mathbb{C}^4$ for 7-dimensional 3-nondegenerate CR-hypersurfaces

Together with B. Kruglikov, we have recently shown that the abstract model I derived in '15 is also a tube $\mathcal{R}^7 = S + i\mathbb{R}^4 \subset \mathbb{C}^4$. To realize it, consider the tangent variety $\Sigma = TR$ to the cone R over twisted cubic, parametrized as

$$x_0 = r^3, x_1 = r^2(s+t), x_2 = r s (s+2t), x_3 = s^2(s+3t)$$

with $r, t \neq 0$, and with global defining equations

$$\Sigma = \left\{ x \in \mathbb{R}^4 \mid x_0^2 x_3^2 - 6x_0 x_1 x_2 x_3 + 4x_0 x_2^3 + 4x_1^3 x_3 - 3x_1^2 x_2^2 = 0 \right\} \,.$$

These formulae give geometric interpretation to an example of Fels-Kaup '08. The $GL_2(\mathbb{R})$ -orbits on $\Sigma \subset S^3 \mathbb{R}^2 \cong \mathbb{R}^4$ are three: $S := \Sigma \setminus R$, $R \setminus \{0\}$, and $\{0\}$. **Thm.** [Kruglikov, S. '23] $\mathcal{R}^7 = S + i\mathbb{R}^4$ is a 7-dimensional 3-nondegenerate

globally homogeneous CR mnfd diffeomorphic to $S^1 \times \mathbb{R}^6$. Its automorphism group is $G \cong GL_2(\mathbb{R}) \ltimes S^3 \mathbb{R}^2$ and stabilizer $\text{Stab} = \{ \text{diag}(a^2, 1/a) \mid a \in \mathbb{R}^{\times} \}.$

Main classification result

Thm. [Kruglikov, S. '23]

- ∃! locally homogeneous 3-nondegenerate CR mnfd in dimension 7 (hence any such structure is locally isomorphic to the model R⁷)
- **2** Every connected *globally homogenous* 3-nondegenerate CR mnfd in dimension 7 with the automorphism group of *maximal dimension* is finite or countable covering of \mathcal{R}^7
- 3 The submaximal bound dim Aut (M, D, J) ≤ 7 is achieved on the tube over (the nonsingular part of) the tangent variety to the cone over the punctured twisted cubic, for which

Aut $(\mathcal{M}, \mathcal{D}, \mathcal{J}) \cong B \ltimes S^3 \mathbb{R}^2$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where B is the Borel subgroup in $GL_2(\mathbb{R})$.

Third Part

・ロト ・ 西 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

Main classification result - intransitive case

Thm. [Kruglikov, S. '23]

- I If symmetry algebra \mathfrak{g} of 3-nondegenerate 7-dimensional real-analytic CR-hypersurface $(\mathcal{M}, \mathcal{D}, \mathcal{J})$ acts *locally intransitively*, i.e., generic orbits have dimension < 7, then dim \mathfrak{g} < 7 as well (in particular the symmetry dimension 7 is also non-realizable in the intransitive case)
- 2 The submaximal symmetry dimension is 6. There is a continuum of pairwise non-equivalent such CR-hypersurfaces with dim g = 6

Rem.

- (M, D, J) can be assumed regular, i.e., rank of involved bundles are constant. (In fact, they are constant on an open dense subset of M due to upper-semicontinuity, and one may localize to it by analyticity.)
- 2 It uses nondegenerate projective curves in $\mathbb{R}P^3$ with a 1-dimensional projective symmetry algebra (instead of the twisted cubic as before).

Ingredients of the proof of 1

Variety of methods depending on the dimension of generic orbits:

- Tanaka-Weisfeiler filtration of g at a regular intransitive point, retaining information along directions transverse to the orbits;
- The complex structure *J* does not project to the leaf space of Cauchy characteristic distribution, however g projects faithfully (as Lie algebra of infinitesimal contact symmetries);
- Often g is effectively represented on orbit O^G_p as infinitesimal symmetries of a smaller dimensional geometric structure →
 Tanaka-Weisfeiler filtration of g ≃ g|_{O^G_p} at a transitive point
- In the most involved cases, such filtrations are combined with a study in Cartan's spirit of *structure equations* of adapted frames.

$$\mathcal{M} \cong U \times V$$

near a regular point $p \in \mathcal{M}$, where U and V have the local coordinates $(u^i)_{i=1}^3$ and $(v^j)_{j=1}^4$, $TU = \langle \partial_{u^i} \rangle$ is the distribution $q \mapsto \mathfrak{g}|_q$ given by \mathfrak{g} . In particular, any *infinitesimal CR-symmetry* has the form

$$\xi = \sum_{i=1}^{3} \xi^{i}(u, v) \partial_{u^{i}} .$$

We also set

$$\begin{split} TU_{\mathcal{D}} &= TU \cap \mathcal{D} \,, \quad TU_{\mathcal{D}}^{\mathcal{J}} = TU_{\mathcal{D}} \cap \mathcal{J}(TU_{\mathcal{D}}) \,, \\ TU_{\mathcal{K}} &= TU \cap \mathcal{K} \,, \quad TU_{\mathcal{K}}^{\mathcal{J}} = TU_{\mathcal{K}} \cap \mathcal{J}(TU_{\mathcal{K}}) \,, \\ TU_{\mathcal{L}} &= TU \cap \mathcal{L} \,, \quad TU_{\mathcal{L}}^{\mathcal{J}} = TU_{\mathcal{L}} \cap \mathcal{J}(TU_{\mathcal{L}}) \,, \end{split}$$

where $\mathcal{D} \supset \mathcal{K} \supset \mathcal{L}$ is the Freeman filtration. $\langle \Box \rangle \land \exists \forall \forall z \in \forall \forall z \in \forall$

- The subbundle *TU_D* ⊂ *TU* has codimension 1, hence it has rank 2. (If *TU_D* = *TU*, then g₋₂(q) = 0 for all q ∈ M, hence a symmetry ξ would be tangent to D everywhere, and ξ = 0 by 3-nondegeneracy.)
- In particular $TU_{\mathcal{D}}^{\mathcal{J}}$ is either trivial or equal to $TU_{\mathcal{D}}$.
- If TU^J_D = 0, then g₀(p) = 0 ⇒ g acts simply transitively on orbits and dim g = 3. So we may consider the case where TU_D is J-stable.
- In that case $TU_{\mathcal{K}}$ is \mathcal{J} -stable too. If $TU_{\mathcal{K}} = TU_{\mathcal{D}}$, then $TU_{\mathcal{K}}$ has codimension 1 in $TU \Longrightarrow \dim \mathfrak{g} = 1$. (In fact \mathfrak{g} projects faithfully to leaf space of Cauchy characteristic distribution \mathcal{K} and two non-trivial analytic contact vector fields are locally proportional iff homothetic.)

Hence $TU_{\mathcal{K}} = 0$ and each orbit carries a natural structure of 3-dimensional contact CR mnfd

 $(\mathcal{O}_q^G, TU_{\mathcal{D}}, \mathcal{J}|_{TU_{\mathcal{D}}})$.

Since $T\mathcal{M} = TU \oplus \mathcal{K}$ as complementary integrable distributions, we may take rectifying coordinates $(u^i)_{i=1}^3$ and $(v^j)_{j=1}^4$ on $\mathcal{M} \cong U \times V$, so that $TU = \langle \partial_{u^i} \rangle$, $\mathcal{K} = \langle \partial_{v^j} \rangle$. Moreover

$$\xi = \sum_{i=1}^{3} \xi^{i}(u, v) \partial_{u^{i}}$$

preserves \mathcal{K} , whence $\xi^i = \xi^i(u) \Longrightarrow \mathfrak{g} \cong \mathfrak{g}|_{\mathcal{O}_q^G}$ is effectively represented on each orbit \mathcal{O}_q^G as symmetries of a 3-dimensional contact CR structure. We now use Tanaka–Weisfeiler filtration of $\mathfrak{g} \cong \mathfrak{g}|_{\mathcal{O}_q^G}$ at a transitive point, but still retaining global information.

- Any maximally symmetric (O^G_q, TU_D, J|_{TUD}) is locally isomorphic to S³ ≅ SU(1,2)/B, and submaximal CR symmetry dimension is 3.
- Thus we may assume every orbit locally spherical and g ⊂ su(1,2). Since the maximal dimension of a proper subalgebra of su(1,2) is 5 (Borel subalgebras), we may assume g|_{O_a^C} ≃ su(1,2) at all q ∈ M.
- So far we have obtained that $\dim \mathfrak{g} = \dim \mathfrak{g}|_{\mathcal{O}_n^G} \leqslant 5$, unless

 $\mathfrak{g}|_{\mathcal{O}_q^G} \cong \mathfrak{su}(1,2)$

at all $q \in \mathcal{M}$. We claim this possibility contradicts 3-nondegeneracy.

Tanaka-Weisfeiler filtration at transitive point

 $\mathfrak{g} = \mathfrak{g}_{-2} \oplus \cdots \oplus \mathfrak{g}_{+2}$ $\cong \mathbb{R} \oplus \mathbb{C} \oplus \mathfrak{gl}_1(\mathbb{C}) \oplus \mathbb{C}^* \oplus \mathbb{R}^*$

where $\mathfrak{b} = \mathfrak{g}_{\geq 0} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$. Simple algebraic fact: *there is a unique* (up to sign) contact CR structure on \mathcal{O}_q^G that is preserved by $\mathfrak{g} \cong \mathfrak{g}|_{\mathcal{O}_q^G}$. However, symmetries in \mathfrak{g} have the *v*-independent local form

$$\xi = \sum_{i=1}^{3} \xi^{i}(u) \partial_{u^{i}} ,$$

so the Lie algebra $\mathfrak{g}|_{\mathcal{O}_q^G}$ is not only abstractly isomorphic to $\mathfrak{g}|_{\mathcal{O}_p^G}$ for all $q \in \mathcal{M}$ but actually *equal*. The CR structure on \mathcal{O}_q^G is then equal to that on \mathcal{O}_p^G up to a sign, but since \mathcal{J} depends smoothly on v, they are equal $\Longrightarrow \mathcal{J}$ is projectable to leaf space of \mathcal{K} , which is not possible $\blacksquare_{\mathcal{I}_q}$ is \mathfrak{I}_q and \mathfrak{I}_q is \mathfrak{I}_q or \mathfrak{I}_q .

Beloshapka's conjecture

- Thm. [Kruglikov, S. '23]
 - A 3-nondegenerate 7-dimensional real-analytic CR-hypersurface (M, D, J) has symmetry dimension dim g ≤ 8 and bound is sharp.
 - A holomorphically nondegenerate 7-dimensional real-analytic CR-hypersurface (M, D, J) has symmetry dimension dim g ≤ 24. If it is not everywhere spherical, then dim g ≤ 17 (this bound is sharp and it can be attained only on inhomogeneous CR-manifolds).

Thanks!

・ロト ・ 西 ・ ・ ヨ ・ ・ 日 ・ う へ ()・