On intransitive 3-nondegenerate CR manifolds in dimension 7

Andrea Santi University of Rome "Tor Vergata"

Calista 2^{nd} Annual Meeting, 27 May 2024 Bulgarian Academy of Sciences (Sofia)

K ロ ▶ K @ ▶ K 혼 > K 혼 > □ 혼 → 9 Q Q*

Plan of the talk:

- Holomorphic nondegeneracy for CR mnfds $(M, \mathcal{D}, \mathcal{J})$
- 3-nondegenerate CR mnfds in $\dim \mathcal{M} = 7$: the transitive case
- 3-nondegenerate CR mnfds in $\dim M = 7$: the intransitive case

(ロ) (@) (코) (코) (코) 2000

First Part

 $\mathcal{A} \boxtimes \mathcal{B} \rightarrow \mathcal{A} \boxtimes \mathcal{B} \rightarrow \mathcal{A} \boxtimes \mathcal{B} \rightarrow \mathcal{B} \boxtimes \mathcal{B} \rightarrow \mathcal{B} \boxtimes \mathcal{C} \boxtimes \mathcal{B}$

History of the problem

- \bullet In 1907 H. Poincaré proved that two generic real hypersurfaces ${\cal M}$ and \mathcal{M}' in \mathbb{C}^2 are not biholomorphically equivalent
- $\bullet\,$ É. Cartan realized that $\mathcal{M}\subset\mathbb{C}^2$ has non-trivial geometric structure given by maximal complex distribution $\mathcal{D} \subset T\mathcal{M}$ with $\mathcal{J} : \mathcal{D} \to \mathcal{D}$
- He solved equivalence problem for 3-dimensional Levi nondegenerate (M, D, \mathcal{J}) in 1932 by associating bundle $\pi : P \to M$ with absolute parallelism Φ s.t. Aut $(\mathcal{M}, \mathcal{D}, \mathcal{J}) \cong$ Aut (P, Φ)
- The construction was generalized by S.-S. Chern and J. Moser to Levi nondegenerate hypersurfaces $\mathcal{M} \subset \mathbb{C}^n$, $n \geq 2$, in 1974

Tanaka method (70's)

Let M be mnfd with distribution $D \subset TM$. Consider *filtration* of Lie algebra of vector fields defined by $\underline{\mathcal{D}}^{\,-1} = \underline{\mathcal{D}}$ and for any $k > 1$ by

$$
\underline{\mathcal{D}}^{-k} = \underline{\mathcal{D}}^{-k+1} + [\underline{\mathcal{D}}, \underline{\mathcal{D}}^{-k+1}]
$$

Evaluating at $x \in \mathcal{M}$, we get flag

$$
\ldots = \mathcal{D}^{-\mu-1}(x) = \mathcal{D}^{-\mu}(x) \supset \mathcal{D}^{-\mu+1}(x) \supset \ldots \supset \mathcal{D}^{-2}(x) \supset \mathcal{D}^{-1}(x) = \mathcal{D}(x)
$$

and assuming $T_x\mathcal{M} = \mathcal{D}^{-\mu}(x)$, the commutator of v.f. induces a structure of nilpotent graded Lie algebra on $\mathfrak{m}(x) = \text{gr}(T_x\mathcal{M}) = \mathfrak{m}(x)_{-1} + \cdots + \mathfrak{m}(x)_{-1}$.

Def. D is strongly regular if we have flag $TM = D^{-\mu} \supset \cdots \supset D^{-1} = D$ of distributions and all $m(x)$ are isomorphic to $m = m_{-\mu} + \cdots + m_{-1}$

$$
\mathbf{1} \oplus \mathbf{
$$

Strongly-regular Levi nondegenerate CR mnfds

Thm[N. Tanaka '70s] Let (M, D, J) be a strongly regular CR mnfd with CR symbol (\mathfrak{m}, J) and set $\mathfrak{g}_0 = \text{der}(\mathfrak{m}, J)$. Then:

- 1 dim $\mathfrak{g}_{\infty} < \infty$ iff for any nonzero $v \in \mathfrak{m}_{-1}$, there is a $w \in \mathfrak{m}_{-1}$ s.t. $[v, w] \neq 0$ (i.e, the Levi form is nondegenerate); in this case
- 2 $\exists \pi : P \to M$ and parallelism Φ s.t. dim Aut $(\mathcal{M}, \mathcal{D}, \mathcal{J}) \leq \dim(\mathfrak{g}_{\infty})$

Strictly-pseudoconvex hypersurface case

- $\bullet \Phi : TP \to \mathfrak{g} \cong \mathfrak{su}(n + 1, 1)$ is *Cartan connection*
- \bullet $S^{2n+1} \cong G/H$ projectivization of null cone in \mathbb{C}^{n+2}
- $G = SU(n + 1, 1), H =$ stabilizer of isotropic line
- Locally isomorphic to tube over hyperquadric

$$
\mathcal{M} = \{ z \in \mathbb{C}^{n+1} : \text{Re } z_0 = (\text{Re } z_1)^2 + \dots + (\text{Re } z_n)^2 \}
$$

Levi degenerate CR mnfds

$$
\mathcal{M} = \{ z \in \mathbb{C}^3 : (\text{Re } z_1)^2 + (\text{Re } z_2)^2 - (\text{Re } z_3)^2 = 0, \text{ Re } z_3 > 0 \} \subset \mathbb{C}^3
$$

- It is Levi degenerate at all points (its completion in $\mathbb{C}P^4$ is homogeneous for $G=SO^o(3,2))$, foliated by complex leaves (the future light cone is union of real half-lines, so M is union of complex half-lines), yet it admits no CR straightening
- This can be seen by checking the necessary condition for local CR straightenings found by Freeman (1977)

Freeman sequence

The *Freeman sequence* is a sequence

$$
\underline{\mathcal{F}}^{-1} \supset \underline{\mathcal{F}}^0 \supset \underline{\mathcal{F}}^1 \supset \cdots \supset \underline{\mathcal{F}}^{p-1} \supset \underline{\mathcal{F}}^p \supset \underline{\mathcal{F}}^{p+1} \supset \cdots
$$

of complex vector fields $\underline{\mathcal{F}}^p = \underline{\mathcal{F}}_{10}^p \oplus \overline{\underline{\mathcal{F}}_{10}^p}$ given by $\underline{\mathcal{F}}^{-1} = \underline{\mathcal{D}}^{\mathbb{C}}$ and $\underline{\mathcal{F}}_{10}^p$ for $p \geq 0$ is the left kernel of the *higher order Levi form*

$$
\mathcal{L}^{p+1}: \underline{\mathcal{F}}_{10}^{p-1} \otimes \underline{\mathcal{D}}_{01} \longrightarrow \mathfrak{X}(\mathcal{M})^{\mathbb{C}}/(\underline{\mathcal{F}}_{10}^{p-1} \oplus \underline{\mathcal{D}}_{01})
$$

$$
(X, Y) \longrightarrow [X, Y] \mod \underline{\mathcal{F}}_{10}^{p-1} \oplus \underline{\mathcal{D}}_{01}
$$

Def.

- \Box $(\mathcal{M}, \mathcal{D}, \mathcal{J})$ is regular if we have flags of distributions corresponding to the Tanaka and Freeman sequences.
- 2 $(\mathcal{M}, \mathcal{D}, \mathcal{J})$ is k -nondegenerate if $\mathcal{F}^p \neq 0$ for all $-1 \leqslant p \leqslant k 2$ and $\mathcal{F}^{k-1}{=}\,0$. Otherwise, we say it is *holomorphically degenerate*.

Classification of 2-nondegenerate homogeneous hypersurfaces of \mathbb{C}^3

The classification of all locally homogeneous 2-nondegenerate CR-mnfds in dimension 5 was achieved in 2008 by the celebrated work of Fels-Kaup. All such CR mnfds are tubes $\mathcal{M}=S+i\mathbb{R}^3$ over surfaces $S\subset \mathbb{R}^3$:

\n- 1
$$
S
$$
 the future light cone,
\n- 2 $S = \{r (\cos t, \sin t, e^{\omega t})\}$ (for any fixed $\omega > 0$)
\n- 3 $S = \{r (1, t, e^t)\}$
\n- 4 $S = \{r (1, e^t, e^{\theta t})\}$ (for any fixed $\theta > 2$)
\n- 5 $S = \{c(t) + rc'(t)\}$, with $c(t) := (t, t^2, t^3)$ the twisted cubic
\n

where $r \in \mathbb{R}^+$, $t \in \mathbb{R}$. For every $\mathcal{M} = S + i \mathbb{R}^3$ in $(2) - (5)$, the symmetry algebra is solvable and it has dimension 5.

Beloshapka's conjecture

- The lowest manifold dimension for which 3-nondegenerate CR-mnfds can exist is 7. Beloshapka '21 showed that the upper bound for the dimension of symmetry algebra of all 3-nondegenerate 7-dimensional CR-hypersurfaces is 20
- There is evidence supporting conjecture that CR hypersurfaces with maximal finite dimensional symmetry algebra are Levi nondegenerate:

Conjecture (V. Beloshapka) For any real-analytic and connected holomorphically nondegenerate CR-hypersurface (M, D, J) with CR-dimension *n* one has $\dim \inf(\mathcal{M}, \mathcal{D}, \mathcal{J}) \leq n^2 + 4n + 3$, with the maximal value attained only if M is everywhere spherical.

Second Part

 $\mathcal{A} \hspace{1mm} \Box \hspace{1mm} \vdash \hspace{1mm} \mathcal{A} \hspace{1mm} \overline{\boxplus} \hspace{1mm} \vdash \hspace{1mm} \mathcal{A} \hspace{1mm} \overline{\boxplus} \hspace{1mm} \vdash \hspace{1mm} \negthinspace \negthinspace \exists \hspace{1mm} \bot \hspace{1mm} \negthinspace \exists \hspace{1mm} \negthinspace \bot \hspace{1mm} \negthinspace \negthinspace \exists \hspace{1mm} \bot \hspace{1mm} \negthinspace \negthinspace \exists \hspace{1mm} \bot \hspace{1mm} \negthinspace \negthinspace \exists$

Model $\mathcal{R}^7 \subset \mathbb{C}^4$ for 7-dimensional 3-nondegenerate CR-hypersurfaces

Together with B. Kruglikov, we have recently shown that the abstract model I derived in '15 is also a tube $\mathcal{R}^7=S+i\mathbb{R}^4\subset\mathbb{C}^4$. To realize it, consider the tangent variety $\Sigma = TR$ to the cone R over twisted cubic, parametrized as

$$
x_0 = r^3
$$
, $x_1 = r^2(s+t)$, $x_2 = r s (s+2t)$, $x_3 = s^2(s+3t)$,

with $r, t \neq 0$, and with global defining equations

$$
\Sigma = \left\{ x \in \mathbb{R}^4 \mid x_0^2 x_3^2 - 6x_0 x_1 x_2 x_3 + 4x_0 x_2^3 + 4x_1^3 x_3 - 3x_1^2 x_2^2 = 0 \right\}.
$$

These formulae give geometric interpretation to an example of Fels-Kaup '08. The $GL_2(\mathbb{R})$ -orbits on $\Sigma\subset S^3\mathbb{R}^2\cong \mathbb{R}^4$ are three: $S:=\Sigma\backslash R$, $R\backslash\{0\}$, and $\{0\}$.

Thm. [Kruglikov, S. '23] $\mathcal{R}^7 = S + i\mathbb{R}^4$ is a 7-dimensional 3-nondegenerate globally homogeneous CR mnfd diffeomorphic to $S^1 \times \mathbb{R}^6$. Its automorphism group is $G \cong GL_2(\mathbb{R}) \ltimes S^3\mathbb{R}^2$ and stabilizer $\text{Stab} = \{ \text{diag}(a^2, 1/a) \mid a \in \mathbb{R}^\times \}$.

Main classification result

Thm. [Kruglikov, S. '23]

- 1 E! locally homogeneous 3-nondegenerate CR mnfd in dimension 7 (hence any such structure is locally isomorphic to the model $\mathcal{R}^7)$
- 2 Every connected globally homogenous 3-nondegenerate CR mnfd in dimension 7 with the automorphism group of *maximal dimension* is finite or countable covering of \mathcal{R}^7
- 3 The submaximal bound dim Aut $(M, D, J) \leq 7$ is achieved on the tube over (the nonsingular part of) the tangent variety to the cone over the *punctured twisted cubic*, for which

$$
Aut(M, \mathcal{D}, \mathcal{J}) \cong B \ltimes S^3 \mathbb{R}^2 ,
$$

where B is the Borel subgroup in $GL_2(\mathbb{R})$.

Third Part

 $\mathcal{A} \hspace{1mm} \Box \hspace{1mm} \vdash \hspace{1mm} \mathcal{A} \hspace{1mm} \overline{\boxplus} \hspace{1mm} \vdash \hspace{1mm} \mathcal{A} \hspace{1mm} \overline{\boxplus} \hspace{1mm} \vdash \hspace{1mm} \negthinspace \negthinspace \exists \hspace{1mm} \bot \hspace{1mm} \negthinspace \exists \hspace{1mm} \negthinspace \bot \hspace{1mm} \negthinspace \negthinspace \exists \hspace{1mm} \bot \hspace{1mm} \negthinspace \negthinspace \exists \hspace{1mm} \bot \hspace{1mm} \negthinspace \negthinspace \exists$

Main classification result $-$ intransitive case

Thm. [Kruglikov, S. '23]

- ¹ If symmetry algebra g of 3-nondegenerate 7-dimensional real-analytic CR-hypersurface (M, D, J) acts locally intransitively, i.e., generic orbits have dimension < 7 , then $\dim \mathfrak{g} < 7$ as well (in particular the symmetry dimension 7 is also non-realizable in the intransitive case)
- 2 The submaximal symmetry dimension is 6. There is a continuum of pairwise non-equivalent such CR-hypersurfaces with $\dim \mathfrak{q} = 6$

Rem.

- $1 \left(\mathcal{M}, \mathcal{D}, \mathcal{J} \right)$ can be assumed regular, i.e., rank of involved bundles are constant. (In fact, they are constant on an open dense subset of $\mathcal M$ due to upper-semicontinuity, and one may localize to it by analyticity.)
- $\mathsf{a} \rceil$ lt uses nondegenerate projective curves in $\mathbb{R}P^3$ with a 1-dimensional projective symmetry algebra (instead of the [tw](#page-13-0)i[st](#page-15-0)[e](#page-13-0)[d c](#page-14-0)[u](#page-15-0)[bic](#page-0-0) [a](#page-22-0)[s b](#page-0-0)[efo](#page-22-0)[re](#page-0-0)[\).](#page-22-0)

Ingredients of the proof of $|1|$

Variety of methods depending on the dimension of generic orbits:

- Tanaka-Weisfeiler filtration of g at a regular intransitive point, retaining information along directions transverse to the orbits;
- The complex structure J does not project to the leaf space of Cauchy characteristic distribution, however g projects faithfully (as Lie algebra of infinitesimal contact symmetries);
- \bullet Often $\mathfrak g$ is effectively represented on orbit $\mathcal O_p^G$ as infinitesimal symmetries of a smaller dimensional geometric structure \rightsquigarrow Tanaka–Weisfeiler filtration of $\mathfrak{g} \cong \mathfrak{g}|_{\mathcal{O}_p^G}$ at a transitive point
- \bullet In the most involved cases, such filtrations are combined with a study in Cartan's spirit of *structure equations* of adapted frames.

$$
\mathcal{M}\cong U\times V
$$

near a regular point $p \in \mathcal{M}$, where U and V have the local coordinates $(u^i)_{i=1}^3$ and $(v^j)_{j=1}^4$, $TU=\langle\partial_{u^i}\rangle$ is the distribution $q\mapsto\mathfrak{g}|_q$ given by \mathfrak{g} . In particular, any *infinitesimal CR-symmetry* has the form

$$
\xi = \sum_{i=1}^3 \xi^i(u,v) \partial_{u^i} .
$$

We also set

$$
TU_{\mathcal{D}} = TU \cap \mathcal{D}, \quad TU_{\mathcal{D}}^{\mathcal{J}} = TU_{\mathcal{D}} \cap \mathcal{J}(TU_{\mathcal{D}}),
$$

\n
$$
TU_{\mathcal{K}} = TU \cap \mathcal{K}, \quad TU_{\mathcal{K}}^{\mathcal{J}} = TU_{\mathcal{K}} \cap \mathcal{J}(TU_{\mathcal{K}}),
$$

\n
$$
TU_{\mathcal{L}} = TU \cap \mathcal{L}, \quad TU_{\mathcal{L}}^{\mathcal{J}} = TU_{\mathcal{L}} \cap \mathcal{J}(TU_{\mathcal{L}}),
$$

where $\mathcal{D} \supset \mathcal{K} \supset \mathcal{L}$ is the Freeman filtration. **K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (***

- The subbundle $TU_{\mathcal{D}} \subset TU$ has codimension 1, hence it has rank 2. (If $TU_{\mathcal{D}} = TU$, then $\mathfrak{g}_{-2}(q) = 0$ for all $q \in \mathcal{M}$, hence a symmetry ξ would be tangent to D everywhere, and $\xi = 0$ by 3-nondegeneracy.)
- $\bullet\,$ In particular $TU^{\mathcal J}_\mathcal D$ is either trivial or equal to $TU_\mathcal D.$
- \bullet If $TU^{\mathcal J}_\mathcal D=0$, then $\mathfrak g_0(p)=0\Longrightarrow \mathfrak g$ acts simply transitively on orbits and $\dim \mathfrak{g} = 3$. So we may consider the case where $TU_{\mathcal{D}}$ is \mathcal{J} -stable.
- In that case TU_K is J -stable too. If $TU_K = TU_D$, then TU_K has codimension 1 in $TU \implies \dim \mathfrak{g} = 1$. (In fact g projects faithfully to leaf space of Cauchy characteristic distribution K and two non-trivial analytic contact vector fields are locally proportional iff homothetic.)

Hence $TU_K = 0$ and each orbit carries a natural structure of 3-dimensional contact CR mnfd

 $(\mathcal{O}_q^G, TU_{\mathcal{D}}, \mathcal{J}|_{TU_{\mathcal{D}}})$.

Since $T\mathcal{M} = TU \oplus \mathcal{K}$ as complementary integrable distributions, we may take rectifying coordinates $(u^i)_{i=1}^3$ and $(v^j)_{j=1}^4$ on $\mathcal{M} \cong U \times V$, so that $TU = \langle \partial_{u^i} \rangle$, $\mathcal{K} = \langle \partial_{v^j} \rangle$. Moreover

$$
\xi = \sum_{i=1}^3 \xi^i(u, v) \partial_{u^i}
$$

preserves $\mathcal K$, whence $\xi^i=\xi^i(u)\Longrightarrow \mathfrak g\cong \mathfrak g|_{\mathcal O_q^G}$ is effectively represented on each orbit \mathcal{O}_q^G as symmetries of a 3-dimensional contact CR structure. We now use Tanaka–Weisfeiler filtration of $\mathfrak{g}\cong\mathfrak{g}|_{\mathcal{O}_q^G}$ at a transitive point, but still retaining global information.

- \bullet Any maximally symmetric $(\mathcal{O}_q^G,TU_{\mathcal{D}},\mathcal{J}|_{TU_{\mathcal{D}}})$ is locally isomorphic to $S^3\cong SU(1,2)/B$, and submaximal CR symmetry dimension is $3.$
- Thus we may assume every orbit locally spherical and $g \subset \mathfrak{su}(1, 2)$. Since the maximal dimension of a proper subalgebra of $\mathfrak{su}(1, 2)$ is 5 (Borel subalgebras), we may assume $\mathfrak{g}|_{\mathcal{O}_q^G}\cong\mathfrak{su}(1,2)$ at all $q\in\mathcal{M}.$
- $\bullet\,$ So far we have obtained that $\dim\mathfrak{g}=\dim\mathfrak{g}|_{\mathcal{O}_p^G}\leqslant 5$, unless

 $\mathfrak{g}|_{\mathcal{O}_q^G}\cong \mathfrak{su}(1,2)$

at all $q \in \mathcal{M}$. We claim this possibility contradicts 3-nondegeneracy.

Tanaka-Weisfeiler filtration at transitive point

 $\mathfrak{g} = \mathfrak{g}_{-2} \oplus \cdots \oplus \mathfrak{g}_{+2}$ $\cong \mathbb{R} \oplus \mathbb{C} \oplus \mathfrak{gl}_1(\mathbb{C}) \oplus \mathbb{C}^* \oplus \mathbb{R}^*$

where $\mathfrak{b} = \mathfrak{g}_{\geq 0} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$. Simple algebraic fact: there is a unique (up to sign) contact CR structure on \mathcal{O}_q^G that is preserved by $\mathfrak{g} \cong \mathfrak{g}|_{\mathcal{O}_q^G}$. However, symmetries in g have the v -independent local form

$$
\xi = \sum_{i=1}^3 \xi^i(u) \partial_{u^i} ,
$$

so the Lie algebra $\mathfrak{g}|_{\mathcal{O}_q^G}$ is not only abstractly isomorphic to $\mathfrak{g}|_{\mathcal{O}_p^G}$ for all $q \in \mathcal{M}$ but actually *equal*. The CR structure on \mathcal{O}_q^G is then equal to that on \mathcal{O}^G_p up to a sign, but since $\mathcal J$ depends smoothly on v , they are equal \Rightarrow \Rightarrow \Rightarrow *J is [p](#page-19-0)rojecta[ble](#page-0-0) to leaf space of K*, which i[s n](#page-19-0)[ot](#page-21-0) p[oss](#page-20-0)ible \blacksquare [.](#page-0-0) OQ

Beloshapka's conjecture

Thm. [Kruglikov, S. '23]

- ¹ A 3-nondegenerate 7-dimensional real-analytic CR-hypersurface (M, D, \mathcal{J}) has symmetry dimension $\dim \mathfrak{g} \leq 8$ and bound is sharp.
- ² A holomorphically nondegenerate 7-dimensional real-analytic CR-hypersurface (M, D, \mathcal{J}) has symmetry dimension $\dim \mathfrak{g} \leq 24$. If it is not everywhere spherical, then $\dim g \leq 17$ (this bound is sharp and it can be attained only on inhomogeneous CR-manifolds).

Thanks!

 $\mathcal{A} \hspace{1mm} \Box \hspace{1mm} \mathbb{P} \hspace{1mm} \mathcal{A} \hspace{1mm} \overline{\Box} \hspace{1mm} \mathbb{P} \hspace{1mm} \mathbb$