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Ultraviolet Divergences N Gravitg
® Simple power counting 18 gravitg and supergravitg
theories leads to a naive degree of di\/ergence

A= (D—2)L+2

in D sPacetime dimensions. So, for D=4, 1.3, one

expects A =8 . In dimensional regularization, onl9

1

logarithmic clivergences are seen ( — oles, e=D—4),
E

sO 8 powers omc momentum Woulcl ha\/e to come out onto

the external lines of such a cliagram.




* Local sul:)ersgmmetry implies that the pure curvature
part of such a D=4, §~lool:> clivergent structure must be

Deser, Kay & K.5.5

built from the square of the Bel-Robinson tensor

/ V _gT,uvaT'UVpG 9 T,quG — RyavBRpoccsB =+ ) yavB *RpOCGB

Grisaru, Van de Ven & Zanon

This is clirectlg related to the of? corrections in the
suPerstri ng, etfective action, except that in the stri ng,
context such contributions occur with finite coetficients.
The c]uestion remains whether such string theorg

contributions develop Poles in (a)~! as one takes the

zero~s|o!:>e limit o/ — 0 and how this bears on the

ultraviolet Properties of the Corresponcling field theoxy.




* Using string dualities to control dilaton clepenclence
together with a coordinated sc:aling of the T¢ dimensional
reduction torus, it has been anticipate& that the result of

such an of — 0 limit may Hield a finite result for D=4, N=8
supergravity.

Chalmers;

Green, Russo & Van Hove;
Berkovits

r'

* However, it s very ditficult to clisentangle non-

r"

Perturbative string etfects from the Pure|9 field-theoretic

clynamics one would encounter in N=8 sul:)ergravitg

Green, Ooguri & Schwarz




* Here we wi” tocusjust on ﬁeH theorg.

* The consequences ot supersgmmetrg tor the ultraviolet
structure are not restricted simplg to the requirement

that counterterms be 5uper59mmetric invariants.

o There exist more Powertul “non-renormalization

theorems,” the most famous of which excludes infinite
renormalization within D=4 N= supersymmetry of chiral
invariants, given in N=| superspace bg integrals over half

the superspace:

/d26W((])(x,6,6))  Do=0




Keg tools in Proving non-renormalization theorems are

superspace formulations and the Dackgrouncl field method.

For example, the Wess-Zumino model in N=1, D=4

5ul:>ersgmmetr3 is formulated in terms of a chiral

superﬁelcl (])(x,@,é) : D(I) = 0; Dy, = ag(x ieaajixa

In the backgrouncl field methocl) one splits the suPerﬁeld

into “backgrouncl” and “c]uantum” Parts)

0=0+0
T T
background quantum

The chiral constraint on Q(x,8,0) can be solved bﬂ
introclucinga “Prepotential”: 0=D’X (D’=0)




® Althoug‘q the Wess-Zumino action includes chiral
superspace integrals I = / d*xd*0dd + Re L/ d*xd*0 ¢’

when written in terms of the total field ¢, the parts in\/olving

the quantum field 0 al:)l:)earing inside looP diagrams can be
re-written as / d*xd*® = / d*xd*0d°® full superspace integrals
using the “integrationzdigerentiation” Propert9 of Berezin

| ntegrals.

SPeciﬁcangj upon exl:)ancling into background and quantum
parts, one finds that the chiral interaction terms can be re-
written as full superspace integrals, e.g,

/ d*xd*00%* @ = / d*xd*0XD*X ¢

Thus all counterterms written using the bac Kgrouncj field @

must be writable as full-superspace integrals.
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o The strength of such suPersgmmetric non-renormalization

theorems depencls on the degrce of |inearlg realizable, or

“off-shell” supersgmmetrg that can be ensured. This is the

extent O1C sul:)ersgmmetrg For W

hich the algebra may close

without use of the equations O

Knows ng the extent of off-shel

- motion.

| realizable suPersymmetrg 1S

trickgj and may involve formulations (e.g. harmonic

suPerSPace) with infinite numbers of auxi iary fields.

For maximal N=4 SuPer Yang—-Mi ls and maximal N=8

suPergravitg, the linearlg realizable supersymmetry has been
known since the 80’s to be at least half the full
suPersgmmetry of the theorg. This was used to show the

Howe, K.5.5. & Townsencl; Manc”estam;

finiteness of D=4, N=4 SYM theory. Brink, Linderen & Nilsson




o The |<69 Point about non-renormalization theorems is that

allowed counterterms have to be written as full / d*Me

superspace integrals for the |inear|9 realized M-extended
supersymmety, where the integrancls must be written using a
clear|9 defined set of basic objects (analogous to the WZ
backgrouncl field ©), and where the integratecl

counterterms have to satis@ all applicable gauge sgmmetries

and also must be loca”g constructed (i.e. written without

using such operators as 1), e

1

o The full extentof at

may be non-linear, also restricts the infinities since the

1@0:‘3’5 supersgmmetrg, even thoug}w it

leading counterterms have to be invariant under the original

unrenormalizecl sul:)ersgmmetrg trans?ormations.



* Assuming that 1/2 sul:)ersgmmetrg IS |inear|3 realizable and

requiring gauge and supersymmetry invariances, togetl’)er

with other relevant automorl:)hism symmetries, one derives

Prcdic‘cions for the first di\/ergent lool:) orders in maximal
Howe, K.5.5 & Townsend

(N=4 < 16 suPercharge) SYM and (N=8 & 32 sc.) SUGRA:

Max. SYM first divergences,
assuming half susy off-shell
(8 sul:)erchargcs)

Max. SUGRA first clivergences)
assuming half susy off-shell

(16 supercharges)

Dimension D

10

8

7

6

5

Loop order L

1

1

2

3

Gen. form

0*F*

F4

0*F*

0*F*

F4

*

Dimension D

11

10

8

7

Loop order L

2

2

1

2

Gen. form

812R4

alORél

R4

o R*

O°R*

The D=10 and D=6 max supergravitg ¥ cases are Peculiar: one

might have thought there coulcl be 9?R* counterterms one

Drummond, Heslop, Howe & Kerstan

Ioop earlier. But these are cases where on-shell

sul:)ersgmmetrg and automorphism sgmmetries rule this out. |

O



With regard to Renata’s talk and recent paper:
* To see the impact of combining the full on-shell

suPersgmmetrg with the non-renormalization theorems
for alesser oft-shell supersymmetry, consider again the

Wess~Zumino model, but now written in |ight~cone

Mandlestam;

superspace, with 2 fermi coordinates 0".0" onlg. Brink, Lindgren &

Nilsson

Rewrite a Putative counterterm / d*0¢" ~ / D.D_¢"

in the |ight~cone superspace
1

++

» SO the chiral integrancl

can be rewritten as

_ 1
0" = —iD+((])”_1D+a— )
++




* Accordingng a chiral integral can be re-written as a full

light~cone superspace integra :
/D+D—¢n ~ /D+D+D—((|)( D, —0)

o n— 1 ree erfield egn
Jo.b.i6m. et

~ I D.D (6" 2 .D.— 6D Fermionic s.t. eqn.
| D6 o Dig oD ) [

* Similarlﬂ, in N=4 SYM and N=8 suPergravitg, on ~shell

1/2 BPS candidate counterterms can be rewritten in off-

shell ight-cone superspace:

_ Was W i
(Wi2)* ~ Di1D 4o D3 DY ([ (Who)? 22 212 N=4 SYM
Ot+ O+

Wasas W13 Wi247 Wio3s
Or+ Opp Op4 Oiy
+ Moral to take home: 1/2 manifest supersgmmetrg allows 1/2

4 5678
(Wia234)™ ~ Dy1yo4314 D005 (

) N=8 SuPergravitg

BPS operators as canchcJate counterterms
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Unitaritg—-—based calculations

Bern, Dixon, Dunbar, Kosower, Perelstein) Rozowskg et al.

o Within the last clccadej there have been signiﬁcant

1

advances in the comPutation of |ooP corrections in

quantum ﬁeld tlﬁeory.

o These cievelol:)ments include the organization of
amplitucles into a new kind of Perturbation theorﬂ
starting with maximal helicitg Violating amPlitucles (MHV)

then next-to-MHV (NMHV) , etc.

° Tl’)eg also incorporate a specific use of dimensional

regularization together with a clever use of unitarity

cutt ng rules.




* Norma”g) one thinks of unitarity relations such as the

oPtical theorem as giving information onlg about the

imaginarg Parts of amplituc

orders in an exl:)ansion N €

es. However, if one keeps all

=4 D, then Ioop integrals

like / A p rec]uire integrancls to have an additional

momentum clepenclcnce f(s)—f (S)S_g/ ? where s is a

momentum invariant. Then,

and In(s) = In(|s|) + in®(s) , one can learn about the rea

since s %2 =1—(g/2)In(s) +...

Parts of an amplitude bﬂ retaining imaginarg terms at

order € .

o This gives rise to a ProcecJure for the cut construction of

highe:uloop cliagrams.




* For maximal sul:)ergravitg amplitudes, another speciﬁc

relation al owing amplitucles to be evaluated is the Kawai-

Lewe”en:ye relation between open- and Close&-s‘cring

amPlitucles. This gives rise to tree-level relations between

max. SUGRA and max. SYM ﬁecht]’)eorg amplitucles, e.g.

M3™¢(1,2,3,4) = —is12AT(1, 2,

3,4) Aree(1,2,4, 3)

Combining this with unitarit9~basecJ calculations, in which

all amplitudes are ultimately reduced to integrals of

Proclucts of tree amplitucles, one

nas a way to obtain

higheﬁlool:) sul:)ergravitg amplitudes from SYM

amplitudes.




* Inthis way, a ditferent set of anticipatecl first looP

orders for ultraviolet cli\/ergences has arisen from the

unitaritg—-basecl aPProach:

Max. SYM first clivergences, Dimension D
Loop order L
Gen. form

uni’caritg—-basecl Preclictions

Max. SUGRA first Dimension D
Loop order L

clivergences, unitarity- Gen. form

based Preclictions

o These anticipations are based on iterated Z~Partic|e

cuts, however. Full calculations can reveal different

behavior-.




+ The main recent development s the Comple‘cion of the §~looP

CalCU Ia‘tion . Bern, Carrasco, Dixon, Johaﬂsson, Kosower & Roiban.

X

5
(e)
2 L 1o
Y l6+15 Y

Y 14I110" ™

(h)

® Diagrams (a~g) can be evaluated using iterated two—-Particle
cuts, but cliagrams (l’w) & (1) cannot. The result is finite at [ =%
in D=4, buta surprize s that the finite parts have an

unexl:)ectecl SIX powers cnc momentum that come out onto the

external lines, gving a d°R* Ieading ettective action

correction.



Back to counterterms

o The §~lool:> N=8 supergravitg calculation is a remarkable tour

de force, but does it indicate that there are “miracles” that

cannot be unclerstooc From non~renorma|ization theorems’?

+ All known SYM clivergences in the various dimensions D can

be understood using non-renormalization theorems.

* Moreover, these SYM results extend to counterterms that

have not yet been calculated usingt’]e unitarity~basecl
\) Marcus & Sagno’cti

methods. fixaml:)les are the full D=7 1=2 results for max.
SYM. Here, there are both sing|e~ and double-trace

structures for the Yang»-l\/\i”ss gauge group.




* Recentlg it has been realized that N=4 SYM can be quantized

with 9=8+ off-shell suPersgmmetries, at the Price of manitest

Baulieu, Berkovits, Bossard & Martin

| orentz invariance.

o The usual Problem with ﬁn&ing an off-shell formalism for
SYM is the imbalance between the number of non-gauge
bosonic and fermionic degrees of freedom. In D=10, there
are 9 bosonic and 16 fermionic Prol:)agating fields, gving a
deficit of 7 bosonic. This doesr’t fit into any finite
combination of SO (9,1) rel:)resentations. However, it will fit

into SO(,1) XSPi n, representations. One first makes a
decoml:)osition into SO 1,DxSO(8) reps, separating the D=10
Majoranaa-Wegl spinor into two SO(8) chiral sl:)inors. Then) under
the SO(8) =» 5|:>iﬂ7 clecomposition) one chirality remains an 8 while
the other splits into 7+1. 8+1 SUSYs can then be taken off-shell.




* This construction can also be viewed from a Kaluza-Klein
Perspective after reduction to D=2, where the
SO1,DxSO8) Aecomposition s natural. The 8+1

formalism then natua”y corresponcls to (8,1) D=2 SUSY.

~ Bossard, Howe & K.5.5 (WIP)
o A similar formulation for maximal supergravity exists with

17=16+1 off-shel supersgmmetries in D=2. This
corresponcls to off-shell (16,1) supersgmmetry in D=2.

T._.hcting the 17-SUSY D=2 maximal SG formulation to

nigher dimensions remains to be done.




o The 8+1 max. SYM and the 16+1 max. SG formalisms allow
one now to attack the eligibilit9 of counterterms involving
integration over half the corresponcling full on-shell
superspaces, .e. 8 integrations for SYM and 16 for SG.
These two “half BPS” counterterms have similar D=4

StFUCtU cs: Howe, K.5.5. & Townsend
Alsyy = / (d*0d*0) 195 tr(0™) 105 105 0;;j H 6ofsu®

AISG: /(d89d86)232848(w4)232848 232848 VVijkl j 70 of SU(8)

XS Assuming that non-renormalization theorems work as in all
other known cases, the “half sUSsY +1” formalisms arejust
enough to rule out the F* SYM and R* SG counterterms.




o The “half susy +1” formalisms appear to be the largest

Possiole finite-component formalisms for max. SYM and

max. SG. But there exist also harmonic superspace

formalisms with infinite numbers of or&inarg component

fields. The largest known cxample of this is an N=% (j.e.12~-

suPercHarge) oft-shell formulation of N=4 SYM.

Galperin) lvanov, Kalitzin, Ogievetskg & Sokatchev

o The N=%, D=4 harmonic superspace SYM action has a
Chern-Simons type integrancl:
Isym = | d*xdu (D,DsD'D?)" Q¥
dO¥) =tuw(FAF) ueU1)xU(1)xUM)\U(3)
* In dimensions D>4 analogous but non-lorentz-covariant

SYM formalisms exist. These are Fu”g sutficient to rule out
the 1/2 BPS tr(F*) counterterms.
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Algebraic Renormalization

Dixon

Piguet & Sorella
Hennaux

Stora

+ Another aPProach to analyzing the divergcnces N Badlieu & Bossard

sul:)ersgmmetric gauge theories starts from t

he Callan-

nganzik equation for the renormalization o

:the

lLagrangjan as a operator insertion, e.g. governing mixing
with the hall-BPS operator § @) = tr(F4). | etting the

classical action be §®, the C-Z equation in dimension D

: 0
IS ‘ua[gﬁ) .T]=(4-D)[s?.T] + Yy g @O[SW. T+,

where n(4) =4,2,1 for D = S5, 6, 8.

From this one learns that (n@g) — 1)Bu) = Y s

O the beta

function for the S® = tr(F*) operator s determined bg

the anomalous dimension Y .




* Combining the sul:)ersgmmetrg generator with a Commuting

sPinor Parameter to make a scalar oPerator Q =¢€0, the

exl:)ression of SUSY invariance for a D-form clensitﬂ in D~
dimensions is QLp+dLp_1=0. Combining this with the
SUSY algebra Q? = —i(&y'e)d, and using, the Poincaré

| emma, one finds L)L +S(QsLp-1+dLp 2=0 .

Hence one can consicier tl’)e Cocgcles o1C the extenc]eci

nilpotent ditferential d + S Q)= T lizre) acting on formal
sums Lp+Lp 1+Lp o+ .

The suPersgmmetry Ward identities then implg that the

whole cocycle is renormalized in a coherent way. In order

for an ol:)erator like SWto mix with the classical action S <2),

tlﬁeir cocgcles need to ha\/e t]’we same structure.



Bossard, Howe & K.5.5. (WIP)

o Now, the cocgcle of the classical sym lLagrangjan clensitg

(viewed as a toP form £p)admits only 5 form clegrees) wit

the last one being Proportional to the BPS ComPosite
1

10 —
integral gives the on-shell action.

operator tr(¢'¢p’ 5 00%) whose halﬁsuperspace

o Onthe other hancl, the cocgcle of the operator sWis

longer, aclmitting non-trivial components of all form

clegrees.
) Thus, the half-BPS oPerator S — tr(F 4) cannot mix

under renormalization with the classical action §@.




\ Thus, from analgsis of counterterms and their
supersymmetry Prol:)erties from a variety of Points of view,
the renormalization of max. SYM theorg in dimensions 4 and
higher agrees Fu”g with all unitarit3~basecl and earlier

Fegnmamdiagram calculations.

Similar agreement with known and anticipatecl unitaritg

calculation results are expectecl 18 suPergravitg.

Dimension D | 10 8 7 6 5 4 Dimension D 11 10 8 7 6 5 4
Loop order L 1 1 2 3 6 00 Loop order L 2 2 1 2 3 4 5
Gen. form OPFY | P 9*F* | 9°F* | O°F" | finite Gen. form OVRY | OI°RY | R* | O°R* | O°R* | O°R*' | O'R*

DesPitc the involved nature of some of the arguments, note

that a simple overall Picture remains: the highest oPerators

that are protected against mixing, with the classical action

under renormalization are the halt-BPS SYM oPerator trF*

, , 4
ancl its supergeravity counterpart R. 2%



* S0, what will be the final story for maximal sul:)ergravitg:

Protection of up to the half-susy oPerators and then no

more, or a series of truly miraculous D=4 cancelations to all

orders? The cluestion remains unresolvecl, but accorcling to

an old Phgsics tradition, bets have been taken, for bottles

of wine.

The ‘(69 test will be in
D=5, L=4

Which will be the Pagog’:’




