 $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie (super)algebras and generalized quantum statistics

Neli Stoilova Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences stoilova@inrne.bas.bg

Sofia, May 2024

Work in collaboration with J. Van der Jeugt J. Math. Phys. 64 061702 (2023) J. Phys. A: Math. Theor. 57 095202 (2024)

KORKARYKERKER POLO

- **Quantum physics: commutators** $[x, y]$ and anticommutators $\{x, y\}$ between operators x and y
- Starting from an associative algebra, bracket $[x, y] = xy yx$ leads to a Lie algebra

KORKAR KERKER SAGA

- Starting from a \mathbb{Z}_2 -graded associative algebra, bracket $\Vert x, y \Vert = xy - (-1)^{\xi \eta} yx$ leads to a Lie superalgebra
- Shall we go beyond and why?

Why $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras and Lie superalgebras?

For two elements x, y in an associative algebra, the trivial product identity can be rewritten as

$$
[x, y] + [y, x] = 0, \quad \text{or} \quad \{x, y\} - \{y, x\} = 0
$$

For three elements x, y, z in an associative algebra, the trivial product identity can be rewritten in (essentially) four ways:

(1)
$$
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,
$$

\n(2)
$$
[x, {y, z}] + [y, {z, x}] + [z, {x, y}] = 0,
$$

\n(3)
$$
[x, {y, z}] + {y, [z, x]} - {z, [x, y]} = 0,
$$

\n(4)
$$
[x, [y, z]] + {y, {z, x}} - {z, {x, y}} = 0.
$$

 (1) Jacobi identity for Lie algebras (LA) ; (1) – (3) Jacobi identity for Lie superalgebras (LSA); (4) can appear only as Jacobi identity for $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras or $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras KID KA KERKER KID KO

Bosons and Fermions

Bose operators B_i^{\pm} \bar{i} :

$$
[B^-_i, B^+_j] = \delta_{ij} \qquad \text{all other } [\cdot, \cdot] \text{ zero}
$$

Bose-Einstein statistics

Fermi operators F_i^{\pm} \bar{i} .

$$
\{F_i^-, F_j^+\} = \delta_{ij} \qquad \text{all other } \{\cdot, \cdot\} \text{ zero}
$$

Fermi-Dirac statistics

n many open problems; quantum theory allows for the existence of infinitely many families of paraparticles, obeying mixed-symmetry statistics.

Parabosons and parafermions

■ parabosons
$$
b_j^{\pm}
$$
 [Green 1953]:
\n
$$
[\{b_j^{\xi}, b_k^{\eta}\}, b_l^{\epsilon}] = (\epsilon - \eta)\delta_{kl}b_j^{\xi} + (\epsilon - \xi)\delta_{jl}b_k^{\eta}
$$

Fock space $V(p)$ characterized by (b_i^{\pm}) $j^{\pm})^{\dagger}=b_{j}^{\mp}$ j^{\mp} and b_j^{-} $\bar{\sigma_j} \vert 0 \rangle = 0$ and [Greenberg & Messiah 1965]

$$
\{b_j^-,b_k^+\}|0\rangle=p\,\delta_{jk}\,|0\rangle
$$

parafermions f_i^{\pm} $\frac{1}{j}^{\pm}$ [Green 1953]:

$$
[[f_j^{\xi}, f_k^{\eta}], f_l^{\epsilon}] = |\epsilon - \eta| \delta_{kl} f_j^{\xi} - |\epsilon - \xi| \delta_{jl} f_k^{\eta}
$$

Fock space $W(p)$ characterized by (f_i^{\pm}) $(f^{\pm}_{j})^{\dagger}=f^{\mp}_{j}$ f_j^{\mp} and f_j^{-} $\int\limits_{j}^{2-}|0\rangle=0$ and [Greenberg & Messiah 1965]

$$
[f_j^-, f_k^+] |0\rangle = \rho \, \delta_{jk} \, |0\rangle
$$

Paraboson and parafermion algebra

Theorem (LA by generators and relations) [Kamefuchi & Takahishi 1962; Ryan & Sudarshan 1963]

The Lie algebra (LA) generated by 2 m elements f_i^\pm \int_j^{\pm} subject to the parafermion triple relations is $\mathfrak{so}(2m+1)$. The Fock space $W(p)$ is the unitary irreducible representation of $\mathfrak{so}(2m+1)$ with lowest weight $(-\frac{p}{2})$ $\frac{p}{2}, -\frac{p}{2}$ $\frac{p}{2}, \ldots, -\frac{p}{2}$ $\frac{p}{2}$).

$p = 1$

Theorem (LSA by generators and relations) [Ganchev & Palev 1980]

The Lie superalgebra (LSA) generated by 2n odd elements b_i^{\pm} j subject to the paraboson triple relations is $\sigma sp(1|2n)$. The Fock space $V(p)$ is the unitary irreducible representation of $osp(1|2n)$ with lowest weight $(\frac{p}{2}, \frac{p}{2})$ $\frac{p}{2}, \ldots, \frac{p}{2}$ $\frac{p}{2}$).

Parastatistics, parastatistics algebra

Simultaneous system: can be combined in 2 non-trivial ways [Greenberg, Messiah]. The first of these are the so-called: relative parafermion relations:

$$
\begin{aligned} [[f_j^{\xi}, f_k^{\eta}], b_j^{\epsilon}] &= 0, & [\{b_j^{\xi}, b_k^{\eta}\}, f_j^{\epsilon}] &= 0, \\ [[f_j^{\xi}, b_k^{\eta}], f_j^{\epsilon}] &= -|\epsilon - \xi| \delta_{jl} b_k^{\eta}, & \{\{f_j^{\xi}, b_k^{\eta}\}, b_j^{\epsilon}\} &= (\epsilon - \eta) \delta_{kl} f_j^{\xi}. \end{aligned}
$$

Theorem [Palev 1982]

The Lie superalgebra (LSA) generated by 2 m even elements f_i^\pm j and 2*n* odd elements b_i^{\pm} $_j^\pm$ subject to the above relations is $\cos(2m+1/2n)$. The Fock space $V(p)$ is the unitary irreducible representation of $\sigma s p(2m + 1|2n)$ with lowest weight $\left[-\frac{p}{2}\right]$ $\frac{p}{2}, \ldots, -\frac{p}{2}$ $\frac{p}{2}$ $\left|\frac{p}{2}\right|$ $\frac{p}{2}, \ldots, \frac{p}{2}$ $\frac{p}{2}$].

Parastatistics, parastatistics algebra

Simultaneous system: the **second** non-trivial relative commutation relations (the so-called paraboson relations) between parafermions and parabosons are defined by:

 $[[\bar{f}_j^{\xi}, \bar{f}_k^{\eta}], \bar{b}_l^{\epsilon}] = 0, \qquad [\{\bar{b}_j^{\xi}, \bar{b}_k^{\eta}\}, \bar{f}_l^{\epsilon}] = 0,$ $\{\{\bar{f}_j^{\xi}, \bar{b}_k^{\eta}\}, \bar{f}_l^{\epsilon}\} = |\epsilon - \xi| \delta_{jl} \bar{b}_k^{\eta}, \qquad [\{\bar{f}_j^{\xi}, \bar{b}_k^{\eta}\}, \bar{b}_l^{\epsilon}] = (\epsilon - \eta) \delta_{kl} \bar{f}_j^{\xi}.$

The second case leads to an algebra which is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra.

Theorem [Tolstoy 2014]

The algebra generated by 2 m parafermions f_i^\pm $\frac{c\pm}{j}$ and 2*n* parabosons b_i^{\pm} $\frac{\pm}{j}$ subject to the above relations is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra denoted by $osp(1, 2m|2n, 0) \equiv pso(2m + 1|2n)$. The Fock space $V(p)$ is the unitary irreducible representation of $\mathfrak{pso}(2m+1|2n)$ with lowest weight $[-\frac{p}{2}]$ $\frac{p}{2}, \ldots, -\frac{p}{2}$ $\frac{p}{2}$ $\left|\frac{p}{2}\right|$ $\frac{p}{2}, \ldots, \frac{p}{2}$ $\frac{p}{2}$].

- symmetries of Lévy–Leblond equations [Aizawa et al 2016, 2017]
- **E** graded (quantum) mechanics and quantization [Bruce 2020; Aizawa, Kuznetsova, Toppan 2020, 2021; Quesne 2021]
- \blacksquare $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded two-dimensional models [Bruce 2021, Toppan 2021]
- **parastatistics [Tolstoy 2014, Stoilova and Van der Jeugt 2018]**

- **E** alternative descriptions of parabosons and parafermions [Toppan 2021]
- **a** algebraic structute and representation theory [Aizawa] 2018-2021, Issac 2019, 2024, Rui Lu 2023]

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras and Lie superalgebras

V. Rittenberg and D. Wyler (1978)

$$
\mathfrak{g} = \bigoplus_{\mathbf{a}} \mathfrak{g}_{\mathbf{a}} = \mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(0,1)} \oplus \mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(1,1)}
$$

with $\mathbf{a} = (a_1, a_2)$ an element of $\mathbb{Z}_2 \times \mathbb{Z}_2$.

- **h** homogeneous elements of g_a : x_a with degree deg x_a
- **g** with bracket \mathbb{I} ... is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra, resp. $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra:

$$
\begin{aligned} [\![x_a, y_b]\!] &\in \mathfrak{g}_{a+b}, \\ [\![x_a, y_b]\!] &= -(-1)^{a \cdot b} [\![y_b, x_a]\!], \\ [\![x_a, [\![y_b, z_c]\!]]\!] &= [\![[\![x_a, y_b]\!], z_c]\!] + (-1)^{a \cdot b} [\![y_b, [\![x_a, z_c]\!]], \end{aligned}
$$

KORKARYKERKER POLO

where

$$
a + b = (a_1 + b_1, a_2 + b_2) \in \mathbb{Z}_2 \times \mathbb{Z}_2,
$$

$$
a \cdot b = a_1b_2 - a_2b_1 - \mathbb{Z}_2 \times \mathbb{Z}_2
$$
-graded Lie algebra

$$
a \cdot b = a_1b_1 + a_2b_2 - \mathbb{Z}_2 \times \mathbb{Z}_2
$$
-graded Lie superalgebra

General remarks

- Note: in general, a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra is NOT a Lie algebra, nor a Lie superalgebra.
- \blacksquare (Similarly: a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra is NOT a Lie superalgebra.)
- $\mathfrak{g}_{(0,0)}$ is a Lie subalgebra; $\mathfrak{g}_{(0,1)}$, $\mathfrak{g}_{(1,0)}$ and $\mathfrak{g}_{(1,1)}$ are $\mathfrak{g}_{(0,0)}$ -modules.
- \blacksquare $[g_{(0,0)}, g_{\mathbf{a}}] \subset g_{\mathbf{a}}, \quad [g_{\mathbf{a}}, g_{\mathbf{a}}] \subset g_{(0,0)}, \qquad \mathbf{a} \in \mathbb{Z}_2 \times \mathbb{Z}_2$
- **Example 1** Let g be an associative $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded algebra, with a product denoted by $x \cdot y$:

$\mathfrak{g}_a \cdot \mathfrak{g}_b \subset \mathfrak{g}_{a+b}$

then $(\mathfrak{g}, \llbracket \cdot, \cdot \rrbracket)$ is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra, resp. a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra, by defining

$$
[[x_{a}, y_{b}]] = x_{a} \cdot y_{b} - (-1)^{a \cdot b} y_{b} \cdot x_{a},
$$

with $\mathbf{a} \cdot \mathbf{b} = a_1b_2 - a_2b_1$ $\mathbf{a} \cdot \mathbf{b} = a_1b_2 - a_2b_1$, resp. with $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2$ $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2$ $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2$.

General remarks: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras

- Now consider: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras
- **Assume at least two nontrivial subspaces in** $\mathfrak{g}_{(0,1)} \oplus \mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(1,1)}$
- $\{g_a, g_b\} \subset g_c$ if a, b and c are mutually distinct elements of $\{(1, 0), (0, 1), (1, 1)\}.$
- If $\mathfrak{g} = \mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(0,1)} \oplus \mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(1,1)}$ is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra, any permutation of the last three subspaces maps g into another $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra. ("trivial permutation transformations")
- **Moreover:** natural to assume that α is generated by $\mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(0,1)}$.
- \blacksquare Then one can deduce

$$
\mathfrak{g}_{(0,0)} = [\![\mathfrak{g}_{(1,0)}, \mathfrak{g}_{(1,0)}]\!] + [\![\mathfrak{g}_{(0,1)}, \mathfrak{g}_{(0,1)}]\!]
$$

$$
\mathfrak{g}_{(1,1)} = [\![\mathfrak{g}_{(1,0)}, \mathfrak{g}_{(0,1)}]\!].
$$

Construction of $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras

Let V be a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded linear space of dimension *n*: $V = V_{(0,0)} \oplus V_{(0,1)} \oplus V_{(1,0)} \oplus V_{(1,1)}$, subspaces of dimension $p + q + r + s = n$. End(V) is then a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded associative algebra, and turned into a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra by the bracket $[\cdot, \cdot]$. Denoted by $\mathfrak{gl}_{\rho,q,r,s}(n).$ In matrix form:

$$
\begin{pmatrix} p & q & r & s \\ a_{(0,0)} & a_{(0,1)} & a_{(1,0)} & a_{(1,1)} \\ b_{(0,1)} & b_{(0,0)} & b_{(1,1)} & b_{(1,0)} \\ c_{(1,0)} & c_{(1,1)} & c_{(0,0)} & c_{(0,1)} \\ d_{(1,1)} & d_{(1,0)} & d_{(0,1)} & d_{(0,0)} \end{pmatrix} \begin{pmatrix} p & q & r & s \\ a_{(1,1)} & b_{(1,1)} & b_{(1,1)} \\ r & r & r & r \end{pmatrix}
$$

The indices of the matrix blocks refer to the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading. One can check: $Tr[A, B] = 0$, hence $g = \mathfrak{sl}_{p,q,r,s}(n)$ is subalgebra of traceless elements.

$$
\begin{array}{ll}\mathfrak{g}_{(0,0)} & p^2+q^2+r^2+s^2-1\\ \mathfrak{g}_{(0,1)} & 2pq+2rs\\ \mathfrak{g}_{(1,0)} & 2pr+2qs\\ \mathfrak{g}_{(1,1)} & 2qr+2ps \end{array}
$$

EXAEX E DAG

If $A \in \mathfrak{sl}_{p,q,r,s}(n) \subset \text{End}(V)$, then $A^* \in \text{End}(V^*)$ by requirement:

$$
\langle A^* y_{\boldsymbol{b}}, x \rangle = (-1)^{\boldsymbol{a} \cdot \boldsymbol{b}} \langle y_{\boldsymbol{b}}, A x \rangle
$$

where $\langle \cdot, \cdot \rangle$ is natural pairing of V and V^* . In matrix form, this leads to the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded transpose $\mathcal{A}^{\mathcal{T}}$ of A^{\cdot}

$$
A = \left(\begin{smallmatrix} a_{(0,0)} & a_{(0,1)} & a_{(1,1)} & a_{(1,1)} \\ b_{(0,1)} & b_{(0,0)} & b_{(1,1)} & b_{(1,0)} \\ c_{(1,0)} & c_{(1,1)} & c_{(0,0)} & c_{(0,1)} \\ d_{(1,1)} & d_{(1,0)} & d_{(0,1)} & d_{(0,0)} \end{smallmatrix} \right), A^{\mathcal{T}} = \left(\begin{smallmatrix} a_{(0,0)}^t & b_{(0,1)}^t & c_{(1,0)}^t & d_{(1,1)}^t \\ a_{(0,0)}^t & b_{(0,0)}^t & -c_{(1,1)}^t & -d_{(1,0)}^t \\ a_{(1,0)}^t & -b_{(1,1)}^t & c_{(0,0)}^t & -d_{(0,1)}^t \\ a_{(1,1)}^t & -b_{(1,0)}^t & -c_{(0,1)}^t & d_{(0,0)}^t \end{smallmatrix} \right)
$$

Property:

$$
(AB)^T = (-1)^{a \cdot b} B^T A^T
$$

KORKARYKERKER POLO

Subalgebra $g = \mathfrak{so}_{p,q,r,s}(n) \subset \mathfrak{sl}_{p,q,r,s}(n)$

$$
\mathfrak{g} = \mathfrak{so}_{p,q,r,s}(n) = \{A \in \mathfrak{sl}_{p,q,r,s}(n) \mid A^T + A = 0\}
$$

If $A, B \in \mathfrak{g}$, then

$$
[\![A,B]\!]^{\mathsf{T}} = (AB - (-1)^{a \cdot b}BA)^{\mathsf{T}}
$$

= $(-1)^{a \cdot b}B^{\mathsf{T}}A^{\mathsf{T}} - A^{\mathsf{T}}B^{\mathsf{T}} = (-1)^{a \cdot b}BA - AB = -[\![A,B]\!]$

Matrices of the form:

$$
\begin{pmatrix}\np & q & r & s \\
a_{(0,0)} & a_{(0,1)} & a_{(1,0)} & a_{(1,1)} \\
-a_{(0,1)}^t & b_{(0,0)} & b_{(1,1)} & b_{(1,0)} \\
-a_{(1,0)}^t & b_{(1,1)}^t & c_{(0,0)} & c_{(0,1)} \\
-a_{(1,1)}^t & b_{(1,0)}^t & c_{(0,1)}^t & d_{(0,0)}\n\end{pmatrix}\n\begin{pmatrix}\np \\
a \\
b \\
c \\
c \\
d\n\end{pmatrix}
$$

where $a_{(0,0)}$, $b_{(0,0)}$, $c_{(0,0)}$ and $d_{(0,0)}$ are antisymmetric matrices. Disadvantages: Cartan subalgebra? (classical choice not abelian)K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ │ 할 │ ⊙Q ⊙ Analogues of classical Lie algebras of type B, C, D?

$$
G = \mathfrak{so}(2n+1)
$$

(dim $G = 2n^2 + n$)
$$
\begin{pmatrix} n & n & 1 \\ a & b & c \\ d & -a^t & e \\ -e^t & -c^t & 0 \end{pmatrix} \begin{pmatrix} n \\ n \\ n \end{pmatrix}
$$
 and d antisymmetric;

$$
G = \mathfrak{sp}(2n)
$$

(dim $G = 2n^2 + n$) $\begin{pmatrix} n & n \\ a & b \\ c & -a^t \end{pmatrix} \begin{pmatrix} n \\ n \\ n \end{pmatrix}$

b and c symmetric;

$$
G = \operatorname{so}(2n)
$$

(dim $G = 2n^2 - n$)
$$
\begin{pmatrix} n & n \\ a & b \\ c & -a^t \end{pmatrix} \frac{n}{n}
$$

b and c antisymmetric,

KO K K Ø K K E K K E K V K K K K K K K K K

Different approach

- start from a set of generators of the classical Lie algebra (in the defining matrix form)
- **a** associate a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading on these generators
- **n** compute new elements with these generators using the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded bracket, and see which matrix structures and algebras arise in this way.

How to do this systematically?

- **Example 1** Let generating subspace S of the classical Lie algebra G correspond to the subspace $\mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(0,1)}$ of the associated $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra g, and generate g.
- \blacksquare Thus we are looking for generating subspaces S of a classical Lie algebra G such that $G = S + [S, S]$ (as vector space).
- Use all so-called 5-gradings $G_2 \oplus G_{-1} \oplus G_0 \oplus G_1 \oplus G_2$ of G such that G is generated by $S = G_{-1} \oplus G_1$.

Classification of those 5-gradings: [Stoilova and Van der Jeugt 2005]

Procedure:

- **■** For each of the 5-gradings of G, let $S = G_{-1} \oplus G_1$ (as a subspace of the vector space of G).
- Partition S in all possible ways in two subspaces $\mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(0,1)}$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Construct from here the matrix elements of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra g using the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded bracket.

This construction process is straightforward but very elaborate.

For $\mathfrak{sl}(n)$: same graded algebras $\mathfrak{sl}_{p,q,r,s}(n)$. Results on following slides.

$\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras of type C

The $\mathbb{Z}_2\times\mathbb{Z}_2$ -graded Lie algebra $\left|\right.\mathfrak{g}=\mathfrak{sp}_p(2n)\left|$ consists of all matrices of the following block form:

$$
\begin{pmatrix}\np & n-p & p & n-p \\
a_{(0,0)} & a_{(1,0)} & b_{(1,1)} & b_{(0,1)} \\
\tilde{a}_{(1,0)} & \tilde{a}_{(0,0)} & -b_{(0,1)}^t & \tilde{b}_{(1,1)} \\
-\tilde{c}_{(1,1)} & -\tilde{c}_{(0,1)} & -a_{(0,0)}^t & -\tilde{a}_{(1,0)}^t \\
-c_{(0,1)}^t & \tilde{c}_{(1,1)} & -a_{(1,0)}^t & -\tilde{a}_{(0,0)}^t\n\end{pmatrix}\n\begin{pmatrix}\np \\
n-p \\
p \\
p \\
n-p\n\end{pmatrix}
$$

where $b_{(1,1)},\ \tilde{b}_{(1,1)},\ c_{(1,1)}$ and $\tilde{c}_{(1,1)}$ are symmetric matrices.

$$
\dim \mathfrak{g}_{(0,0)} = p^2 + (n-p)^2
$$

\n
$$
\dim \mathfrak{g}_{(0,1)} = 2p(n-p), \quad \dim \mathfrak{g}_{(1,0)} = 2p(n-p)
$$

\n
$$
\dim \mathfrak{g}_{(1,1)} = p(p+1) + (n-p)(n-p+1).
$$

KID KA KERKER KID KO

Note: $\dim \mathfrak{sp}_p(2n) = \dim \mathfrak{sp}(2n)$.

Having this form, one can verify that $\mathfrak{sp}_p(2n)$ consists of all matrices A of $\mathfrak{sl}_{p,n-p,p,n-p}(2n)$ that satisfy

$$
A^T J + JA = 0 \qquad (*)
$$

where

$$
J = \begin{pmatrix} 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \\ -7 & 0 & 0 & 0 \\ 0 & I & 0 & 0 \end{pmatrix} \begin{matrix} p \\ n-p \\ p \\ n-p \end{matrix}
$$

Note: $J^T = -J$, $J^{-1} = J^t$.

Easy to show that $[A, B]$ satisfies (*) when A and B satisfy (*).

KELK KØLK VELKEN EL 1990

$\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras of type D

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra $| \mathfrak{g} = \mathfrak{so}_p(2n) |$ consists of all matrices of the following block form:

$$
\begin{pmatrix}\n p & n-p & p & n-p \\
 a_{(0,0)} & a_{(1,0)} & b_{(1,1)} & b_{(0,1)} \\
 \tilde{a}_{(1,0)} & \tilde{a}_{(0,0)} & b_{(0,1)} & \tilde{b}_{(1,1)} \\
 \tilde{c}_{(1,1)} & \tilde{c}_{(0,1)} & -a_{(0,0)} & -\tilde{a}_{(1,0)} \\
 c_{(0,1)} & \tilde{c}_{(1,1)} & -a_{(1,0)} & -\tilde{a}_{(0,0)}\n \end{pmatrix}\n \begin{pmatrix}\n p \\
 p \\
 p \\
 p \\
 p\n \end{pmatrix}
$$

where $b_{(1,1)},\ \tilde{b}_{(1,1)},\ c_{(1,1)}$ and $\tilde{c}_{(1,1)}$ are antisymmetric matrices.

$$
\dim \mathfrak{g}_{(0,0)} = p^2 + (n-p)^2
$$

\n
$$
\dim \mathfrak{g}_{(0,1)} = 2p(n-p), \quad \dim \mathfrak{g}_{(1,0)} = 2p(n-p)
$$

\n
$$
\dim \mathfrak{g}_{(1,1)} = p(p-1) + (n-p)(n-p-1).
$$

KID KA KERKER E VOOR

Note: $\dim \mathfrak{so}_p(2n) = \dim \mathfrak{so}(2n)$.

One can verify that $\mathfrak{so}_p(2n)$ consists of all matrices A of $\mathfrak{sl}_{p,n-p,p,n-p}(2n)$ that satisfy

 $A^T K + K A = 0$

where

$$
K = \begin{pmatrix} 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \\ -I & 0 & 0 & I \\ 0 & -I & 0 & 0 \end{pmatrix} \begin{matrix} p \\ n-p \\ p \\ n-p \end{matrix}
$$

KORKARYKERKER POLO

Note: $K^T = K$, $K^{-1} = K^t$.

$\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras of type B

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra $\mathfrak{g} = \mathfrak{so}_p(2n+1)$ consists of all matrices of the following block form:

$$
\left(\begin{array}{ccccc}p & n-p & p & n-p & 1 \\ a_{(0,0)} & a_{(1,1)} & b_{(0,0)} & b_{(1,1)} & c_{(0,1)} \\ \tilde{a}_{(1,1)} & \tilde{a}_{(0,0)} & b_{(1,1)} & \tilde{b}_{(0,0)} & c_{(1,0)} \\ \hline d_{(0,0)} & d_{(1,1)} & -a_{(0,0)} & \tilde{a}_{(1,1)} & e_{(0,1)} \\ \hline d_{(1,1)} & \tilde{a}_{(0,0)} & a_{(1,1)} & -a_{(0,0)} & a_{(1,1)} \\ \hline c_{(1,1)} & \tilde{a}_{(0,0)} & a_{(1,1)} & -\tilde{a}_{(0,0)} & e_{(1,0)} \\ \hline c_{(0,1)} & -e_{(1,0)} & -c_{(0,1)} & -c_{(1,0)} & 0 \end{array}\right) \begin{array}{c}p \\ n-p \\ p \\ n-p \\ 1\end{array}
$$

where $b_{(0,0)},\ \tilde{b}_{(0,0)},\ d_{(0,0)}$ and $\tilde{d}_{(0,0)}$ are antisymmetric matrices.

$$
\dim \mathfrak{g}_{(0,0)} = 2n^2 - n - 4p(n-p)^2
$$

dim $\mathfrak{g}_{(0,1)} = 2p$, dim $\mathfrak{g}_{(1,0)} = 2(n-p)$
dim $\mathfrak{g}_{(1,1)} = 4p(n-p)$.

KID KA KERKER KID KO

Note: dim $\mathfrak{so}_p(2n+1) = \dim \mathfrak{so}(2n+1)$.

One can verify that $g = \frac{\sigma_o}{2n+1}$ consists of all matrices A of $sI_{2p,0,2n-2p,1}(2n)$ that satisfy

$$
A^T K' + K' A = 0
$$

where

$$
K' = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{matrix} p \\ n-p \\ p \\ p \\ n-p \\ 1 \end{matrix}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Note: $K'^T = K'$, $K'^{-1} = K'^t$.

- Now consider: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras
- Example 1 Let $\mathfrak g$ be an associative $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded algebra, with a product denoted by $x \cdot y$:

 $\mathfrak{g}_a \cdot \mathfrak{g}_b \subset \mathfrak{g}_{a+b}$

then $(g, \lbrack \lbrack \cdot, \cdot \rbrack)$ is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra by defining

$$
\llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket = x_{\mathbf{a}} \cdot y_{\mathbf{b}} - (-1)^{\mathbf{a} \cdot \mathbf{b}} y_{\mathbf{b}} \cdot x_{\mathbf{a}},
$$

KORKARYKERKER POLO

with $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2$.

Let V be a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded linear space, $V = V_{(0,0)} \oplus V_{(1,1)} \oplus V_{(1,0)} \oplus V_{(0,1)}$, with subspaces of dimension m_1, m_2, n_1 and n_2 respectively. End(V) is then a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded associative algebra, and by the previous property it is turned into a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra. This algebra is usually denoted by $\mathfrak{gl}(m_1, m_2|n_1, n_2)$. In matrix form, the elements are written as:

$$
A = \begin{pmatrix} m_1 & m_2 & n_1 & n_2 \\ a_{(0,0)} & a_{(1,1)} & a_{(1,0)} & a_{(0,1)} \\ b_{(1,1)} & b_{(0,0)} & b_{(0,1)} & b_{(1,0)} \\ c_{(1,0)} & c_{(0,1)} & c_{(0,0)} & c_{(1,1)} \\ d_{(0,1)} & d_{(1,0)} & d_{(1,1)} & d_{(0,0)} \end{pmatrix} \begin{matrix} m_1 \\ m_2 \\ n_3 \\ n_4 \end{matrix}
$$

The indices of the matrix blocks refer to the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading, and the size of the blocks is indicated in the lines above and to the right of the matrix.

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra

$$
A = \begin{pmatrix} m_1 & m_2 & n_1 & n_2 \\ a_{(0,0)} & a_{(1,1)} & a_{(1,0)} & a_{(0,1)} \\ b_{(1,1)} & b_{(0,0)} & b_{(0,1)} & b_{(1,0)} \\ c_{(1,0)} & c_{(0,1)} & c_{(0,0)} & c_{(1,1)} \\ d_{(0,1)} & d_{(1,0)} & d_{(1,1)} & d_{(0,0)} \end{pmatrix} \begin{matrix} m_1 \\ m_2 \\ m_3 \\ n_4 \end{matrix}
$$

The matrices of the Lie algebra $\mathfrak{gl}(m_1 + m_2 + n_1 + n_2)$, of the Lie superalgebra $\mathfrak{gl}(m_1 + m_2|n_1 + n_2)$ and of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{gl}(m_1, m_2|n_1, n_2)$ are all the same, but of course the bracket is different in all of these cases. One can check that $Str[A, B] = 0$, where $Str(A) = tr(a_{(0,0)}) + tr(b_{(0,0)}) - tr(c_{(0,0)}) - tr(d_{(0,0)})$ is the graded supertrace in terms of the ordinary trace tr. Hence $\mathfrak{sl}(m_1, m_2|n_1, n_2)$ is defined as the subalgebra of elements of $\mathfrak{gl}(m_1, m_2|n_1, n_2)$ with graded supertrace equal to 0.

$\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded supertranspose $\mathcal{A}^{\mathcal{T}}$ of \mathcal{A}

Let $A \in \mathfrak{sl}(m_1, m_2 | n_1, n_2) \subset \mathsf{End}(V)$ of degree $\boldsymbol{a} \in \mathbb{Z}_2 \times \mathbb{Z}_2$; V^* dual to V, inheriting the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading from V ; $\langle \cdot, \cdot \rangle$ - the natural pairing of V and V^* . Then $A^* \in \mathsf{End}(V^*)$ is determined by:

$$
\langle A^* y_{\boldsymbol{b}}, x \rangle = (-1)^{\boldsymbol{a} \cdot \boldsymbol{b}} \langle y_{\boldsymbol{b}}, A x \rangle, \qquad \forall y_{\boldsymbol{b}} \in V_{\boldsymbol{b}}^*, \forall x \in V. \tag{1}
$$

This is extended by linearity to all elements of $\mathfrak{sl}(m_1, m_2|n_1, n_2)$. In matrix form, this yields the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded supertranspose $\mathcal{A}^{\mathcal{T}}$ of A^{\cdot}

$$
A^{\mathcal{T}} = \begin{pmatrix} a_{(0,0)}^t & b_{(1,1)}^t & -c_{(1,0)}^t & -d_{(0,1)}^t \\ a_{(1,1)}^t & b_{(0,0)}^t & c_{(0,1)}^t & d_{(1,0)}^t \\ a_{(1,0)}^t & -b_{(0,1)}^t & c_{(0,0)}^t & -d_{(1,1)}^t \\ a_{(0,1)}^t & -b_{(1,0)}^t & -c_{(1,1)}^t & d_{(0,0)}^t \end{pmatrix}, \tag{2}
$$

 a^t - ordinary matrix transpose. One can check (case by case, according to the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading) that the graded supertranspose of matrices satisfies

$$
(AB)^{T} = (-1)^{a \cdot b} B^{T} A^{T}
$$

Orthosymplectic $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras of type B

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $osp(2m_1 + 1, 2m_2|2n_1, 2n_2)$ consists of the set of matrices of the following block form:

 $A =$

Orthosymplectic $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{osp}(2m_1+1, 2m_2|2n_1, 2n_2)$

such that

$$
A^T J + JA = 0
$$

where

$$
J=\left(\begin{array}{cccc} 0&I_{m_1+m_2}&0&0&0\\I_{m_1+m_2}&0&0&0&0\\0&0&1&0&0\\0&0&0&0&I_{n_1+n_2}\\0&0&0&-I_{n_1+n_2}&0\end{array}\right).
$$

Note: the row and column indices of the matrix as an element of $\mathfrak{sl}(2m_1+1, 2m_2|2n_1, 2n_2)$ have been appropriately permuted. This was done in order to preserve an analogy with the matrices of $\exp(2m+1|2n)$ $(m_1 + m_2 = m, n_1 + n_2 = n)$, and in order to have a proper relation with parafermions and parabosons.

$osp(2m_1 + 1, 2m_2|2n_1, 2n_2)$

Concretely, $\mathfrak{osp}(2m_1 + 1, 2m_2|2n_1, 2n_2)$ consists of matrices which satisfy

$$
\begin{array}{l} a_{(0,0)}^{[3,3]} = -a_{(0,0)}^{[1,1]}, \ a_{(1,1)}^{[3,4]} = -a_{(1,1)}^{[2,1]}, \ a_{(1,1)}^{[4,3]} = -a_{(1,1)}^{[1,2]}, \ a_{(0,0)}^{[4,4]} = -a_{(0,0)}^{[2,2]},\\ a_{1,1}^{[2,3]} = -a_{(1,1)}^{[1,4]}, \ a_{(1,1)}^{[4,1]} = -a_{(1,1)}^{[3,2]}, \ a_{(0,0)}^{[2,4]}, \ a_{(0,0)}^{[3,1]} \ \text{and} \ a_{(0,0)}^{[4,2]} \ \text{skew symmetric},\\ a_{(0,0)}^{[5,1]} = -a_{(0,0)}^{[3,5]}, \ a_{(1,1)}^{[5,2]} = -a_{(1,1)}^{[4,5]}, \ a_{(0,0)}^{[5,3]} = -a_{(0,0)}^{[1,5]}, \ a_{(0,0)}^{[5,4]} = -a_{(1,1)}^{[2,5]}, \ a_{(0,0)}^{[5,5]} = 0,\\ d_{(0,0)}^{[3,3]} = -d_{(0,0)}^{[1,1]}, \ d_{(1,1)}^{[4,1]} = d_{(1,1)}^{[2,1]}, \ d_{(1,1)}^{[4,3]} = d_{(1,1)}^{[1,2]}, \ d_{(0,0)}^{[4,4]} = -d_{(0,0)}^{[2,2]} ,\\ a_{1,1}^{[2,3]} = -d_{(1,1)}^{[1,4]}, \ d_{(1,1)}^{[4,1]} = -d_{(1,1)}^{[3,2]}; \ d_{(0,0)}^{[4,3]} \ \text{and} \ d_{(0,0)}^{[4,2]} \ \text{symmetric},\\ c_{(1,0)}^{[1,1]} = b_{(1,0)}^{[3,3]}, \ c_{(0,1)}^{[1,2]} = -b_{(0,1)}^{[4,3]}, \ c_{(1,0)}^{[1,3]} = b_{(1,1)}^{[1,3]}, \ c_{(0,1)}^{[1,4]} = -b_{(0,1)}^{[2,3]}; \ c_{(0,1)}^{[2,4]} = b_{(1,0)}^{[5,4]}\\ c_{(0,1)}^{[2,1]} = b_{(0,1)}^{[3,1]}; \ c_{(1
$$

KID KA KERKER E 1990

t

t

Matrix conditions look complicated at first sight; they are not difficult to work with. Special cases:

- When $m_2 = n_2 = 0$, the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\cos(2m_1 + 1, 0|2n_1, 0)$ just coincides with the ordinary Lie superalgebra $\mathfrak{osp}(2m_1 + 1|2n_1)$ (with appropriate \mathbb{Z}_2 grading).
- When $m_1 = n_2 = 0$, the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\cos\phi(1, 2m_2|2n_1, 0)$ coincides with the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra denoted by $pso(2m_2 + 1|2n_1)$, or (up to a rearrangement of row and column indices) by $\mathfrak{osp}(1, 2m_2|2n_1, 0)$ (Tolstoy).
- When $n_1 = n_2 = 0$, $\alpha sp(2m_1 + 1, 2m_2 | 0, 0)$ reduces to the Lie algebra $\mathfrak{so}(2m_1 + 2m_2 + 1)$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

When $m_1 = m_2 = n_2 = 0$, $\mathfrak{osp}(1,0|2n_1,0)$ reduces to the Lie superalgebra $osp(1|2n_1)$. Similarly, when $m_1 = m_2 = n_2 = 0$, $\mathfrak{osp}(1,0|0,2n_2)$ reduces to the Lie superalgebra $\mathfrak{osp}(1|2n_2)$. Note however that for $m_1 = m_2 = 0$, $osp(1, 0|2n_1, 2n_2)$ does not reduce to a Lie algebra or a Lie superalgebra, but remains a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra. This last case is interesting in parastatistics.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Orthosymplectic $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras of type C and D

 \overline{A}

By deleting row $2m_1 + 2m_2 + 1$ and column $2m_1 + 2m_2 + 1$ in:

$$
\begin{bmatrix}\nm_1 & m_2 & m_1 & m_2 & 1 & n_1 & n_2 & n_1 & n_2 \\
a_{(0,0)}^{[1,1]} a_{(1,1)}^{[1,2]} a_{(0,0)}^{[1,3]} a_{(1,1)}^{[1,4]} a_{(0,0)}^{[1,5]} b_{(1,0)}^{[1,1]} b_{(0,1)}^{[1,2]} b_{(1,0)}^{[1,3]} b_{(0,1)}^{[1,4]} \\
a_{(1,1)}^{[2,1]} a_{(0,0)}^{[2,2]} a_{(1,1)}^{[2,3]} a_{(0,0)}^{[2,4]} a_{(1,1)}^{[2,5]} b_{(0,1)}^{[2,1]} b_{(1,0)}^{[2,2]} b_{(0,1)}^{[2,3]} b_{(1,0)}^{[2,4]} \\
a_{(0,0)}^{[3,1]} a_{(1,1)}^{[3,2]} a_{(0,0)}^{[3,3]} a_{(1,1)}^{[3,4]} a_{(0,0)}^{[3,5]} b_{(1,1)}^{[3,1]} b_{(0,1)}^{[3,2]} b_{(1,0)}^{[3,3]} b_{(1,1)}^{[3,4]} \\
a_{(1,1)}^{[4,1]} a_{(0,0)}^{[4,3]} a_{(1,1)}^{[4,4]} a_{(0,0)}^{[4,4]} a_{(1,1)}^{[4,5]} b_{(0,1)}^{[4,1]} b_{(1,0)}^{[4,2]} b_{(1,0)}^{[4,3]} b_{(1,0)}^{[4,4]} \\
a_{(0,0)}^{[5,1]} a_{(1,1)}^{[5,2]} a_{(0,0)}^{[5,3]} a_{(1,1)}^{[5,4]} a_{(0,0)}^{[5,5]} b_{(1,1)}^{[5,1]} b_{(0,1)}^{[5,2]} b_{(1,0)}^{[5,3]} b_{(0,1)}^{[5,4]} \\
c_{(1,1)}^{[1,1]} c_{(1,1)}^{[1,2]} c_{(1,1)}^{[1,3]} c_{(1,1)}^{[1,4]} c_{(1,0)}^{[1,5]} d_{(1,1)}^{[1,1]} d_{(0,0)}^{[1,2]} d_{(1,1)}^{[1,3]} d_{(0,0)}^{[1,4]} d_{(1,1)}^{[1,4
$$

and the corresponding conditions, one obtains the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras $osp(2m_1, 2m_2|2n_1, 2n_2)$, the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalge[bra](#page-32-0)s corresponding to the Lie superalgebra[s o](#page-34-0)[f](#page-32-0) [ty](#page-33-0)[p](#page-34-0)[e](#page-0-0) [C](#page-39-0) [and](#page-0-0) D_{\cdot} D_{\cdot}

 000

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded parafermions

Generators from $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra $\mathfrak{so}_\alpha(2n+1)$:

 $f_j^- =$ √ $\overline{2}(e_{j,2n+1}-e_{2n+1,n+j}),$ $f_j^+=$ √ $2(e_{2n+1,j}-e_{n+j,2n+1}), \quad j=1,\ldots,n.$ Subspaces:

 $\mathfrak{g}_{(0,1)}=\mathsf{span}\{f_k^{\pm},\;k=1,\ldots,q\}$ $\mathfrak{g}_{(1,0)}=\mathsf{span}\{f_k^\pm,\;k=q+1,\ldots,n\}$ $\mathfrak{g}_{(0,0)}=\mathsf{span}\{[f_k^\xi,f_l^\eta],\ \xi,\eta=\pm,\ k,l=1,\ldots,q$ and $k,l=q+1,\ldots,n\}$ $\mathfrak{g}_{(1,1)} = \mathsf{span}\{ \{ f_k^{\xi}, f_l^{\eta} \}, \ \xi, \eta = \pm, \ k = 1, \ldots, q, \ l = q+1, \ldots n \}.$ Parafermion relations for $j, k, l = 1, ..., q$ or $j, k, l = q + 1, ..., n$:

$$
[[f_j^{\xi}, f_k^{\eta}], f_i^{\epsilon}] = \frac{1}{2} (\epsilon - \eta)^2 \delta_{kl} f_j^{\xi} - \frac{1}{2} (\epsilon - \xi)^2 \delta_{jl} f_k^{\eta}, \ \xi, \eta, \epsilon = \pm \text{ or } \pm 1.
$$

But the "relative commutation relations" between the two sorts:

$$
\{\{f_j^{\xi}, f_k^{\eta}\}, f_j^{\epsilon}\} = \frac{1}{2}(\epsilon - \eta)^2 \delta_{kl} f_j^{\xi} + \frac{1}{2}(\epsilon - \xi)^2 \delta_{jl} f_k^{\eta}, \ \xi, \eta, \epsilon = \pm \text{ or } \pm 1.
$$

\n
$$
(j = 1, \dots, q, \ k = q + 1, \dots, n, \ l = 1, \dots, n \text{ or}
$$

\n
$$
j = q + 1, \dots, n, \ k = 1, \dots, q, \ l = 1, \dots, n
$$

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded A-statistics

Generators of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebra $\mathfrak{sl}_{1,q,n-q,0}(n+1)$:

$$
a_j^- = e_{1,j+1}, \quad a_j^+ = e_{j+1,1}, \qquad j = 1, \ldots, n
$$

$$
\mathfrak{g}_{(0,1)} = \text{span}\{a_j^- = e_{1,j+1}, a_j^+ = e_{j+1,1}, j = 1, \dots, q\},
$$
\n
$$
\mathfrak{g}_{(1,0)} = \text{span}\{a_j^- = e_{1,j+1}, a_j^+ = e_{j+1,1}, j = q+1, \dots, n\},
$$
\n
$$
\mathfrak{g}_{(0,0)} = \text{span}\{[a_j^+, a_k^-], j, k = 1, \dots, q \text{ and } j, k = q+1, \dots, n\},
$$
\n
$$
\mathfrak{g}_{(1,1)} = \text{span}\{\{a_j^-, a_k^+\}, \{a_j^+, a_k^-\}, j = 1, \dots, q \text{ and } k = q+1, \dots, n\}.
$$
\nOrdinary *A*-statistics for each sort separately

$$
[a_j^+, a_k^+] = [a_j^-, a_k^-] = 0,
$$

\n
$$
[[a_j^+, a_k^-], a_j^+] = \delta_{jk} a_j^+ + \delta_{kl} a_j^+,
$$

\n
$$
[[a_j^+, a_k^-], a_j^-] = -\delta_{jk} a_j^- - \delta_{jl} a_k^-,
$$

.
◆ ロ ▶ → *덴 ▶* → 토 ▶ → 토 ▶ │ 토 │ ◆) 9, 0~

 $(j, k, l = 1, \ldots, q$ and $j, k, l = q + 1, \ldots, n)$

The relative relations between the two sorts of operators are purely in terms of nested anticommutators:

KORKARYKERKER POLO

$$
\{a_j^+, a_k^+\} = \{a_j^-, a_k^-\} = 0,
$$

$$
\{\{a_j^+, a_k^-\}, a_j^+\} = \delta_{kl}a_j^+,
$$

$$
\{\{a_j^+, a_k^-\}, a_j^-\} = \delta_{jl}a_k^-.
$$

 $(j = 1, \ldots, q, k = q + 1, \ldots, n, l = 1, \ldots, n$ and $j = q + 1, \ldots, n, k = 1, \ldots, q, l = 1, \ldots, n$

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded parabosons

 \blacksquare $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{osp}(1,0|2n_1, 2n_2)$ set of generators for $osp(1, 0|2n_1, 2n_2)$:

 $b_i^- =$ $\sqrt{2}(e_{1,i+1}-e_{n_1+n_2+i+1,1}), b_i^+=$ √ $2(e_{1,n_1+n_2+i+1}+e_{i+1,1}), i=1,\ldots,n_1+n_2$

- Note: $b_i^{\pm} \in \mathfrak{g}_{(1,0)}, i = 1, \ldots, n_1$, and $b_i^{\pm} \in \mathfrak{g}_{(0,1)}, i = n_1 + 1, \ldots, n_1 + n_2$
- the two sets of elements satisfy the common relations of parabosons:

 $\left[\left\{b_j^{\xi},b_k^{\eta}\right\},b_l^{\epsilon}\right]=\left(\epsilon-\xi\right)\delta_{jl}b_k^{\eta}+\left(\epsilon-\eta\right)\delta_{kl}b_j^{\xi}.$

 $\eta, \epsilon, \xi \in \{+, -\},$ either $j, k, l \in \{1, 2, ..., n_1\}$ or else $j, k, l \in \{n_1 + 1, \ldots, n_1 + n_2\}.$

the mixed triple relations between the two families of parabosons:

 $\{[\boldsymbol{b}_j^{\xi},\boldsymbol{b}_k^{\eta}],\boldsymbol{b}_l^{\epsilon}\} = -(\epsilon-\xi)\delta_{jl}\boldsymbol{b}_k^{\eta} + (\epsilon-\eta)\delta_{kl}\boldsymbol{b}_j^{\xi},$

KORKAR KERKER SAGA

where $j = 1, \ldots, n_1, k = n_1 + 1, \ldots, n_1 + n_2, l = 1, \ldots, n_1 + n_2$ or else $j = n_1 + 1, \ldots, n_1 + n_2, k = 1, \ldots, n_1, l = 1, \ldots, n_1 + n_2.$

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded A–superstatistics

n consider the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{sl}(1,0|n_1,n_2)$ define: $a_i^+ = e_{i+1,1}, a_i^- = e_{1,i+1}, i = 1,2,\ldots, n_1 + n_2$ $a_i^{\pm} \in \mathfrak{g}_{(1,0)}, i = 1, \ldots, n_1; a_i^{\pm} \in \mathfrak{g}_{(0,1)}, i = n_1 + 1, \ldots, n_1 + n_2$ **i** if *i*, *j*, *k* ∈ {1, 2, . . . , *n*₁} or *i*, *j*, *k* ∈ {*n*₁ + 1, *n*₁ + 2, . . . , *n*₁ + *n*₂} ${a_i^+, a_j^+\} = {a_i^-, a_j^-\} = 0,$ $[\{a_i^+, a_j^-\}, a_k^+] = \delta_{jk} a_i^+ - \delta_{ij} a_k^+,$

$$
[\{a_i^+, a_j^-\}, a_k^-] = -\delta_{ik} a_j^- + \delta_{ij} a_k^-
$$

n mixed relations between the two families are as follows:

$$
[a_i^+, a_j^+] = [a_i^-, a_j^-] = 0,
$$

$$
\{[a_i^+, a_j^-], a_k^+\} = \delta_{jk} a_i^+,
$$

$$
\{[a_i^+, a_j^-], a_k^-\} = \delta_{ik} a_j^-.
$$

 $i \in \{1, 2, \ldots, n_1\}, j \in \{n_1 + 1, \ldots, n_1 + n_2\}, k \in \{1, \ldots, n_1 + n_2\},\$ or else $i \in \{n_1 + 1, \ldots, n_1 + n_2\}, i \in \{1, 2, \ldots, n_1\},\$ $k \in \{1, \ldots, n_1 + n_2\}.$ YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

- natural structure to consider, renewed interest
- interesting definition, both of $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras and Lie superalgebras
- **r** reasonable definition of $sI_{p,q,r,s}(n)$ and $s\mathfrak{o}_{p,q,r,s}(n)$, $\mathfrak{sl}(m_1, m_2|n_1, n_2)$ but we need more for better structure (roots, root space decomposition,. . .)
- our main result: classical analogues of Lie algebras and Lie superalgebras of type B, C and D as $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie algebras and $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras

KORKAR KERKER SAGA

a applications in quantum statistics