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Major goal:

solve string theory iMdSs x S°

use conformal invariance,

global (super)symmetry and integrability

find S-matrix and justify Bethe Ansatz for the spectrum
from first principles



String Theory inAdS; x S°

: S0(2,4) _ SO(6)
bosonic cosetSO(lA) SO(5)

generalized to GS string: superco (f%i’?g)@
(Metsaev, AT 98)

X

S = T/dQJ[Gmn(x)axmax” +0(D + F5)00x
+ 00000x0x + ],

tension?” = 21732, — gg

Conformal invariance: B, = Rpn — (F5)2, =0

Classical integrability of coset-model (Luscher,Pohimeyer 76)
same for classicalldSs x S° superstringq

(Bena, Polchinski, Roiban 02)

extends to quantum level: 1- and 2-loop computations and the

comparison to Bethe ansatz (work of last 5 years)




Green-Schwarz superstring

Superstring in curved type Il supergravity background

[d?0c Gun(2)0ZM0zZN + ..., ZM = (a2™,06))

m=20,1,..9, a=1,2...,16, I =1,2

Explicit form of action is generally hard to find

AdSs x S° : coset space symmetry facilitates explicit construction

Algebraic construction of unique-invariant action as in flat space

R1,9 — G __ Poincare
H Lorentz

Flat superspace & = SuperPoincare

structure of action is fixed by superPoincare alggiitaM, Q)
P M| ~P, MM~ M, M, Q] ~Q, {Q,Q}~P

g tdg = J" P + JLOF + T Mo,

Supercoset actionf Tr(g_ldg)é/H + fermionic WZ-term
I=[dc(Jm ™ +aJ T +b [ J™AJTJ s,

sry = (1,-1)




Jm = dx™ — 0™, JL = do}

manifest superPoincare symmetry but

unitarity and right fermionic spectrum iff = 0, b = +1:
r-invariance— Green-Schwarz action:

L= —1(8,2™ — i6'T™ma,07)2

1
2
+ ieabs”H_IFm(‘?aHJ((?bxm — %éKFm(‘?bHK)

peculiar “degenerate” Lagrangian: #6960 term

L ~ 0z0x + 0x000 + (000)>

perturbative expansion is well-defined

nearz background, e.gx"™ = N"c“

r=z+E& 0 =0z 6

L ~ O£0¢ 4 0'00" + V%age'ae’ + ...

non-renormalizable by power counting

but k-symmetry (uniqueness of action) implies finiteness



direct check of cancellation of 2-loop logarithmic UV digences
and trivial partition function (Roiban, Tirziu, AT 07)
preservation ok-symmetry implies that semiclassical loap')
expansion must be finite also in curved space

regularization issues are non-trivial starting with 2 leop



_50(2,4) _ SO(6)
AdSs x S° = 3557 X 360

Killing vectors and Killing spinors ofddSs x S° :
PSU(2,2[4) symmetry
replaceGG / H=SuperPoincare/Lorentz in flat GS case by

PSU(2,2/4)
SO(1,4) x SO(5)

generators(P,, M,,); (P., M.,); QL, m = (q,r)

P, Pl ~M, [P,M]~P, [M,M]~ M,
[QvPQ] ~ 7qu [QvMpq] ~ VPQQ
(01,07 ~ 6 (v - P++ P+ (v M4+ - M)



PSU(2,2/4) invariant action

J Tr(g71dg)g,  + WZ-term
J=g7tdg = J"Py, + JLO¢ + T M,

A _ _
I = \QF Ud2 (J"T™ 4+ aJ!Jh) +b/ J"NJT ) sr s
T
as in flat space = 0, b = +1 required byx-symmetry

unique action with right symmetry and right flat-space limit

Formal argument for UV finiteness (2d conformal invariance)
1. global symmetry — only overall coefficient

of J? term (radius) can run
2. non-renormalization of WZ term (homogeneous 3-form)

3. preservation ok-symmetry at the quantum level
— relating coefficients of * and WZ terms



Equivalent form of the GS action:

_SU(2,2) _ SU(4)
AdS5 x S° = 555 X T

generalized to
F __ PSU(2,2|4)

G — 5p(2,2)xSp(4)
basic superalgebAﬁa: psu(2,2|4)
bosonic parf = su(2,2) & su(4) = so(2,4) & so(6)
admitsZ4-grading:
(Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach 89)

f=fo®h ®f @Fs, fi> T3] C Fitjmoda
fo =9 =sp(2,2) ® sp(4)
](2 — AdS5 X S5

current = £~19,f, f € F (notation change!)
Ja :f_laaf:Aa+Q1a+Pa+Q2a
Aean Qlefla PEfg, Q2€f3'



GS Lagrangian:

1 a a
Lgs = 5 STr(v/—9g** P, Py + *°Q14Qas) ,

simple structure but not standard coset model:
fermionic currents in WZ term only

conformal gauge,/—gg®® = n®
1
Lags = STr[Py P+ - (Q14Q2- — Q1-Qa4)]
STr(PLP,)=0, STr(P_P_) =0
Equations of motion in terms of currents ( 1-st order form)
EOM : 8+P—+[A+,P—]+[Q2+,Q2—: 207
O_Py + A, Pi] 4+ [Q1—,Q14] =0,
[P, @Q1-] =0, P—,Q24] =0.
MCI 8_J+—8+J_+[J_,J+]:O.

k-gauge condition: Q;_ =0, Q2or =0




remaining EOM:
8+P_+[A+,P_]:O, 3_P+—|—[.A_,P+]:O
Maurer-Cartan:

a—i-A— _ a—A—l— =+ [A—HA—] + [P—i—v P—] + [Ql—l—a QQ—: — 07
a—Ql—l— + [A—le-i-] _ [P—i-: Q2—: =0,
a—I—Cs22— + [A—i-aQQ—] — [P—7 Ql—i—: =0.




How to solve quantum string theory itidSs x S° ?

GS string on supercos%*t&f%i’;|g>(5)

not of known solvable type (cf. free oscillators; WZW)
analogy with exact solution @ (»n) model (Zamolodchikovs) or
principal chiral model (Polyakov-Wiegmann ...) ?

but 2d CFT — no mass generation

By analogy with flat space —

light-cone gauge: analog eft = p*7, p™ = const, I'"0 =0
Two natural options:

(1) null geodesic parallel to the boundary in Poincare patch
action/Hamiltonian quartic in fermions (Metsaev, Thorii, A1)
(ii) null geodesic wrapping®:

complicated action (Callan et al, 03;

Arutyunov, Frolov, Plefka, Zamaklar, 05-06)



Common problem:

lack of manifest 2d Lorentz symmetry

hard to apply known 2d integrable field theory methods —
S-matrix depends on two rapidities, not on their difference
constraints on it are a priori uncleatr...

An alternative approachPohlmeyer reduction”
conformal gauge, solve Virasoro conditions
find “reduced” action in terms of currents

use it as a starting point for quantization



Aim: PR version forddSs x S° superstring

() introduce new fields locally related to supercoset auise
(i1) solve Virasoro condition explicitly

(i) find local 2d Lorentz-invariant

action for independent (8B+8F) d.o.f

— fermionic generalization of non-abelian Toda theory

PR a nonlocal map that preserves integrable structure

1. gauge-equivalent Lax pairs; map between soliton saiatio
gives integrable massive local field theory

2. quantum equivalence to original GS model ?

may expect for fullAdSs x S° string model =CFT

3. integrable theory: semiclassical solitonic spectrum

may essentially determine quantum spectrum

the two solitonic S-matrices should be closely related:
Lorentz-invariantS-matrix of PR-model should lead to
effective magnon S-matrix



Pohlmeyer reduction: bosonic coset models

Prototypical exampleS?-sigma model— Sine-Gordon theory
L=0,X"0_X™ - AX™X™—-1), m=1,2,3
Equations of motion:
OL0_ XM+ AX™ =0, A=0,X"0_X", X"X™m=1
Stress tensofl' L4 = 0L X™M0L X™
T,_. =0, 0,T__=0, 9.-T,; =0

impliesT, , = f(oy), T__ =h(o_)
using the conformal transformations. — F (o) can set

0L XMO, X™ = p? O_XMO_X™=pu*, pu=-const.
3 unit vectors in 3-dimensional Euclidean space:

xm. X7 =plto X", XM=y to_Xxm,



X™ is orthogonal K™ 0+ X™ = 0) to both X" and X
remainingSO(3) invariant quantity is scalar product

0L XMO_X™ = u? cos 2y

thend, 0_¢ + “72 sin2p =0
following from sine-Gordon actiofPohlmeyer, 1976)

L=0yp0_¢+ 5 cos 2p

2d Lorentz invariant despite explicit constraints

Classical solutions and integrable structures

(Lax pair, Backlund transformations, etc) are directhated
e.g., SG soliton mapped into rotating folded string$n
“glant magnon” in theJ = oo limit (Hofman, Maldacena 06)



Analogous construction fo$* model gives
Complex sine-Gordon modé@&pPohlmeyer; Lund, Regge 76)

_ 2
L =0,00_p+ cot* v 0,00_6 + % cos 2¢

@, 0 are SO(4)-invariants:

12 cos2p =0, XmO_X™
1
12 sin? 0.0 = :|:§emnlem(9+X"8_Xk0:2tXl

“String on R; x S™” interpretation
conformal gauge plus= p7 to fix conformal diffeomorphisms:
0+ X™9L X™ = 1?2 areVirasoroconstraints
Similar construction fotddS,, case,
I.e. string onAdS,, x S, with ¢ = ur
e.g. reduced theory faddS; x S*

~ 2
L = 0.¢0_¢ + coth? © 94 xO_x — % cosh 2¢



Comments:

e Virasoro constraints are solved by a special choice of bérg
related nonlocally to the original coordinates

e Although the reduction is not explicitly Lorentz invariatfite
resulting Lagrangian turns out to be 2d Lorentz invariant

e Thereduced theory is formulated in terms of manifesty(n)
Invariant variables: “blind” to original global symmetry

e reduced theory is equivalent to the original theory as iraielg
system: the respective Lax pairs are gauge-equivalent

e PR may be thought of as a formulation in terms of physical
d.o.f. — coset space analog of flat-space |.c. gauge (where 2d
Lorentz is unbroken)

e INn S” case reduced theory camot be quantum-equivalent to
the original one (e.g., conformal symmetry was assumeddan th
reduction procedure)



PR for bosonicF'/G-coset model

G /H gauged WZW model + relevant integrable potential

F/G-coset sigma modelsymmetric space

f=pDg, g,9) Cg, lg,p] Cp, p,p] Cg
J=fldf = A+ P, A=J,cg, P=J,€p.
L=—Tr(P.P.)

(G gauge transformationg — fg;

global F'-symmetry.f — fof, fo = const € F
classical conformal invariance

J = A+ P as fundamental variables

D,P_.=0, D_P,=0, D=d+[A, ] —EOM
D_P,—D,P +|[P,,P|+F,_=0 — Maurer-Cartan
Tr(PyP,) = —p*, Tr(P_P_)=—u? — Virasoro



Main idea: —first solve EOM and Virasoro anighenMC
special choice ofy gauge condition and conformal diffs>
find reduced action giving eqs. resulting from MC
gauge fixingthatsolves the first Virasoro constraint

P, =puT = const, T'ep=fouy, Tr(TT) = -1
choice of special elemefit — decomposition of the algebra &f
f=p&g, p=To&n, g=mah, [I,h=0,

hisacentraliserof’ ing



EOMD_P, =0issolvedby A_ = (A_), = A_
second Virasoro constraint is solvey

P_=pg 'Ty, geG

EOM D, P_=0issolvedby AL =g 10,9 +¢g 1A, g
To summarise:new dynamical field variables

(GG-valued fieldg , h-valued fields A, A, [T,AL]=0



Relation toG/H gauged WZW model

remainingMaurer-Cartarequation ory, A follows from
G /H gWZW action with potential:

L= - %Tr(g_l(%rgg_l@_g) + WZ term
— Tr(A10_g9 ' —A_ g '0,g—g 'AgA_+ALA )
— pTe(Tg'Ty)

Pohlimeyer-reduced theory fét/G coset sigma model
(Bakas, Park, Shin 95; Grigoriev, AT 07)

reduced theory for strings oR; x F//G or F'/G x Sjb
Integrablepotential: relation at the level of Lax pairs
special case of non-abelian Toda theory:
“symmetric space Sine-Gordon model”

(Hollowood, Miramontes et al 96)



Ay, A_: integrate out or gauge-fix
Reduced equation of motion in the “on-shell” gauge = 0:
Non-abelian Toda equations:

0_(g7'049) — pW’[T,g 'Tg] =0,
(971019)y =0, (0_gg~ )y =0.
F/G = SO(n+1)/SO(n) = S : G/H = SO(n)/SO(n—1)

g = ( b ) : Z kikp =1
—
get (in generahon-LagrangiapnEOM for k,,
o_( 8.;]€g
\/1 o Zm=2 kmkm
Linearising around theacuumg = 1 (i.e. k1 = 1, ky = 0)
O40_ky + 112ke + O(k3) =0

massive spectrurmon-trivial S-matrix withH global symmetry

):—,uzkg, 622,...,?1.



F/G=50(n+1)/S0(n)= 5"
parametrization of in Euler angles
g — eTn—29n—2“.€T1‘91 62T906T191.“6Tn—29n—2

and integrating outf = SO(n — 1) gauge field4.
leads to reduced theory that generalizes SG and CSG

- 2
L=0100_¢+ Gpy(p,0)0,070_07 + % cos 2

gWzZW for G/H = SO(n)/SO(n — 1)
ds®_, = dp? , ds?_s; = dyp?* + cot? p db?
G/H = S0(5)/SO(4):

4632

sin? 6,

ds?_, = dp? + cot® ¢ (df; + cot 01 tan 0 dfs)? + tan® ¢

and similar forG/H = S°> = SO(6)/SO(5)



Bosonic strings odS,, x S™

straightforward generalization:

Lagrangian and the Virasoro constraints

L =Tr(P£PA) — Tr(PEPY),

Tr(PYPY) — Tr(PLPL) =0

fix conformal symmetry by

Tr(PLPE) = Tr(PLPL) = —pi°

then PR applies independently in each sector:
get direct sum of reduced systems Kt and Ad.S,,
linked by Virasoro, i.e. common

e.g. forF'/G = AdSy x S

B 2
L=0,00_©+ 0,¢p0_¢ + %(cos 2 — cosh 2¢)



Reduced theory fordS; x S° superstring

_ SU((2,2) ,, SU(4)
AdSs x S° = Sp(2,2)  Sp(d)

Lgs = STr| Py P + %(Q1+Q2— — Q1-Q24)]
STH(P, P,) = 0, STH(P_P_) = 0

PRprocedure: solve first EOM and Virasoro
rk-gauge condition: ;- =0, Qor =0
as in bosonid’'/G case fix théreduction gauge”

P-F:MTv

T = %diag(l, 1,1, —1/1,1,-1,-1),

P.o=pg 'Tg, AL =g '019+9 'Arg, A=A

T definesH or h by [h, T] = 0:
h = su(2) ® su(2) ® su(2) ® su(2)



new variables:

.0
gz(‘% g), ga € Sp(2,2), g5 € Sp(4)

h = [su(2)]*-valued fieldA+
AdSs andS®° sectors now coupled by fermions

1 1
— Q14 U, =—gQy g '.
Nt T

fix residuals-symmetry using

—

\IJR,L — \Ijli"%,L ) \IjlzL,LT - _T\IjllL,L

Fermions link bosons fromip(2, 2) andSp(4)
transforming under both groups



parametrization o', , interms of 4 real Grassmann
2 x 2 matrices{, , andn,, ,

0 0 0 g
” B 0 0 ﬂR’L 0
mLT L0 8L 0 0
al, 0 0 0
App — 'SR,L + iJSR,LJ7 6R,L —Nr o — iJT,R,LJ

=01 )



Reduced action fordS; x S° superstring

(Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07)
classical gauge-fixed 1-st order equations in terms of otsre
follow from an action!

fermionic generalization of “gWZW+ potential” theory for

G Sp(2,2) Sp(4)

H — SURIxSU(2) = SU@)xSU(2)

L = ngzw(gaA—i-aA—) + :u2 STI‘(g_ngT)
+ STr (v, TD V¥, +V _ TD_V,)
+ pSTr (9 0, g7,)

sum of PR theories faldS; and.S® “glued” by fermions

L = zAdS5 (ga,Ai,a) + zS5 (987Ai,8)
+ ¢LD+¢L + ¢RD+¢R + O(:u)

similar but not same as susy gWZW.



fermions are in “mixed” representation
standardd Kkin. terms

Ly =STr(V, TO ¥, +V_TO_V,_)+ ...
= 20 Tr(&0:&, +n' 01m, +E0-&, +n0-n,) + ...

iIntegrable model: Lax pair encoding equations of motion

L o=0_+A_ +0 " /ug 'V, g+ 2ug Ty,
Li=0,+9 '0yg+9 "Arg+0/pY, + Cul



Comments:

gWZW model coupled to the fermions interacting minimally
and through the “Yukawa term”

2d Lorentz invariant withV ., W as 2d Majorana spinors
8 real bosonic and 16 real fermionic independent variables

2d supersymmetry? yes, iAdS, x S? case:n = 2 super
sine-Gordon

p-dependent interactions are equal to GS Lagrangian; gWZW
produces MC eq.. path integral derivation via change from
fields to currents?

guadratic in fermions (like susy version of gWZW); integngt
out A gives quartic fermionic terms (reflecting curvature)

linearisation of EOM in the gaugd. = 0 aroundg = 1
describes 8+8 massive bosonic and fermionic d.o.f. withsmas
1. same as in BMN limit

symmetry of resultingelativistic S-matrix: H = [SU(2)]* —
as bosonic part of magnon S-matrix symmedisU (22)]?



Example: superstring oAd S, x S*

1 0 0 O
0 0O —1 0 O
=510 0 1 o0 Az =0
O 0 0 -1
cosh¢ sinh ¢ 0 0
B sinh ¢ cosh ¢ 0 0
9= 0 0 cosyp ising € S0(1,1) x 50(2)
0 0 1sin  cos
0 O 0 2y 0 0 0 p
B 0O 0 -8 0 B 0 0 —w O
Vi = 0 26 O 0 o Vo= 0O v 0 0
v 0 0 0 1p 0 0 0



PR Lagrangian: same as= 2 supersymmetric sine-Gordon!

- 2
L =0,00_p+ 0,¢p0_¢ + %(cos 2¢p — cosh 2¢)

+ BO_B +y0_v 4+ vOiv + pOip
— 2 [cosh ¢ cosp (Bv + vp) + sinh ¢ sing (Bp —yv)] .

Indeed, equivalent to

L=0,90_d* — |W'(®)|?
b 04h, + L0 + (W), + W (@)Y 7]

bosonic part is 0fAdSs x S? bosonic reduced model if

W(®) = pcos®, W' (@) =

12
E(COSh 2¢ — cos2¢p) .

@DL:V‘F”:Pa ¢R2_6+Z77



UV finiteness of the reduced theory
(R. Roiban, A.T., to appear)

Reduction procedure may work at the quantum level only
in conformally invariant case (as should bedrdS; x S° case)
Consistency requires that reduced theory is also UV finite
gWZW+ free fermions is finite,

p-dependent terms may renormalize

fermions should cancel bosonic renormalization

indeed true indd S, x S? case f = 2 sine-Gordon)

true also in general:

STr(g~'TgT) = Tr(g, ' TgaT) — Tr(gs TyTs)
— €c0S 2¢p — cosh 2¢

cos 2¢p Is “relevant”, cosh 2¢ - “irrelevant”
bosonic 1-loop correctior (cos2¢ + cosh 2¢)
but fermions cancel this divergence



directly verified at 1-loop and 2-loop order
compute effective actioh|g]
after first “rotating away” gauge field . :

I/ulg, Al = Ig[h ™' gh'] — Tu[h ™11
A_|_ — h_1(9+h, A_|_ — h'_1(9+h'

possible divergences:

~ Tr(g~1Tg¢T) at odd loops~ STr(g~1T¢T) at even loops
but cancel order by order between bosons and fermions
Thusyu is not renormalized, remains an arbitrary

conformal symmetry gauge fixing parameter at quantum level
In contrast to |.c. gauge fixed GS superstring

the reduced model is 2d Lorentz invariant

and power counting renormalizable (finite).

Classically integrable; prove integrability at the quantievel?



Open guestions

e Quantum equivalence of reduced theory and GS theory?
Path integral argument of equivalence?
Potential terms is original action
Tr(PyP_) = p?*Tr(Tg *Tg) and same for Yukawa
gWZW term from change of variables ?
Rough idea: string ik, x F'/G
L=—(0t)*+Te(f'df + B)*, f€F, Beg
string path integral in conformal antd= 7 gauge:

| DIDES(Tey — 1) S(T- — ) D



replacef ~ldf by C

/ DCDBDv §(Tyy — p*)o(T-— — p?)

<expli /(c L B 4+ 0(dC + C A C)]

set(C + B). = uT, (C + B)_ = ug *'Tg; change from
C,B,vtoge G,Aech: [h,T] =0

Transformation may work only in genuine quantum-conformal
(AdS5 x S°) case.
Indication of equivalence: semiclassical expansion

near analog of S, J) rigid string in AdSs x S° leads to same
characteristic frequencies

— same 1-loop partition function (Roiban, AT 08)

Tree-level S-matrix for elementary excitations?
ManifestSU (2) x SU(2) x SU(2) x SU(2) symmetry?
Relation to magnon S-matrix in BA?



2d dualities ofAdS; x S° string
and dual superconformal symmetry

(Beisert, Ricci, AT, Wolf 08)

General remarks:

scalar 2d dualityde — *dx or “T-duality”

(0y)? + G(y)(0x)* — (9y)* + G~ (y)(07)

symmetry of 1-st order (phase-space) equations

but in general changes global symmetry of sigma model
l.e. of the metric “seen” by point particle

(dy? + sin®*y dz? — dy? +sin 2y dz2, SO(3) — SO(2))
thus changes set of conserved local Noether charges
yet is a symmetry of 2d equations —

conserved charges should not disappear

but may become non-local or hidden



Peculiarity of AdSS,, metric in Poincare coordinates:

dy? + e*Ydz,,dx,, — dy*>+ e 2Ydz,,dT,

mapped into same metric up yo— —y

Used to simplify form of GSAdS; x S° action (Kallosh, AT 98)
and to relate amplitudes to Wilson loops at strong coupling
(Alday, Maldacena 07)

SO(n—1,2) sets of local Noether charges before and after duality
some local charges become non-local and some dual loca@ehar
originate from hidden conserved charges of original model
(Ricci, AT, Wolf 07)

Interplay of integrability and global symmetry —

no “doubling” of hidden charges:

Lax conections of original and dual model are equivalent
Relation to dual conformal symmetry at weak coupling
(Drummond, Henn, Korchemsky, Sokatchev 07)



Generalization toddSs x S° superstring action:

to map superstring action after duality into itself and thus

get superconformaP SU (2, 2|4) symmetry in dual model

one needs to apply 2d duality also to some fermionic cootdma
(Berkovits, Maldacena 08)

The reason behind:

to get a symmetry of 1-st order superstring equations

one needs to transform both bosonic and fermionic currents —
get symmetry of Lax connection and thus of 1-st order system:
original and dual Lax pairs are related by

an automorphism gbsu (2, 2|4)

[also symmetry of string action modulo choice of coset
representatives-symmetry gauge choice, analytic continuation]



Noether charges of original model in terms of the dual vdesb
give possibly non-local conserved charges in the dual model
Existence of additional set of conserved Noether charges

In dual model which are local in dual variables and thus
non-local in the original variables means they must origgna
from some hidden conserved charges in original model

The existence of dual superconformal symmetry thus
closely related to integrability afldSs x S° superstring.

1-st order system may admit other symmetry transformations
but this “T-duality” is special in that it preserves maximal
possible global symmetry.

Its existence is rooted in structure of superconformal lalge
possibility to choose translationgy,, P,| = 0) and N = 4
Poincaé supersymmetrie§ Q**, Q7°} = 0, [Q, P] = 0)

as maximal abelian subalgebragisu(2,2|4):

2d duality acts on associated 4 b and 8 f string coordinates



To relate it to dual superconformal symmetry of gauge theory
(of Drummond, Henn, Korchemsky, Sokatchev 08)

combine duality action on the “pulk” string coordinates

with action on the vertex operators inserted at the boundary



BosonicG/H Coset Model

G /H symmetric space coset model= g + g2) = b + g2
L = 5tr(jio) A *j(a), j=g¢'dg = joy+ie = A+
first-order system V¥ = d + A)
dA+ANA+joy N = 0, Vie) = 0; Vijg = 0
follows from flatness of Lax connection
i(z) = A+ aje + b*j(2), a,b = %(22 + 272)

observe formal duality symmetry of this phase space system
and its integrable structure

) ixjgy, 2 etz

To relate coset fields, may define a non-local map
g—g: (g7'dg)(2) = *(g'dg)2)



May also consider an analog of non-Abelian duality

In principal chiral model by adding MC eqs with Lagrange
multipliers and integrating over currents in path integral

In general, “dualities” are linear transformations of @mnts
that map 1st-order system into itself and respect inte@iabi

The T-duality in the case oldS,, or AdSs = %

IS special being “self-duality”:
maps the system into one with same global symmetry



AdSs x S® superstring

G/H = PSU(2,2[4)/[SO(1,4) x SO(5)]
Z4 grading ofpsu(2, 2|4) implies (notation change!)

j= g 'dg = joy+in +ie2 +iz. jo = A

S = /SU[J@)A*J@+J’<1>M'<3>L
1-st order systemdj + 5 A5 = 0+ eds. of motion

dA+ANA+JayNJe) i) Nie) T Nia) =
Vi 3@ Nie) +I6) Ne)
Vi) 1) Nia) +J@) NiE)
Vie)y tIiu Nie) tie) Nia) =

Vi) +Ji3)y ANJ@)y — Iy Njay = 0,
), NJay +*iy)] =
), NJi3) — *i3)] =

-

Y

o



Implied bydj(z) +j(z) A j(z) = 0 for Lax family of flat currents
i(2) = Adzjay+5(22+272) Joy +27 ) 5 (22 = 277) o)

Explicit form depends on:

(1) bosonicH-gauge or choice of coset representative
(i1) fermionic x-symmetry gauge

2d diffeomorphisms not fixed

Standard choice of the superconformal algebra basis
adapted to the Poin@aparametrization of AdS
natural for comparison with boundary conformal theonfh?

pSU(272‘4) - {PaaLabaKaaDaRij ‘Qiaa _?753757;@}

a.b=0,....3, a,8=1,2,i,j=1,....4



Z4-splitting of psu(2,2[4) = h © g1y @ g(2) D 9(3)

h = {%(P _Ka)vLabaR(ij)}v
01 = {5(Q+5"),5(QF + 5},
92y = {5(Pa+Ka), D, Ry},
g3 = {F(Q =5, 5(Qf — 57}

Choice of coset representative {gauge fixing)
adapted to Poincare form of metric

> dY;,;dY"

2 1y2 'a
ds? = —3Y?dX_5dX " 4+ 5=

(X,Y) = (X%, Y%) are 4+6 bosonic coordinates

g(X,Y,0) = B(X,Y)e T
B(X Y) _ 1XP ilog(Y)DA( )
F(©) = i[(0%7Qia + 0" Sia) — (07,Q% +0%,5%)].
A(Y) = (A) = 3 (C*Yhy).



O = (0%, 0¢,) are 32 fermionic coordinategi> = (6¢,).
rk-gauge (“S-gauge”) that simplifies structure of string @acti

pie = 9. =0, F(©) = i[0Qi0n — 0%,Q%]
Field redefinition:

(070,09,) = (07,07), 0 = Y~U2ATY 00
Then string action (after a rotation &f)
S = / { LY2IL 5 A TP+ s dY A xdY

+ 5 (capdYiy AOA07 — e 5 AV A G7d0)) |
% = dX* + 1(0¢do™ — do36").

Bosonic 2d duality along &

/ [— Ly2(Vef + 1(63d07° — daie™?))” + X 5dvPe

e Vi AdY 4 AV A 07d0), — AV A 6FdD0) |



V - auxiliary one-form:X @3 ImposeslV =0 — V = dJX,;
solving forV first (Kallosh, AT 98)

S :/{—ﬁanBA*dX + g dYij A xdYY

+ %diﬁd A (03d0" — d030") + & (dYi; A 0 *d67, + c.c.)}.
(i) bosonic geometry is again AgS« S° (uptoY — Y1)

(1) the dual action is quadratic in the fermions
on-shell relation between the original and dual coordimate

dX P 4+ 108407 — d020P) = V=2 xd X,

Can use it in the Noether currents of original model

Ty = 9l — 5+ — i)™
to find their (non-local) expression in the dual model



Duality as symmetry of 1-st order system and Lax connection

How conserved charges of original and dual models are df?ate
duality applied to bosonidd.s,,-model generically maps
conserved local charges into non-local ones and vice versa
(Ricci, AT, Wolf 07)

firstignore fermions: back to bosonialS; = SO(2,4)/50(1,4)
considerZ,-automorphism of conformalo(2, 4) algebra

Q(P)=-K, QK)=-P, QD)=-D, Q(L)=L
For choice 0fAd S5 coset representativge= e'*’Y"
j =g 'dg= jp+ijp, jp = YdX¥Pss, jp = $d¥YD
Then 1-st order system is

djp+jpANjp+jpANjp = 0, djp = 0,
d¥jp —Jp N*jp —*jp Njp = 0,
dxjp — 5P AN*Q(jp) — 5%Q (jp) A jp

|
I



under T-duality:(X?,Y) — (X% Y)
dX% — v2xdXx*? ., v = vy L
jp = iYdX% Py, = iY%dX*PPgsq = %jp,
jp = $dYD = —ZdYD = —jp
this transformation, i.e.
jp — jp = xjp and  jp — jp = —jp (¥

IS symmetry of first-order equations

(MC equation forj p is interchanged with its eq. of motion)
Thus can view it as a symmetry of phase space equations
regardless particular parametrization

Family of flat currents

i(2) = $(z+271)%p — 2z — 271)Qip)
—1(z* = 27)x(jp — QUip)) + 5> + 27

—3(2% =27 )xjp



j(2) in the T-dual model should be the same
with (X4 Y) — (X% Y = Y1)
(*) gives apparently different result

i(2) = 2+ 225 — Lz — 27 H2Q>p)
—1(22 =272 (jp — QUp)) — (2 +27)jp
+2(2% — 27 %)

But no doubling — two Lax connections are equivalent:
related by aZ,-automorphism oko(2, 4):

Z—Z_l

z+ 271

U.(T) = U.QDU Y, U, = [f(2)]P, f=

U.(jp) = f(2)Qpr), U.(2p)) = (f(2) "jr, U.(jp) = —jD,
It maps the two Lax connections into each other

~

U-(j(2)) = i(2)



Thus T-duality can be abstractly understood as

symmetry of the Lax connection (integrable structure)

induced by the automorphism of the conformal algedar, 4)
This symmetry then implies a certain map of conserved clsarge
Analogous automorphism once fermions are included?
rk-symmetry gauge choice makes some of

super-isometries non-manifest; transformed action restdme
add transformations of components of fermionic current

that will lead to symmetry of the full 1-st order GS system

Duality is an equivalence at the fllli field theory level:
original global symmetry and its conserved charges
should not actually disappear but may become non-local
or hidden (not visible in the point-particle limit of the amt)
to recover the original global symmetry



Bosonic+Fermionic duality: self-duality of superstrinctian

Combine bosonic duality with a similar fermionic one:
applying 2d duality t@*> (but not to their conjugates).
Get action that can be interpreted as origiddlSs; x S°
superstring written in a different-symmetry gauge.

Thus combination of bosonic + fermionic dualities maps
superstring action into an equivalent action.

Find full global superconformal group now acting
(modulo a compensatingsymmetry transformation)

on coordinates of the dual action.

1-st order form of Lagrangian after bosonic duality:

— ez dX 5 A «dX7T 4 Ly AV A AV — X 5addS A VP

— LY VAV — i AAV + LY A0S A dBy4



constraintdV = ( added with Lagrange multiplie,,
Vio‘ — —%Yijeaﬁ(dé/jﬁ - iiﬁddéﬁé) = dﬁm

cf. bosonic duality: no Hodge star — fermions appear in Winter
solve forV: dual action ford

2Y 2 4Y 2

YA + i) A (0 + AR )

— erdX 5 A WX 4 dYi; A xdY™ + 1YV A A d;,

wheref, = 0,0 —iX, ;0]



Key point: this action is equivalent via field redefinition
to original AdSs x S° GS action

in a different (complex)-gauge QS-gauge)

(Roiban, Siegel '00)

i.e. with coset representative= B(X,Y) e~ F(®)
F(O) = i(00Qia +0%,5Y),

thus combination of bosonic and fermionic dualities redate
AdSs x S° action in thex-symmetry S-gauge

to same action in the-symmetryQS-gauge

Implies existence of superconformal symmetry after thdiies
now explain the need for fermionic duality from

more general point of view: bosonic+fermionic dualities
leave superstring 1-st order system and Lax connectiomana



Bosonic+fermionic duality as symmetry of Lax connection

bosonic Adg case: T-duality a symmetry of 1st-order system
combined with a particular automorphism of conformal algeb
Now extend that symmetry to full superstring

by relating it to an automorphism of superconformal algebra
Z4 automorphism opsu (2, 2|4)

Q(Pa[;}) = —K_; Q(KQB) = —P_; QD) = —D,
Q(Ruj) = —Rygp, QRejp) = Ry, Q™) = 1S*,
QQF) = 157, Q(S7) = —iQF, Q(5™) = —iQ™
combined duality relation

dXP 4 L@Pdore — 49Pp*) = Y2 xdXPe,

Ao’ = —LYTeP(d0;5 —1XpadfS), Y =Y !

relate current in S-gauge= jp + jp + jr + jo + Jo



to dual one in thEQS-gaug@N' = EP + ED + }R +}Q +}g
jp = *jp, jp = —Jps JR, = —JR.» JR. = JR..
jo = jo» Js = —iQjig).
Flat currents: in the S-gauge
j(2) = jB(2)+5(z+2"") (o +ig) —5(2—27")(Qje) +2(jig)),

the dual one irQS-gauge

~ ~

i(2) = ip(2)+35(z+27 ) (o —i0ig))+5(2 =27 ) (Qje) +ijg),
are related by &, automorphism of the superconformal algebra:

U(T)= U.QT)U L, U. = e ™B(f(z))BHD)

—1

f(z) = == and[B,Q] = Q, [B,S] = —iS, etc




Explicitly

U.(P) = f(2)AUP), U(K) = [~ (2)QK), UZ(D) = (D), no
U(Q™) = if()UQ™),  US]) = —if(2) QS),
U.(Q7) = —iUQY), U(S™) = i(S™).

then Lax connections are related as

~

i(z) = U(j(2))

l.e. duality is symmetry of integrable structure
and 1-st order system
conserved charges are not doubled but reshuffled

Noether charges may be derived from flat curigny at = = +1:
superconformal Noether charges 0, z — +1) behave as



P, s-charge becomes trivial

Lo3- andeB-charges go into themselves and thus local
Kaﬁ--charge gets lifted and becomes non-local

D-charge goes into itself and thus remains local
R,’-charge goes into itself and thus remains local
Q'*-charge becomes trivial

Q%-charge goes into th§‘“-charge and thus remains local
S¢-charge gets lifted and becomes non-local

S‘@-charge goes into th@¢-charge and thus remains local

P, ; and@" do not act on dual fieldia[;} andf;,,
resulting picture in agreement with
parallel work of Berkovits and Maldacena 08

similar relations for the generators of the original andldua
superconformal symmetry when acting on supergluon angagu
(Drummond, Henn, Korchemsky, Sokatchev 08)



