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Why the name?

First appear in the book: Heun, Karl (1889), ”Zur Theorie der
Riemann’schen Functionen zweiter Ordnung mit vier
Verzweigungspunkten”, Mathematische Annalen, 33: 161

Natural generalization of the hypergeometric function, the Lame
function, Mathieu function, the spheroidal wave functions

Numerous applications: Schrödinger equation with anharmoic potential, linear
perturbations of black holes, transversable wormholes, quantum Rabi models,
confinement of graphene electrons in different potentials, quantum critical systems
etc

The Heun Project

http://theheunproject.org/

Very promising area

of research in theory,

numerics and

applications!
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The hypergeometric function

The hypergeometric function is a solution of the following ODE:

z(1− z)w ′′(z) + [c − (a + b + 1)z ]w ′(z)− abw(z) = 0

This equation has 3 regular singular points z = 0, 1,∞ with solutions
according to the Frobenius method:

Around z = 0 Around z = 1 Around z =∞
2F1(a, b, c; z) 2F1(a, b, 1+a+b−c; 1−z) z−a

2F1(a, 1+a−c, 1+a−b; 1/z)
z1−c

2F1(1+a−c, 1+b−c, 2−c; z) (1−z)c−a−b
2F1(c−a, c−b, 1+

c−a−b; 1−z)
z−b

2F1(b, 1+b − c, 1+b−a; 1/z)

where 2F1(a, b, c; z) =
∑∞

n=0
(a)n(b)n

cn

zn

n!
with (q)n =

{
1, n = 0

q(q + 1)...(q + n − 1), n > 0

Confluent Hypergeometric equation:

zw ′′(z) + (c − z)w ′(z)− aw(z) = 0

With singularities: z = 0 – regular and z =∞ – irregular and solutions:
C1M(a, c , z) + C2z

1−bM(a + 1− c , 2− c , z),
the Kummer function:
M(a, b, z) =

∑∞
n=0

(a)n

(b)n

zn

n! = limb→∞ 2F1(a, b, c; z/b)



The type of the singularities matters!

For an ODE of the form:

P(x)y ′′(x) + Q(x)y ′(x) + R(x)y(x) = 0,

the point x0 is singular if Q(x)/P(x) or R(x)/P(x) diverge at x = x0.

The point x0 is regular singularity if the limits limx→x0

Q(x)
P(x) (x − x0)

and limx→x0

R(x)
P(x) (x − x0)2 exist and are finite.

Otherwise, it is irregular or essential singularity.

The point x0 =∞ is treated the same way under the change x = 1/z .

Singularities are characterized by their s-rank.
Depending on the s-rank and number of singularities, one can consider
classes of ODEs!



Hypergeometric class of equations

Table: The hypergeometric class of differential equations

Name Eq. Equation Singularities s-rank Comment

y′′(z) = 0 z =∞ {1}

Euler equation (z − z1)2y′′(z) + A(z − z1)y′(z) + By(z) = 0 regular: z = z1,∞ {1, 1}
or {1/2, 1/2}

Confluent case y′′(z) + Ey′(z) + Dy(z) = 0 z =∞ {2}

Generalized Legendre (1− z2)y′′(z) + 2(s − (m + 1)z)y′(z) + λy(z) = 0 reg. z = −1, 1,∞ {} Papperitz equation (Riemann eq.)

Gauss eq. z(1− z)y′′(z) + (c − (a + b + 1)z)y′(z)− aby(z) z = 0, 1,∞ {1/2, 1/2, 1/2} or (both hypergeometric equations)
{1/2, 1, 1} or
{1/2, 1/2, 1}

Confluent hyperg. zy′′(z) + (c − z)y′(z)− ay(z) = 0 z = 0,∞ {1/2, 2} or {1, 3/2}
or {1/2, 3/2}

Weber equation y′′(z) + (λ− z2)y(z) = 0 z =∞ {3} special case of the confluent hyperg.

Airy equation y′′(z)− zy(z) = 0 z =∞ {5/2}



The general Heun equation

d2

dz2
H(z) +

[
γ

z
+

δ

z − 1
+

ε

z − a

]
dH(z)

dz
+

αβz − q

z(z − 1)(z − a)
H(z) = 0 (1)

Here ε = α + β − γ − δ + 1.
Regular singularities: z = 0, 1, a,∞.
Solution of the type y =

∑∞
r=0 crz

n defines a 3-term recursion:

− qc0 + aγc1 = 0,Prcr−1 − (Qr + q)cr + Rrcr+1 = 0, c0 = 1

Pr = (r − 1 + α)(r − 1 + β),Qr = r((r − 1 + γ)(1 + a) + aδ + ε),Rr = (r + 1)(r + γ)a

Its group of symmetries is of order of 192. (for the hypergeometric ODE,

it is n!2n−1 = 24).

Under the process called confluence of singularities, one obtains 4 different
types of confluent Heun functions with fewer singularities but of higher
s-rank.





The confluent Heun function

One starts with the general Heun equation:

d2

dz2
H(z)+

[
γ

z
+

δ

z − 1
+

ε

z − a

]
dH(z)

dz
+

αβz − q

z(z − 1)(z − a)
H(z) = 0, (2)

redefines β = βa, ε = εa, q = qa and takes the limit a→∞ to obtain:

d2

dz2
H(z)−

(
ε− δ

z − 1
− γ

z

)
d

dz
H(z)−

(
αβ − q

z − 1
+

q

z

)
H(z) = 0 (3)

Series solution:y =
∑∞

r=0 crz
n defines a 3-term recursion:

g
(a)
k = k(k − 4p + γ + δ − 1)− σ, f (a)

k = −(k + 1)(k + γ), h
(a)
k = 4p(k + α− 1)

f
(a)

k c
(a)
k+1 + g

(a)
k c

(a)
k + h

(a)
k c

(a)
k−1 = 0, c−1 = 0, c0 = 1

In Maple notations, the default solution ofthis ODE is denoted as

HeunC (α, β, γ, δ, η, z)

S-homotopic transformations give 16 exact local Frobenius type solutions:

H = eσα
α±z±

2 z
σβ

β±
2

± z
σγ

γ±
2

∓ HeunC (σαα±, σββ±, σγγ±, δ±, η±, z±)

> FunctionAdvisor(HeunC )



The Heun functions in Maple

Numerical problems:

no known integral representations

not all the identities known

converging series solution only inside the radius of convergence

Implementation in Maple:

Direct numerical integration of the ODE (the default method)

A sequence of concatenated Taylor series expansions



Black holes

Definition: A black hole is a region of the space-time whose boundary is
causaly disconnected from the rest of the Universe. Classically nothing can
escape, even light.
Einstein solutions: the Schwarzshild metric (non-rotating)
(rs = 2M,G = 1, c = 1):

ds2 = (1− rs/r)dt2 − (1− rs/r)−1dr2 − r2(dθ2 − sin(θ)2dφ2) (4)

and the Kerr metric (rotating) (Σ = r2 + a2cos(θ)2,∆ = r2 − rsr + a2).

ds2 = (1− rs r

Σ
)dt2− Σ

∆
dr 2−Σdθ2− (r 2 +a2 +

rs ra
2

Σ
sin(θ)2dφ2 + 2

rs rasin(θ)2

Σ
dtdφ (5)

According to observational data:

Stellar black hole:4− 15M�

Medium-size black holes: 1.103−4.104M�

Super-massive black holes: 1.106−9.109M�

Double and triple systems of SMBH



Why are they so interesting?

1 Gravitational waves finally
observed – so far, only from
systems of stellar black holes!
What do we know?

2 The mystery of GRB –
Eiso∼1053erg , t∼sec, tflares∼105s,
/APJ, 778:54, 2013, ApJ 766:30, 2013/ )

– What is the central engine?

– Jets formation – how and why?



The ringing of the black holes /Teukolsky (1972)/

Linear perturbation of the Kerr metric for Ψ = e i(ωt+mφ)S(θ)R(r) is
described with the Teukolsky equations.
The Angular Teukolsky Equation (TAE):

((
1−u2

)
Slm,u

)
,u

+

(
(aωu)2 + 2aωsu+sElm−s2 − (m+su)2

1−u2

)
Slm = 0, (6)

and the Radial Teukolsky Equation(R):

d2Rω,E ,m
dr 2

+ (1 + s)

(
1

r − r+
+

1

r − r−

)
dRω,E ,m

dr
+ +

(
K 2

(r − r+) (r − r−)
−

is

(
1

r − r+
+

1

r − r−

)
K −−λ− 4 isωr

)
Rω,E ,m

(r − r+)(r − r−)
= 0 (7)

where ∆ = r2 − 2Mr + a2 = (r − r−)(r − r+), K = −ω(r2 + a2)−ma,
λ = E − s(s + 1) + a2ω2 + 2amω and u = cos(θ).
For EM perturbations: s = −1. For GR: s = −2.
The two horizons are: r± = M ±

√
M2 − a2. Unknowns:ω,E !!!



Solutions in terms of the confluent Heun function

The solution of TAE:

S1,2(θ) = eα1,2z1,2z
β1,2/2
1,2 z

γ1,2/2
2,1 HeunC(α1,2, β1,2, γ1,2, δ1,2, η1,2, z1,2) (8)

where z1 = cos(θ/2)2, z2 = sin(θ/2)2, and the parameters are:
For the case m = 0:

α1 = −α2 = 4 aω,

β1 = β2 = 1,

γ1 = −γ2 = −1,

δ1 = −δ2 = 4 aω,

η1(ω) = η2(−ω) = 1/2− E − 2 aω − a2ω2

For the case m = 1:

α1 = α2 = −4 aω,

β1 = γ2 = 2,

γ1 = β2 = 0,

δ1 = −δ2 = 4 aω,

η1(ω) = η2(−ω) = 1− E − 2 aω − a2ω2



The solutions of TRE:

R(r)=C1R1(r) + C2R2(r), for (9)

R1(r) = e
α z

2 (r−r+)
β+1

2 (r−r−)
γ+1

2 HeunC(α, β, γ, δ, η, z)

R2(r) = e
α z

2 (r−r+)
−β+1

2 (r−r−)
γ+1

2 HeunC(α,−β, γ, δ, η, z),

where z = − r−r+

r+−r−
, and the parameters are:

α = −2 i
(
r+ − r−

)
ω, β = −2 i(ω (a2 + r+

2) + am)

r+ − r−
− 1, γ =

2 i(ω (a2 + r−
2) + am)

r+ − r−
− 1,

δ = −2i
(
r+ − r−

)
ω
(
1− i

(
r− + r+

)
ω
)
,

η =
1

2

1(
r+−r−

)2

[
4ω2r+

4 + 4
(
iω−2ω2r−

)
r+

3 +
(

1−4aωm−2ω2a2−2E
)
×

(
r+

2 +r−
2
)

+4

(
iω r−−2iω r+ +E−ω2a2− 1

2

)
r− r+− 4a2 (m+ω a)2

]
.



Boundary conditions: /Fiziev(2009), Staicova and Fiziev (2010, 2015)/

For the TAE we require regularity on the sphere. This means the Wronskan
of the 2 solutions S1(θ) and S2(θ), should be W [S1(θ), S2(θ)] = 0, or:

W [S1,S2] =
HeunC′(α1, β1, γ1, δ1, η1, (cos (π/6))2)

HeunC(α1, β1, γ1, δ1, η1, (cos (π/6))2)
+

HeunC′(α2, β2, γ2, δ2, η2, (sin (π/6))2)

HeunC(α2, β2, γ2, δ2, η2, (sin (π/6))2)
= 0 (10)

For TRE:
QNM – (black hole boundary conditions): R2 is valid for
<(ω) 6∈ (− ma

2Mr+
, 0) and sin(arg(ω)+arg(r))< 0.

QBM – (quasibound boundary conditions): R1 is valid for
<(ω) 6∈ (− ma

2Mr+
, 0) and sin(arg(ω)+arg(r))> 0.

TTM modes are missing in the EM case



EM Quasi-Normal Modes (s = −1) for a=0 /D.S. and Fiziev (2015)/

Figure: a) QNM and QBM modes for m = 0, l = 1 b) boundary condition for
them: sin(arg(ω) + arg(r))



The spectrum for a ∈ [0,M] /Fiziev and D.S. (2015)/

Figure: ωm,n(a) and Em,n(a) for a = [0,M), m = 0, 1, l = 1 n = 0..4



Spurious modes /D.S. and Fiziev (2015)/

Figure: (a) Unphyisical modes (crosses) with QNM and QBM (diamonds) for a = 0,
m = 0, l = 1, 2. (b) Boundary condition for them sin(arg(ω) + arg(r)) (c) the mode
with n = 3 for a ∈ [0,M)

In order to distinguish the spurious modes from the physical ones, one needs to test
their numerical stability. Physical modes should not depend on r ! Our tests showed that
the spurious modes indeed depend on r .



Gravitational QNMs: the case s = −2

The spectral system:

W (θ) =
HeunC′ (−4 aω, 2−m,m+2,−8 aω, ηa

+, zA))

HeunC (−4 aω, 2−m,m+2,−8 aω, ηa
+, zA)

+

HeunC′ (4 aω,m+2, 2−m, 8 aω, ηa
−, 1− zA)

HeunC
(
4 aω,m+2, 2−m, 8 aω, ηa

−, 1− zA

) (11)

where the derivatives are with respect to zA, θ = π/3 and

ηa
± = 2 + 1/2 m2 − E ± 4 aω − a2ω2, zA = sin2( θ

2
). TRE:

R(r) = HeunC

(
α, β, γ, δ, η,− r − r+

r+ − r−

)
(12)

with B = (r+ − r−)/(r+ + r−),Ω = Mω,C = a/M and r± = M ±
√

M2 − a2 and

α = −4 iBΩ, β =

√
Q+

B
, γ = −

√
Q−

B
, δ = −8 BΩ (Ω + i) (13)

η = −
1

2B2

(
− 2 B4Ω2 − 8 iB3Ω− 8 Ω2B3 − 8 iB2Ω−

10 B2Ω2 − B2m2 + 2 AB2 + 4 CmΩ + 4 Ω2 + m2

Qq± = 8 iB2Ω− 4 B2Ω2 + B2m2 ±
(

4 iBCm − 4 BCmΩ+

8 iBΩ− 8 BΩ2
)
− 4 CmΩ + 4 B2 − 4 Ω2 −m2



The spectrum for the gravitational QNMs

Figure: The Gravitational QNMs for m = 0, 1,−1, 2,−2



Jet modes

What happens if we impose qualitatively new boundary conditions?
For the solutions of the the TAE, we use the new requirement that the
confluent Heun functions should be polynomial. The polynomiality
condition reads:

δ

α
+
β + γ

2
+ N + 1 = 0. ∆N+1(µ) = 0.

Here, the integer N ≥ 0 is the degree of the polynomial and ∆N+1(µ) is
three-diagonal determinant specified in Fiziev 2009
The polynomial requirement for the angular solutions fixes the following
relation between E and ω:

s=−1E
±
m (ω)=−(aω)2 − 2 aωm±2

√
(aω)2+aωm. (14)



The spectra compared

Staicova and Fiziev:
Astrophys. Space Sci. (2011) 332 Astrophys. Space Sci. (2015) 358

Figure: Left: Jets modes Right: QNM

The new boundary conditions change qualitatively the spectrum!



The analytical fit

Figure: Comparison between our numerical results plotted with blue (red) crosses
and the analytical formula (violet lines) in the cases N = 0, 1.

The best fit for our numerical data for the lowest modes is:

ωn=0,1,m = (−m+iN
√
b2 − 1 ) Ω+, N = 0, 1.,Ω+ = a/2Mr+, b = M/a

(15)



Comparison between Jets modes & QNM for a > 0

Figure: Left: Jets modes (m = 0,−1), Right: QNM (m = 0, 1)

While for the Jets modes we are able to reach a > M without finding the
symmetrical with respect to the real axis unstable modes, the QNMs and
the QBMs are completely symmetrical.



The solutions of the TAE

Figure: The angular part of the solution (left) and jets observed in Nature (right)

Using the polynomial singular condition instead of the regularity condition
offers us a simple though approximate way to model collimated outflows!



We have applied the confluent Heun function to:

Black holes and naked singularities in the (proper) jets case (EM). We
have found a new spectrum and natural mechanism for collimation.

Black holes QNMs and QBMs (EM). We have found that the
spectrum obeys the symmetries of the metric. Also we have found
spurious spectrum.

Black holes QNMs and QBMs (GR) We have found the non-zero
imaginary part of the 8th mode.

Using the Heun functions we were able to both reproduce old results
independently and qualitatively results.
Despite the numerical challenges, the Heun functions are promising tool in
any field of physics.



Thank you for you attention!
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Connection between coefficients in Ronveaux Eq. (1) and the definition in
Maple:

α = −εR , β = γR − 1, γ = δR − 1,

δ = −αRβR + εR/2(γR + δR), η = −εRγR/2 + qR − 1/2(γR 2 − 1)

From Fiziev, arXiv:0902.1277 The ∆n(µ) condition:

qn = (n − 1)(n + β + γ), δ = µ+ ν − αβ+γ+2
2 , η = α(β+1)

2 − µ− β+γ+βγ
2
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