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Introduction
From the recent developments in the field of
gravitational waves detection, it is clear that
finding the electromagnetic (EM) counterpart to
such events can prove to be very useful. As a
way to study the fundamental physics of the cen-
tral engine of compact massive objects, one may
use the EM quasi-normal modes (QNMs). The
QNMs are the characteristic complex frequen-
cies with which the linearized perturbations of
the Kerr metric are radiated away to infinity.
The QNMs find numerous applications in theo-
retical and numerical astrophysics, including in
highly non-linear full general relativistic black
hole simulations. Lately, they have been consid-
ered in the frame of the so called “multimessen-
ger approach” in which one uses simultaneously
the gravitational, electromagnetic and neutrino
spectra to compare the predictions of general
relativity with astrophysical observations.

The Heun functions
Under the assumption Ψ = ei(ωt+mφ)S(θ)R(r),
the problem reduces to the Teukolsky Angular
Equation and the Teukolsky Radial Equation,
which can be solved analytically in terms of con-
fluent Heun functions.
Using the exact analytical solutions and the
properties of the confluent Heun functions, we
are able to impose the boundary conditions di-
rectly to obtain the spectral system. This ap-
proach has been pioneered in works by Fiziev
and it has been used successfully to find the
gravitational QNMs and the EM “primary jets”
modes.

Main results
The key results of our work are as follow:

1. High-precision reproduction of known
QNM frequencies and study of the numer-
ical stability of the modes in the radial
complex plane.

2. New QBM spectrum, obtained for the in-
verse boundary conditions, its numerical
stability also studied.

3. An additional spurious spectrum found to
contradict assumptions of the problem and
thus classified as numerical artifact.
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The TAE and the TRE and their solutions
The two second-order linear differential equations which govern the late-time ring-down of the EM
perturbation (s = −1) of the Kerr metric are: the Teukolsky Angular Equation (TAE):( (
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and the Teukolsky Radial Equation (TRE):
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where ∆ = (r−r−)(r−r+), K = −ω(r2 +a2)−ma, λ = E−s(s+1)+a2ω2 +2amω and u = cos(θ).
r± =M ±

√
M2−a2 are the two horizons, a – the rotational parameter, M – the mass.

Both differential equations are of the confluent Heun type (two regular singularities: u=±1, r=r±,
one irregular: ∞) and their solutions are of the form:

S1,2(z1,2) = eα1,2z1,2z
β1,2/2
1,2 z

γ1,2/2
2,1 HeunC(α1,2, β1,2, γ1,2, δ1,2, η1,2, z1,2),

where the parameters differ for the solutions of the TAE and the TRE.
The boundary conditions are as follow:
– angular boundary conditions: regularity on the sphere
– radial boundary conditions: black hole boundary conditions (r+ ←R(r)→∞) or their inverse.
We solve the so obtained spectral system of transcendental equations for {ω,E} using the developed
by the team two-dimensional Müller method, implemented in MAPLE.

The numerical results
We obtain two types of discrete spectra: the QNMs (sin(arg(r)+arg(ω))<0) and QBMs (sin(arg(r)+
arg(ω))>0).
For the case when there is no rotation (a = 0), the complex frequencies can be seen on Fig. 1.

Figure 1: a) The complex frequencies for a = 0, for m = 0, l = 1. (b) the boundary condition sin(arg(ω) +
arg(r)) for them. The red diamonds are obtained from R1(r) with arg(r) = 1/2π, the red crosses – from
R1(r) with arg(r) = 3/2π, the blue diamonds – from R2(r) with arg(r) = 1/2π, the blue crosses – from R2(r)
with arg(r) = 3/2π.

When we add rotation to the black hole (a ∈ [0,M)) we obtain the spectra showed on Fig. 2:

Figure 2: A complex plot of all the ωm,n(a) and Em,n(a) obtained for a = [0,M) for m = 0, 1, l = 1 n = 0..4

By exploring the numerical stability of the so-obtained spectra, we have demonstrated they are
stable in wide regions of the complex r-plane. Further comparison with results obtained by the
well-established continued-fractions method showed they match with precision of more than 9 digits.
In the near-extremal regime (a/M ∈ [0.995..0.99998]), we compared our numerical results with the
analytical formula by Hod (2008): ω = mΩ − i2πTBH(n + 1/2 + iδ) and we found very good fit
between the theoretical and the numerical results. Here δ is a complex number, Ω = a

r2+−a2 is the

angular velocity of the horizon, TBH = r+−r−
4π(r++a2) – the Hawking temperature.

We have used |r| = 110 and M = 1/2


