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Recall the darkon-case

The equations in the darkon case are ([1, 2, 3]):
A cubic equation for y = u̇:
y 3 + 3ay + 2b = 0 with a = − 2

3−24αM0
and b = − 2αpu

a(t)3(1−8αM0)
.

And the Friedman equation for a(t) – after rescaling time by 2|α|/3 = 1
and absorbing α into Hubble constant (ρ̄ = 4|α|ρ):(

ȧ(t)

a(t)

)2

= ρ̄ =

(
1

2
y 2 +

b

a
y − 1

)
(1)

The asymptotics, corresponding to the dark energy term in the late
universe, is:

ρ̄ −−−−−→
a(t)→∞

{
1 for a > 0

−3
2a− 1 for a < 0

We use as independent real solutions yb (our basic solution) and ys and
integrate numerically Eq. (1) to find the evolution of the universe.
Staicova & Stoilov, Mod. Phys. Lett. A, 32, 1 (2017)
Staicova & Stoilov, arXiv:1801.07133



Universes with or without phase transition

Let ¯̄ρ the density corresponding to solution ys (ρ̄ corresponds to yb).
If for t1 = 0, ¯̄ρ(t1) < 0 but for tp > t1, it changes sign: ¯̄ρ(a(tp)) = 0.
Then, for any moment t > tp we have two ”states” of the Universe ρ̄ and
¯̄ρ such as:

0 ≤ ¯̄ρ < ρ̄ for t ≥ tp. (2)

This opens the possibility the Universe to undergo ”phase transition”.
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Figure: Left:Graphics of the a(t) evolution for: a = −5.987, b = −2.932

a3 (a) a = −1, b = − 2
a3 (b),

tp = 1.5074, as (tp ) = 2.0825 (b2), a = −.5, b = − 0.5
a3 (c),

Right: b± =
∑4

0 ±ci ai + O(a5), ci = [0.337906, 0.376679,−0.0251697, 0.00148545, 0.11272710−3]



The multi-measures model Guendelman, Nissimov and Pacheva 2014, 2016

The action of the model S = Sdarkon +Sinflaton is :

Sdarkon =

∫
d4x
√
−g(R(g , Γ)) +

∫
d4x(
√
−g + Φ(C))L(u,Y )

Sinflaton =

∫
d4xΦ1(A)(R + L(1)) +

∫
d4xΦ2(B)

(
L(2) +

Φ(H)√
−g

)
where we have auxiliary fields Φi (X ) = 1

3
εµνκλ∂µXνκλ and

L(u,X ) = −
1

2
gµν∂µu∂νu −W (u)

L(1) = −
1

2
gµν∂µφ∂νφ− V (φ), V (φ) = f1e−αφ

L(2) = −
b

2
e−αφgµν∂µφ∂νφ+ U(φ), U(φ) = f2e−2αφ

From the equations of motion we obtain the following new constants:

L(u,Y ) = −2M0 = const,
Φ2(B)
√
−g

= χ2 = const

R + L(1) = −M1 = const, L(2) +
Φ(H)
√
−g

= −M2 = const

and the effective potential:

Ueff (φ) =
1

4

(f1e−αφ + M1)2

χ2(f2e−2αφ + M2)− 2M0
with asymptotics U− =

f 2
1

4χ2f2
,U+ =

1

4

M2
1

χ2M2 − 2M0



The equations in FLRW metric

The system of equations we need to solve is:

v3 + 3av + 2b = 0 for a =
−1

3

V (φ) + M1 − 1
2
χ2be−αφφ̇2

χ2(U(φ) + M2)− 2M0
, b =

−pu

2a(t)3(χ2(U(φ) + M2)− 2M0)
(3)

ȧ(t) =

√
ρ

6
a(t), ρ=

1

2
φ̇2(1 +

3

4
χ2be−αφv2) +

v2

4
(V + M1) +

3puv

4a(t)3
(4)

d

dt

(
a(t)3φ̇(1 +

χ2

2
be−αφv2)

)
+ a(t)3(α

φ̇2

4
χ2be−αφv2 +

1

2
Vφv2 − χ2Uφ

v4

4
) = 0 (5)

The parameters of this system are 12:

{α, b0,M0,M1,M2, f1, f2, pu, χ2}
Initial and boundary conditions:

I . a(0) = 10−12, φ(0) = φ0, φ̇(0) = 0 – initial conditions

II . a(1) = 1 – normalization

III . a′′(t) = 0 – in 3 points

Constraints on the parameters:

f 2
1

χ2f2
, >>

M2
1

χ2M2 − 2M0
(6)

From [1, 2]: |M1| ∼ M4
EW ,M2 ∼ M4

Pl , f1 ∼ f2 ∼ 10−8M4
Pl



Asymptotics

Limits for the equation of state (EOS) w = p/ρ:

w −−−−→
a(t)=0

1/3

w −−−−−→
a(t)→∞

−1 (7)

Due to a strong friction term, in the far future (a(t)→∞, φ̇(t)→ 0):

ρ −→ 0 for a > 0

ρ −→ 1

4

(V (φ) + M1)2

χ2(U(φ) + M2)− 2M0
for a < 0 (8)

where b −−−−−→
a(t)→∞

0 and v → 0 for a > 0 and v →
√
−3a for a < 0.

The dynamically generated cosmological constant for a < 0

Λeff = M2
1/(8(χ2M2 − 2M0)). (9)



Considerations for the parameters

1 c = 1, G = 1/16π and tu = 1, where tu is the present day age of
Universe. Thus, our mass unit is equal to 1.62× 1059MPl where MPl

is Plank mass.
2 The only limit on the parameters is

f 2
1

χ2f2
>>

M2
1

χ2M2−2M0
3 M0 < 0 , so that b < 0 and y is real
4 φ̇(0) = 0
5 b0 > 0 (problems with ρ otherwise)

Giving us the following cases:

Case 1: χ2 ∼ 1, M0 ∼ −0.04, 0 < M2 << |M0|.
For these parameters, using the value of the cosmological constant (
≈ 3.6 in our units) one can easily obtain:

M1 ∼ 1.5. (10)

Case 2: χ2 << 1, M0 ∼ −0.01, M2 = 4 (� |M0|).
For these parameters the relation between χ2 and M1 becomes:

M1 = 0.24
√

2000χ2 + 10 ∼ 0.76 (11)



The evolution of the Universe in the [a, b] plane

Staicova & Stoilov, Mod. Phys. Lett. A, 32, 1 (2017)
Staicova & Stoilov, arXiv:1801.07133

Evolution of the parameters [a(t), b(t)] for the darkon (dash) and the inflaton (dot-dash).

The evolution of the Universe starts from b → −∞ and finishes at b → 0
We have chosen the parameters in such a way that: b = −pu

2a(t)3(χ2(U+M2)−2M0)
< 0. I.e

M0 < 0.



Numerical solutions

Figure: a) The effective potential.
b) ä(t) and w = p/ρ, where UM is ultra-relativistic matter domination , EI – the early
inflation, MD – the matter domination (MD) and LI – the late inflation.



Strong friction term on φ!

(a) φ(t) (b) φ̇(t)

From asymptotical analysis: assuming a(t) = eHt , we obtain:

φ(t) = C1 + C2e−3Ht



Figure: The Universe evolution in case 1 (χ2 = 1, M0 = −0.04, M1 = 1.5, M2 = 0.001). The parameters

{α, b0, pu , f1, f2} are {1, 0.027, 7.7× 10−9, 7, 10−3} (solid lines), {1.2, 0.021, 1.1× 10−10, 6.76, 10−3} (dashed lines)

and {1.4, 0.016, 3× 10−12, 6.35, 10−3} (dot-dashed lines).



Figure: The Universe evolution in case 2 (χ2 = 4×10−5, M0 = −0.01, M1 = 0.763, M2 = 4). The parameters

{α, b0, pu , f1, f2} are {0.64, 1.41×10−7, 6.5×10−24, 10−4, 10−8} (solid lines),

{0.65, 7.6×10−7, 5.5×10−23, 10−4, 10−8} (dashed lines), and {0.66, 2.66×10−6, 2.4×10−22, 10−4, 10−8}
(dot-dashed lines).



Main results (Staicova & Stoilov, arXiv:1806.08199)

A. One can construct a 4-stages Universe
1 At t0 = 0 we observe the EOS of ultra-relativistic matter with

w = 1/3.
2 Initial inflation with EOS of dark energy w → −1.
3 Matter domination stage where w > −1/3 and w → 0.
4 Accelerated expansion with w < −1/3.

B. The model can be normalized to a(1) = 1, t(MD → LI ) = 0.71 and the
effective cosmological constant
C. There is a strong friction term which stops the evolution of φ after
certain moment.
D. There is an effect of “climbing-up” the potential
E. The slow-roll parameters in the periods of inflation
([0.017− 0.460, 0.71− 1] in Case 1 and [0.015− 0.662, 0.71− 1]) don’t seems to
satisfy the slow-roll conditions:

ε = − Ḣ

H2
<< 1, η = − φ̈

Hφ̇
<< 1. (12)



Let’s return to the effective potential
If one starts with inflaton equations of the
type:

H2 = 8
π

3m2
pl

(
1

2
φ̇2 + V (φ)

)
(13)

φ̈+ 3Hφ̇+ V ′(φ) = 0 (14)

Then the slow-roll parameters are defined
as:
1) φ̈(t) << 3Hφ̇→ η = − φ̈

Hφ̇

2) ä(t)
a(t)

= Ḣ + H2 = H2(1− ε)→ ε = − Ḣ
H2

If we write the inflaton equation in the form:(
v(t)2A(t)+1

)
φ̈(t)− 1

2
v(t)2αA(t)φ̇(t)2 +

(
3v(t)2A(t)H + 2v(t)A(t)v̇(t) + 3H

)
φ̇(t)

−v(t)2f1α

2eαφ(t)
+
χ2f2αv(t)4

2e2αφ(t))
=0, (15)

where A(t) = b0χ2

2eαφ(t) .

If one uses the slow-roll approximation (neglecting the terms ∼ φ̇2, φ̇3, φ̇4 and A(t)),
Eq. (15) simplifies to:

φ̈+ 3Hφ̇+ W (φ) = 0. (16)

where W (φ) = − v(t)2f1α

2eαφ(t) + χ2f2αv(t)4

2e2αφ(t)) , i.e. W (φ) 6= U ′eff , for

Ueff (φ) = 1
4

(f1e−αφ+M1)2

χ2(f2e−2αφ+M2)−2M0
.



Then we get the following 2 cases

Case 1: v(t)2A(t) >> 1:

φ̈− 1

2
αφ̇2 +

(
3H + 2

v̇

v

)
φ̇− αe−αφ

2A(t)

(
f1 − χ2f2v 2e−αφ)

)
= 0. (17)

Case 2: v(t)2A(t) << 1:

φ̈+ 3Hφ̇− v 2αe−αφ

2

(
f1 − χ2f2v 2e−αφ)

)
= 0. (18)

Using the asymptotic values of v(t) for pu → 0:

vp =

√
f1e−αφ + M1 − 1

2χ2b0e−αφφ̇2

χ2(f2e−2αφ + M2)− 2M0
. (19)

If vpb = vp(b0 → 0), the connection with the effective potential becomes

clear: v 2
pb = 4Ueff

f1e−αφ+M1
.



The derivative of the effective potential with respect to φ written in terms
of the effective potential and the velocity vpb becomes:

U ′eff = −2Ueff αe−αφ

f1e−αφ+M1

(
f1 − 4Ueff χ2f2e−αφ

f1e−αφ+M1
)
)
≈

≈ − v2
pb

2 αe−αφ
(

f1 − v 2
pbf2χ2e−αφ

)
.(20)

Then, in the limit v → vpb, the equations reduce to:
Case 1:

φ̈+
1

2

(
U ′eff

Ueff
+
αe−2αφχ2f2v 4

pb

2Ueff
− α

)
φ̇2 + 3Hφ̇+

1

v 2
pbA(t)

U ′eff = 0. (21)

Case 2:
φ̈+ 3Hφ̇+ U ′eff = 0. (22)

One can see that in Case 2, we are able to approximate with the standard
equation, in Case 1 – no.



Numerical analysis

Figure: Left – Case 1 (χ2 = 1, M0 = −0.04, M1 = 1.5, M2 = 0.001) for parameters {α, b0, pu , f1, f2} =

{1, 0.027, 7.7× 10−9, 7, 10−3} . Right – Case 2 in case 2 (χ2 = 4×10−5, M0 = −0.01, M1 = 0.763, M2 = 4). for

parameters {α, b0, pu , f1, f2} = {0.64, 1.41×10−7, 6.5×10−24, 10−4, 10−8} . On the plots, one can see T1 (solid lines),
T2 (dotted lines), T3 (dash lines), T4 (dash-dot lines).

T1 = v(t)2b0χ2e−αφ(t)/2 = v(t)2A(t),T2 = v(t)2b0φ̇(t)2αχ2e−αφ(t)/4, (23)

T3 = 3v(t)2b0χ2He−αφ(t),T4 = v(t)b0χ2v̇(t)e−αφ(t), (24)

T5 = −v(t)2f1αe−αφ(t)/2 + χ2f2αv(t)4e−2αφ(t)/2, (25)



Evolution of some physical parameters in the two cases

(a) (b) (c)

Figure: With solid lines (Case 1) and dashed (Case 2), we display the Hubble
parameter H, the darkon field v(t) and its first derivative v̇(t) .

The H-term dominates Case 2 but does not dominate Case 1 until late
times.
As expected v̇ → 0 during late-time inflation, however, in the early times,
terms depending on v and v̇ cannot be ignored.



Stability of the solution with respect to φ0

(a) (b) (c)

Figure: Using the parameters for Case 2, we plot a) the inflaton φ and b) the
second derivative of the scale factor ä(t) for φ(0) = −17.9 (dashed line),
φ(0) = −18 (solid line), φ(0) = −18.1 (dot-dashed line). c) the dependenceφ(t)
and φ̇(t) for φ̇(0) = 0,±104 where the solid line corresponds to zero initial
velocity.



Comparison of U ′eff and T5

(a) (b)

Figure: Comparison of the term T5 (dash) with the derivative of the effective
potential U ′eff (solid) in the two cases. Note, here the x-axis for Case 1 stops
before t = 2 in order to zoom on the interval in t where the difference is the most
significant



Numerical integration

In summary we observe that:

1 Independent of the value of φ(0), there is a period for which φ increases in
absolute value – i.e. it climbs up the slope of the effective potential

2 This effect becomes more pronounced the more we increase in absolute value φ(0)

3 The effect does not depend on φ̇(0). That is to say that this effect is not
connected with the inflaton gaining kinetic energy so that it can climb the slope.

4 The time during which this happens puts it in the interval when the effective
potential is not a good approximation of the potential term.

The effective potential might not be a good approximation!

We reconstruct the effective potential Unum
eff from T5 trough the means of

numerical integration. I.e. we assume that Unum
eff ∼

∫
T5(φ)dφ.

We use numerical integration of the data points [φ(ti ),T5(ti )] with a modified
Simpson’s rule adapted to work in Maple with 1000 datapoints.

The constant of integration has been determined by comparing the numerical
potential and the effective one at late times.



Figure: a) Dashed line – case 1 (χ2 = 1, M0 = −0.04, M1 = 1.5, M2 = 0.001)
for parameters {α, b0, pu, f1, f2} = {1, 0.027, 7.7× 10−9, 7, 10−3} . Solid line –
case 2 (χ2 = 4×10−5, M0 = −0.01, M1 = 0.763, M2 = 4). for parameters
{α, b0, pu, f1, f2} = {0.64, 1.41×10−7, 6.5×10−24, 10−4, 10−8} . With crosses are
the points t = 0, t = and t = 2, with diamonds the point φmax . b) and c) The
numerical integration of T5 with respect to φ in Case 1 and 2, respectively
denoted with solid lines. The effective potential is with dashed lines. The crosses
are the same as on a) One can see that while the effect from the increase of
absolute value of φ in the beginning is much more dramatic in Case 2, it also
appears in Case 1.



The results, Staicova, arXiv:1808.08890

The effect of “climbing up the slope” does not appear in the
numerically integrated potential term.
The integrated potential coincides with the effective potential after
some moment in time, i.e. the effective potential indeed a very good
approximation of the potential term.
The deviation between the two is seen during the early times of the
integration.

Analogue with the Lagrange points:

r̈ + 2(Ωxṙ) = −∇(Vg (r)− 1/2Ω2r2)

Vg (r) = −
GM1√

(x + r1)2 + y2
−

GM2√
(x + r2)2 + y2



Conclusions:

1. We have numerically confirmed that the multi-measure model can be applied to the
inflaton+darkon case.
2. We have shown that it is not possible to start from the left plateau and to obtain
physically realistic solutions
3. There is friction term which stops the evolution of the inflaton
4. The theory can produce “realistic” Universe if evolution starts from the slope.
5. The effective potential is a good approximation to the actual potential term only
after certain moment.

arXiv: 1710.05901, arXiv: 1712.06556
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