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Why MDG?

General relativity – extremely well-tested theory, but only in weak to
moderate-field regime (v/c<<1 orGM/c2R<<1)

Known observational deviations:

Rotational curves of galaxies and galactic clusters,
weak lensing (Dark Matter)

Cosmology – early inflation and current accelerated
expansion of the universe (Dark Energy)

Over all ∼ 95% “Dark”, i.e. Uknown Universe
→ there is plenty of space for alternative theories

Why Minimal Dilatonic Gravity?
1 The inflation and the graceful exit to the present day accelerating de Sitter

expansion of the Universe (U(Φ) can be reconstructed from a(t)).

2 Avoids any conflicts with the existing solar system and laboratory gravitational
experiments when mΦ ∼ 10−3eV /c2.

3 The time of inflation as a reciprocal quantity to the mass of dilaton mΦ.
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Minimal Dilatonic Gravity (MDG)

We change the Einstein-Hilbert Action: AE =
∫ 1

2κ(R − 2Λ)
√
−g d4x to

/ Fiziev, Mod. Phys. Lett. A, 15 1077 (2000) and Fiziev, PRD 87, 044053 (2013)/

Ag ,φ =
c
2κ

∫
d4x

√
|g |(ΦR − 2ΛU(Φ))

Here Φ ∈ (0,∞), Λ > 0 is the cosmological constant and κ = 8πGN/c2.

The scalar dilaton Φ leads to variable gravitational constant
G eff (Φ) = GN/Φ, while the scalar potential U(Φ) leads to a variable
cosmological factor Λeff (Φ) = ΛU(Φ).

The field equations are:/ κ = c = 1,R = 2ΛU,Φ(Φ), p =
√

Λ~/cmΦ/:

U(Φ) = Φ2 +
3
16

p−2(Φ− 1/Φ)2

�Φ + 2/3(ΦU,Φ(Φ)− 2U(Φ)) = 1/3T

ΦR̂βα = −∇̂α∇βΦ− T̂β
α

(1)
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Credit: Fiziev, Physical Review D 87, 044053 (2013)

(e) Unique Einstein Vacuum and
many deSitter vacuums: U,ΦΦ > 0

(f) Unique Einstein Vacuum and
unique deSitter vacuums:
U,ΦΦ > 0,V,ΦΦ > 0

V (Φ) = 2
3

∫ Φ

1 (ΦU,Φ(Φ)− 2U)dΦ

V,Φ(Φ) = 2/3(ΦU,Φ(Φ)
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Application to compact stars, following Fiziev, PRD 87, 044053 (2013)

We apply the field equations on a static, spherically symmetric metric:
ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2 for Tµν = diag(ε, p, p, p),
(perfect-fluid)
→ a system of 4 coupled 1st order ODEs + EOS
White Dwarfs and Neutron Stars
In the case of GR, the white dwarfs are described
well even in the polytropic approximation
pnonrel = Knonrelε

5
3 , prel = Krelε

4
3 ,

1. We use it to test the limit Φ = 1,U(Φ) = 1
in which MDG → GR:

Model rMDG rGR ∆r mMDG mGR ∆m

Relativistic WD (p0 = 10−14) 4 947 4840 1.07% 1.2406 1.2431 0.2%
Relativistic WD (p0 = 10−15) 8 799 8600 1.99% 1.2419 1.2432 0.1%
Relativistic WD (p0 = 10−16) 15 648 15 080 5.6% 1.2427 1.2430 0.02%
Non-Relativistic (p0 = 10−15) 10 603 10 620 0.17% 0.3929 0.3941 0.3%
Non-Relativistic (p0 = 10−16) 13 349 13 360 0.11% 0.1969 0.1974 0.25%

/M(r) is in M�, r in [km]/
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MWD = 0.17− 1.3M�
RWD = 0.008− 0.02R�
ρWD = 105 − 109gr/cm3

MNS = 1.4− 2M�
RNS = 12− 13km
ρNS = 109 − 1017kg/m3



Some plots: WD with Maple and NS with COCAL
/Compact Object CALculator (Tsokaros et al. (2014))

White Dwarfs /p=1e-19, ρ0 = 107 − 108 CGS/:

Neutron stars /γ = 4/3, p0=1e+15 /:
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The complete picture for NS for different EOS
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The connection with cosmology

1 We get get masses/radii in the expected
ranges and reproduce GR in the limit

2 In both cases, the total mass is ∼ 30% the
mass of the compact star

3 The less massive the dilaton, the higher
the total mass (for the moment, we are at
(d ∼ 10−20), the goal is ∼ 10−30.

4 The total mass of WD is critical to their
consideration as standard candles –
essential to cosmology

5 The maximal neutron star mass is
important for both particle physics,
astrophysics and cosmology (GRBs as
standard candles)

Good perspectives in front of MDG in both stellar physics and
cosmology!
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That’s it!

Thank you for the attention!
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Earlier works on MDG

Some of the works where details on the MDG model have been worked out.

A theory in development
Fiziev, arXiv:1402.2813 [gr-qc], "Frontiers of Fundamental Physics 14", Marseille,
France, July, 15-18, 2014, PoS(FFP14)080
P.P. Fiziev, Physical Review D 87, 044053 (2013)
P. Fiziev, Georgieva D., Phys. Rev. D 67 064016 (2003).
Plamen P. Fiziev, arXiv:gr-qc/0202074
Fiziev P. P., Yazadjiev S., Boyadjiev T., Todorov M., Phys. Rev. D 61
124018 (2000).
P. P. Fiziev, Mod. Phys. Lett. A, 15 1077 (2000)

The pioneering work on the MDG model is by O’Hanlon, Phys. Rev. Lett.
29 137 (1972).
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The equations
1. For the inner domain r ∈ [0, r∗]:

dm
dr

=4πr2εeff /Φ (2)

dp
dr

=−p + ε

r
m + 4πr3peff /Φ

∆− 2πr3pΦ/Φ
(3)

dΦ

dr
=−4πr2peff /∆ (4)

dpΦ

dr
=−pΦ

r∆

(
3r−7m− 2

3
Λr3+4πr3εeff /Φ

)
− 2

r
εΦ (5)

Additionally, we have:

εΛ = −pΛ −
Λ

12π
Φ,

εΦ = p − 1
3
ε+

Λ

8π
V ′(Φ) +

pΦ

2
Π

ε = ε(p)

where
∆ = r−2m− 1

3Λr3, εeff = ε+εΦ +εΛ, peff = p +pΦ +pΛ,Π = m+4πr3peff /Φ
∆−2πr3pΦ/Φ

and
εΛ = Λ

8π (U(Φ)− Φ), pΛ = Λ
8π (U(Φ)− 1

3Φ)

...
The 4 unknown functions are m(r), p(r),Φ(r), pΦ(r).
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Initial and boundary conditions:

m(0) = mc = 0,Φ(0) = Φc , p(0) = pc

pΦ(0) = pΦc =
2
3

(
ε(p)

3
− pc

)
− Λ

12π
V ′(Φc)

On the star’s edge (p(r∗) = 0) we have

m∗ = m(r∗; pc ,Φc),Φ∗ = Φ(r∗, pc ,Φc), p∗Φ = pΦc(r∗, pc ,Φc)

2. For the outer domain: a boundary value problem for Φ:

p = 0, ε = 0,Φ∆ = 1

After introducing the EOS, we solve the ODE system + the initial and
boundary conditions for the unknown functions m(r), p(r),Φ(r), pΦ(r).
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