Minimal Dilatonic Gravity from cosmology to compact massive objects

Деница Стайкова¹ Пламен Физиев ²

¹ИЯИЯЕ, БАН ²ОИЯИ, Дубна

С подкрепата на: "NewCompStar" COST Action MP1304, фондация ТИФА

29 март 2015 г.

Overview

1 Защо имаме нужда от нова теория?

- Наблюдателни тестове
- Нерешени проблеми за компактните звезди
- Как да разширим GR
- Алтернативни теории на гравитацията
- Минимална дилатонна гравитация
- Приложение за компактни звезди
 - Неутронни звезди
 - Бели джуджета
- Включване на уравненията в COCAL
- Заключение

Тестове на общата относителност (GR)

General relativity has been tested on many scales, but mostly in weak to moderate-field regime:

- Laboratory, Earth and Solar System scale $(v/c \ll 1 \text{ or } GM/c^2R \ll 1))$, upper bound for violations by the Cassini mission -10^{-5}
- Binary pulsars: PSR B1913+16, PSR J0737-3039, PSR J0348+0432 - 0.05%
- Galaxies and galaxies cluster: Sloan Digital Sky Survey III Baryon Oscillations Spectroscopic Survey – 6%

The real probes for the strong field regime $(v/c > 0.1 \text{ or } GM/c^2R \sim 1)$ are:

- Final stages of binary coalescence of compact objects (WD, NS, BH)
- Cosmological tests of the (early) Universe

Known problems: Classical theory (not renormalizable), Singularities, Cosmological constant problem, Vacuum fluctuations, Dark Energy, Dark Matter, The initial inflation and initial singularity problem etc.

Познатата ни Вселена

Dark Matter

- Orbits of stars in galaxies.
- Motions of galaxies in galaxy clusters.
- Hot gas in galaxy clusters.
- Gravitational lensing

Dark Energy

- Type Ia SNe
- CMB
- large stuctures/baryonic oscilations

Малко повече за тъмната енергия:

• Dark matter candidates:

MACHOS (Massive Compact Halo Objects)

WIMPS (weakly interacting massive particles).

- An ongoing quest:
 - The Dark Energy Survey (operational),

 Sloan Digital Sky Survey III (operational, 35% of the sky, with photometric observations of around 500 million objects and spectra for more than 1 million objects),

- The Euclid Mission (2020, L2 space telescope)

- HETDEX (2014), DESI (2018), BOSS(operational) etc.

How to do we find the mass? With Kepler's third law: $M_{encl} = \frac{v \times r^2}{G}$

The rotation curves (for disc galaxies [Corbelli & Salucci (2000)])

- A rotation curve: plot of orbital velocities versus radial distance from galaxy's centre
- Orbital motion traced with:
 - HI emission line (spiral galaxies)
 - broadening of stellar spectral lines (elliptic galaxies)
 - Doppler shift of the galaxies (galactic clusters)
 - Temperature of hot X-ray emitting gas
 - Gravitational lensing (galactic clusters)

Total mass of galaxies is 10x the visible mass!!!

Total mass of galactic clusters is 50x the visible mass!!!

29 март 2015 г.

6 / 37

Model-independent measurements:

- Mass distribution of a galaxy cluster: 2% galaxies, 10 % intergalactic plasma and 88% dark matter
- Weak gravitational lensing results [Clowe et al. (2006), Huterer (2010)]
- "In the absence of dark matter, the gravitational potential will trace the dominant visible matter component, which is the X-ray plasma.

If, on the other hand, the mass is indeed dominated by collisionless dark matter, the potential will trace the distribution of that component, which is expected to be spatially coincident with the collisionless galaxies" (Clowe et al. 2006).

The Bullet Cluster

Мистерията на гама избухванията

- 1 Energy $\sim 10^{53}$ erg, two types Short and Long
- 2 Different variability time-scales ms, sec, hundreds of seconds
- 3 X-ray plateaus continued injection of energy ($\sim 100s$)
- X-ray flares multiple rebrightening, happening at up to 10⁵s
- Ultralong GRBs (GRB 091024A, GRB 111209A) GRBs with γ-emission lasting more than 1000s (APJ, 778:54, 2013, ApJ 766:30, 2013)
- Extended high energy emission (GeV scale, example GRB130427A)
- Ø All those properties call for a long-lasting, extremely powerful central engine
- Figure credit: Gehrels et. al (2009), Gendre et al. (2012), ApJ 766, 30, 2013(GRB)

Компактните звезди в GR:

White dwarfs (WD) and neutron stars (NS) - significant observational data and modelling efforts, but still inconsistencies:

- The ultra-massive white dwarfs: SNLS-03D3bb (Nature 443 (2006) 308) and SN2007if (ApJ 713 (2010)), type la SN with progenitor exceeding the $M_{Ch} = 1.4 M_{\odot}$ (up to 2.4-2.8 M_{\odot})
- Stiff M(R) dependence for neutron stars or a dispersion in the observed masses?
- The question of the maximal NS mass and its relation to stellar black holes and astrophysical jets
- The Gamma-Ray Bursts mistery: huge energies, short characteristic time-scales, long life of the central engine

There are numerous approaches towards solving these problems – better MHD modeling, stronger and more complicated magnetic fields, better and richer equation of states etc. 29 март 2015 г. 10 / 37

Деница Стайкова, Пламен Физиев МДГ от космологията до компактните

White Dwarfs M(R) "curve"

Fig. 2. Mass – radius relation for 1175 hot white dwarfs of the same sample. The relation does not extend to masses *M* higher than $1.2 M_{\odot}$, or rather to the highest surface gravities $\log g > 9.0$.

29 март 2015 г. 11 / 37

Как да разширим GR

Requirements:

- reproduce the Minkowski spacetime in the absence of matter and cosmological constants,
- be constructed from only the Riemann curvature tensor and the metric,
- follow the symmetries and conservation laws of the stress-energy tensor of matter,
- reproduce Poisson's equation in the Newtonian limit.
- Starting from the Einstein-Hilbert action, one can:
 - increase the spacetime dimensions
 - change the functional dependence of the Lagrangian density on the Ricci scalar R
 - include other scalars generated from the Riemann curvature in the Lagrangian density,
 - include additional scalar, vector, or tensor fields.

Алтернативни теории на гравитацията

Some of the more popular alternatives of GR $(A_E = \int \frac{1}{2\kappa} R \sqrt{-g} d^4x)$:

- Gaus Bonnet theory includes a term of the form: $G = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} \text{ in the action } A = \int d^D x \sqrt{-g} G. \text{ (no additional dynamical degrees of freedom)}$
- Lovelock theory a natural generalization of GR to D > 4.

$$\mathcal{L} = \sqrt{-g} \left(\alpha_0 + \alpha_1 R + \alpha_2 \left(R^2 + R_{\alpha\beta\mu\nu} R^{\alpha\beta\mu\nu} - 4R_{\mu\nu} R^{\mu\nu} \right) + \alpha_3 \mathcal{O}(R^3) \right)$$

- f(R) theories a familly of theories in which the arbitrary function f(R) may lead to the accelerated expansion and structure formation of the Universe /dark energy or dark matter alternative/. $A = \int \frac{1}{2\kappa} f(R) \sqrt{-g} d^4x$
- Brans-Dicke scalar-tensor theory the gravitational interaction is mediated by a scalar field ($\phi = 1/G$) i .e. a varying G, as well as the tensor field of general relativity. Contain a tunable, dimensionless Brans-Dicke coupling constant ω . $A = \int d^4x \sqrt{-g} \left(\frac{\phi R - \omega \frac{\partial_a \phi \partial^a \phi}{\phi}}{16\pi} + \mathcal{L}_{\rm M} \right)$
- Chameleon scalar-tensor theory Introduces a scalar particle (the chameleon) which couples to matter, with a variable effective mass, an increasing function of the ambient energy density $m_{eff} \sim \rho^{\alpha}$, where $\alpha \simeq 1$. $(m_{eff} \sim mm pc)$.

The action, following Fiziev, PRD 87, 044053 (2013)

$$A_{g,\phi} = rac{c}{2\kappa} \int d^4x \sqrt{|g|} (\Phi R - 2\Lambda U(\Phi))$$

Here, $\Phi \in (0,\infty)$ is the new scalar field called "dilaton", $\Lambda > 0$ is the cosmological constant and $\kappa = 8\pi G_N/c^2$ is the Einstein constant.

Effects

Clearly, the introduction of the scalar **dilaton** Φ leads to varying gravitational constant $G(\Phi) = G_N/\Phi$, while the introduction of the cosmological potential $U(\Phi)$ leads to a variable cosmoloical factor instead of a constant Λ .

Note: In order to keep gravity as existing and attractive force $\Phi > 0$.

Минимална Дилатонна Гравитация (продължение)

The action

$$A_{g,\phi} = rac{c}{2\kappa} \int d^4x \sqrt{|g|} (\Phi R - 2\Lambda U(\Phi))$$

This action corresponds to the Brans-Dicke theory with $\omega = 0$. GR is recovered for $\Phi = 1$, U(1) = 1.

Some of the properties of the MDG model already demonstrated:

- The inflation and the graceful exit to the present day accelerating de Sitter expansion of the Universe $(U(\Phi) \text{ can be reconstructed from } a(t))$.
- 2 Avoids any conflicts with the existing solar system and laboratory gravitational experiments when $m_{\Phi} \sim 10^{-3} eV/c^2$.
- 3 The time of inflation as a reciprocal quantity to the mass of dilaton m_{Φ} .

Field equations obtained by variations with respect to scalar field Φ and the metric $g_{\alpha beta}$ (trace and traceless part).

Крайният вид на полевите уравнения:

If we include the standard action of the matter fields Ψ , based on the minimal interaction with gravity:

$$A_{matt} = \frac{1}{c} \int d^4 x \sqrt{|g|} L_{matt}(\Psi, \nabla \Psi; g_{\alpha\beta})$$
(1)

we get the final form of the field equations in cosmological units $\Lambda=1, \kappa=1, c=1$:

$$R = 2\Lambda U_{,\Phi}(\Phi)$$
$$\Box \Phi + 2/3(\Phi U_{,\Phi}(\Phi) - 2U(\Phi)) = \frac{1}{3}T$$
(2)
$$\hat{\Phi R_{\alpha}^{\beta}} = -\widehat{\nabla_{\alpha}}\widehat{\nabla^{\beta}}\Phi - \widehat{T_{\alpha}^{\beta}}$$

Note: The dilaton Φ does not interact directly with the matter and thus it is a good candidate for the dark matter. Its interaction with the usual matter goes only trough the gravitational interaction.

Някои свойства

- MDG and f(R) theories are related by the Legendre transform (i.e. there is a dictionary between the two models).
- **2** The witholding property: In order to guarantee that $\Phi \in (0, \infty)$, we require that $V(0) = V(\infty) = +\infty$, i.e. infinite potential barriers at the end of the interval.
- So From $U(\Phi) = \frac{3}{2}\Phi^2 \int_1^{\Phi} \Phi^{-3} V_{,\Phi} d\Phi + \Phi^2$ (from U(1) = 1), if we assume that $V(\Phi) \sim v\Phi^n$, it follows that $U(0) = U(\infty) = +\infty$.
- Additional requirement: U(Φ) > 0, for Φ ∈ (0,∞) (the cosmological term needs to have a definite positive sign).
- Solution U_{,ΦΦ} > 0, for Φ ∈ (0,∞) (ensures the uniqueness of the Einstein vacuum).
- The uniqueness of the deSitter vacuum is not guaranteed:

$$V_{,\Phi\Phi}=rac{2}{3}(\Phi U_{,\Phi\Phi}-U_{,\Phi}), V_{,\Phi\Phi\Phi}=rac{2}{3}\Phi U_{,\Phi\Phi\Phi}$$

Thus we can have $V(\Phi)$ with several minima in the domain.

Credit: Fiziev, Physical Review D 87, 044053 (2013)

(д) Unique Einstein Vacuum and many deSitter vacuums: $U_{,\Phi\Phi} > 0$

(e) Unique Einstein Vacuum and unique deSitter vacuums: $U_{,\Phi\Phi} > 0, V_{,\Phi\Phi} > 0$ If we postulate a unique deSitter vacuum, then the function $V(\Phi)$ will be convex for $\Phi \in (0, \infty)$ and the function $\frac{2}{3}(\Phi U_{,\Phi\Phi} - U_{,\Phi}) > 0$ is strictly positive.

A simple example of such pair of withholding potentials is:

$$V(\Phi) = \frac{1}{2}p^{-2}(\Phi + 1/\Phi - 2)$$
(3)

$$U(\Phi) = \Phi^2 + \frac{3}{16}\rho^{-2}(\Phi - 1/\Phi)^2$$
(4)

where p is a small parameter related with the dilaton mass.

We are going to use these witholding potentials in our study of compact stars.

Some of the works where details on the MDG model have been worked out.

A theory in development

Fiziev, arXiv:1402.2813 [gr-qc], "Frontiers of Fundamental Physics 14 Marseille, France, July, 15-18, 2014, PoS(FFP14)080
P.P. Fiziev, Physical Review D 87, 044053 (2013)
P. Fiziev, Georgieva D., Phys. Rev. D 67 064016 (2003).
Plamen P. Fiziev, arXiv:gr-qc/0202074
Fiziev P. P., Yazadjiev S., Boyadjiev T., Todorov M., Phys. Rev. D 61 124018 (2000).
P. Fiziev, Mod. Phys. Lett. A, 15 1077 (2000)

The pioneering work on the MDG model is by O'Hanlon, Phys. Rev. Lett. 29 137 (1972).

We follow the first application to the case of neutron stars published in [Fiziev (2013)]: Let us consider a static, spherically symmetric metric of the type:

$$ds^{2} = e^{\nu(r)}dt^{2} - e^{\lambda(r)}dr^{2} - r^{2}d\Omega^{2},$$
(5)

where r is the luminosity distance to the center of symmetry, and $d\Omega^2$ describes the space-interval on the unit sphere. The equations are the MDG field equations:

$$\Box \Phi + 2/3(\Phi U_{,\Phi}(\Phi) - 2U(\Phi)) = \frac{1}{3}T$$

$$\hat{\Phi R_{\alpha}^{\beta}} = -\widehat{\nabla_{\alpha}}\widehat{\nabla^{\beta}}\Phi - \widehat{T_{\alpha}^{\beta}}$$
(6)

Then, if we assume the perfect fluid stress-energy tensor $T^{\mu\nu} = diag(\epsilon, p, p, p) / c = 1/$ we obtain:

Уравненията

1. For the inner domain $r \in [0, r_*]$:

$$\frac{dm}{dr} = 4\pi r^{2} \epsilon_{eff} / \Phi \qquad (7) \quad \text{Additionally, we have:} \\
\frac{dp}{dr} = -\frac{p+\epsilon}{r} \frac{m+4\pi r^{3} p_{eff} / \Phi}{\Delta - 2\pi r^{3} p_{\Phi} / \Phi} \qquad (8) \quad \epsilon_{\Lambda} = -p_{\Lambda} - \frac{\Lambda}{12\pi} \Phi, \\
\frac{d\Phi}{dr} = -4\pi r^{2} p_{eff} / \Delta \qquad (9) \quad \epsilon_{\Phi} = p - \frac{1}{3}\epsilon + \frac{\Lambda}{8\pi} V'(\Phi) + \frac{p_{\Phi}}{2} \Pi \\
\frac{dp_{\Phi}}{dr} = -\frac{p_{\Phi}}{r\Delta} \left(3r - 7m - \frac{2}{3}\Lambda r^{3} + 4\pi r^{3}\epsilon_{eff} / \Phi \right) \qquad \epsilon = \epsilon(p) \\
- \frac{2}{r}\epsilon_{\Phi} \qquad (10)$$

where

$$\Delta = r - 2m - \frac{1}{3}\Lambda r^3, \epsilon_{eff} = \epsilon + \epsilon_{\Phi} + \epsilon_{\Lambda}, p_{eff} = p + p_{\Phi} + p_{\Lambda}, \Pi = \frac{m + 4\pi r^3 p_{eff} / \Phi}{\Delta - 2\pi r^3 p_{\Phi} / \Phi}$$

and

$$\epsilon_{\Lambda} = rac{\Lambda}{8\pi}(U(\Phi) - \Phi), p_{\Lambda} = rac{\Lambda}{8\pi}(U(\Phi) - rac{1}{3}\Phi)$$

• • •

The 4 unknown functions are m(r), p(r), $\Phi(r)$, $p_{\Phi}(r)$.

$$m(0) = m_c = 0, \Phi(0) = \Phi_c, p(0) = p_c$$
$$p_{\Phi}(0) = p_{\Phi c} = \frac{2}{3} \left(\frac{\epsilon(p)}{3} - p_c \right) - \frac{\Lambda}{12\pi} V'(\Phi_c)$$

On the star's edge $(p(r^*) = 0)$ we have

$$m^* = m(r^*; p_c, \Phi_c), \Phi^* = \Phi(r^*, p_c, \Phi_c), p_{\Phi}^* = p_{\Phi c}(r^*, p_c, \Phi_c)$$

2. For the outer domain: a boundary value problem for Φ :

$$p = 0, \epsilon = 0, \Phi_{\Delta} = 1$$

After introducing the EOS, we solve the ODE system + the initial and boundary conditions for the unknown functions m(r), p(r), $\Phi(r)$, $p_{\Phi}(r)$.

In the case of GR, the white dwarfs are described well even in the polytropic approximation:

 $M_{WD} = 0.17 - 1.3 M_{\odot}$ $R_{WD} = 0.008 - 0.02 R_{\odot}$ $\rho_{WD} = 10^5 - 10^9 gr/cm^3$ Composition: *He*, *C*, *O* The ODE system:

$$\frac{dM(r)}{dr} = \beta r^2 \epsilon$$
$$\frac{dp(r)}{dr} = \frac{\alpha \epsilon M(r)}{r^2}$$
$$\epsilon = (p(r)/K)^{1/\nu}$$

Here the integration has been performed using Maple. /M(r) is in M_{\odot} , r in [km]/

Бели джуджета в MDG (за A/Z = 2.15)

In the case of white dwarfs, we use the polytropic EOS in the two regimes – the relativistic case $(k_F >> m_e)$ and the non-relativistic case $k_F << m_e$:

$$p_{nonrel} = K_{nonrel} \epsilon^{\frac{5}{3}}, p_{rel} = K_{rel} \epsilon^{\frac{4}{3}},$$

where

$$\mathcal{K}_{nonrel} = \frac{\hbar^2}{15\pi^2 m_e} \left(\frac{3\pi^2 Z}{Am_N c^2}\right)^{5/3}, \\ \mathcal{K}_{rel} = \frac{\hbar c}{12\pi^2} \left(\frac{3\pi^2 Z}{Am_N c^2}\right)^{\frac{4}{3}}$$

We make the equation dimensional following [Sibar and Reddy (2004)].

Model	r _{MDG}	m _{MDG}	r _{GR}	m _{GR}
Relativistic WD ($p0 = 10^{-14}$)	4 947	1.2406	4840	1.2431
Relativistic WD ($p0 = 10^{-15}$)	8 799	1.2419	8600	1.2432
Relativistic WD ($p0 = 10^{-16}$)	15 648	1.2427	15 080	1.2430
Non-Relativistic $(p0 = 10^{-15})$	10 603	0.3929	10 620	0.3941
Non-Relativistic $(p0 = 10^{-16})$	13 349	0.1969	13 360	0.1974

Бели джуджета в МДГ (M в слънчеви маси, r в km, р в $ergs/cm^3 * 10^{38}$)

26 / 37

Двете безразмерни налягания и малко забавления с метода на Rosenbrock във FORTRAN

Деница Стайкова, Пламен Физиев МДГ от космологията до компактните

Случаят на TOV неутронна звезда

If one uses the Tolman-Oppenheimer-Volkov (TOV) model for EOS (ideal Fermi neutron gas at zero temperature):

$$M = 1.4 - 2M_{\odot}$$

 $R = 12 - 13km$
 $\rho = 10^9 - 10^{17} kg/m^3$
Composition: $n^0(...)$

$$\epsilon = rac{1}{4\pi} K(\sinh(t) - t), p = rac{1}{12\pi} K(\sinh(t) - 8\sinh(t/2) + 3t)$$

Here
$$K = \pi \frac{m^4 c^5}{4h^2}$$
, $t = 4\log\left(\frac{p_F}{mc} + \left(1 + \left(\frac{p_F}{mc}^2\right)\right)^{1/2}\right)$ and

 $p = \sqrt{\Lambda}\hbar/cm_{\Phi} = 10^{-21}$ (the dilaton mass parameter, for observational consistency, $p < 10^{-30}$), $\Lambda \sim 10^{-44} km^{-2}$,

EOS in the original notations of [Oppenheimer & Volkoff (1939)], see also [Rezzola & Zanotti (2013)].

We use MAPLE to solve the ODE system using the shooting method for the BC and the rosenbrock method for the integration.

Fiziev, Physical Review D 87, 044053 (2013)

FIG. 7: Mass - radius relations for IFNG0T in GR $(m^*_{max}\approx.7051\,m_\odot,r^*_{max}\approx9.209$ km) and in MDG $(m^*_{max}\approx.5073\,m_\odot,r^*_{max}\approx7.092$ km)

0 200

(ф)

Включването на уравненията в COCAL, c Antonios Tsokaros, ITP

As part of my COST visit at the ITP, the MDG static equations were implemented in the Compact Object CALculator (Tsokaros et al. in prep (2014)).

Some preliminary results for the NS case /here $\gamma = 2/$:

Структура на НЗ

6

Различни EOS

Деница Стайкова, Пламен Физиев МДГ от космологията до компактните

Различни EOS

Резултатите на кратко

- Уравненията в МДГ възстановяват GR с добра точност (Ф = 1, U(1) = 1, Λ = 0)
- ² За масивен дилатон, кривите на M(R)са подобни на тези в GR
- В случая на неутронни звезди, общата маса е 30% от тази на H3
- За бели джуджета, масата на диласферата е около ~ 27% от тази на звездата
- Масата на белите джуджета расте с включването на масивен дилатон
- ${f 0}$ Достигнатата маса за дилатона към момента е ($d\sim 10^{-20})$, което е доста над нужното $\sim 10^{-30}.$

Резултатите в случаите на тези просто уравнения на състоянията са обещаващи, но са нужни нови кодове, за да се решат уравненията за много лек дилатон! Деница Стайкова, Пламен Физиев МДГ от космологията до компактните 29 март 2015 г. 34 / 37

Благодаря за вниманието!

References I

Fiziev

Withholding Potentials, Absence of Ghosts and Relationship between Minimal Dilatonic Gravity and f(R) Theories

PRD 87, 044053 (2013), arXiv:1209.2695

Fiziev

Compact static stars in minimal dilatonic gravity arXiv arXiv:1402.2813 [gr-qc]

Sibar and Reddy

AJPhysics 72, 892 (2004)

J. Madej, M. Nalezyty and L. G. Althaus

Mass distribution of DA white dwarfs in the First Data Release of the Sloan Digital Sky Survey A&A 419, L5-L8 (2004)

Özel, Feryal, Dimitrios Psaltis, Ramesh Narayan, and Antonio Santos Villarreal.

On the Mass Distribution and Birth Masses of Neutron Stars ApJ 757 (1) (September 20): 55. (2012)

Corbelli, E. Salucci, P.

The extended rotation curve and the dark matter halo of M33 *MNRAS*, 311, 2 : 441-447 (2000)

D. Clowe, et al.,

ApJ, 648, L109 (2006)

References II

D. Huterer

Weak lensing, dark matter and dark energy GRG, 42, 2177 (2010), arXiv:1001.1758 [astro-ph.CO]

N. Gehrels, E. Ramirez-Ruiz, D.B. Fox

Gamma-Ray Bursts in the Swift Era Annual Review of Astronomy and Astrophysics, 2009, vol. 47: 567-617

J. R. Oppenheimer and G. M. Volkoff

On Massive Neutron Cores Phys. Rev. 55, 374 – Published 15 February 1939

L. Rezzola, O. Zanotti

Relativistic Hydrodynamics, Oxford University Press (2013)

L. Samushia et al.

The clustering of galaxies in the SDSS-III BOSS: measuring growth rate and geometry with anisotropic clustering"

29 март 2015 г.

37 / 37

MNRAS, Volume 439, Issue 4, Pp. 3504-3519.

R. Reyes et al.

Confirmation of general relativity on large scales from weak lensing and galaxy velocities Nature 464, 256-258 (11 March 2010)

M. Kramer et al.

Tests of general relativity from timing the double pulsar Science 314 (5796): 97-102 (2006)