Cosmological solutions from two-measures model with inflaton field

Denitsa Staicova¹ Mihail Stoilov¹

¹INRNE, Bulgarian Academy of Sciences

III. Annual Workshop of COST Action MP1405 Quantum Structure of Spacetime (QSpace), Sofia, 19-23 February 2018

The darkon model in FLRW metric, Mod. Phys. Lett. A, 32, 1 (2017)

If we apply the two-measures darkon model in the f(R) gravity(Guendelman, Nissimov and Pacheva ([1],[2])),

$$S_{darkon} = \int d^4x \sqrt{-g} (R(g,\Gamma) - \alpha R^2(g,\Gamma)) + \int d^4x (\sqrt{-g} + \Phi(C)) L(u,X)$$

with $\Phi(C) = \frac{1}{3} \epsilon^{\mu\nu\kappa\lambda} \partial_{\mu} C_{\nu\kappa\lambda}$, $L(u, X) = -\frac{1}{2} g^{\mu\nu} \partial_{\mu} u \partial_{\nu} u - V(u)$ The Friedman–Lemaître–Robertson–Walker metric with k = 0 is:

$$ds^2 = -dt^2 + a(t) \left[dr^2 + r^2 \left(d heta^2 + \sin^2 heta darphi^2
ight)
ight].$$

From the Friedman equations ($G_{00} = T_{00}$), the energy density is:

$$\rho = \frac{1}{8\alpha}\dot{u}^2 + \frac{3}{4}\frac{\rho_u}{a(t)^3}\dot{u} - \frac{1}{4\alpha}$$
(1)

where for the constant p_u we have from the equations of motion:

$$\mathsf{a}(t)^3 \left[-\frac{1}{2\alpha} \dot{u} + (\frac{1}{4\alpha} - 2M) \dot{u}^3 \right] = \mathsf{p}_u \quad (= \text{const}) \tag{2}$$

The miracles of a simple cubic equation

We rewrite the last cubic equation for \dot{u} Eq. (2), as

 $y^3 + 3ay + 2b = 0$ with $a = -\frac{2}{3-24\alpha M}$ and $b = -\frac{2\alpha p_u}{a(t)^3(1-8\alpha M)}$.

The solutions are $(y_3 = \frac{y_2 - i\sqrt{3}y_1}{2})$:

$$y_1 = -\frac{\mathbf{a}}{(-\mathbf{b} + \sqrt{\mathbf{a}^3 + \mathbf{b}^2})^{1/3}} + (-\mathbf{b} + \sqrt{\mathbf{a}^3 + \mathbf{b}^2})^{1/3}$$

$$y_2 = \frac{\mathbf{a}}{(\mathbf{b} - \sqrt{\mathbf{a}^3 + \mathbf{b}^2})^{1/3}} - (\mathbf{b} - \sqrt{\mathbf{a}^3 + \mathbf{b}^2})^{1/3}$$

We define the following piecewise functions, real in the whole plane [a, b]:

$$y_b = \begin{cases} y_1 \text{ for } (a,b) \in \{a \ge 0\} \cup \{a < 0 \cap b < 0\} \\ y_2 \text{ for } (a,b) \in \{a < 0 \cap b > 0\} \end{cases} \qquad y_s = \begin{cases} y_1 \text{ for } b > 0 \\ y_2 \text{ for } b < 0. \end{cases}$$

After rescaling time by $2|\alpha|/3 = 1$ and absorbing α into Hubble constant ($\bar{\rho} = 4|\alpha|\rho$): Final form of the Friedman equation: With asymptotic:

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \bar{\rho} = \left(\frac{1}{2}y^2 + \frac{\mathbf{b}}{\mathbf{a}}y - 1\right) \quad (3) \qquad \bar{\rho} \xrightarrow[a(t)\to\infty]{} \begin{cases} 1 \text{ for } \mathbf{a} > 0\\ -\frac{3}{2}\mathbf{a} - 1 \text{ for } \mathbf{a} < 0 \end{cases}$$

Universe evolution with and without phase transition

Using y_b (corresponding to $\bar{\rho}$) and y_s (to $\bar{\bar{\rho}}$) we integrate numerically Eq.3:

"Phase transition" or "quenching" to the lower state: If at t = 0, $\bar{\rho} > 0$ and $\bar{\bar{\rho}} < 0$, but for certain moment t_{ρ} : $\bar{\bar{\rho}}(a(t_{\rho})) = 0$, then for $t > t_{\rho}$ we have two possible "states" $\bar{\rho}$ and $\bar{\bar{\rho}}$ of the Universe:

$$0 \le \bar{\bar{\rho}} < \bar{\rho} \quad \text{for} \quad t \ge t_{\rho}. \tag{4}$$

We can observe phase transition of the first kind.

Our best fit against Supernovae data and standard fit

$$b_{\pm} = \sum_{0}^{4} \pm c_{i}a^{i} + O(a^{5}), c_{i} = [0.337906, 0.376679, -0.0251697, 0.00148545, 0.11272710^{-3}]$$

Including inflation into the model

Following Guendelman, Nissimov and Pacheva [4, 5] (where in $S_{darkon} \alpha = 0$))

$$S = S_{darkon} + \int d^4 x \Phi_1(A)(R + L^{(1)}) + \int d^4 x \Phi_2(B) \left(L^{(2)} + \frac{\Phi(H)}{\sqrt{-g}} \right)$$

where we have

$$L^{(1)} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi), V(\phi) = f_{1}e^{-\alpha\phi}$$
$$L^{(2)} = -\frac{b}{2}e^{-\alpha\phi}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi + U(\phi), U(\phi) = f_{2}e^{-2\alpha\phi}$$

From the equations of motion we have:

$$p = -2M_0 = const, \frac{\Phi_2(B)}{\sqrt{-g}} = \chi_2 = const$$
$$R + L^{(1)} = -M_1 = const, L^{(2)} + \frac{\Phi(H)}{\sqrt{-g}} = -M_2 = const$$
$$U_{eff}(\phi) = \frac{(V_1(\phi) + M_1)^2}{4\chi_2(U(\phi) + M_2)} \text{ with } U_- = \frac{f_1^2}{4\chi_2 f_2}, U_+ = \frac{M_1^2}{4\chi_2 M_2}$$

From the requirement that the vacuum energy density of the early Universe U_{-} should be much bigger than that of the late Universe U_{+} follows that:

$$\frac{f_1^2}{f_2} >> \frac{M_1^2}{M_2}$$

The equations in FLRW

The system of equations that need to be solved in order to obtain the evolution of the Universe is the following:

$$v^{3} + 3av + 2b = 0 \text{ for } a = \frac{-1}{3} \frac{V(\phi) + M_{1} - \frac{1}{2}\chi_{2}be^{-\alpha\phi}\dot{\phi}^{2}}{\chi_{2}(U(\phi) + M_{2}) - 2M_{0}}, b = \frac{-p_{u}}{2a(t)^{3}(\chi_{2}(U(\phi) + M_{2}) - 2M_{0})}$$
(6)

$$\dot{a}(t) = \sqrt{\frac{\rho}{6}}a(t), \ \rho_{=}\frac{1}{2}\dot{\phi}^{2}(1+\frac{3}{4}\chi_{2}be^{-\alpha\phi}v^{2}) + \frac{v^{2}}{4}(V+M_{1}) + \frac{3p_{u}v}{4a(t)^{3}}$$
(7)

$$\ddot{a}(t) = -\frac{1}{12}(\rho + 3p)a(t), \ p_{=}\frac{1}{2}\dot{\phi}^{2}(1 + \frac{1}{4}\chi_{2}be^{-\alpha\phi}v^{2}) - \frac{v^{2}}{4}(V + M_{1}) + \frac{p_{u}v}{4a(t)^{3}}$$
(8)

$$\frac{d}{dt}\left(a(t)^{3}\dot{\phi}(1+\frac{\chi_{2}}{2}be^{-\alpha\phi}v^{2})\right)+a(t)^{3}(\alpha\frac{\dot{\phi}^{2}}{4}\chi_{2}be^{-\alpha\phi}v^{2}+\frac{1}{2}V_{\phi}v^{2}-\chi_{2}U_{\phi}\frac{v^{4}}{4})=0$$
(9)

Note that here Eq. (8) is optional and it offers an independent way to evaluate $\ddot{a}(t)$. The differential system above is of first order with respect to a(t) and of second order with respect to $\phi(t)$.

To evaluate it we use the implemented in Maple Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant.

Initial and boundary conditions:

I. $a(0) = 10^{-12}$, $\phi(0) = \phi_0$, $\dot{\phi}(0) = 0$, II. a(1) = 1, III. a''(t) = 0 in 3 points + correct sign

The evolution of the Universe in the [a, b] plane

Evolution of the parameters $[\mathbf{a}(t), \mathbf{b}(t)]$ for the darkon (dash) and the inflaton (dot-dash). With solid line is the line where y_i change validity

The evolution of the Universe starts from $b \to -\infty$ and finishes at $b \to 0$ We have chosen the parameters in such a way that: $b = \frac{-p_u}{2a(t)^3(\chi_2(U+M_2)-2M_0)} < 0.$

Numerical solutions, Staicova & Stoilov, arXiv:1801.07133

Figure: a) The effective potential with crosses at: t = 0, 1, 4. b) Plot of $\ddot{a}(t)$ and the EOS $w = p/\rho$, where UM is ultra-relativistic matter domination , EI – the early inflation, MD – the matter domination (MD) and LI – the late inflation.

Numerical solutions - the inflaton

Note, the inflation experience friction, due to which inflation stops before reaching the U_+ part of the potential

The main requirement of the model:

$$f_1^2/f_2 >> M_1^2/M_2$$

is satisfied for all our numerical results.

Parameter	Theory	Numerics
<i>M</i> ₁	$\sim M_{FW}^4 = 4.10^{-60}$	$1/250 = 4 \times 10^{-3}$
M ₂	$\sim M_{Pl}^{\overline{4}} = 4$	4
f_1	$\sim 10^{-8}$	$1 imes 10^{-5}$
f ₂	$\sim 10^{-8}$	10 ⁻⁸
M ₀	$\Lambda^{Pl} \sim 10^{-122}$	$\Lambda = 1 imes 10^{-4}$
α	$10^{-20} - 0.2$	0.54

Time scale considerations:

Matter domination is considered to start at $a_{MD}(t) \sim 3 \times 10^{-4}$, the accelerated expansion – at $a_{AE}(t) \gtrsim 0.6$. Our current best result $a_{MD} = 0.2$, $a_{AE} = 1.2$ **Conclusion:**

The two-measures model with darkon and inflaton scalar fields is able to reproduce the required epochs of the evolution of the Universe, but further study of the parameter space is required.

Thank you for you attention!

The work is supported by Program for support of young scientists in the Bulgarian Academy of Sciences project Generalized models of gravity and cosmology DFNP – 49/21.04.2016, DFNI-T 02/6, BAS contract DFNP – 49/21.04.2016 and by Bulgarian NSF grant DN-18/1/10.12.2017

References

- E. I. Guendelman et al., *Emergent Cosmology, Inflation and Dark Energy*, General Relativity and Gravitation 47 (2015) art.10

- E. I. Guendelman et al., *Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form*, European Physics Journal C, arXiv:1508.02008 [gr-qc]
- E.I. Guendelman, E. Nissimov and S. Pacheva, *Unified dark energy and dust dark matter dual to quadratic purely kinetic k-essence*, Eur.Phys.J. C **76:90 (2016)**, arXiv:1511.07071 [gr-qc]
- E. I. Guendelman, E. Nissimov and S. Pacheva., Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form, European Physics Journal C, arXiv: arXiv:1609.06915[gr-qc]
- E. I. Guendelman et al., Emergent Cosmology, Inflation and Dark Energy, European Physics Journal C, arXiv:11408.53446 [gr-qc]
- **Suzuki et al. (The Supernova Cosmology Project)**, *The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above zi1 and Building an Early-Type-Hosted Supernova Sample*, **ApJ 746**, **85 (2012)**