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Уводни бележки
Квантовата теория на полето (КТП/QFT – Quantum Field

Theory) е съвременният апарат (теоретична рамка) на теория
на елементарните частици. Съгласно тези представи елементар-
ните частици не са никак елементарни нито в пряк, нито в пре-
носен смисъл, а са по-скоро прояви на някакъв колективен фе-
номен, наречен квантово поле. Ние ще демонстрираме тази идея
в настоящите лекции на модела на трептения на кристална ре-
шетка (или по-точно, на едномерния му вариант – трептяща
верижка), чийто елементарни възбуждения се наричат фонони
и имат характер на частици. Във физиката фононите са пример
на така наречените квазичастици, но съгласно КТП елементар-
ните частици са “точно толкова” нереални или както по-точно
казват ефективни обекти, колкото и квазичастиците като фоно-
ните. Тези идеи в КТП и съпровождащия ги теоретичен апарат
по такъв начин придобиват приложимост далеч извън предели-
те на физиката на елементарните частици. Например, методите
на КТП се използват отдавна във физиката на кондензираната
материя (condensed matter physics).

Единици и мащаби във физиката и ми-
кросвета

Като увод към тези лекции ще започнем с обзор по мащабите и
единиците, които са характерни за физиката на елементарните
частици. Този увод не е съществен за настоящия курс, но ще
послужи за едно общо припомняне на някои основни понятия
от физиката, които се изучават още в училище. Преди всичко
да си припомним, че във физиката боравим с величини, които
невинаги са сравними и по тази причина не всякакви числови
операции над тях са допустими. Например, събирането на дъл-
жина и маса е лишено от всякакъв смисъл. От друга страна,
умножаването и деленето е винаги допустимо и тогава получа-
ваме величини с производен характер, като например скоростта,
която е отношение на разстояние и време. Тези на пръв поглед
очевидни и естествени правила налагат силни ограничения във
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формата на физичните закони.

В механиката започваме с три основни величини и съответно
единици: L (дължина, m - метър), T (време, s - секунда), M
(маса, kg - килограм), а ето и някои от основните производни
величини:

скорост: V = LT−1

ускорение: A = VT−1 = LT−2

сила: F = AM = LT−2 M
енергия: E = V2 M = L2 T−2 M

(Размерностите на сила и енергия се пресмятат от основните
закони в механиката, като връзката между сила F , ускорение
a и маса m, F = ma, както и формулата за кинетична енергия

на материална точка с маса m и скорост v, Ekin =
mv2

2
).

Във физическите закони при изразяване на релации между
величини с различни размерности възникват константи, които
изравняват тези размерности. Един от първите примери за това
е законът на Нютон за всемирното притегляне (Newton’s law of
universal gravitation, 1687):

Fg︸︷︷︸ = kg
m1m2

r2︸ ︷︷ ︸
LT−2 M

(размерност)
M2 L−2

(размерност)

Фигура 1: Гравитационно привличане между две материални
точки

където Fg е големината на силата на привличане между две
материални точки с маси m1 и m2 разположени на разстояние
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r една от друга. Както виждаме, различието в размерностите
от двете страни на равенство налага въвеждане фундаментал-
на физична константа kg, наречена гравитационна константа,
имаща нетривиална размерност, която се означава с [kg] и се
изразява непосредствено:

[kg] = L3 T−2 M−1 .

Около 100 години по-късно подобен закон е открит от Кулон
(Coulomb, 1785) за нов тип сили, електростатичните:

Fe︸︷︷︸ = ke
q1 q2

r2︸︷︷︸
LT−2 M Q2 L−2

Фигура 2: Електростатични сили между два едноименни (ед-
накви по знак) точкови заряди

където Fe е големината на електростатичната сила на отблъск-
ване (или привличане в зависимост от знаците на електричните
заряди) между два точкови заряда q1 и q2 разположени на раз-
стояние r един от друг.

Независимо, че законите за Fe и Fg са математически иден-
тични, между тях има една съществена разлика от метрологич-
на гледна точка. Електростатичната сила е единственото про-
явление на електричните заряди, известно до този момент. Ето
защо, законът на Кулон може да се приеме като определящ еди-
ницата за електричен заряд, която абстрактно сме означили с
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Q по-горе. Това на практика означава да положим електроста-
тичната константа ke, която е въведена в закона на Кулон, за
равна на 1 (или друга подобна числова стойност).

Така фактически закона на Кулон не въвежда нова физична
константа и това щеше да остане така, ако зарядите нямаха и
друга динамична проява. А именно, движещите се заряди си
взаимодействат с нов тип сила, магнитната сила. Движещите се
заряди формират ток I (по определение I е протекъл заряд за
единица време). Законът за големината на силата Fm, с която
си взаимодействат два тока I1 и I2 течащи по два успоредни
проводника с (достатъчно голяма) дължина l, разположени на
разстояние r един от друг е открит от Ампер (Ampère’s force,
1820):

Fm︸︷︷︸ = km I1 I2
2 l

r︸ ︷︷ ︸
LT−2 M

(размерност)
I2

(размерност)

Фигура 3: Сила на Ампер

Константите ke и km (електростатичната и магнитната) прес-
тават да бъдат независими от метрологична гледна точка. На-
истина, ако отчетем връзката между единиците за ток и заряд:

I = QT−1

и разделим почленно размерностите в законите за Fe и Fm, то
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ще получим([
Fm
Fe

]
=

)
1 =

[
km
ke

]
Q2 T−2

Q2 L−2
, т.е.

[
km
ke

]
=

L2

T2

има размерност на квадрат на скорост и следователно

c =

√
km
ke

въвежда нова фундаментална физична константа с размерност
на скорост. В края на 19-ти век тази константа е свързана от
Максуел (James Maxwell) със скоростта на разпространение (във
вакуум) на така наречените електромагнитни вълни. Заедно с
това е установено и че светлината е електромагнитно лъчение
(вълна) и така константата c съвпада със скоростта на светли-
ната. Връзката между скоростта на светлината и законите на
електромагнетизма е едно от най-великите открития във физи-
ката и е в основата на (специалната) теория на относителността.
Както видяхме по-горе предпоставките за това са налице още с
откриването на закона за силите на Кулон, Fe, и на Ампер, Fm,
тъй като това показва, че тези закони, които от една страна са
еднакви във всички инерциални отправни системи, съдържат
в себе си фундаментална константа с размерност на скорост,
която по такъв начин също се оказва универсална за всички
инерциални отправни системи. В първата лекция ние ще нап-
равим малко по-подробен преглед на класическата електроди-
намика, уравненията на Максуел и постоянството на скоростта
на светлината.

Последната фундаментална константа, на която ще се спрем
в този обзор, е константата ~ на Планк (Макс Планк, Max
Planck) предложена от него през 1900, като връзка между енер-
гия E и (кръгова) честота ω на електромагнитното лъчение в
закона за излъчване на абсолютно черно тяло:

E = ~ω .

По-късно в този курс ние ще въведем константа на Планк ~ във
връзка с постулатите на квантовата механика и по-специално с
така наречените канонични комутационни съотношения. За це-
лите на метрологичния преглед, който правим в момента, за
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нас е важно единствено, че тъй като честотата е величина, ха-
рактеризираща периодично явление и се определя като единица
върху период от време, то

E = [ ~ ] T−1 ⇒ [ ~ ] = ET = L2 T−1 M

(след като заместим размерността E на енергията, която изве-
дохме по-горе).

В резюме, да отбележим, че стартирайки от трите основни
размерни величини в механиката: дължина L, време T и ма-
са M, ние въведохме три фундаментални физични константи,
които се оказват с независими размерности:

гравитационна константаkg : [ kg ] = L3 T2 M−1 ,

скорост на светлинатаc : [ c ] = LT−1 ,

константа на Планк~ : [ ~ ] = L2 T−1 M .

Разполагайки с три връзки между трите независими единици
L, T и M ние можем да ги изразим обратно чрез размерностите
на фундаменталните константи:

L = [ kg ]1/2 [ ~ ]1/2 [ c ]−3/2

T = [ kg ]1/2 [ ~ ]1/2 [ c ]−5/2

M = [ kg ]−1/2 [ ~ ]1/2 [ c ]1/2 .

По такъв начин константите kg, c и ~ въвеждат абсолютни ета-
лони за основните единици – това са така наречените планкови
единици (Planck’s units):

планкова дължина (Planck’s length) :

lP =

√
kg ~
c3

= 1.616 · 10−35 m ,

планково време (Planck’s time) :

tP =

√
kg ~
c5

= 5.391 · 10−44 s ,

планкова маса (Planck’s mass) :

mP =

√
c ~
kg

= 2, 177 · 10−8 kg .
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Метрологичният смисъл на горните еталони е, че това са еди-
ниците, при които константите kg, c и ~ имат стойност 1. Фи-
зическият смисъл на планковите единици все още не е напълно
изяснен (нека направим аналогия с константата c, която е нали-
це още през 1820 с откриването на закона за силата на Ампер,
но тя получава пълна физична интерпретация десетилетия по-
късно в теория на Максуел за електромагнетизма). Съвремен-
ното схващане за смисъла на планковите единици е, че това са
мащабите, при които гравитацията (или пространство-времето)
започва да проявява квантови свойства.

В този курс от лекции от фундаменталните константи kg,
c и ~ ще играят роля константите c и ~, отначало независимо,
а в последствие и съединени в така наречената релативистич-
на квантова механика (Relativistic Quantum Mechanics), която
фактически е същинската част на квантовата теория на поле-
то. Константата на Планк ~ ще въведем във връзка с кванто-
вата механика. Скоростта на светлината c ще обсъдим подроб-
но заедно с увод в специалната теория на относителността. За
съжаление обаче последната останала, но исторически първа
фундаментална константа, гравитационната kg, няма да играе
никаква роля в този курс. Създаването на обединена теория
на гравитацията и квантовите полета остава все още неизпъл-
нима задача, макар и да е едно от интензивно развиващите се
направления в съвременната теоретична физика.

В квантовата теория на полето широко разпространена и
удобна система от единици е системата, в която константите
~ и c са равни на 1. Разполагайки само с две връзки между
основните механични единици L, T и M (които идват от раз-
мерностите на ~ и c), ние можем да изключим две единици и да
оставим една независима механична единица. Често за базис-
на механична единица в теорията на елементарните частици се
използва енергията,

E = c2 M = ~T−1 = c ~L−1.

С други думи, по модул ~ и c (т.е., ако ~ = c = 1):

L = T = M−1 = E−1
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(в частност виждаме, че E и M са дуални или още реципрочни
единици на пространство-временните).

От друга страна, съществува специален еталон за енергия
съобразен с естествените мащаби в микросвета. Това е елект-
ронволта (electronvolt, eV):

1 eV = 1.602 · 10−19 J (kg m2 s−1)

Фигура 4: Електронволт е енергията, която придобива (или гу-
би) електрон при преминаване през електричен потенциал от 1
волт (Volt)

това е енергията, която придобива (или губи) електрон при пре-
минаване през електричен потенциал от 1 волт (Volt). При този
еталон за енергия масата не електрона, например се равнява на

me = 511 KeV (103 eV) = 9.11 · 10−31 kg.

Други два примера: планковата единица = 1.22·1016 TeV (1012 eV)

(с други думи това е планковата енергия). Подбрали сме тук
за опорна единица TeV(тера електронволт), тъй като това е
порядъкът на най-високите енергии, при които досега са уско-
рявани елементарните частици (за ЦЕРН 10 TeV). И вторият
пример: характерен атомен мащаб е така нареченият радиус на
Бор (Нилс Бор, Niels Bohr):

5.29 · 10−11 m = 1.35 KeV (103 eV).

Ще завършим нашия обзор по единиците мащабите в теория
на елементарните частици с едно сравнение между електроста-
тичната и гравитационната сила, с които взаимодействат два
електрона:
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Фигура 5: Сравняване между гравитационната и електроста-
тичната сила между два електрона

И така, ако с e означим елементарния електричен заряд (заря-
дът на електрона), а с me означим масата на електрона, то от
законите на Кулон и Нютон, които описахме в началото, полу-
чаваме съответно:

Fe =
ke e

2

r2
, Fg =

kgm
2
e

r2
.

Така числителите на двата закона имат еднаква размерност и
тя непосредствено се проверява, че може да се изрази чрез ~ и
c: [

ke e
2
]

=
[
kgm

2
e

]
= [ ~ c ] .

С други думи, в системата ~ = c = 1, ke e2 и kgm2 са безразмерни
числа, чийто стойности се оказват съответно:

α :=
ke e

2

~ c
≈ 7.28 · 10−3 ≈ 1

137
- константа на фината структура
kgm

2
e

~ c
=

m2
e

m2
P

= 1.75 · 10−45 .

Така отношението между двете сили Fe и Fg в случая на двата
електрона е

Fe
Fg

=
ke e

2

kgm2
e

= 4.17 · 1042,

което показва, че гравитацията играе изключително пренебре-
жима роля в микросвета. Това е и причината квантовата гра-
витация да е така „неуловима“ не само от теоретична, но и от
експериментална гледна точка.
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Въведената числова константа α се приема за основна харак-
теристика на електромагнитното взаимодействие в квантовата
теория на полето и се нарича още негова константа на връзката
(coupling constant).
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В тази лекция ще направим преглед на класическата елек-
тродинамика, който е значително по-подробен от колкото ни е
нужно за целите на настоящия курс. Електромагнетизмът оба-
че е основен и класически пример на полева теория, което и ни
кара да му отделим това по-особено внимание. Електромагнит-
ните явления са в основата на почти цялото разнообразие на
заобикалящите ни вещества и явления свързани с тях, и всичко
това следва да намери своето завършено описание в квантовата
електродинамика – едно от основните приложения на кванто-
вата теория на полето.

С настоящата лекция си поставяме две главни цели. Първо,
да покажем как законите на електромагнетизма завършени в
теорията на Максуел (James Maxwell) указват на това, че елек-
тромагнитното поле е самостоятелно съществуващ преносител
на взаимодействие. И второ, да покажем едно от най-великите
теоретични предсказания във физиката: постоянството на ско-
ростта на светлината. Последното е довело до възникването на
специалната теория на относителността, с която ще се занимаем
в следващите две лекции.
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1. Електромагнитното поле и неговото въз-
действие: електричен заряд и сила на Лоренц
Електродинамиката (electrodynamics) или още, електромагне-
тизма (electromagnetism) описва един клас от сили на взаимо-
действие между тела притежаващи специфична характеристи-
ка, наречена електричен заряд (electric charge). Всъщност, елек-
тричният заряд е именно количествения израз на способността
на едно тяло, както да възприема, така и да въздейства чрез
електромагнитни сили. Електричният заряд, подобно и масата
на телата е разпределен в обема на тялото, възможно и по неед-
нороден начин. За описание на това разпределение се въвежда
функция ρ(r, t) на точките r = (x, y, z) на тримерното прос-
транство и на времето t, наречена плътност на електричния
заряд. Тук и по-нататък в тази лекция сме приели, че работим
в една (произволна) инерциална отправна система, която е оп-
ределена от координатна система в тримерното пространство (с
оси x, y и z) и време t. По детайлно припомняне и анализ на та-
кива основни понятия от класическата механика, като отправна
система и инерциалност ще направим в следващата лекция.

И така, пълният електричен заряд q в определена област от
тримерното пространството Ω ⊆ R3 в даден момент от време t
ще се даде от интеграла на плътността ρ(r, t) в тази област:∫

Ω

ρ(r, t) d3r =: q , (1.1)

където d3r = dxdydz е обемния елемент на интеграла. Ако Ω в
(1.1) съвпада с цялото пространство R3, то полученият заряд
q е пълния електричен заряд намиращ се в пространството в
момента от време t. Съгласно закона за запазване на електрич-
ния заряд, пълният заряд не трябва да се променя с времето.
Малко по-късно в тази лекция ще се върнем на по-детайлна
формулировка на този закон, която включва и движението на
зарядите в пространството зададено от разпределението на ел-
ектричния ток.

Още в началото, нека да отбележим че в отличие от масата,
електричният заряд, както и неговата плътност могат да бъдат
както положителни, така и отрицателни!
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Исторически, електричният заряд е въведен на базата на
електростатичното взаимодействие на заредени тела изразено
чрез закона на Кулон. Ние ще се отклоним от тази линия на
изложение и предполагайки електричния заряд на телата за да-
деност, ще определим какво е най-общото понятие за електро-
магнитно поле. Електромагнитното поле се определя единстве-
но посредством въздействието си върху заредените тела. Това
въздействие се изразява в определена сила F, електромагнит-
ната сила, с която полето действа на заряда. Тук обаче срещаме
едно принципно затруднение: самото зареденото тяло също е из-
точник на електромагнитно поле, което ще доведе до смущение
на измерването. Ето защо се въвежда идеализацията за пробен
електричен заряд, който изпълнява редица условия целящи да
прецизират измерването. Тези изисквания включват:

• пробния електричен заряд е достатъчно малък по размер
за да може да улови измененията на електромагнитно-
то поле в пространството. Пределният случай на точков
електричен заряд се оказва в противоречие със следващо-
то ни условие, тъй като както ще видим по-нататък точко-
вият заряд е “сингулярен” обект водещ след себе си редица
безкрайности.

• След достигне на задоволителен размер на зареденото про-
бно тяло (за целите на измерването) следва изискване за
големините на неговия заряд, скорост и ускорение, които
следва да са достатъчно малки за да може, както казахме
по-горе, да бъде по-малко и пренебрежимо, и смущение-
то върху измерването (породено от излъчваното от тялото
електромагнитно поле).

Фигура 1: Електромагнитна сила действаща на пробен заряд
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След тези уговорки експеримента ни показва, че отношение-

то
F

q
на вектора на силата F = (Fx, Fy, Fz) към заряда q на

тялото вече не зависи от спецификата на тялото, а единстве-
но от неговото положение в пространството и начина (закона)
на движението му. Всъщност, именно това и цели въвеждане-
то на електричния заряд като физична величина – да отдели
такива характеристики на електромагнитното въздействие, ко-
ито не зависят от пробните заредени тела. Все още обаче имаме
важна зависимост от движението на тялото. Преди всичко оба-
че, за пробно тяло в покой горното отношение ни дава първата
характеристика на електромагнитното поле: това е векторът

E = (Ex, Ey, Ez) :=
F

q
при скорост 0 ,

който се нарича интензитет на електричното поле. Сила-
та qE се нарича електрична сила. При движение на пробното
тяло е експериментално установено, че тялото получава добав-
ка към електричната сила, наречена магнитна сила, за която е
характерно, че зависи линейно от вектора на скоростта v = (vx,

vy, vz) на тялото и е винаги ортогонална на нея (на скоростта).
Нека да запишем това по следния начин

F

q
= E +B(v) , (1.2)

където B(v) е линейна трансформация върху v, за която ако

въведем матрица B̂ =

 Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

 то ортогоналността

на v и B(v) ще доведе до това, че

(
vx, vy, vz

) Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz


 vx
vy
vz

 = 0 ,

което на свой ред може да се покаже, че е равносилно на това
че матрицата B̂ е антисиметрична, B̂ = −B̂T .1 Така, можем да

1Действително, разгледайте разлагането на матрицата B̂ на симетрична

и антисиметрична част, B̂ = B̂ + B̂T
2 + B̂ − B̂T

2 и покажете, че от ортого-
налността на v и B(v) за всеки вектор v ще следва, че всички собствени
стойности на симетричната част на B̂ са равни на нула.
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запишем

B̂ =:

 0 Bz −By

−Bz 0 Bx

By −Bx 0

 ,

като по такъв начин въвеждаме три мерен вектор B = (Bx, By,

Bz), наречен вектор на магнитната индукция. Така, уравне-
ние (1.2) може да се запише като

Fx = q Ex + q vy Bz и циклична смяна по x, y, z . (1.3)

Изразът в (1.3) може да се запише в чисто векторна форма с
помощта на така нареченото векторно произведение (cross pro-
duct),

F = qE + q v ×B . (1.4)

Последната формула носи името закон за силата на Лоренц
(Hendrik Lorentz) и фактически представлява определението на
електромагнитното поле като задавано във всяка точка r = (x,

y, z) на пространството и момент от време t с двойката векторни
функции

E = E(r, t) и B = B(r, t) .

Нека сега да обърнем внимание на един важен принцип в
механиката, който има далеч отиващи последствия в цялата
физика, включително и в електродинамиката. Това е принци-
па на суперпозицията, съгласно който, ако едно тяло изпитва
няколко въздействия, всяко от които се определя от своя сила,
F1, . . . , Fn, съответно, то сумарното въздействие върху тялото
ще се дава от вектор на силата F (наречен резултантна сила)
равен на сумата на всички действащи сили:

F = F1 + · · ·+ Fn . (1.5)

Разбира се, с това подразбираме, че всяка от силите Fk си има
някакъв механизъм на “включване/изключване”, нещо което на
практика не винаги е изпълнено. Тогава, нека да разгледаме си-
туация, при която след внасяне в пространството на различни
електрични източници, всеки един от тях поражда върху един
пробен заряд електромагнитна сила Fk := (Fk,x, Fk,x, Fk,z) оп-
ределена по закона на Лоренц (1.4) за двойка вектори на елек-
тромагнитното поле Ek := (Ek,x, Fk,y, Fk,z) и Bk := (Bk,x, Bk,y,
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Bk,z), при k = 1, . . . , n. Тогава при едновременното въздействие
на всичките източници върху пробния заряд, съгласно принци-
па на суперпозиция от една страна и линейността на закона
на Лоренц (1.4) от друга„ резултантната действаща сила F (1.5)
би се породила (по закона на Лоренц) от двойката вектори

E = E1 + · · ·+ En ,

B = B1 + · · ·+ Bn , (1.6)

т.е., векторната сума на приносите в електромагнитното поле
на всеки един от източниците. Така, ако регистрираме елект-
ромагнитно поле с помощта на пробен заряд, което е породено
от различни източници, то ние не можем да отделим частта на
Ek и Bk, която съответства на kтия източник. Ние говорим за
едно (общо) електромагнитно поле в дадена точка на прост-
ранството и момент от време, и това поле именно се определя
от функциите E(r, t) и B(r, t).

2. Електричен ток и закон за запазване на
електричния заряд
Движещите се електрични заряди формират това, което нари-
чаме електричен ток. В чист вид, електричният ток са дви-
жещи се заряди в електронеутрална среда. Например, в един
метал имаме положителни и отрицателни заряди, атомните яд-
ра и електроните, които взаимно се компенсират. При прилагане
на електрично поле обаче, електроните лесно преминават в дви-
жение (поради което се наричат “свободни електрони”). С това,
в метала протича електричен ток, но той остава електронеут-
рален. Схема на тази ситуация е отразена на долната фигура.

Фигура 2: Електричен ток в проводник
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Големината (силата) I на електричния ток се определя като
пълния заряд ∆q, който е преминал за единица време през нап-
речното сечение на проводника:

I =
∆Q

∆t
.

Ако движещите се заряди в проводника имат големина на ско-
ростта v, то за това време ∆t те ще навлязат на дължина

∆λ = v∆t

от проводника. Следователно, движещите се заряди са разпре-
делени по дължината на проводника с линейна плътност

∆Q

∆λ
=

I

v
=

∆q

∆`
,

където в последното равенство ∆q е количеството движещи се
електрични заряди в част от проводника с дължина ∆`. От тук
намираме връзката

(∆q) v = I ∆` .

Така, магнитната сила действаща на малък участък ∆` от про-
водник, по който тече електричен ток I се дава според закона
на Лоренц (1.4) от

∆F = (∆q)v ×B = I ∆`×B ,

където ∆` е вектор с дължина ∆` насочен по отсечката на про-
водника. Силата F действаща на един затворен токов контур
C се получава, като разбием този контур на достатъчно малки
сегменти ∆`k и сумираме силите действащи на всеки един от
тях,

F ≈
∑
k

I ∆`k ×Bk .

Последното е риманова интегрална сума, която апроксимира
линейния интеграл:

F =

∮
C

I d`×B(r, t) (2.1)

извършен по контура C на проводника.



22 Лекция 1 9.11.2015/v1

Тъй като електричният ток е свързан с пренос на заряд, ние
можем сега да напишем закона за запазване на електричния за-
ряд в уточнена, локална форма. За целта ще въведем по-фино
понятие за електричния ток допускащо разпределение в обема
на телата подобно на електричния заряд. Това е (векторната)

плътност на електричния ток j(r, t). Нека да поставим малка
мислена площадка с площ ∆s в точката r на тримерното прос-
транство в момент от време t. Съпоставяме на тази площадка
вектор ∆s с големина ∆s насочен перпендикулярно на нея в
посока на нейното лице (следователно, става дума за ориенти-
рана площадка – площадка с лицева страна). Тогава по опреде-
ление j(r, t) = (jx(r, t), jy(r, t), jz(r, t)) е такъв вектор (зависещ
от (r, t)), за който пълният заряд преминал през площадката
∆s за единица време ∆t се дава от:

∆q = (j(r, t) ·∆s) ∆t ,

Фигура 3: Определение на векторна плътност на електричния
ток

където j(r, t) · ∆s е скаларно произведение (то измерва проек-
цията на j(r, t) спрямо посоката на ∆s). Така, ако е оградена
мислена област Ω в тримерното пространство с граница Σ, то
през нея ще протече общ ток равен на повърхнинния интеграл
намиращ се в лявата страна на следното равенство,∫

Σ

j(r, t) · ds =
d

dt

∫
Ω

ρ(r, t) d3r . (2.2)
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Фигура 4: Закон за запазване на заряда

В дясната страна на последното уравнение стои скоростта из-
менението на пълния електричен заряд в областта Ω в момента
t, което е предизвикано от протеклия през границата ток. Ра-
венство (2.2) е и уточнения закон за запазване на електричния
заряд, включващ и електричния ток Законът (2.2) има и дифе-
ренциален запис:

∂jx
∂x

+
∂jx
∂x

+
∂jx
∂x

=
∂ρ

∂t
. (2.3)

Това е пряко следствие от теоремата на Стокс (Stokes’ theo-
rem) във векторното интегрално смятане и формула (2.2), но
този стандартен математически извод тук ще пропуснем.

3. Електромагнитно взаимодействие между
токове и заряди
В тази точка ще представим двата основни закона на електро-
магнитно взаимодействие: законите на Кулон и на Ампер, за
които споменахме още в уводните ни бележки.

Законът на Кулон се отнася за два неподвижни точкови за-
ряди с големини q1 и q2, които са разположени в точки r1 и r2 на
тримерното пространство: те си действат с равни по големина
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и противоположни по посока електрични сили,2

F2→1 = ke q1 q2
r1 − r2

|r1 − r2|3
= −F1→2 , (3.1)

където F2→1 означава силата действаща на заряд q1 от страна
на q2, а ke е така наречената електрична константа (вж. също в
уводните бележки).

Законът за силата на Ампер се отнася за два неподвижни
идеално тънки линейни проводника определени от контури C1

и C2 в тримерното пространство, които си действат отново с
равни по големина и противоположни по посока, магнитни сили,

F2→1 =

∮
C1

∮
C2

km
I1 dl 1 ×

(
I2 dl 2 × (r2 − r1)

)
|r1 − r2|3

(3.2)

=

∮
C1

∮
C2

km

(
I1 dl 1 · I2 dl 2

)
(r1 − r2)

|r1 − r2|3
= −F1→2 ,

Фигура 5: Магнитно взаимодействие на два затворени токови
контури

където I1 и I2 са големините на токовете течащи съответно
по контурите C1 и C2, a km е магнитната константа (спомена-
та в уводните бележки). Второто равенство в (3.2) се извежда
от правилата на векторното интегрално смятане (теоремата на

2полето на неподвижни заряди и силите които действат между тях се
наричат също и електростатични за да се подчертае, че не зависят от
времето поради неподвижността на зарядите
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Стокс) и е приведено за да покаже явната антисиметрия на за-
кона при размяната 1↔ 2, което и води до равенството F2→1 =

−F1→2.
Горните два експериментално установени закона приведохме

единствено за да демонстрираме с тях някои фундаментални
физически заключения до които те водят:

(а) И двата закона изпълняват третия принцип на Нютон:
силите на действието и противодействието са равни по големи-
на, но противоположни по посока. До тук по всичко изглежда,
че електромагнитното взаимодействие е просто силово поле с
което телата си действат едно на друго мигновено на разстоя-
ние. Точно така се е възприемал нютоновия закон за гравита-
цията, който управлява движението на планетите в слънчева-
та система. Законът на Ампер обаче, за разлика от закона на
Кулон, се отнася до протяжни обекти, като контури. Следова-
телно, от него следва да се извлече “ядро”, което да описва как
два малки токови елемента I1∆`1 и I2∆`2 си действат един на
друг.3 Естествен кандидат за тази сила е изразът под интегра-
лите след първото равенство в (3.2):4

∆F2→1 = km
I1 ∆l 1 ×

(
I2 ∆l 2 × (r2 − r1)

)
|r1 − r2|3

6= −∆F1→2 , (3.3)

където да си припомним, че Ik∆`k може също да се замести с
произведението (∆qk)vk на порцията движещ се заряд по век-
тора на скоростта му (k = 1, 2). Така, формула (3.3) ни води до
шокиращото заключение, че третия принцип на Нютон се на-
рушава на ниво магнитно взаимодействие между движещи се
точкови (или дори малки) заряди. Да припомним, че третият
принцип на Нютон е в основата на фундаментални закони, като
запазване на импулса, инерциалност на центъра на масата и т.н.
Нарушаването на този принцип би довело до “ефекти”, като този
на барон Мюнхаузен, което е крайно нежелателно във физика-
та. Какви са възможните изходи? Най-напред, защо всъщност
взехме първия подинтегрален израз в (3.2), а не втория, който

3подобно на формула (2.1)
4тук е използвано, че в общия случай нямаме равенство между I1 ∆l1

×
(
I2 ∆l2 × (r2 − r1)

)
и −I2 ∆l2 ×

(
I1 ∆l1 × (r1 − r2)

)
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е явно антисиметричен? Отговора е прост, вторият израз нару-
шава основния експериментален принцип, с който започнахме в
тази лекция: магнитната сила е винаги перпендикулярна на ско-
ростта, а от друга страна, според втория израз силата F2→1 ще
е винаги колинеарна на свързващия вектор r1 − r2 не зависимо
от посоките на скоростите. Така, за да спасим третия принцип
на Нютон стигаме до съвсем естествения извод, че електро-
магнитното взаимодействие не е мигновено действие на
разстояние. Електромагнитното поле е самостоятелен физи-
чен обект, който приема въздействие от електричните заряди и
обратно им действа. Именно на това ниво, поле – заредено тя-
ло, имаме равенство на действие и противодействие. Тази далеч
отиваща идея за самостоятелността на електромагнитното поле
е била за първи път издигната от Фарадей (Michael Faraday) и
намира своя завършен вид в трудовете на Максуел. Да отбеле-
жим също, че закона за силата на Ампер е всъщност съчетание
на два закона: първият е въведената преди това формула (2.1)
за магнитната сила действаща върху един затворен контур и та-
ка наречения закон на Био–Сварар (Biot–Savart) даващ закона
за магнитната индукция породена от (друг) затворен контур.

(б) Законите на Кулон и Ампер са за точкови обекти и това
води до неограничено нарастване на силите на взаимодействие с
намаляване на разстоянието. С други думи, при електромагнит-
ното взаимодействие на точкови заряди и линейни токове може
да се генерира неограничена енергия. Тази неограниченост води
до нежелани безкрайности, които лишават от физически сми-
съл тези обекти и най-малкото ги правят непригодни за пробни
заряди, например. От друга страна, законите на Кулон и Ампер
задават, въз основа на принципа на суперпозицията, законите
по които обемно разпределени заряди и токове си взаимодейст-
ват. В тези случаи, qk и Ikd`k във формули (3.1) и (3.2) следва
да се заменят съответно с ρ(rk, t) d

3rk и j(rk, t) d
3rk, заедно с

интегриране по rk за k = 1, 2 в обема на всяко едно от телата.
След последната замяна се оказва, че действащите сили вече не
пораждат безкрайности. И все пак, точковите заряди си оста-
ват желан теоретичен модел на елементарна частица. Квантова
теория на полето дава частично разрешение на този проблем,
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но продължава да страда от безкрайностите съпътстващи точ-
ковите обекти.

4. Уравнения на Максуел за електромагнит-
ното поле. Електромагнитни вълни
Функциите E = E(x, y, z, t) и B = B(x, y, z, t) изпълняват и се
определят от система от частни диференциални уравнения, ко-
ито са въведени в пълен вид като система за първи път през
1865 от Максуел и са наречени с неговото име. Забележително
следствие от уравненията на Максуел е, че те допускат ненулеви
променливи решения в отсъствие на източници, като електрич-
ни заряди и токове, т.е., във вакуум. Нещо повече, тези решения
имат вълнови характер и се наричат електромагнитни вълни.
По-долу ще разгледаме един специален вид такива решения:
плоски електромагнитни вълни, заедно с тяхната физична ин-
терпретация.

Уравненията на Максуел във вакуум могат запишат във ви-
да:5

∂Ey
∂x
− ∂Ex

∂y
+
∂Bz

∂t
= 0 и циклична смяна по x, y, z, (4.1)

∂By

∂x
− ∂Bx

∂y
− 1

c2

∂Ez
∂t

= 0 и цикл. смяна по x, y, z, (4.2)

∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= 0 , (4.3)

∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0 . (4.4)

В горните уравнения участва една фундаментална физична кон-
станта c с размерност на скорост, която исторически се получава
изразена чрез други две константи въведени по-рано в закони-
те на Кулон и Ампер, както споменахме в уводните бележки

5Това са общо осем линейни частни диференциални уравнения за шест
функции. Въпреки, че съгласно общата теория такава система е преопреде-
лена, в случая уравненията са съгласувани и допускат единствено решение
на задачата на Коши. т.е., да се определи еднозначно еволюцията на полето
при задаването му в начален момент от време. За целта обаче е необходимо
в началния момент от време полетата да удовлетворяват уравненията от
третия и четвъртия ред.
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към този курс от лекции. Оказва се, че тази константа c съвпа-
да със скоростта на светлината, която е била измерена директ-
но по-рано. Както ще видим след малко константата c е равна
на скоростта на разпространение на плоските електромагнитни
вълни във вакуум. Тъй като във вакуум уравненията на Максу-
ел (4.1)–(4.4) трябва да имат горния вид във всяка инерциална
отправна система, от тук правим и извода за постоянството на
скоростта на светлината.

За нашите цели е достатъчно да се ограничим до решения
от вида

Ex = E(0)
x cos

(
kxx+ kyy + kzz + ωt+ ϕ(E)

x

)
,

Ey = E(0)
y cos

(
kxx+ kyy + kzz + ωt+ ϕ(E)

y

)
,

Ez = E(0)
z cos

(
kxx+ kyy + kzz + ωt+ ϕ(E)

z

)
,

Bx = B(0)
x cos

(
kxx+ kyy + kzz + ωt+ ϕ(B)

x

)
,

By = B(0)
x cos

(
kxx+ kyy + kzz + ωt+ ϕ(B)

y

)
,

Bz = B(0)
x cos

(
kxx+ kyy + kzz + ωt+ ϕ(B)

z

)
, (4.5)

в които участват редица параметри наричани както следва:

• Векторите E(0) = (E
(0)
x , E

(0)
y , E

(0)
z ) и B(0) = (B

(0)
x , B

(0)
y ,

B
(0)
z ) се наричат интензитети на електричното и магнит-

ното поле, съответно;

• векторът k = (kx, ky, kz) се нарича вълнови вектор, а ω се
нарича честота на вълната;

• параметрите ϕ(E)
x , ϕ(E)

y , ϕ(E)
z , ϕ(B)

x , ϕ(B)
y , ϕ(B)

z се наричат
начални фази.

С помощта на теорията на частните диференциални уравнения
може да се покаже, че решенията от вида (4.5) са единствените
решения на уравненията на Максуел (4.1)–(4.4) изпълняващи
свойствата:

(pw1) Съществува направление задавано от вектор k = (kx,

ky, kz) така, че векторите E и B на електромагнитното
поле остават постоянни върху всяка равнина в простран-
ството, която е перпендикулярна на k.
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(pw2) При движението на всяка от равнините перпендику-
лярни на вектора k по това направление с определена пос-
тоянна скорост векторите E и B на електромагнитното
поле остават постоянни във времето.

Именно решенията с тези две свойства е прието да се наричат
плоски електромагнитни вълни и ние приемаме, че при преход
от една инерциална система в друга, плоската електромагнитна
вълна отново преминава в плоска електромагнитна вълна.

Замествайки горният анзац (полагане) (4.5) на решение в
уравненията на Максуел във вакуум (4.1)–(4.4) получаваме сис-
тема от алгебрични уравнения за константите:

kxE
(0)
y − kyE

(0)
x + ωB(0)

z = 0

и циклична смяна по x, y, z, (4.6)

kxB
(0)
y − kyB

(0)
x − 1

c2
ωE(0)

z = 0

и циклична смяна по x, y, z, (4.7)

kxE
(0)
x + kyE

(0)
y + kzE

(0)
z = 0 , (4.8)

kxB
(0)
x + kyB

(0)
y + kzB

(0)
z = 0 , (4.9)

които от своя страна са необходимото и достатъчно условие за
наличие на решение. Умножавайки уравненията на първия ред
(4.6) по

1

c2
ω и изразявайки

1

c2
ωE

(0)
x ,

1

c2
ωE

(0)
y ,

1

c2
ωE

(0)
z от вто-

рата тройка от уравнения (4.7) получаваме

kx(kzB
(0)
x − kxB(0)

z )− ky(kyB(0)
z − kzB(0)

y ) +
1

c2
ω2B(0)

z = 0

⇒ 0 = k2
xB

(0)
z + k2

yB
0
z − kz(kxB(0)

x + kyB
(0)
y ) +

1

c2
ω2B(0)

z

=
(
k2
x + k2

y + k2
z −

1

c2
ω2
)
B(0)
z , (4.10)

където сме използвали и уравнението на четвъртия ред (4.9).
При цикличната смяна по x, y, z се получават и условията:(
k2
x + k2

y + k2
z −

1

c2
ω2
)
B(0)
x = 0 =

(
k2
x + k2

y + k2
z −

1

c2
ω2
)
B(0)
y .

(4.11)
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С аналогична манипулация върху втората тройка от уравнения
(4.7) получаваме, че(

k2
x + k2

y + k2
z −

1

c2
ω2
)
E(0)
x =

(
k2
x + k2

y + k2
z −

1

c2
ω2
)
E(0)
y =(

k2
x + k2

y + k2
z −

1

c2
ω2
)
E(0)
z = 0. (4.12)

Необходимо и достатъчно условие за ненулево решение (4.5) е
поне една компонента на амплитудите E(0) или B(0) да е различ-
на от нула и следователно получаваме първото важно ограни-
чение върху параметрите на плоската електромагнитна вълна:

k2
x + k2

y + k2
z −

1

c2
ω2 = 0 . (4.13)

Параметрите E(0)
x , E(0)

y , E(0)
z , B(0)

x , B(0)
y , B(0)

z , kx, ky, kz, ω изпъл-
няват допълнителни условия, които обаче за целите на настоя-
щата глава не са необходими и затова ще изпуснем. Оставяме за
упражнение на читателя да се убеди, че при всеки ненулев набор
на параметрите (kx, ky, kz, ω) съществува поне едно ненулево
променливо решение на уравненията на Максуел във вакуум от
вида (4.5).

Нека сега изследваме геометричния и физичния смисъл на
плоска вълна (4.5) с параметри (kx, ky, kz, ω). Нека да изобра-
зим на пространство-времева диаграма (фиг. 4) поведението на
една такава плоска вълна като начертаем хиперповърхностите
отговарящи на kxx+ kyy + kzz + ωt = K + 2πn за цяло число n
и фиксирана константа K. За простота сме изобразили случая
когато ky = kz = 0, тъй като тогава решенията не зависят от y
и z, и е зададена само зависимостта им от x и t.
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Фигура 6: Пространство-времева диаграма на плоска вълна

Повърхнините за които kxx+kyy+kzz+ωt = const наричат фа-
зови повърхнини понеже електромагнитното поле взема върху
тях еднакви стойности. Нещо повече,∣∣∣∣∣ E(x, y, z, t) = E(x1, y1, z1, t1)

B(x, y, z, t) = B(x1, y1, z1, t1)

⇐⇒ kxx+ kyy + kzz + ωt

= kxx1 + kyy1 + kzz1 + ωt1 + 2πn , (4.14)

за цели стойности на n. Основните моменти онагледени на фиг.4
са следните:

(1) Хиперповърхнините в R4 (3 (x, y, z, t)), които се задават
от уравнението kxx + kyy + kzz + ωt = K са успоредни
една на друга при различни стойности на K и в частност
са успоредни на хиперповърхнината kxx + kyy + kzz + ωt

= 0, която минава през нулата.

(2) Хиперповърхнините в R4 (3 (x, y, z, t)), които се задават
от уравненията kxx + kyy + kzz + ωt = K + 2πn при фик-
сирано K различни цели n са успоредни и еквидистантни.
Съгласно (4.14) електромагнитното поле взема върху тях
еднакви стойности.

(3) Сеченията на хиперповърхнините от точка (2) с коя да
е пространствена хиперравнина { t = const} е система от
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успоредни хиперравнини в R3, {(x, y, z) ∈ R3 | kxx + kyy +

kzz = K ′ + 2πn }, където K ′ е отново фиксирана конс-
танта зависеща от K и фиксираната стойност на t. Всеки
две такива съседни повърхнини отстоят на едно и също
евклидово разстояние

λ =
2π

|k |
, |k | :=

√
( kx )2 + ( ky )2 + ( kz )2 .

Това разстояние λ се нарича дължина на вълната. Тъй
като пространствените хиперравнини {(x, y, z) ∈ R3 | kxx
+ kyy + kzz = K ′ + 2πn} са перпендикулярни на векто-
рът k = (kx, ky.kz), то този вектор задава и посоката на
разпространение на вълната.

(4) Сеченията на хиперповърхнините от точка (2) с коя да е
времева ос R = {(x, y, z, t) | x = constx, y = consty, z =

constz} ⊂ R4 е система от еквидистантни точки отстоящи
една от друга на интервал

T =
2π

|ω |

където T се нарича период на вълната.

(5) Така отношението
λ

T
=
|ω |
|k |

е големината на скоростта на вълната, която от друга
страна се оказва точно равна на константата c в следствие
на условието (4.13).

И така, плоските електромагнитни вълни, задавани с (4.5),
се разпространяват във вакуум. с една и съща скорост равна
на константата c във всяка инерциална отправна система. През
1887 г. и в последствие Херц провежда поредица от експери-
менти установяващи съществуването на електромагнитни въл-
ни. Той е показал съвместимостта на свойствата на тези вълни
със свойствата на вълни с по-къса дължина на вълната, кои-
то съответстват на видимата светлина. След тези експерименти
хипотезата за електромагнитния характер на светлината става
общоприета.
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1. Релативистко понятие за пространство и
време. Релативистки интервал
Специалната теорията на относителността (special theory of rela-
tivity или само, special relati vity) e нов вид теория за относител-
ността на свободното движение, която е възникнала в началото
на XX век. Тази теория се основава на трудовете на няколко по-
коления физици и математици, между които Лоренц (Hendrik
Lorentz) и Поанкаре (Henri Poincaré), но в своя завършен и
цялостен вид тя се свързва с трудовете на Айнщайн (Albert
Einstein) от 1905. Специалната теорията на относителността се
основава на принципа за постоянство на скоростта на светлина-
та спрямо всички наблюдатели. Последният принцип ни казва
фактически, че скоростта на светлината е крайна, но заедно с
това е и недостижима за обикновените наблюдатели. Постоянс-
твото на скоростта на светлината е било теоретично предсказа-
но, като следствие от знаменитите уравнения на Максуел (James
Maxwell)6 за електромагнитното поле през 1861–1862. В специ-
алната теория на относителността се пренебрегва гравитацията
и нейното въздействие върху светлината, което е предмет на об-
щата теория на относителността (general theory of relativity или
само, general relativity), която е предложена от Айнщайн през
1915. Английската дума за относителност, relativity, е залегнала
в прилагателното “релативистки” (relativistic), което в теорията

6виж лекция 1
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на относителността се прилага към редица понятия за да отра-
зи техния преход от класическата нютонова механика в новата
теория.

Ще започнем с кратък преглед на еволюцията на понятието
за свободно движение и неговата относителност от класическата
механика към специалната теория на относителността.

Инерцията е свойството на телата да запазват състоянието
си на покой или на равномерно и праволинейно движение до-
тогава докато не изпитат външно въздействие. Това е закона
за инерцията (law of inertia) на Галилей (Galileo Galilei), който
стои и в основата на формулирания по-късно първи принцип
на Нютон (Isaac Newton). Вторият принцип на Нютон дава ко-
личествен израз на понятията за инерция и въздействие върху
телата посредством въвеждането на величините маса и сила,
съответно. Според този закон, силата F променя скоростта
на тяло, върху което действа, пропорционално на масата m на
това тяло или по-точно,

F = ma , a =
∆v

∆t

където е ускорението на тялото определено като изменението
∆v на неговата скорост за достатъчно малък интервал от време
∆t.7

Горните два закона на Нютон са основани на понятието за
движение и поради това се нуждаят от една предварителна
подготовка свързана с коректното определяне на това понятие.
Състоянието на покой или движение на едно тяло се задава
спрямо отправна система (reference frame), която определяме
като система от наблюдатели, които са неподвижни един спря-
мо друг. По-точно, тези наблюдатели са установили разстояни-
ята на свързващите ги отсечки и ъглите между тях, и те ос-
тават постоянни във времето, като се подчиняват на законите
на евклидовата геометрия. Предполагаме също, че наблюдате-
лите формиращи отправната система притежават синхронизи-
рани часовници. Един практически и нагледен модел за такава

7заедно с това, скоростта, ускорението и от там и силата са всъщност
вектори в тримерното пространство, т.е., притежават посока заедно с го-
лемините си
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отправна система може да ни служи някаква съвкупност от ге-
одезисти.

Фигура 1: Геодезисти

Така, идеалният наблюдател е “точков” или поне има избрана
точка в неговата лаборатория, от която се мерят разстоянията
до другите наблюдатели. Заедно с това обаче, един наблюдател
е малко повече от “проста точка”: той има и прикрепени ‘’базис-
ни оси (посоки)”, т.е., може да отличава и измерва посоките в
заобикалящото го пространство. По такъв начин, всеки един от
наблюдателите формиращи отправната система може да пост-
рои всъщност координатна система в пространството, на която
той е център, както е изобразено на следната фигура.

Фигура 2: Отправна система = координатна система в прост-
ранството със съпътстващо време
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От математическа гледна точка именно задаването на една та-
кава координатна система със съпътстващо време определя по-
нятието за отправна система, но в практически план следва да
помним, че в пространството нямаме разпънати координатни
оси, а по-скоро можем да осъществим ситуацията от Фиг. 1

По такъв начин в дадена отпрана система всяка точка на едно
тяло се сдобива със закон за движение

r = r(t) .

В частност, равномерното и праволинейно движение на точка се
задава със закон

r(t) = v t+ r0 ,

където v и r0 са константни вектори (не зависещи от времето t).
По-общо, казваме че едно тяло се движи равномерно и праволи-
нейно ако всяка негова точка се движи по горния закон с един и
същ вектор на скоростта v, но възможно различни r0.

Така, първият принцип на Нютон, т.е., законът за инерцията
с който започнахме, следва да се формулира по следния уточнен
начин. Съществува отправна система, в която при отстраняване
на всякакви въздействия върху телата те се движат равномерно
и праволинейно. Отправни системи за които горното свойство е
изпълнено се наричат инерциални отправни системи (inertial
frame of reference, inertial frame). В една инерциална система:

а) пространството е хомогенно (еднородно, т.е., всичките му
точки са равноправни) и изотропно (т.е., всички посоки са
равноправни).

б) Всеки физичен закон се записва в една и съща форма.

В частност, законите на електромагнетизма също трябва да
имат един и същи запис във всяка инерциална отправна систе-
ма. В следствие на теорията на Максуел и неговите уравнения
за електромагнитното поле е било установено, че съществуват
електромагнитни вълни (electromagnetic waves) разпространя-
ващи се със скорост равна на скоростта на светлината. Самата
светлина също е електромагнитна вълна. Следователно, ско-
ростта на светлината трябва да е еднаква във всички инерци-
ални отправни системи. Нека да формулираме този принцип за
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постоянството на скоростта на светлината по-точно: във всяка
инерциална отправна система един светлинен лъч се разпрост-
ранява по права линия с постоянна скорост, задавана от фун-
даментална физична константа c, която и наричаме скорост на
светлината.

Фигура 3: Схема на опита на Физо (Fizeau, 1851) за определяне
на скоростта на светлината базиран на въртящо се зъбно ко-
лело. Измерената стойност е била 315000 km/s. За първи път
скоростта на светлината е била оценена на 200000 km/s от Рьо-
мер (Ro/mer) и Хюйгенс (Huygens) на базата на астрономически
наблюдения (върху спътниците на Сатурн) през 1675. Между
опита на Физо и това най-ранно измерване, през 1729 Джеймс
Брадли (James Bradley) е измерил експериментално скоростта
на светлината в изцяло наземен експеримент и е получил стой-
ност 301000 km/s. Днес, скоростта на светлината е приета за
еталон и се равнява на 299 792,458 km/s.

Принципът за постоянство на скоростта на светлината оба-
че е в сериозен конфликт с класическата нютонова механика.
Нека да отбележим, че формулировката на първия принцип на
Нютон, която приведохме до тук всъщност е в съгласие със
специалната теория на относителността и не противоречи на
постоянството на скоростта на светлината. Нютон обаче прави
едно важно допълнително предположение: според него е въз-
можна синхронизация на времето между всички наблюдатели
във вселената. С други думи, съществува абсолютно време, ко-
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ето е също така равносилно на съществуването на абсолютно
понятие за едновременност, еднакво за всички отправни систе-
ми. Наличието на абсолютната едновременност е необходимото
и достатъчно условие за коректността на идеализираното по-
нятие за абсолютно твърдо тяло (rigid body) във физиката:
това е тяло, всеки две точки от които остават на едно и съ-
що разстояние във всеки един момент от време. Отказването от
абсолютна едновременност е следователно равносилно и на от-
казване от измерване на разстояния посредством измерителни
тела-еталони.

Нека да допълним изброените по-горе свойства а) и б) на инер-
циалните отправни системи с още едно

в) Една инерциална отправна система се движи спрямо друга
инерциална отправна система по такъв начин, че центъра на
първата се движи равномерно и праволинейно спрямо вто-
рата, а координатните й оси се преместват успоредно на себе
си.

Това свойство, комбинирано с нютоновата представа за абсолютно
време води до така наречените галилееви трансформации, описва-
щи прехода между две инерциални отправни системи. От галиле-
евите трансформации, от своя страна, следва закона за събиране
на скоростите: ако в една отправна система наблюдател A се дви-
жи равномерно и праволинейно със скорост v, а наблюдател B се
движи равномерно и праволинейно в същата посока със скорост
u, то спрямо A наблюдателят B ще се движи със скорост u − v.
Според този закон ние можем да настигнем светлината.

Нека да отбележим, че отказвайки се от измерителни тела-
еталони за дължина ние все още разполагаме със средства за
мерене на относителни разстояния (т.е., отношения на разс-
тояния): това става като измерваме ъглите между отсечките
свързващи различните взаимно неподвижни наблюдатели в ед-
на отправна система. Това именно и правят геодезистите. Прин-
ципът за постоянство на скоростта на светлината обаче ни да-
ва един нов метод за измерване на разстояния. Това е радио-
локационния метод, който също отдавна е широко навлязъл в
практиката.



Основи на специалната теория на относителността I 39

Фигура 4: Радио-локационен метод

При радио-локационния метод един наблюдател A излъчва
светлинен импулс, в даден момент от време t1 отчитано по собст-
вения му часовник, към друг наблюдател B в посока определена
от единичен вектор n = (nx, ny, nz) в тримерното пространство
(n2 = n · n = n2

x + n2
y + n2

z = 1). Достигайки до наблюдателя B,
светлинният импулс се отразява и се връща обратно към A по
същата права, която е определена от вектора n, и се приема от
наблюдателя A в момент от време t2 (отново спрямо часовника
на A). Въз основа на получените данни от A, състоящи се от
моментите от време t1 и t2, и вектора n, наблюдателя A съпоста-
вя координати (x, y, z) = r на точката в пространството, както
и значение t на момента от време, когато светлинния импулс е
достигнал B. Това става по следните формули:

t =
t1 + t2

2
, r =

1

2
c (tt − t1)n .

Първата формула за t изразява факта, че светлинния импулс
пътува еднакво време в двете посоки, поради което той се от-
разява в B точно в средния момент между t1 и t2. Разстояние-
то, което изминава светлинния импулс по посока на единичния
вектор n тогава е равно на скоростта c по времето за пътуване
t− t1 = 1

2
(t2 − tt).

Удобно е да онагледим получената процедура посредством
така наречените пространство-времеви диаграми.
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Фигура 5: Пространство времева диаграма изобразяваща
радио-локационния метод. Мировата линия на наблюдателя A
съвпада с времевата ос t. Светлинните импулси също имат ми-
рови линии, които са двете наклонени отсечки излизащи от оста
t. За простота на чертежа сме избрали движението да се извър-
шва по оста x, поради което останалите координати y и z на
фигурата са равни на нула. На диаграмата сме начертали освен
мировата линия на измервания наблюдател, който е избран не-
подвижен спрямо A, също и една мирова линия на произволно
движещ се наблюдател.

В най-общия случай разглеждаме декартовото произведение R4 =

R×R3 на времевата ос и тримерното пространство, което се на-
рича пространство-време, и неговите точки наричаме събития.
По такъв начин в пространство-времето еволюцията (покой или
движение) на един точков наблюдател се представя от линия
от точки (събития) наречена мирова линия. За онагледяване
на горната фигура ние сме начертали само една от пространс-
твените оси, оста x и фактически, при придвижването на оста
x вертикално по времевата ос пресечните точки на мировите
линии с нея ни дават движението на наблюдателите, подобно
на прожекция от филмова лента. В частност, на централния
наблюдател, който строи координатната система, съответства
вертикалната координатна ос t. Наблюдателите, които са вза-
имно неподвижни спрямо него имат мирови линии, които са
прави успоредни на оста t. От тук се убеждаваме, че с помощта
на радио-локационния е възможна синхронизацията на времето
между взаимно неподвижни наблюдатели. Всъщност, последно
е аксиома, която се потвърждава от опита ни. Тя изразява и
факта, че пространство-времето е плоско, което отпада в случая
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на общата теория на относителността, която описва гравитаци-
онното привличане между телата.

Нека сега разгледаме проблема за синхронизация на време-
то между взаимно движещи се наблюдатели. Един инерциален,
т.е., свободно движещ се наблюдател в една инерциална отправ-
на система се описва с мирова линия, която е права линия. Нак-
лона на мировата линия определя скоростта на наблюдателя в
отправната система и два инерциални наблюдателя движещи
се с еднакви по големина и посока скорости, имат успоредни
мирови линии. На следната фигура са изобразени два взаим-
но движещи се наблюдатели, които правят измервания един на
друг с помощта на радио-локационния метод.

Фигура 6: Синхронизация на времевите мащаби между взаимно
движещи се наблюдатели A и B.

Първоначално двата разглеждани наблюдателя A и B са из-
брали свои независими мащаби от време, 1A и 1B, съответно по
времевите си оси t и τ . Ако наблюдателя A излъчи към B два
светлинни импулса отстоящи на единица времеви мащаб 1A по
неговото време, то най-общо при наблюдателя B светлинните
импулси ще пристигнат в момент от време τ по времето на B
и ще отстоят един от друг на интервал от време κA,B(τ) 1B.
Коефициента κA,B(τ) по принцип зависи от момента от време
τ (по часовника на B). Нужни са известни разсъждения за да
се убедим, че за инерциални наблюдатели A и B този коефи-
циент е константа, не зависеща от времето. За целта нека да
продължим играта на излъчване и предаване на импулси, и да
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предположим, че наблюдателя B отразява получените светлин-
ни сигнали обратно към A. Тогава те пристигат в A в момент от
време t по часовника на A и отстоят един от друг на интервал
от време κB,A(t) κA,B(τ) 1B, т.е., допълнително умножаваме по
аналогичен коефициент сравняващ времевите мащаби в посока
от B към A. Както ще се убедим след малко, произведение-
то на коефициентите κB,A(t) κA,B(τ) зависи пряко и единствено
от скоростта на B спрямо A, която A получава въз основа на
радио-локационния метод. Така принципът, че всеки два инер-
циални наблюдателя се движат един спрямо друг равномерно
и праволинейно ще води до това, че κB,A(t) κA,B(τ) е константа
не зависеща от времето. Същото заключение важи и в посока
на обмен на сигнали B → A → B. Тези две условия тогава се
оказват достатъчни да заключим, че както κA,B, така и κB,A, са
константи не зависещи от времето.

Действително, нека да означим с τ = fA,B (t) и t = fB,A (τ)

зависимостите на моментите от време при предаване на светлин-
ни импулси от A към B и от B към A, съответно. Тогава гор-
ните разсъждения показват, че функциите κB,A

(
fB,A(τ)

)
κA,B(τ)

и κB,A

(
fA,B(t)

)
κB,A(t) не зависят от аргументите си (констан-

ти са). Нека сега изберем точка върху мировата линия на A от-
говаряща на момент от време t1 и да положим τ1 := fA,B(t1),
κ+1 := κA,B(τ1), t2 := fB,A(τ1), κ−1 := κB,A(t2), τ2 := fA,B(t2),
κ+2 := κA,B(τ2) и т.н. Тогава κ+j κ−j = κ+j+1 κ

−
j+1 и κ−j κ+j+1 = κ−j+1

κ+j+2. От тук, (κ+j+1)
2 = κ+j κ+j+2 и (κ−j+1)

2 = κ−j κ−j+2. Горните
полагания могат да се извършат и в обратна посока на време-
то правейки индекса j отрицателен. Нека изберем тази посока на
времето в която двата наблюдателя A и B се срещат. Естествено
е да се предположи, че коефициентите κ±j ще имат граница при
клонене към момента на среща. Но от друга страна, рекурентната
зависимост κ2j+1 = κj κj+2 (не зависимо в коя посока на изме-
нение на j) дава κj+n = n(κj+1 − κj) + κj . Последното ще има
граница при n → ±∞ единствено ако κj = κj+1.

След като сме се убедили, че коефициентите κA,B и κB,A са
константи (не зависещи от времето), то казваме, че времевите
мащаби на A и B са синхронизирани, ако

κA,B = κB,A .
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Това отново е израз на равноправието на всички инерциални
отправни системи, заложено в първия принцип на Нютон. С
това полагане постигаме синхронизация на времевите мащаби
между произволни два инерциални наблюдатели. Оказва се, че
това е максимално възможната синхронизация, които можем
да постигнем. Както ще видим в последствие, след синхрони-
зация на мащабите в общия случай не е възможна съгласувана
синхронизация и на началните моменти от време, така че два-
та наблюдателя да имат еднакво понятие за едновременност.
Едновременността ще се окаже относителна.

Коефициентът κ = κA,B = κB,A се нарича коефициент на
Доплер (Doppler) и изразява не какво да е, а срещания от всички
ни в ежедневието ефект на Доплер, но отнасящ се в случая
вместо за звукови – за светлинни сигнали. Нека пресметнем сега
коефициента на Доплер за два инерциални наблюдателя A и
B. За улеснение отново ще си начертаем пространство-времева
диаграма.

Фигура 7: Пресмятане на коефициента на Доплер

Също за улеснение ще приемем, че в момента t = 0 по времето
на A наблюдателите A и B се намират в една точка – началото
на отправната система на A. Тогава, наблюдателя B се движи
равно мерно и праволинейно по оста x със скорост v по закона
x(t) = vt. Съгласно радио-локационния метод, в момента от вре-
ме t = 1

2
(t1 + t2) (по времето на A) наблюдателя B ще се намира

на разстояние x = 1
2
c(t2− t1). Така, заедно с x = vt получаваме

и връзката v(t1 + t2) = c(t2− t1). От друга страна, като използ-
ваме съображения за подобие можем да запишем τ = κt1 и t2 =
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κτ , където τ е момента от време по часовника на B отговарящ
на събитието (x, t) от мировата линия на B (координатите x и
t са поставени от A). За целта сме избрали началните моменти
t = 0 и τ = 0 и за двата наблюдателя така, че да отговарят на
момента на срещата им. Следователно, κ2 = t2/t2, а отношени-
ето t2/t2 се пресмята непосредствено от връзката v(t1 + t2) =

c(t2 − t1):

κ =

√
1− v

c

1 + v
c

.

В допълнение, можем още да изразим τ :

τ =

√
t2 − x2

c2
или също c2τ 2 = c2t2 − x2 . (1.1)

Нека сега малко обобщим ситуацията, като предположим, че
наблюдателя B се движи вместо по оста x по произволна ос оп-
ределена от единичен вектор n = (nx, ny, nz) в пространството.

Фигура 8: При движение вместо по оста x по произволна ос
определена от вектор n ролята на координатата x се заменя с
разстоянието r по оста n.

В такъв случай трябва да заместим x в (1.1) с разстоянието r
по оста n, което съгласно питагоровата теорема се дава от r =√
x2 + y2 + z2. Нека максимално да обобщим ситуацията и да

предположим, че в началните моменти от време наблюдателите
A не се срещат (всъщност, те може и никога да не се срещнат).
Нека P и Q са събития от мировата линия на B, които имат
координати в отправната система наA съответно, (xP , yP , zP , tP )

и (xQ, yQ, zQ, tQ).
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Фигура 9: Релативистки интервал в общия случай на инерци-
ални наблюдатели.

Тогава собственото време τP,Q измерено от наблюдателя B (по
синхронизиран времеви мащаб с A) между събитията P и Q ще
се даде от израза

c2τ 2
P,Q = c2(∆t)2

−(∆x)2 − (∆y)2 − (∆z)2 , (1.2)

където ∆x = xQ − xP , ∆y = yQ − yP , ∆z = zQ − zP и ∆t =

tQ−tP . Действително, наблюдателя A винаги може да се свърже
с друг наблюдател C, който е взаимно неподвижен спрямо A и
се среща с B в събитието P . Тогава за C ролята на x, y, z, t ще
играят разликите ∆x, ∆y, ∆z и ∆t, съответно.

Изразът (1.2), включващ собственото синхронизирано време
τP,Q на инерциален наблюдател протекло между две събития
P и Q от мировата му линия, е крайъгълен камък не само за
специалната, но и за общата теория на относителността. Дясна-
та страна на (1.2) се нарича релативистки интервал между
събитията P и Q. Веднага се налагат няколко фундаментални
извода.

1) За събития P и Q, за които релативисткия интервал (1.2) е
отрицателен не съществува инерциален наблюдател, кой-
то минава през тях, тъй като той би отчел нереално собст-
вено време τP,Q между P и Q. Такива събития ще наречем
след малко причинно несвързани (acausal). Дори горният
факт на несъществуване на инерциален наблюдател мина-
ващ през двете събития е достатъчно основание за причин-
ната им несвързаност. Ние ще посочим по-нататък и някои
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допълнителни основания за това. По определение, две съ-
бития P и Q, за които релативисткия интервал (1.2) е от-
рицателен се наричат пространствено-подобни (space-
like separated events). Забележете, че за пространствено-
подобни събития, чийто разлики между координатите са
∆x, ∆y, ∆z и ∆t е в сила неравенството√

(∆x)2 + (∆y)2 + (∆z)2

∆t
> c .

Поради това, мирова линия на инерциален наблюдател би
минавала през две пространствено–подобни събития тога-
ва и само тогава, когато наблюдателя се движи със свръх
светлинна скорост. Това показва, че скоростта на светли-
ната не може да бъде превишена.

2) За събития P и Q, за които релативисткия интервал (1.2)
е положителен, следва че последния е еднакъв във всички
инерциални отправни системи. Такива величини се нари-
чат релативистки инварианти. Две събития P и Q, за
които релативисткия интервал (1.2) е неотрицателен се
наричат времеподобни, (time-like separated events).

3) Ако за събитията P и Q релативисткият интервал (1.2)
е нула, то те са свързани със светлинен сигнал, тъй като
тогава разстоянието между събитията е равно на отчете-
ното в отправната система време между тях умножено по
скоростта на светлината c. Така, по мировата линия на
светлинен сигнал време не тече! Това ни дава отговор на
въпроса какво ще се случи, ако “настигнем” светлината –
нищо няма да се случи – няма да има време за това. Две
събития P и Q, за които релативисткия интервал (1.2) е
нула се наричат светоподобни или още взаимно изот-
ропни (light-like events, mutually isotropic events).

2. Пространство на Минковски и псевдо-евк-
лидова геометрия. Преобразования на Лоренц
Нека въведем нови означения за координатите в пространство-
времето, които са специфични за теория на относителността и
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които ще наричаме релативистки означения:

x1 := x , x2 := y , x3 := z ,

x0 := ct . (2.1)

Така, в настоящия курс от лекции, както и в много курсове
по теоретична физика, горните индекси ще означават не само
степени, но и индекси на координати. Предполага се, че внима-
телният читател умее да определя смисъла на горния индекс
от контекста на формулата. Все пак, за улеснение в настоящия
курс ще въведем специален изправен шрифт за самите четири-
мерни вектори,

x = (x0, x1, x2, x3) = (xµ)3
µ=0

= (xµ) ∈ R4 . (2.2)

По такъв начин, обекти като скаларни квадрати x2 ≡ x · x, ко-
ито ще въведем след малко и които са много често срещани,
по-лесно ще се разграничават от втората компонента x2. Прос-
транствената част на един четиримерния вектор x ще бележим,
както и до сега, с удебелен изправен шрифт,

x = (x1, x2, x3) = (xj)3
j=1 = (xj) . (2.3)

Прието е индексите на четиримерни вектори, като x (2.2) да се
бележат с гръцки букви, като µ, ν, . . . (те пробягват стойности
0, 1, 2 и 3). Индексите на пространствени, тримерни вектори,
като x (2.3) пък се бележат с латински букви като j, k, . . . (и
пробягват стойности 1, 2 и 3). По нататък в настоящия курс
ще се връщаме и към нерелативистките означения (x , t) за съ-
битие в пространство-времето, които следвахме до сега, но ще
използваме често и релативистките означения (x0, x). Така, в
релативистките означения времето предхожда пространството.

След това по-пространно въведение към релативистките оз-
начения, нека да запишем като начало в новите означения ре-
лативисткия интервал (1.2). Ако събитията P и Q имат чети-
римерни координати x1 = (xµ1) и x2 = (xµ2) в една инерциална
отправна система, то интервалът (1.2) се записва като

(x0
1 − x0

2)2 − (x1
1 − x1

2)2 − (x2
1 − x2

2)2
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−(x3
1 − x3

2)2 =: (x1 − x2)2 . (2.4)

В горната формула достигнахме до важна квадратична форма,
която стои в основата на релативисткия интервал и е ключ към
неговата релативистка инвариантност.

x2 := (x0)2 − (x1)2 − (x2)2 − (x3)2

=
(
x0, x1, x2, x3

)
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




x0

x1

x2

x3


= [x]T [η] [x] , (2.5)

където:

• [η] = ( ηµν ) =

 1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 е матрицата на тази квад-

ратична форма, която се нарича ощеметричен тензор;

• в последния ред на (2.5) сме означили с [x] и [x]T , съответ-
но вектор-стълба и вектор-реда от дясно и ляво на матри-
цата [η] във второто равенство на същата формула.8

За вектори x = (xµ) и y = (yµ) нека въведем и поляризацията
на квадратичната форма x2,

x · y := x0y0 − x1y1 − x2y2 − x3y3

= [x]T [η] [y] = y · x , (2.6)

x2 = x · x .

По определение, векторното пространство R4 снабдено със ска-
ларното произведение (2.6) се нарича пространство на Минков-
ски (Minkowski space) или също, псевдо-евклидово (pseudo-euc-
lidean) пространство със сигнатура (1, 3) (един плюс и три ми-
нуса в диагоналната матрица η). Пространството на Минковски
се бележи с M или също, с R1,3.

8Означението [x] за вектор-стълб, както и [η] за матрица ще използваме
само в тази точка във връзка с някои удобни матрични изводи. По-нататък
в настоящите лекции обаче ще ползваме основно записите x = (xµ) и η =

(ηµν).
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Така, зад релативисткия интервал (2.4) стои нов вид геомет-
рия, наречена псевдо-евклидова геометрия. За да видим ролята
на тази нова геометрия в специалната теория на относителност-
та нека се върнем на физичните проблеми и да разгледаме пре-
хода от една инерциална отправна система към друга такава.
Ако означим с x = (xµ) координатите на едно произволно съ-
битие в първата система, а x′ = (x′ µ) са координатите му във
втората, то най-общо

x′ = F (x) , (2.7)

за някакво изображение F : R4 → R4. Първото условие, което
трябва да изпълнява F е, че то трябва да изобразява мирови-
те линии на инерциалните наблюдатели отново в мирови линии
на инерциални наблюдатели. Мировите линии на инерциалните
наблюдатели са прави линии. Следователно, F трябва да изоб-
рази прави линии от определен клас отново в прави линии. Ще
покажем схематично как от тук следва, че всяка права на R4 се
изобразява от F в права. От опита знаем, че за всяка достатъч-
но малка по-големина скорост винаги съществува инерциален
наблюдател движещ се с такава скорост. Така получаваме дос-
татъчно много прави мирови линии на възможни инерциални
наблюдатели, които следва да се изобразят от F отново в пра-
ви. От тук като използваме, че с прави могат да се “изтъкат”
равнини и обратно, равнините когато се пресичат дават пра-
ви получаваме и това, което отбелязахме по-горе: F изобразява
права в права. От теорията на линейната алгебра следва, че та-
кива трансформации са единствено афинните трансформации,
т.е., линейните нехомогенни изображения,

x′ = Λ(x) + a , (2.8)

за някакво линейно изображение Λ, и четиримерен вектор a. В
матричен вид, последното равенство можем да запишем като

[x′] = [Λ] [x] + [a] , (2.9)

където Λ] е (4 × 4)–матрицата представяща линейното изобра-
жение Λ.

С това обаче условията върху трансформацията (2.7) не свър-
шват: най-важното предстои. Както заключихме в края на пред-
ходната точка на тази лекция, релативисткия интервал между
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две събития x1 и x2 свързани с инерциален наблюдател не тряб-
ва да се променя при прехода с F :(

F (x1)− F (x2)
)2

= (x1 − x2)2

⇐⇒
(
Λ(x1 − x2)

)2
= (x1 − x2)2 (2.10)

(Λ е линейно изображение). Аргумента, че съществуват доста-
тъчно много инерциални наблюдатели, който изтъкнахме по-
горе ни показва, че всъщност за всички четиримерни вектори x

е в сила
Λ(x)2 = x2 , (2.11)

(указание: ако това е в сила за x принадлежащи на отворено мно-
жество на R4, то то е в сила и за всяко x). В матричен вид, (2.11)

се записва като

[x]T [Λ]T [η] [Λ] [x] = [x]T [η] [x] ,

⇐⇒ [Λ]T [η] [Λ] = [η] (2.12)

(действително, от вектора [x] се освобождаваме след като ди-
ференцираме два пъти по компонентите му).

Матрици изпълняващи равенство (2.12) се наричат псевдо-
ортогонални (pseudo-orthogonal) матрици или още, лоренцови
матрици (Lorentz matrix). В съответствие с това, линейни (хо-
могенни) преобразования от вида x′ = F (x) = Λ(x) определени
от лоренцови матрици [Λ] се наричат преобразования на Ло-
ренц (лоренцови преобразования). Така, връщаме се отново до
ролята на псевдо-евклидовата геометрия в теория на относител-
ността. Забележете, че ако [η] беше единичната матрица 1, то
скаларното произведение x ·y = [x]T [y] давано в този случай от
(2.6) е евклидовото скаларно произведение. В този случай също
така условието [Λ]T [η][Λ] = [η] от (2.12) би дало условието за ор-
тогонална матрица, [Λ]T [Λ] = 1 (единичната матрица). От своя
страна, една ортогонална матрица представя въртене (с евенту-
ално отражение) на евклидово пространство. Така, псевдо-ор-
тогоналните матрици са псевдо-евклидов аналог на ротациите.
Нека да онагледим този паралел между евклидова и псевдо-ев-
клидова геометрия на двумерни пространство-времеви диагра-
ми. Най-напред, ротация на ъгъл ϕ на евклидовата равнина се
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дава от матричното преобразование:(
x′

y′

)
=

(
cosϕ sinϕ

− sinϕ cosϕ

)(
x

y

)
(2.13)

и е изобразено на следната фигура.

Фигура 10: Евклидово въртене

В псевдо-евклидовия случай, тригонометричните функции в (2.13)
преминават в хиперболични:9(

x′ 0

x′ 1

)
=

(
chχ − shχ

− shχ chχ

)(
x0

x1

)
. (2.14)

Матричното равенството [Λ]T [η][Λ] = [η], което в случая се за-
писва като(

chχ − shχ

− shχ chχ

)(
1 0

0 −1

)(
chχ − shχ

− shχ chχ

)

=

(
1 0

0 −1

)

може да се провери непосредствено. Ако положим

shχ :=
v
c√

1− v2

c2

, chχ :=
1√

1− v2

c2

, (2.15)

9хиперболичните косинус и синус, ch и sh, се записват също cosh и sinh,
съответно
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то получаваме и така наречените лоренцови трансформации в
техния обичаен вид:10

x′ 0 :=
x0 − v

c
x1√

1− v2

c2

, x′ 1 :=
x1 − v

c
x0√

1− v2

c2

. (2.16)

Полагането (2.15) е свързано с това, че координатната ос x′ 0

на примованата отправна система трябва да съответства в неп-
римованата отправна система на мировата линия на движещ се
наблюдател с постоянна скорост v по оста x1 :11

x′ 1 ( = ch(χ)x1 − sh(χ)x0 ) = 0 ⇐⇒ x1 = v
x0

c
(2.17)

(т.е., x = vt в нерелативистите означения). Така, от (2.17) след-
ва, че tanhχ =

v

c
.

Псевдо-евклидовите въртения, или още наричани, хипербо-
лични въртения са изобразени на следната фигура.

Фигура 11: Трансформации на Лоренц (псевдо-евклидови вър-
тения). Стрелките върху кривите (които са хиперболи) отгова-
рят на движението при изменението на параметъра χ в (2.14) от
−∞ до +∞. Тук вече няма периодичност на движението, както
в евклидовия случай на фигура 10.Осите x′ 0 и x′ 1 сключват
еднакви ъгли съответно с осите x0 и x1.

Обърнете внимание, че на горната фигура 11 начертаните кри-
ви пресичащи координатните оси x0, x1, x′ 0 и x′ 1 са хиперболи,

10Те се пренасят и в четиримерно пространство-време за случая на от-
носително движение на примованата инерциална отправна система спрямо
непримованата, което се извършва по оста x1. Тогава x′ 2 = x2 и x′ 3 = x3.

11координатната ос x′ 0 в примованата система се характеризира от ус-
ловието x′ 1 = 0
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и те са псевдо-евклидовия аналог на окръжността на фигура 10.
Двойката хиперболи пресичащи осите x0 и x′ 0 са решенията на
уравнението x2 = (x0)2− (x1)2 = a за a > 0, а двойката хипербо-
ли пресичащи осите x1 и x′ 1 са решенията на същото уравнение,
но за a < 0. В по-високомерните случаи тези хиперболи се заме-
нят с хиперболоиди: първата двойка се заменя с два свързани
хиперболоида, а втората – е един свързан хиперболоид! Това е
отразено на долната фигура

Фигура 12: Хиперболоиди. Във връзка с релативистката дина-
мика, параметърът ±a > 0 е положен като a = m2 и новия
параметър m ще има смисъл на релативистка маса.

където са въведени означенията

Γa :=
{

x ∈ R1, 3
∣∣x2 = a

}
(a ∈ R) .

На фигура 12 между двата хиперболоида стои конусът задаван
с уравнението x2 ( = (x0)2 − (x1)2 − (x2)2 − (x3)2 ) = 0. Този
конус се нарича светлинен конус (с връх в началото на коор-
динатната система), тъй като включва според определението си
всички събития, които са взаимно свето-подобни спрямо върха
на конуса. (Последното е свързано с полагането x0 = ct в (2.1),
поради което уравнението x2 +y2 +z2 = c2t2 описващо в нерела-
тивистки означения разпространението на светлината излъчена
в събитието в началото на отправната система, ще премине в
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релативистките означения в уравнението на светлинния конус,
(x1)2 + (x2)2 + (x3)2 = (x0)2. Така, стените на светлинния ко-
нус ще сключват ъгъл 45 градуса спрямо вертикалната ос. Във
връзка с този конус, нека да обърнем внимание и на това, че
на фигура 11, двете кръстосани прави между хиперболите са
двумерния аналог на светлинния конус от фигура 12. В случая
на фигура 11, тези две прави формиращи светлинния конус са и
мировите линии на светлинните сигнали минаващи през събити-
ето лежащо в центъра на отправната система. На всички наши
пространство-времеви диаграми мировите линии на светлинни
сигнали са тези и само тези които сключват ъгъл 45 градуса
спрямо вертикалната ос.

Забележка: Обръщаме внимание, че евклидовите ъгли, с кои-
то онагледяваме чертежите ни на фигури 11 и 12 са фиктивни
и помощни. Геометрията на изобразяваното пространство не е
евклидова, а псевдо-евклидова. В частност, псевдо-евклидовата
геометрия си има свое понятие за ортогоналност, което поня-
кога се нарича още псевдо-ортогоналност: два (четири)вектора
x и y са (псевдо) ортогонални, ако е нула тяхното псевдо-евк-
лидово скаларно произведение (2.6), x · y = 0. Например, коор-
динатните оси x0 и x1 на фигура 11 са (псевдо) ортогонални и
също такива са и осите x′ 0 и x′ 1.

Фигура 11 ни води до ново фундаментално физическо зак-
лючение. Нека си припомним, че координатите (xµ) в една от-
правна система са построени от един наблюдател благодарение
на радио-локационния метод. Тези координати отразяват в се-
бе определен времеви порядък на всички събития и заедно с
това, и понятие за едновременност (посредством нулевата ком-
понента x0, която отговаря за времето). Така, в пространство-
времевата диаграма на горната фигура 11 едновременността в
непримованата отправната система (x0, x1) се задава от хори-
зонталните линии, успоредни на оста x1 (тогава именно време-
то x0 не се променя), но това описание на едновременността е
различно за примованата отправната система (x′ 0, x′ 1), къде-
то линиите на едновременността ще бъдат успоредни на оста
x′ 1. Едновременността е относителна. По-точно е да се ка-
же, че едновременността е фиктивна и нефизична. Това е прос-
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то помощно понятие зависещо от отправната система. Заедно с
това и определена част от времевия порядък въведен от нуле-
вата (времевата) координата x0 също е нефизичен и фиктивен,
тъй като и той се оказва относителен, и зависещ от отправна-
та система. В повече от две пространство-времеви измерения,
например във физическия случай на четиримерно пространс-
тво-време, фиктивното (помощно) понятие за едновременност,
което всеки инерциален наблюдател въвежда за себе си, се оп-
ределя не от линии на едновременност, а от (тримерни) повърх-
нини на едновременност. Забележете, че тези повърхнините на
едновременност са тримерни равнини, които са ортогонални (в
псевдо-евклидов смисъл) на мировата линия на инерциалния
наблюдател, който ги определя.

Както ясно личи от последната фигура 11 единствено съби-
тията лежащи над двете кръстосани светлинни линии (светлин-
ния конус) ще бъдат във всяка инерциална отправна система
с положителни времена, т.е., тези събития винаги ще лежат в
бъдещето на събитието в центъра на диаграмата (центъра на
координатната система). Това ни води до следното важно поня-
тие: конуса на бъдещето/миналото (forward/backward cone)
определен като

V ± :=
{

x ∈ R1,3
∣∣x2 > 0 , ±x0 > 0

}
, (2.18)

което графично е изобразено в тримерно пространство-време на
следната фигура

Фигура 13: Конуси на бъдещето V + и миналото V −
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Забележете, че границата на обединението на конусите на бъде-
щето и миналото, V +∪V −, е светлинния конус (всички с център
в началото на координатната система).

По-общо, конус на бъдещето/миналото с център в точка x

на пространство-времето R1,3 наричаме множеството

V ±x

:=
{

y ∈ R1,3
∣∣(y − x)2 > 0 , ±(y0 − x0) > 0

}
≡ x + V ± . (2.19)

Така, абсолютното и независещо от отправната система поня-
тие за причинност става следното: събитието y е в бъдещето на
събитието x тогава и само тогава, когато y ∈ V +

x , т.е., когато
y − x ∈ V +. Забележете, че съгласно това определение, необхо-
димото и достатъчно условие две събития да са причинно свър-
зани, т.е. едното от двете да е в миналото на другото, е те да
са време-подобни едно спрямо друго. Противоположното свойс-
тво е пространствено-подобието. Следователно, събития които
са пространствено подобни едно спрямо друго, следва да бъдат
причинно несвързани. Последното е нещо, което вече обявихме
в края на първата точка. Ако погледнем отново предпоследната
фигура 11 ще забележим, че пространствено-подобните събития
спрямо началото на координатната система се намират извън
светлинните конуси на бъдещето и миналото с център в нача-
лото. Така, тези събития лежат от ляво и от дясно на центъра
на координатната система, между двете начертани светлинни
линии, и за такива събития координатите x0 и x′ 0 може да при-
емат различни знаци. С други думи, именно такива събития
нямат абсолютно определен времеви порядък спрямо начало-
то на координатната система – те са причинно не свързани с
началото.

В повече от две пространство-времеви измерения диаграма-
та на фигура 11 се обобщава, като се заменят двете светлинни
прави с клин, а не със светлинен конус, както е показано на
фигурата по-долу. Този светлинен клин (light wedge) се полу-
чава при транслация на чертежа в перпендикулярни посоки на
оставащите две пространствени измерения x2 и x3. Това обоб-
щава лоренцовите трансформации от вида (2.15) в повече от две
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пространство-времеви измерения. Такъв вид лоренцови транс-
формации се наричат лоренцови бустове (Lorentz boost).

Фигура 14: Обобщение на ситуацията от фигура 11при много-
мерни лоренцови бустове.

Интуитивният смисъл на бустовете е, че те представят преход
между две инерциални отправни системи, които са построени
от наблюдатели A и B, така че началните им събития да съв-
падат (A и B се срещат и пускат тогава часовниците си), и в
този начален момент от време за двата наблюдателя техните
пространствените оси “съвпадат”. С други думи, това е преход,
при който “базисните пространствени посоки не се менят”. В
последните две изречения не случайно са употребени кавички.
Всъщност, пространствените оси в двете отправни системи въ-
обще не са успоредни (в пространство-времето) и се изисква
определена конвенция между A и B за да се определи в какво
точно се изразява чувството на съвпадение. Оказва се обаче, че
тази конвенция е нов пример за относително и фиктивно поня-
тие: ако за три инерциални наблюдателя A, B и C, преходите
от A към B и от B към C са бустове, то преходът от A към C

няма да е буст в най-общия случай. С други думи, в начални-
те моменти от време, когато и тримата наблюдатели са заедно,
A и C ще имат чувството, че пространствените им оси са за-
въртени едни спрямо други, въпреки че между A и B, както
и между B и C няма да има в това отношение разминаване в
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чувствата. Математически, последното се изразява просто във
факта, че произведение на лоренцови матрици, които са бустове
не е буст. Въпреки това, лоренцовите бустове са полезен мате-
матически инструмент в много теоретични изводи, но поради
тяхната техническа сложност няма да навлизаме по-детайлно в
тяхното разглеждане.

Фигура 15: Проблемът за съгласуване на пространствените нап-
равления между различни инерциални наблюдатели: както сме
илюстрирали на фигурата, пространствените оси x1 и x2, както
и x′ 1 и xx′ 2, лежат в равнини, които са ортогонални (в псев-
до-евклидов смисъл) на времевите оси, x0 и x′ 0, съответно за
двата наблюдателя. Припомняме, че за всеки инерциален наб-
людател повърхнините на едновременност, в които именно то
строи пространствената част на координатната си система, са
винаги (псевдо) ортогонални на мировата линия на наблюдате-
ля, която е и неговата времева ос.

Нека да резюмираме: какви лоренцови трансформации поз-
наваме до тук? От лоренцовите бустове ние експлицитно запи-
сахме трансформацията (2.16) отразяваща движение по оста x1.
Разбира се не представлява никакъв проблем да заменим оста
x1 с x2 или x3. Има обаче и друг вид лоренцови трансформации.
При тях наблюдателите A и B са с еднакви мирови линии, но
са избрали различно пространствените си оси. Това отговаря на
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лоренцова матрица от вида
1 0 0 0

0 Ω11 Ω12 Ω13

0 Ω21 Ω32 Ω23

0 Ω31 Ω32 Ω33


където (3 × 3)–подматрицата (Ωjk)

3
j,k= 1 представя тримерно

въртене (или малко по-общо, е ортогонална матрица). Не съв-
сем тривиална математическа теорема ни казва, че най- общата
лоренцова матрица (т.е., изпълняваща условие (2.12), [Λ]T [η]

[Λ] = [η], е произведение на матрици от вида на изброените до
тук лоренцови матрици.

Нека да припомним, че освен лоренцовите преобразувания
(трансформации), x′ = Λ(x) има и по-общи смени на инерциал-
ните отправни системи, задавани от нехомогенни линейни тран-
сформации (2.8), x′ = Λ(x) + a. Такива преобразувания се на-
ричат трансформации на Поанкаре (Poincaré transformations).
Например, фигура 15 изобразява една (сравнително) обща тран-
сформация на Поанкаре, тъй като включва и транслация на
началото на отправната система.

Фигура 16: Паралел между трансформациите на Лоренц (фи-
гура а) и Галилей (фигура б). Обърнете внимание, че както във
всяко векторно пространство, така и на горните фигури коорди-
натите са спуснати с успоредни проекции върху осите. На фигу-
ра б) е илюстриран и факта, че съществува канонична (също и
естествена) проекция на не релативисткото пространство време
върху реалната права определяща абсолютното нютоново вре-
ме. Очевидно, в релативисткия случай няма такава естествена
проекция.
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1. Айнщайнов закон за събиране на скорости-
те
До тук в изложението по специална теория на относителността
все още не сме изяснили окончателно, какви всъщност движе-
ния са възможни. Единственото, което заложихме, като изходно
предположение беше, че във всяка инерциална отправна систе-
ма са възможни движения, които се извършват с достатъчно
малка по големина скорост (а също и ускорение). Какъв е точ-
ния предел на достижимата големина на скоростта в дадена
(произволна) инерциална отправна система? Вече отбелязахме,
че скорости по-големи или равни на скоростта на светлината
c не могат да се постигнат от инерциални наблюдатели, тъй
като проблема за собственото му време няма да има реално и
положително решение. От друга страна, нека един инерциален
наблюдател B се движи със скорост v спрямо друг инерциа-
лен наблюдател A и прехода от отправната система (xµ) на A
към тази на B, (x′ µ), се дава от лоренцовата трансформация
(Л2.2.16). Нека инерциален наблюдател C се движи спрямо B

със скорост u по оста x′ 1. Тогава, полагайки че
dx′ 1

dx′ 0
=

1

c

dx′ 1

dt′

=:
u

c
(помним, че t′ =

x′ 0

c
) ние изразяваме скоростта w :=

dx1

dt
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= c
dx1

dx0
на C спрямо A, посредством12 (Л2.2.16). Получаваме u

=
v − w

1− vw
c2

или равносилно,

w =
u+ v

1 +
uv

c2

. (1.1)

Последната формула е известния айнщайнов закон за събиране
на скоростите (velocity-addition formula) в случая на колинеарни
скорости. Формула (1.1) силно контрастира с галилеевия закон
за събиране на скоростите, w = v + u. Независимо обаче, че
айнщайновият закон дава за w по-малка стойност, от колкото
галилеевия, все пак ако 0 < v < c и 0 < u < c, то следва че
u < w. С други думи, няма скорост по-малка по големина от
скоростта на светлината, която да не може да бъде превишена.
Скоростта на светлината c е точния предел на скоростта на
какъвто и да е наблюдател в произволна инерциална отправна
система (като самата скорост c остава недостижима).

В частност, потвърждаваме нашето очакване от края на точ-
ка 1 на предходната лекция, че две събития P и Q са причинно
свързани, т.е., са време-подобни тогава и само тогава, когато
съществува инерциален наблюдател, който минава през тях.

2. Метрична структура на пространство-вре-
мето
Полезно за по-нататъшното изложение се явява понятието съ-
пътстваща инерциална отправна система на произволен наб-
людател (възможно и неинерциален). Това е отразено на дол-
ната фигура с помощта мировата линия на наблюдателя.

12на практика това означава да се раздели почленно второто равенство
от (Л2.2.16) на първото и да се положи x′ 1

x′ 0
= u
c и x1

x0
= w

c
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Фигура 1: Съпътстващи инерциални от;равни системи

По определение, съпътстваща инерциална отправна система се
задава за всяко събитие от мировата линия на разглеждания
наблюдател. Както е изобразено на фигура 1а. във всеки един
момент тази отправна система има за начало събитието, за кое-
то се отнася момента и за времева ос, оста която е допирателна
към мировата линия в същото това събитие. Пространствените
оси се менят с лоренцови бустове при преход от всяко събитие
към достатъчно близко бъдещо събитие от мировата линия. Фи-
зически, можем да си мислим, че сме апроксимирали изследва-
ния наблюдател с частично инерциални наблюдатели, както е
изобразено на фигура 1б. Тоест, ускоряването на наблюдателя
се извършва на кратковременни тласъци, които са изобразе-
ни на фигурата със събития N1, N2 и т.н., избрани достатъчно
гъсто върху мировата линия. Така, между две последователни
събития Nk и Nk+1 движението е свободно (инерциално) и то
определя съпътстващата инерциална отправна система за този
отрязък от мировата линия.

Приведеното понятие с неговата физическа илюстрация ни
позволяват да обобщим понятието за собствено време за произ-
волен, неинерциален наблюдател. Нека P и Q са две събития
от мировата линия на такъв наблюдател, като P предхожда Q
и нека да изберем между тези събития, отново върху мировата
линия, достатъчно гъсто разположени последователни събития
N1 = P , N2, . . . , Nn = Q. Тогава можем да апроксимираме соб-
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ственото време τP,Q със сумата

τP,Q ≈ τN1,N2 + τN2,N3 + · · ·+ τNn−1,Nn =
n∑

k= 2

(xk − xk−1)2 , (2.1)

където xk са координатите на събитието Nk в инерциалната от-
правна система, в която описваме движението на изследвания
наблюдател. По такъв начин, в границата, когато n → ∞ и
точките N1, N2, . . . , Nn равномерно гъсто покриват участъка
от мировата линия между P и Q, получаваме че сумата (2.1)
клони към интеграла

τP,Q :=

tQ∫
tP

√(
dx(t)

dt

)2

dt , (2.2)

където кривата x(t) описва мировата в инерциалната отправна
система в която работим, а tP и tQ са времената, които съответ-
стват на събитията P и Q. Забележете, че същият тип формула
(2.2) в евклидовата геометрия дава понятието за дължина на от-
рязък от крива между две точки, само че скаларният квадрат(
dx(t)

dt

)2

е определен от евклидовото скаларно произведение.

В частност, също както в евклидовия случай интегралът (2.2)
е репараметризационно инвариантен: ако ние изберем друга
параметризация на мировата линия, x = x(s), която е опреде-
лена от параметър s = f(t), то ако заменим в (2.2) t с s и tP ,
и tQ, съответно с sP = f(tP ), и sQ = f(tQ), то ще получим съ-
щия резултат. Съвсем естествено е самото собствено τ време на
наблюдателя също да бъде използвано за параметър по миро-
вата линия: той е прието да се нарича естествен параметър.
Характеристика на собственото време τ като параметър по ми-

ровата линия е, че първата производна
1

c

dx

dτ
(умножена по

1

c
)

е единичен вектор:
1

c2

(
dx

dτ

)2

= 1 . (2.3)

Действително, по определение при преход от x към x+∆x по ми-
ровата линия, квадрата (c∆τ)2 на изменението на собственото
време умножено по c e релативисткия интервал (∆x)2 и следо-

вателно,
1

c2

(
∆x

∆τ

)2

= 1, което при граничния преход ∆τ → 0
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дава (2.3). В същото време, когато параметърът по мировата
линия е времето в инерциалната отправна система, тогава x(t)

= (x0(t), x(t)) = (ct, x(t)) и следователно,
dx

dτ
= (c, v), където v

= v(t) =
dx

dt
е моментната скорост на движещия се наблюдател.

Така,
1

c2

(
dx

dt

)2

= 1− v2

c2
, (2.4)

за v = големината на v. Тъй като, по верижното правило за
диференциране на сложна функция имаме

dx

dτ
=

dx

dt

dt

dτ
(2.5)

то от (2.3) и (2.4) намираме

dt

dτ
= 1

/√
1− v2

c2
, (2.6)

което е “вечния знаменател” в специалната теория на относи-
телността.

По такъв начин, ние намерихме физическата интерпретация
на псевдо-евклидовата дължина по време-подобна линия – то-
ва е собственото време на наблюдателя, чиято мирова линия е
дадената линия. По определение, една крива x(τ) ∈ R1,3, τ ∈ R
се нарича време-подобна крива, ако

dx(τ)

dτ
∈ V + ∪ V − ∀ τ

(където V ± е конусите на бъдещето и миналото, (Л2.2.18)).
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Фигура 2: Време-подобна мирова линия

Аналогично, пространствено подобна крива x(τ) ∈ R1,3 е
такава крива, за която(

dx(τ)

dτ

)2

< 0 ∀ τ .

Дължина на пространствено подобна крива се определя с ес-
тествената корекция на формула (2.2):

τ2∫
τ1

√
−
(
dx(τ)

dτ

)2

dτ . (2.7)

Какъв е физическия смисъл на дължината (2.7)? Ако лини-
ята, по която определяме дължината е права отсечка между две
пространствено-подобни събития P и Q с координати съответ-
но, x1 и x2, то формула (2.7) възпроизвежда просто квадратния
корен от модула на релативисткия интервал между x1 и x2:√∣∣(x1 − x2)2

∣∣ ≡ √−(x1 − x2)2 .

Оставяме на читателя да се убеди в качеството на лесно уп-
ражнение, че винаги съществува инерциална отправна систе-
ма, в която събитията P и Q са едновременни (за интуиция
може да използва и фигура Л2.11). От тук следва, че дължи-
ната на отсечката между P и Q е точно разстоянието, което
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инерциалния наблюдател, за който тези две събития изглеж-
дат едновременни, би съпоставил въз основа на измервания по
радио-локационния метод.

С това виждаме, че псевдо-евклидовото скаларно произведе-
ние закодира в себе си в едно метричните структури на прос-
транството и времето.

Едно интересно свойство на времевите дължини е “псевдо-
евклидовото неравенство на триъгълника”: За взаимно време-
подобни интервали между събития с координати x, y и z, та-
кива че x предхожда y и предхожда z е в сила:√

(x− y)2 +
√

(y − z)2 6
√

(x− z)2 . (2.8)

При това, равенство в горното неравенство е налице тогава и
само тогава, когато трите вектори x− y, y− z и x− z са колине-
арни и насочени в една посока. Обърнете внимание: в евклидо-
вия вариант на неравенство (2.8) посоката е противоположна!
Като инструкция за извода отбелязваме, че е достатъчно е да
се докаже, че ако a , b , c , d , e > 0 са такива, че a > b , c > d ,
b + d > e , то

√
a2 − b2 +

√
c2 − d2 6

√
( a + c )2 − e2

или дори само за e2 = (b+ d)2.

По-общо, ако събитието с координати x е в миналото на съ-
битието y, то измежду времеподобните криви съединяващи x и
y правата отсечка има най-голяма дължина.

Илюстрация:

s > s1 + s2 > s1, 1 + s1, 2︸ ︷︷ ︸
s1 >

+ s2, 1 + s2, 2︸ ︷︷ ︸
s2 >

�
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Фигура 3: Псевдо-евклидово неравенство на триъгълника

Последното твърдение на физичен език е така наречения “пара-
докс на близнаците”: между две причинно свързани събития (⇔
време-подобни събития) най-голямо собствено време из между
всички наблюдатели минаващи през двете събития отчита инер-
циалния наблюдател.

Забележка: Правите линии в плоското псевдо-риманово много-
образие R1,3 са геодезични в смисъл, че са екстремали на дейс-
твието “дължина” ∫ √√√√∣∣∣∣∣

(
dx(τ)

dτ

)2
∣∣∣∣∣ dτ .

Последното следствие ни показва, че за времеподобни прави
това действие има максимум, а не минимум. Именно този фун-
кционал се приема за действие на свободна релативистична
частица.

В заключение ще отбележим, че пространствено-подобни-
те линии имат многомерно обобщение: пространствено-подо-
бна повърхност Σ е такава повърхност в R1,3, която пресича
трансверзално всеки конус x + V + за ∀ x ∈ Σ.
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Фигура 4: Пространствено-подобна повърхност

По-точно, искаме за ∀ крива
(

x(τ)
)
τ
⊂ Σ

dx(τ)

dτ
6= 0 ⇒

(
dx(τ)

dτ

)2

< 0 .

Пространствено подобните повърхнини с размерност 3 можем
да си мислим физически, като “обобщени повърхнини на еднов-
ременност”. В математиката (и математическата физика) таки-
ва повърхнини (с още малко технически ограничения) се нари-
чат повърхности на Коши (Cauchy surfaces) и мога да служат
за задаване на така наречените начални условия определящи
еволюцията на описваната система.

3. Причинна структура на пространство-вре-
мето
Макар и да въведохме вече причинната наредба в пространст-
во-времето тук ще резюмираме отново с известни допълнения.

От гледна точка на псевдо-евклидовата геометрия, причин-
ната структура в пространство-времето, т.е., в пространството
на Минковски R1,3 се въвежда от следната бинарна релация
наречена причинна наредба:

x 4 y ⇔ y − x ∈ V + .

Това е релация на частична наредба, т.е. изпълнява следните
свойства, които са дефиниционни за релации на частични на-
редби:
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(o1) рефлективност: x 4 x,

(o2) антисиметрия: x 4 y и y 4 x ⇒ x = y,

(o3) транзитивност: x 4 y и y 4 z ⇒ x 4 z ,

за ∀ x, y, z ∈ R1,3 . Наистина:

(o1) ⇐⇒ 0 ∈ V + - изпълнено е;

(o2) ⇐⇒ V + ∩ (−V + ) = { 0 } - изпълнено е;

(o3) ⇐⇒ a ∈ V + и b ∈ V + ⇒ a + b ∈ V + - изпълнено е.

Да припомним физическата интерпретация:

x 4 y ⇐⇒ събитието x може да причини
следствия в събитието y ,

както и някои от главните й следствия:

• x 4 y или y 4 x ⇐⇒ (x−y)2 > 0. Такива събития нарекох-
ме време-подобни (time-like separated) или също причинно
свързани.

• не x 4 y и не y 4 x ⇐⇒ (x− y)2 > 0. Такива събития се
нарекохме пространствено подобни (space-like separated)
или също причинно несвързани. Последното се означава с

x ∼ y .

• Граничен случай между горните два: (x − y)2 = 0. Таки-
ва събития са все още времеподобни и не пространствено
подобни. В този специален случай събитията x и y на-
рекохме още взаимно изотропни или още светоподобни
(light-like).

Забележки: 1) Пространствено-подобието x ∼ y не е релация
на еквивалентност в R1,3 . Например в ситуацията
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Фигура 5: Пространствено-подобието не е транзитивно

имаме, x ∼ y и y ∼ z , но не x ∼ z , тъй като x 4 z .

2) В сила е следното твърдение: ако x 4 y и x и y са светопо-
добни, т.е. (x− y)2 = 0, тогава множеството13

[x, y] :=
{

z ∈ R1,3
∣∣ x 4 z 4 y

}
(3.1)

е линейно наредено, т.е. за ∀ z, w ∈ [x, y] имаме z 4 w или w 4 z.

Фигура 6: Мировата линия на светлинен сигнал е образуваща
права на светлинен конус

Както се вижда от картинката, множеството [x, y] е права ли-
ния, лежаща върху границата на конуса на бъдещето с център
в x, x + V +, т.е. това е горната половина на светлинния конус с
център в x, x + Γ0. Физически множеството [x, y] при светопо-
добни x и y има смисъл на най-бърз сигнал.

3) В останалия случай на времеподобни x 4 y, но не светопо-
добни събития (т.е. (x−y)2 < 0) множеството (3.1) не е линейно
наредено: ∃ z, w ∈ [x, y], такава че z ∼ w.

13означението да не се възприема като това за комутаторите използвани
в квантовата механика, а като затворен “интервал”



72 Лекция 3 9.11.2015/v1

Фигура 7: Причиннта наредба не е линейна

Такива множества се наричат двойни конуси (double cones) или
още diamonds.

4. Релативистка динамика
Това с което главно се занимавахме до тук в специалната тео-
рия на относителността може да се нарече “релативистка кине-
матика”, тъй като основно се концентрирахме върху описание-
то на движението на телата в условията на новата концепция
за пространство и време. Въпреки това, срещнахме и елементи
на динамика съдържащи се в понятията инерциален наблюда-
тел и инерциална отправна система Тези понятия се отнасяха
до свободното движение и необходимата модификация на пър-
вия принцип на Нютон при прехода към специалната теория на
относителността. Фактически, в основата си първият принцип,
като неотличимост и равноправност на свободно движещите се
наблюдатели, и равномерността на относителното им движе-
ние един спрямо друг, остават същите и в специалната теория
на относителността. Новият елемент беше свързан с отказване
от нютоновия възглед за абсолютно време и едновременност, и
замяната му с принципа за постоянство на скоростта на светли-
ната. който на свой ред идва от налагане на принципа за рав-
ноправието на инерциалните отправни системи по отношение
на законите на електромагнетизма.

Остава да намерим адекватна промяна на втория и третия
принцип на Нютон в специалната теория на относителността.
Това ще ни доведе до релативистките понятия за сила, импулс
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и енергия.
От известна философска гледна точка, вторият принцип на

Нютон до някъде съдържа в себе си определение за сила: според
първия принцип на Нютон при липсата на въздействие върху
телата скоростта им не се променя. Следователно, ускорението
на едно тяло може да се възприеме като мярка за интензивност-
та на указаното въздействие. От друга страна, вторият прин-
цип на Нютон има и смисъла на физичен закон, доколкото ние
имаме понятие еднаквост на “интензивностите” на въздействие
върху телата. Така, може да се установи, че ако в един случай
на еднакво въздействие върху две тела те получават ускорения
a1 и a2, a при друг случай на еднакво въздействие – ускорения
b1 и b2 съответно, то имаме равенство на отношенията

a1

a2

=
b1

b2

. (4.1)

Тогава, горното отношение може да се обяви за характеристика
на телата. Това именно е отношението на техните маси,

m1

m2

=
a1

a2

=
b1

b2

. Така достигаме и до известната формулировка на втория

принцип на Нютон,
F = ma

записан в момента за простота в скаларен вид, за едномерни
движения, но разбира се, винаги следва да помним, че в об-
щия случай (на нютоновата механика) силата F и ускорението
a са вектори в тримерното пространство, F и a съответно. За
простота обаче, в началото на този увод към динамиката ще
разгледаме скаларния случай на едномерни движения.

Изложеният ход на мисли изглежда напълно уместен и по
отношение на специалната теория на относителността. Веднага

срещаме обаче принципно затруднение: ускорението a =
du

dt
(u

е скоростта на тялото) е лош кандидат за мярка на интензив-
ността на въздействията, тъй като не е релативистки инвари-
ант. При галилеевите трансформации, които описват прехода
от една инерциална отправна система към друга в нютоновата
механика се оказва, че скоростта u се трансформира в скорост
w по закона w = u + v, където v е относителната скорост на
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едната отправна система спрямо другата. Диференцирайки по
времето, тъй като v е константа (равномерно и праволинейно
движение), получаваме

a :=
du

dt
=

dw

dt
=: a′ , (4.2)

т.е., ускорението е галилеев инвариант, то не се променя при
преход от една инерциална отправна система към друга. В ре-
лативисткия случай, равенството (4.2) отпада по две причини,
галилеевия закон за събиране на скоростите w = u + v се заме-
ня с айнщайновия закон (1.1) от една страна и от друга, хода на
времето също се модифицира. Ускорението не е релативист-
ки инвариант. Нещо повече, при трансформацията си от една
инерциална отправна система към друга ускорението в нова-
та ще зависи и от моментната скорост на тялото, поради което
отношения като

a1

a2

в (4.1) няма да зависят само от вътрешни-
те характеристики на телата, но ще зависят също и от техните
скорости. Можем да кажем, че релативистката маса зависи от
скоростта на тялото, което е широко разпространено схващане
извън теоретичната физика. Ние обаче не искаме да казваме то-
ва. В настоящия курс от лекции ще определим масата, като
релативистки инвариант и тя няма да зависи от скоростта.
За да направим съответствие с терминологията в учебниците,
където “масата зависи от скоростта”, нашето понятие за маса
ще съответства на това, което в тези учебници се нарича “маса
на покой”.

Изходът от затруднението с неинвариантността на ускоре-
нието е прост. Ще обявим закона (4.1) за изпълнен само при
положение, че началната (моментната) скорост на телата в мо-
мента на въздействие е равна на нула. Или физически равносил-
но е да кажем, че закона (4.1) се изпълнява при малки скорости
на телата (в сравнение със скоростта на светлината). Това со-
чи и експерименталният опит идващ от нютоновата механика.
От теоретична гледна точка, предложеното решение означава
да определяме релативистки ускорението на едно тяло винаги
в съпътстващата го инерциална отправна система, която въве-
дохме в началото точка 2 на настоящата лекция.

По такъв начин се очертава идеята, че за да се постигне
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релативистка инвариантност при описание на движението и ус-
корението, ние трябва да се стремим към използване на “вът-
решни термини/понятия”. Именно такова понятие беше съпът-
стващата инерциална отправна система. Вътрешно понятие е и
собственото време, което нарекохме още и естествен параметър
на мировата линия.

За да сме по-коректни от този момент нататък ще говорим за
материална точка, чието движение описваме с мирова линия.
Физически, материалната точка може да се замени с достатъчно
малко тяло.

Така, ако в работната инерциална отправна система дви-
жението изследваната материална точка се описва от мирова
линия x = x(τ), параметризирана със собственото време τ по
линията, то определяме четиримерното или още наричано, ре-
лативистко ускорение на тялото, като втората производна

a(τ) :=
d2x(τ)

(dτ)2
(4.3)

(спрямо собственото време). Нека да означим също

n(τ) :=
1

c

dx

dτ
, a(τ) = c

dn(τ)

dτ
, (4.4)

което е допирателния единичен вектор към мировата линия в
момента τ , съгласно (2.3), т.е., n(τ)2 ≡ n(τ) · n(τ) = 1. Чети-
ривекторът n(τ) се нарича (нормален) четиривектор на (мо-
ментната) скорост. Ако диференцираме по τ равенството 1 =

n(τ) · n(τ), то от правилото на Лабниц (Leibniz rule) ще полу-

чим 0 =
d

dτ

(
n(τ) · n(τ)

)
=
dn(τ)

dτ
· n(τ) + n(τ) · dn(τ)

dτ
=

2

c
a(τ)

· n(τ), т.е.,14

a(τ) · n(τ) = 0 . (4.5)

С други думи, релативисткото ускорение на материалната точ-
ка, в даден момент от време (дадено събитие) от мировата й
линия, е винаги (псевдо) ортогонално на (допирателната към)
мировата линия в този момент.

14Свойството (4.5) на четиримерния вектор a(τ) пряко обобщава ситуа-
цията с нормалното ускорение при въртене по окръжност.
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Фигура 8: Релативистко ускорение. То лежи винаги винаги в
равнината, която е ортогонална (в псевдо-евклидов смисъл)
към мировата линия в дадения момент.

Полезно упражнение е да се изрази моментното релативис-
ткото ускорение a посредством съответните: моментна тример-
на скорост v и моментно тримерно ускорение, което нека сега

да означим с
•
v :=

dv

dt
, за да избегнем объркване с тримерната

част a на четиривектора a. От равенството a = c
dn

dτ
= c

dn

dt
dt

dτ
и формулите n =

(
1 − v2

c2

)− 1
2

(c, v) (съгласно (2.5) и (2.6))
получаваме:

a =

( •
v ·v
c2(

1− v2

c2

)2 ,

•
v−v2

•
v

c2
+ (
•
v ·v)v
c2(

1− v2

c2

)2

)
,

където е използвано равенството
d

dt
(v2) =

d

dt
(v · v) = 2

dv

dt
· v =

2
•
v · v и за тримерните вектори v и

•
v e използвано евклидовото

скаларно произведение
•
v · v. В частност, при моментна скорост

v = 0, т.е., в съпътстващата инерциална отправна система на
покой имаме

a = (0,
•
v) .
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Така, тримерната част на релативисткото ускорение a съвпада
с обичайното тримерно ускорение

•
v, когато е отчетено в съпът-

стващата инерциална отправна система.
И така, можем да положим като релативистка модификация

на втория принцип на Нютон уравнението

F = ma , (4.6)

където F ще наречем четиримерна/релативистка сила, a m

е масата на материалната точка (малкото тяло), върху което
действа тази релативистка сила. Формула (4.6) ни поднася оба-
че нови изненади. Както отбелязахме по-горе, релативисткото
ускорение a е винаги ортогонално (в псевдо-евклидов смисъл)
на четиримерната скорост n на точката (т.е., на допирателния
вектор към мировата й линия). Следователно, и релативистката
сила F е (псевдо) ортогонална на n, което на свой ред означава,
че F трябва да “знае” накъде е насочена скоростта на точка-
та, а не само да зависи от нейното положение. Разбира се и в
класическата нютонова механика се разглеждат сили зависещи,
както от положението, така и от скоростта на телата. Например,
такава е магнитната сила, която обсъждахме в първата лекция.
Само че в нютоновата механика се разглеждат и сили, които не
зависят от скоростта: гравитационната сила на Нютон е напри-
мер такава сила; електростатичната сила на Кулон е друг такъв
пример. Следователно, последните два закона непременно след-
ва да се модифицират за да станат релативистки инвариантни,
т.е., за да изглеждат еднакво във всички инерциални отправни
системи. Разбира се, нютоновата теория за гравитацията днес е
заменена с общата теория на относителността, която надхвърля
дори пределите на специалната теория на относителността. А
що се отнася до електростатичната сила на Кулон, необходима-
та релативистка корекция се оказва не кое да е, а магнитната
сила! Така, истинската релативистка електромагнитна сила има
тримерна част съответстваща на силата на Лоренц. Последното
указва, че тримерните вектори на интензитета на електричното
поле и на магнитната индукция следва да се обединят в един
общ обект при преход от една инерциална отправна система
към друга. Именно това прави така наречения електромагни-
тен тензор на Максуел, който ще въведем в следващата точка.
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След като обсъдихме релативисткия аналог на втория прин-
цип на Нютон нека да се обърнем към третия принцип – равенс-
твото на силите на действието и противодействието. Тук отново
срещаме принципна трудност. Ако говорим за действие и про-
тиводействие, те трябва да стават в едно и също събитие, поне-
же нямаме абсолютна едновременност и мигновено въздействие
на разстояние. Всъщност, третия принцип на Нютон има един
еквивалентен израз, който е закона за запазване на импулса.
Известно е, че Нютон е формулирал своя втори принцип във
вида

F =
dp

dt
, p := mv ,

където p се нарича (нерелативистки) импулс на тялото. Ние
след малко ще “изземем” отново буквата p за нуждите на друг
обект, тримерната част на релативисткия импулс p, но нека за
момент да я използваме в нейното нютоновско предназначение.
Така, съгласно третия принцип на Нютон, ако n точки с им-
пулси p1(t), p2(t), . . . , pn(t) си взаимодействат единствено по
между си, то

d

dt

(
p1(t) + · · ·+ pn(t)

)
= F1(t) + · · ·+ Fn(t) = 0 (4.7)

и следователно, сумарният импулс, p1(t) + · · · + pn(t), ще ос-
тава постоянен във времето. Последното именно е и закона за
запазване на импулса. При изследвания с елементарни части-
ци обикновено взаимодействието се извършва в изключително
малка област от пространството за също така кратък момент
от време. С други думи, от макроскопична гледна точка това е
моментен точков сблъсък, както е изобразено на фигура 9 по-
долу. Тогава, ако преди и след сблъсъка частиците са имали
импулси pin1 , . . . , pinn и pout1 , . . . , poutn , съответно, то ще е в сила
равенството

pin1 + · · ·+ pinn = pout1 + · · ·+ poutn .
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Фигура 9: Закон за запазване на импулса при сблъсък на n мате-
риални точки (тела): точки с начални (нерелативистки) импул-
си pin1 , . . . , pinn , взаимодействат в малка област на пространство-
времето, което можем да си мислим в пределния случай, като
моментен точков сблъсък. След сблъсъка те получават импулси
съответно равни на, pout1 , . . . , poutn . Според закона за запазване
на импулса: pin1 + · · · + pinn = pout1 + · · · + poutn .

Ситуацията с моментен точков сблъсък може да се прене-
се без проблем и в теория на относителността, понеже тогава
нямаме мигновено действие на разстояние. Така, можем да по-
искаме сумата на всички действащи релативистки сили, F1 +

· · · + Fn, в малката област от пространство-времето, където
става взаимодействието, да бъде равна на нула. Нека да въве-
дем аналогично на Нютон релативистки, четиримерен импулс
p, чиято скорост на изменение (но спрямо собственото време) е
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равна на действащата релативистка сила:15

F =
dp

dτ
, p(τ) := m

dx(τ)

dτ
= mc n(τ) . (4.8)

Така, преформулирайки ситуацията от фигура 9 за релативис-
тки частици (материални точки), които влизат във взаимодейс-
твие в малка област на пространство-времето, ще получим ре-
лативисткия закон за запазване на импулса:

pin1 + · · ·+ pinn = pout1 + · · ·+ poutn , (4.9)

който приемаме като постулат в специалната теория на относи-
телността.

С това трите запазващи се компоненти на пълния импулс
в нерелативистичния случай преминаха в четири запазващи се
компоненти. Какъв е смисъла на новата добавена компонента,
нулевата? За целта, нека първо да изразим всичките четири
компоненти на релативисткия импулс с помощта на обикнове-
ната тримерна скорост v (v2 =: v2):

p = (p0,p) , p0 =
mc√
1− v2

c2

, p =
mv√
1− v2

c2

. (4.10)

От този момент нататък, p престава да означава нере-
лативисткия тримерен импулс (4.8) и става тримерната
част на релативистки импулс. За да намерим тогава физи-
ческия смисъл на четирите компоненти на релативисткия им-
пулс, нека да използваме така наречения принцип на съответ-
ствието, който ще срещаме и по-нататък в този курс. Този
принцип изразява известна приемственост при преход от ста-
ри към нови физични теории. Доколкото една нова физична

15Тук срещаме известен тънък момент свързан с това, че всяка частица
си има свое индивидуално собствено време, за разлика от равенство (4.7),
където времето е общо. Ние ще пренебрегнем това обстоятелство, понеже и
без друго в граничния случай на моментен точков сблъсък мировите линии
стават сингулярни (не гладки) и се губи смисъла на това какви точно са
скоростите на изменение на собствените времена спрямо някое глобално
зададено време в инерциална отправна система. В крайна сметка, закона
за запазване на релативисткия импулс, към който се стремим, ще приемем
за постулат. Впрочем, този закон добре се съгласува с експериментите при
сблъсъци между елементарни частици.
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теория е уточнение на стара теория, която макар и да е да-
вала верни предсказания в даден диапазон от експериментал-
ни измервания, то е започнала да се отклонява от правилното
описание на система при навлизане в нови области на състо-
янията. Затова, новата теория следва да обясни защо старата
е давала добро приближение на експеримента до този момент.
Заедно с това, естествено идва и съответствие между понятия
и закони от новата и старата теория. Това в най-общи линии е
принципа за съответствие, който освен тук ще използваме и при
въвеждането на квантовата механика, като теория заместваща
класическата механика.

Класическата нютонова механика може да се разглежда ка-
то приближение към специалната теория на относителността,
което дава добър резултат за малки скорости на движение спря-
мо скоростта на светлината c. Формално, ако c → ∞ то бихме
имали безкрайна скорост на предаване на сигнали и следова-
телно, абсолютна едновременност. И така, нека да развием по
v

c
→ 0 изразите в (4.9) до първия ненулев порядък. Тази гра-

ница е прието да се нарича също нерелативистична граница.
За целта използваме равенството16

(1− z)−
1
2 = 1 +

1

2
z +O(z2) .

Резултатът е следния:

cp0 ≈ mc2 +
mv2

2
, p ≈ mv .

Така, докато в нерелативистичната граница тримерната част
p на релативисткия импулс клони към обичайния нютоновски
тримерен импулс от (4.8), то нулевата му компонента p0 (след
доумножаване на c) клони към това, което се нарича кинетична
енергия на материална точка, но отместена с константата

Erest = mc2 .

16по-обща формула идва от биномиалната формула:

(1 + z)α =

∞∑
n=0

(
α

n

)
zn ,

където
(α
n

)
=
α(α− 1) · · · (α− n+ 1)

n!
.
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Последното е знаменитата формула на Айнщайн, която се нари-
ча енергия на покой на тяло с маса m. Така, можем да кажем,
че докато трите пространствени компоненти на релативис-
ткия импулс p и тяхното запазване обобщават нерелативис-
тки импулс и неговия закон за запазване, то нулевата компо-
нента p0 обобщава нерелативисткото понятие за енергия,

E =
mc2√
1− v2

c2

= cp0 .

По тази причина релативисткия импулс се нарича още четири-
вектор на енергията-импулса, а неговото запазване – релати-
вистки закон за запазване на енергията-импулса.

С понятието за релативистки импулс по същество завърш-
ваме темата за релативистка динамика. Следват някои бележки
за по-доброто осмисляне на значимостта на приведените резул-
тати. Преди всичко, кинетичната енергия от нерелативистката
механика получи колосална добавка – енергията на покой mc2.
Така, в релативистката механика балансът на масата (запазва-
нето на масата) става част от закона за запазване на енергията!
Масата по отделно не се запазва, а в комбинация с пълната
енергия на системата. С други думи, масата може да се пре-
върне в енергия! Този ефект се наблюдава експериментално в
ядрените реакции и реакциите на елементарните частици и се
нарича дефект на масата. На фигура 10.а е изобразен ради-
оактивния разпад на изотопа на урана с атомно тегло 235 (и
атомен номер 92, който съответства на заряда на ядрото). На
фигура 10.б е илюстриран може би най-забележителния случай
на дефект на масата, който дори е променил коренно хода на
нашата история. Самото слънце свети благодарение на дефек-
та на масата, изразен в ядрените реакции на така наречения
термоядрен синтез.
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Фигура 10: Дефект на масата. На фигура а) е представена
пространство-времевата диаграма на радиоактивния разпад на
уран 235, 235

92 U → 231
90 He + 4

2He. При този процес грубият ба-
ланс на масата, на ниво атомни единици за маса, се запазва,
235 = 231 + 4 (закона за запазване на заряда е изпълнен точно:
92 = 90+2). Въпреки това, при разпада се наблюдава липсваща
маса от порядъка на 0.5% от атомната единица. При деленето
на същия изотоп на урана (фигура б)), 1

0n + 235
92 U → 141

56 Ba +
92
36Kr + 1

0n + 1
0n + 1

0n, което е в основата на верижната ре-
акция в атомната експлозия, дефекта на масата е забележим
почти на порядъка на атомна единица за маса – дефицитът е
към 20% от тази единица за маса (грубото сравнение 1 + 235 =

141 + 92 + 1 + 1 + 1 е отново изпълнено).

Забележете, че квадрата на релативисткия импулс на една
частица е постоянен и пропорционален на квадрата на масата
m на частицата:

p2 ≡ p · p ≡ (p0)2 − (p1)2 − (p2)2 − (p3)2 = m2c2 . (4.11)

Действително, съгласно (4.8), p = mc n и n2 = 1. Обърнете
внимание също, че поради равенството p = mc n следва също
и че p е винаги време-подобен вектор насочен към бъдещето
(лежи в конуса на бъдещето). По такъв начин, при разпад на
една частица (да речем, радиоактивен разпад на атомно ядро)
според закона за запазване на енергията-импулса имаме

p = p1 + p2 + · · ·+ pn .
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От друга страна обаче, псевдо-евклидовото неравенство на три-
ъгълника (2.8) ни дава, че√

p2 >
√

p2
1 +

√
p2

2 + · · ·+
√

p2
n

тоест,
m > m1 + · · ·+mn .

Дефектът на масата е неизбежен (!), тъй като равенството в
горните неравенства е възможно тогава и само тогава, кога-
то всички вектори са колинеарни, т.е, когато имаме разпад без
разпръскване на продуктите.
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5. Релативистка инвариантност
Релативистката инвариантност на физичните закони е тяхното
свойство да изглеждат еднакво във всички инерциални отправ-
ни системи. Това отразява принципът за относителност: всич-
ки инерциални отправни системи са равноправни и не могат
да се отличат една от друга с вътрешни физични експеримен-
ти. Релативистките означения, чието въвеждане започнахме в
предходната точка на тази лекция, целят основно да направят
явна и очевидна релативистката инвариантност на различните
изрази включващи координатни зависимости. Най-напред, ще
допълним тези означения с една важна договорка: това е кон-
венцията за сумиране по повтарящи се горни и долни
индекси. Както може би читателите са забелязали, докато ко-
ординатите на четиримерните вектори x = (xµ) записвахме с
горни индекси, то компонентите на метричния тензор η = (ηµν)

записвахме с долни индекси. По такъв начин, формула (Л2.2.5)
за квадратичната форма на релативисткия интервал се записва
като

x2 (≡ x · x ) =
3∑

µ, ν= 0

ηµν x
µxν =: ηµν x

µxν . (5.1)

Последното дефиниционно равенство е нашият първи пример
за споменатата конвенция за сумиране, която в по-общ вид се
формулира така:

ако в един израз се срещат два еднакви индекса, веднъж като
горен и веднъж като долен, то по тях се подразбира сумиране.

(5.2)
Ако въведем така наречените ковариантни координати:17

xµ := ηµν x
ν , (5.3)

тогава релативисткия интервал (2.5) приема още по-простия
вид

xµ x
µ (≡ x0 x

0 + x1 x
1 + x2 x

2 + x3 x
3 = ηµν x

µ xν ) . (5.4)

Така, най-общо една линейна лоренцова трансформация x′ =

Λ(x) (2.8) при новата конвенция (5.2) може се запише много
17забележете, че x0 = x0, x1 = −x1, x2 = −x2 и x3 = −x3
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компактно във вида
x′

µ
= Λµ

ν x
ν , (5.5)

където числата Λµ
ν са организирани в матрица по следния начин

Λ =
(
Λµ
ν

)
3
µ,ν= 0 .

При така въведените означения, запазването на релативисткия
интервал, Λ(x) ·Λ(x) = x ·x (виж. (2.11)), се записва като (след-
ните равенства са аналогични на матричните равенства (2.12)):

ηµν x
µ xν = ηµ′ν′ Λ

µ′

µ Λν′

ν x
µ xν =⇒ ηµν = Λµ′

µ Λν′

ν ηµ′ν′ (5.6)

(второто следва от първото, както преди, с вземане на частната

производна
∂2

(∂xµ)(∂xν)
). Ако с (ηµν) означим обратната матрица

на (ηµν), т.е.,18

ηµν ηνρ = δµρ , (5.7)

където δµν е символът на Крьонекер,

δµν =

{
1 ако µ = ν ,

0 ако µ 6= ν ,
(5.8)

то условието (5.6) се презаписва като19

(
Λ−1

)
µ
ν = ηµµ

′
ηνν′ Λ

ν′

µ′ , (5.9)

където Λ−1 е обратната матрица на Λ. От тук се извежда не-
посредствено, че

x′
µ

= Λµ
ν x

ν ⇐⇒ x′µ =
(
Λ−1

)
ν
µ xν . (5.10)

Съветваме читателя, който за първи път се сблъсква с конвен-
цията за сумиране (5.2), да проследи внимателно нейното при-
лагане във всички формули до тук, както и да направи всички
пропуснати изводи, в качеството на полезно упражнение. Об-
ръщаме внимание и на често срещаните формули за смятане с
делта символа на Крьонекер, като δµν xν = xµ и δµν xµ = xν , т.е.,

18всъщност в този конкретен случай, ηµν = ηµν
19това равенство е равносилно на матричното равенство [Λ]−1 = [η]−1

[Λ]T [η]
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ако в едно сумиране участва индекс със съответен повтарящ се
индекс на делта символ, то този сумационен индекс следва да
се замени с другия индекс в делта символа, след което делта
символа се премахва.

Като следствие от горните равенства и правила за смята-
не получаваме, че при трансформацията x′ = Λx (5.10) имаме
следните трансформации на частните производни по xµ и по
x′ µ:

∂

∂x′ µ
=
(
Λ−1

)
ν
µ

∂

∂xν
,

∂

∂x′µ
= Λµ

ν

∂

∂xν
. (5.11)

По-подробно, ако направим произволна смяна на променливите
x′ = x′(x) (⇔ x = x(x′)) в една функция φ(x), и преминем към
функция φ′(x′) = φ(x), то по верижното правило за диференци-
ране на сложна функция получаваме,

∂φ

∂xµ
≡ ∂

∂xµ

(
φ′
(
x′(x)

))
=

∂φ′

∂x′ ν
(
x′(x)

) ∂x′ ν
∂xµ

(x) ≡ ∂x′ ν

∂xµ
∂φ′

∂x′ ν
(5.12)

(сумира се по ν). В обратна посока на смяна на променливите
формула (5.12) се записва като

∂φ′

∂x′ µ
=

∂xν

∂x′ µ
∂φ

∂xν
. (5.13)

За да получим по нататък (5.11) остава да използваме форму-
лата

∂x′ µ

∂xν
= Λµ

ν ,

която съвсем подробно може да се изведе, като диференцираме
(5.10) и приложим правилата за сумиране с делта-символ:

∂

∂xν
(
Λµ
ρ x

ρ
)

= Λµ
ρ

∂xρ

∂xν
= Λµ

ρ δ
ρ
ν = Λµ

ν .

Разглеждайки формула (5.11) забелязваме, че горните ин-
декси в знаменател на диференциален оператор се държат като
долни индекси, а долните – като горни. Последното ни указва,
че трябва да се третират еднотипно индексите на обекти, тран-
сформиращи се при прилагане на лоренцови трансформации,
като xµ → x′ µ в (5.9) и такива индекси е прието да се нари-
чат контравариантни. Индексите на обекти, трансформиращи
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се като xµ → x′µ в (5.9), е прието да се наричат ковариантни.
Така, индексите на диференциалните оператори ∂

∂xµ
и ∂

∂xµ
са

съответно, ковариантни и контраварианти. Поради направено-
то уточнение, по-коректен израз в конвенцията (5.2) е, че

ако в един израз се срещат два еднакви индекса, един ковариан-
тен и един контравариантен, то по тях се подразбира сумиране.

(5.14)
Един от първите примери за лоренцова инвариантност, кой-

то ще разгледаме е вълновото уравнение,

∂2φ

(∂x0)2
(x)− ∂2φ

(∂x1)2
(x)− ∂2φ

(∂x2)2
(x)− ∂2φ

(∂x3)2
(x) = 0 , (5.15)

или по-накратко,
∂2φ

(∂xµ)(∂xµ)
(x) = 0 . (5.16)

От равенства (5.10) и (5.11) следва, че ако при трансформа-
цията (5.10) имаме φ(x) = φ′(x′), то

∂

∂xµ

∂

∂xµ
φ(x) =

∂

∂x′µ

∂

∂x′ µ
φ′(x′) , (5.17)

∂φ

∂xµ
(x)

∂φ

∂xµ
(x) =

∂φ′

∂x′µ
(x′)

∂φ′

∂x′ µ
(x′) . (5.18)

Най-знаменитият пример на релативистки инвариантни урав-
нения са безспорно уравненията на Максуел.20 За да се приведат
тези уравнения във форма с явна лоренцова инвариантност се
въвежда така наречения електромагнитен тензор:

(Fµν )3
µ, ν= 0 ≡


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33



=


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 Bx

−Ez/c −By −Bx 0

 ,

20виж лекция 1
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Fµν = −Fνµ , F µν := ηµµ1 ηνν1 Fµ1ν1 . (5.19)

С това уравненията на Максуел във вакуум придобиват вида:

∂Fµν
∂xµ

= 0 , (5.20)

εµ1 µ2 µ3 µ4
∂Fµ2 µ3
∂xµ1

= 0 , (5.21)

където εµ1 µ2 µ3 µ4 е така наречения напълно антисиметричен сим-
вол определен с условията:

ε0,1,2,3 = 1 ,

εµ1 µ2 µ3 µ4 е антисиметричен при

размяна на всеки два индекса .

Така тези уравнения са инвариантни при трансформацията:

Fµν ( x ) 7−→ Λµ1
µ Λν1

ν Fµ1ν1 ( Λx + a ) (5.22)

за всяка лоренцова матрица Λµ
ν (т.е., изпълняваща (5.6)). Дейс-

твително, инвариантността на уравнения (5.20) седва подобно
на инвариантността във формули (5.17) и (5.18). Що се отнася
до уравнения (5.21), то там се налага да използваме още една
формула от линейната алгебра:

Λµ1
ν1

Λµ2
ν2

Λµ3
ν3

Λµ4
ν4
εν1 ν2 ν3 ν4 = det(Λ) εµ1 µ2 µ3 µ4 ,

вярна за произволна матрица Λ = (Λµ
ν )3
µ,ν= 0.

Забележка: За тези, които са запознати със смятането с дифе-
ренциални форми, горните уравнения се записват като:

d ∗ F = 0 , dF = 0 за F = Fµν (x ) dxµ ∧ dxν ,

където ∗ е звездата на Ходж.

Ще разгледаме още един пример на релативистки инвари-
антен закон. Това е локалния закон за запазване на заряда
(Л1.2.3). Нека да положим

J0 := cρ , J1 := −jx , J2 := −jy , J3 := −jz (5.23)
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и следователно, J0 = J0, Jk = −Jk (k = 1, 2, 3), т.е.,

J1 := +jx , J2 := +jy , J3 := +jz .

Тогава (Л1.2.3) придобива вида21

∂Jµ

∂xµ
= 0 (≡ ∂J0

∂x0
+
∂J1

∂x1
+
∂J2

∂x2
+
∂J3

∂x3
) . (5.24)

Така, ако при трансформацията (5.5), x′ µ = Λµ
ν x

ν , положим
подобен трансформационен закон за Jµ,

J ′
µ(

x′
)

:= Λµ
ν J

ν(x) , (5.25)

то законът (5.24) ще стане релативистки инвариантен. Всъщ-
ност, горния закон има инвариантност далеч надхвърляща пре-
делите на специалната теория на относителността. Този закон
е инвариантен също и в нерелативистката физика и то при съ-
щия трансформационен закон (5.25), в който разбира се вместо
лоренцова матрица (Λµ

ν ) се използва матрица съответстваща на
галилеева трансформация.

В заключение на тази точка ще направим коментар по един
въпрос, който до момента оставихме без дискусия: от къде всъщ-
ност идват трансформационните закони, като (5.22), (5.25) или
дори най-простия, φ′(x′) = φ(x)? Възможни са няколко отгово-
ра. Първо, ние можем да нагласим трансформационните закони
така, че да е налице релативистка инвариантност. Това може би
не изглежда свръх убедително, особено ако се окаже че има по-
вече от един начин условието за инвариантност да се изпълни.
Разбира се, в конкретните случаи има допълнителни съображе-
ния, които налагат трансформационните закони.

Например, за случая на електромагнитното поле такова ус-
ловие е вида на силата на Лоренц, ако я представим изразена
чрез Fµν . Непосредствена проверка показва, че според втория
принцип на Нютон, съчетан със закона на Лоренц (Л1.1.3) от

21Обърнете внимание, че в следствие на уточненото сумационно правило
(5.14), в случая на (5.24) имаме допустимо повторение на индекси, по които
става сумиране: индексът на Jµ е контравариантен, докато индексът на
частната производна ∂

∂xµ
е ковариантен (макар и отново да е горен за

променливата xµ).
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една страна и полагането (5.19), от друга, се получава

m
d2xk

(dt)2
= −q c Fk,0 − q Fk,1

dx1

dt
− q Fk,2

dx2

dt
− q Fk,3

dx3

dt

= q ηkµ Fµν
dxν

dt
(5.26)

(q е електричния заряд, а m е масата на частицата; отчели сме

и че
dx0

dt
= c). Така, съгласно предписанията на релативистката

динамика, ако приемем този закон за изпълнен преди всичко
за малки скорости, то релативистката модификация на (5.27) е
съвсем естествена – времето t се заменя със собственото време
τ . Получаваме,

m
d2xµ(τ)

(dτ)2
= q Fµν

(
x(τ)

) dxν(τ)

dτ
(5.27)

(понеже
d2xµ

(dτ)2
= ηµν

d2xν
(dτ)2

). В частност убеждаваме се, как ан-

тисиметрията на Fµν = −Fνµ работи в полза на условието за
(псевдо-)ортогоналност (4.5):

d2x

(dτ)2
· dx

dτ
≡ d2xµ

(dτ)2

dxµ

dτ

=
q

m
Fµν

dxµ

dτ

dxν

dτ
= − q

m
Fνµ

dxµ

dτ

dxν

dτ
= 0 . (5.28)

По такъв начин, условието за релативистка инвариантност
на силата на Лоренц ни води до трансформационното условие
(5.22). В други случаи на полета, трансформационните закони
при смяна на инерциалната отправна система са обосновани от
квантовата теория на полето. Както ще видим по-нататък в
този курс, след преминаване към квантово описание, полетата
съответстват на елементарни частици. Оказва се, че полевите
трансформационни закони са директно свързани с това, което
се нарича вътрешен ъглов момент на частицата или още, спин
(spin) на частицата.
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1. Лапласовия детерминизъм във физиката и
еволюционни уравнения
С успеха на нютоновата механика във физиката се утвърждава
детерминистичното схващане за явленията и процесите в приро-
дата. Този възглед е съвсем ясно формулиран от Лаплас (Pier-
re-Simon Laplace) и затова обикновено се свързва с неговото
име.

За да се опитаме да го формулираме в математически стил
ще предположим, че с описваната от нас физична система във
всеки един момент от време t може да се свърже определен
набор числа

~s := (s1, . . . , sN) , (1.1)

които се получават в следствие на измервания върху системата
на N величини (в дадения момент t). Ако измерванията на ве-
личините (1.1) се повтарят в различни моменти от време t, то с
това получаваме векторна функция

~s = ~s(t) =
(
s1(t), . . . , sN(t)

)
. (1.2)
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Разбира се, ние винаги можем да добавим нови величини към
набора (1.1), ако искаме да постигнем по-точно описание на сис-
темата. Всъщност, какво точно целим с едно такова разширение
на величините и още, очакваме ли това да има някакъв предел.
Вторият въпрос ще ни даде отговора на първия, а що се отнася
до самия втори въпрос, то отговорът му е, да. Ние очакваме, че
съществуват пределни (максимални) набори от физични вели-
чини за изследваната система, по две тясно свързани причини.

• Първо, един набор от величини ~s (1.1) можем да считаме,
че е максимален, ако стойността на всяка останала физич-
на величина напълно се характеризира от този набор. С
други думи, всяка друга величина е функция на ~s. Наша-
та увереност, че това предположение е изпълнено е просто
в следствие от вярата ни, че “света е познаваем”.

• Един максимален набор от величини ~s (1.1) се очаква да
има и друго свойство, което именно е лапласовия детер-
минизъм: ако познаваме този набор ~s0 в даден момент от
време t0, то съществува само един възможен ход на еволю-
цията ~s = ~s(t), такъв че ~s(t0) = ~s0. Това изразява друг вид
познаваемост: предсказуемостта на бъдещето въз основа
на настоящето. По думите на самия Лаплас:22 “ние можем
да разглеждаме сегашното състояние на вселената, като
следствие от нейното минало и причина за нейното бъде-
ще ...”.

Тогава, ако пресметнем моментната скорост на изменение на

величините ~s в момента t0,
d~s

dt
(t0), то по коя да е от горните две

причини ще следва, че тази скорост ще бъде функция на ~s0 и

t0,
d~s

dt
(t0) = ~A(~s0, t0). С други думи, ние ще можем да намерим

такава векторна функция ~A(~s, t), която да има свойството, че
всяка функция ~s = ~s(t) изразяваща еволюцията на системата е
решение на системата от обикновени диференциални уравнения
от първи ред:23

d~s(t)

dt
= ~A

(
~s(t), t

)
. (1.3)

22We may regard the present state of the universe as the effect of its past
and the cause of its future.

23first order ordinary differential equations
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Преди да продължим с физическото повествование нека да
въведем известна терминология. Казваме, че един пълен на-
бор ~s (1.1) от физически величини характеризиращи система-
та задава (определя) нейното състояние. Самият вектор ~s ще
наричаме “състояние”, или по-точно вектор на състоянието.
Множеството от всички възможни състояния ~s на описвана-
та система е едно подмножество в RN , което се нарича фазово
пространство (phase space). Диференциалните уравнения (1.3)
се наричат уравнения за движение на системата (equations of
motions) или също, уравнения на еволюцията / еволюционни
уравнения / динамични уравнения.

Обикновените диференциални уравнения (1.3) имат забеле-
жително математическо свойство, което позволява те обратно
да изведат лапласовия детерминизъм. В сила е следната тео-
рема:24 за всеки набор ~s0 (∈ RN) и всеки момент от време t0
(∈ R) съществува единствено решение ~s(t) на уравненията (1.3)
такова, че ~s0 = ~s(t0). Постановката на приведената теорема се
нарича задача на Коши (Cauchy problem или също, initial value
problem).

В доказателството на горната теорема е заложена една инту-
итивна и проста конструкция, която също стои и в основата на
числените методи за решаване на обикновени диференциални
уравнения. Нека да изберем достатъчно малка времева стъпка
∆t и да положим t1 = t0 + ∆t, . . . , tk+1 = tk + ∆t, . . . . Тогава
можем да изчислим рекурсивнa апроксимация за ~sk = ~s(tk) като

използваме, че
~sk+1 − ~sk

∆t
≈ d~s(tk)

dt
= ~A(~sk, tk). Така, получената

редица ~sk+1 = ~sk + ~A(~sk, tk) ∆t ще апроксимира все по-точно и
по-точно търсеното решение с намаляването на времевата стъп-
ка ∆t.

Един начален пример от физиката е задачата за “тяло хвър-
лено под ъгъл спрямо хоризонта”. В нашия пример ще предпо-
ложим, че движението се извършва в една равнина (x, y), оста

24Тук привеждаме тази теорема качествено, пропускайки съзнателно
специалните математически условия, съпътстващи всяко точно твърдение
в математиката. Едно от може би най-важните такива уточнения е, че
указаното решение ~s(t) съществува преди всичко за времена t близки до
началния момент от време t0.
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x на която е насочена хоризонтално на земната повърхност, а y
е насочена вертикално на горе и ще считаме още, че на тяло-
то действа само силата на тежестта, която причинява земното
ускорение (0,−g). Тогава състоянието на тялото се определя от
четири числа (s1, s2, s3, s4) = (x, y, vx, vy): координатите (x, y) на
тялото и вектора на скоростта му (vx, vy). Уравненията за дви-
жение са

d

dt
(s1, s2, s3, s4) = (s3, s3, 0,−g) ,

което всъщност са уравненията
dx

dt
= vx,

dy

dt
= vy,

dvx
dt

= 0 и
dvy
dt

= −g. В този пример се откроява един допълнителен факт
свързан с повечето физически системи. Оказва се, че в много
случаи числото N е четно число, N = 2n и ние можем да под-
берем величините s1, . . . , sN от (1.1), така че sn+1, . . . , s2n да
бъдат скоростите на s1, . . . , sn, съответно. В този случай набора
от величини (s1, . . . , sn) описва така нареченото конфигураци-
онно пространство (configuration space), а самите sk и sk+n, за
k = 1, . . . , n, се наричат обобщени координати и обобщени ско-

рости, съответно. Числото n =
N

2
се нарича брой на степените

на свобода на системата (degrees of freedom).
Нека да отбележим, че самата начална постановка на ню-

тоновия и лапласов детерминизъм изложена между формули
(1.1) и (1.3) не хвърля никаква допълнителна светлина върху
възможния произход на уравненията за движение, освен самия
експеримент. В частност, няма и никакво указание защо чис-
лото N е четно. Това ще получим по-късно, като следствие от
вариационния принцип към който ще преминем в следващата
точка.

В заключение, нека да обсъдим и възможността N да бъде
безкрайно число. Това означава, че изследваната система има
безкраен брой степени на свобода. Тази ситуация е напълно въз-
можна, както от практическа, така и от теоретична гледна точ-
ка, и това е случая на теория на полето, с която ще започнем
от следващата точка. По-скоро идва въпросът, а не е ли това
общия случай на реална физична система. Практическият от-
говор е, че това всъщност няма значение. Даже и да е крайно
числото N , то може да е толкова голямо, като например число-
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то на Авогадро (Avogadro), което е от порядъка на 6 × 1023, така
че в действителност да ни изглежда непостижимо голямо. Така,
по-скоро ние следва да се научим как да работим в условията
на неограничен брой степени на свобода, които евентуално да
разделим на “съществени” и “несъществени” за целите на наше-
то описание. Това е една от главни цели в статистическата
физика (statistical physics), но има отношение и към квантовата
теория на полето.
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2. Полета и полеви уравнения
Поле в класическата физика е съвкупност от физични величи-
ни, зададени за всяка точка на пространството и времето. Ма-
тематически, едно такова физично поле се описва от функция
φ(x, y, z, t) или по-общо, от система от функции25 φ1(x, y, z,

t), . . . , φN(x, y, z, t) на пространствените координати (x, y, z)

и времето t (в дадена отправна система). Например, в хидро-
динамиката поведението на един идеален флуид се описва от
функциите на плътността %(x, y, z, t), на налягането p(x, y, z,
t) и на полето на скорости υx(x, y, z, t), υy(x, y, z, t), υz(x, y, z,
t). В терминологичен план, едно физично поле може да се наре-
че една функция на пространството и времето, като например
функцията на налягането p(x, y, z, t) от предходния пример, но
също и система от функции, като υx(x, y, z, t), υy(x, y, z, t),
υz(x, y, z, t), което в този пример нарекохме поле на скорости-
те. Такова обединяване или разделяне на система от функции
в едно или няколко полета е до известна степен условно. Друг
пример на полева функция е разпределението на температурата
T (x, y, z, t) на едно тяло.

Според нютоновия и лапласовия детерминизъм познаването
на стойностите на физичните полета заедно с техните произ-
водни по времето до определен ред,26 за всички пространствени
координати (x, y, z), в определен момент от време t0, например,

φ1(x, y, z, t0), . . . , φN(x, y, z, t0),

∂φ1

∂t
(x, y, z, t0), . . . ,

∂φN
∂t

(x, y, z, t0),

определя напълно и еднозначно полевите функции φ1(x, y, z,

t), . . . , φN(x, y, z, t) при всеки x, y, z, t. Математически това се
осигурява като се подчинят полевите функции на едно или ня-
колко частни диференциални уравнения. Например, в случая на
идеален флуид това е системата от уравнения на Навие–Стокс
(Navier–Stokes equations). В случая на полето на температура-
та T (x, y, z, t) на едно хомогенно тяло, това е уравнението на

25Макар и да използваме същата буква N , която ползвахме в в предиш-
ната точка, тук тя има вече друго значение.

26в практиката, не по-голям от първи ред
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топлопроводността (heat equation),

∂T

∂t
(x, y, z, t)

−κ2
( ∂2T

(∂x)2
(x, y, z, t) +

∂2T

(∂y)2
(x, y, z, t) +

∂2T

(∂z)2
(x, y, z, t)

)
= 0 ,

където κ2 е константа (коефициент характеризиращ топлопро-
водимостта на средата). В последния пример познаването на
температурната функция T (x, y, z, t) в определен момент от
време t0 я определя напълно.

Един друг прост (за написване) пример на полево уравнение,
което се среща в разнообразни физични проблеми е вълновото
уравнение (wave equation),

1

υ2

∂2φ

(∂t)2
(x, y, z, t) (2.1)

− ∂2φ

(∂x)2
(x, y, z, t)− ∂2φ

(∂y)2
(x, y, z, t)− ∂2φ

(∂z)2
(x, y, z, t) = 0 ,

където υ е отново константа, в случая имаща значение на ско-
рост. Уравнение (2.1) описва разпространение на вълна, което
е отразено в поведението на функцията φ(x, y, z, t). За опреде-
ляне на цялата функция φ(x, y, z, t) в този случай е достатъчно
да я познаваме в един момент от време t0, заедно с първата й
производна по времето за всички пространствени координати
(x, y, z),27

φ(x, y, z, t0),
∂φ

∂t
(x, y, z, t0) . (2.2)

Вълновото уравнение беше приведено в предходната лекция
(виж (Л3.5.15)), като пример за релативистки инвариантно урав-
нение в случая когато υ = c.

Приведените до тук примери на полеви системи с характе-
ризиращи ги (системи от) частни диференциални уравнения,
в качеството на уравнения за движение, задават една основна
част от областта на математиката наричана уравнения на ма-
тематическата физика. В общия случай на частни диферен-
циални уравнения задачите на Коши са значително по-сложни
и трудни за установяване на съществуване и единственост на

27??? а граничните условия
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решения. Много често такива теореми се формулират за конк-
ретни уравнения, като тези идващи от физиката, от колкото за
общи класове от частни диференциални уравнения.

В заключение нека да отбележим, че полевите системи оче-
видно излизат извън класа на физичните системи с краен брой
степени на свобода. Действително, за да определим напълно
еволюцията на системата ние следва да познаваме в дадем мо-
мент от време не краен набор от величини, а поне напълно една
функция на пространствените координати (x, y, z). Дори само
безкрайната редицата от производни на функцията в някоя точ-
ка на пространството е вече безкраен набор от независими ве-
личини.

3. Принцип на най-малкото действие
До тук, уравненията на които се подчиняват полевите систе-
ми приехме за даденост (обоснована от експеримента), подобно
на уравненията за движение на частици в нютоновата механи-
ка. Съществува обаче един общ принцип на базата на който
много уравнения, както в класическата механика така и в тео-
рия на полето, могат да бъдат изведени. Това е вариационния
принцип (variational principle) известен също и като принцип за
най-малкото действие (principle of least action).

За по-компактен запис на вариационния принцип от този
момент на татък в настоящата лекция преминаваме към ре-
лативистките означения за пространство-време. Въпреки
това, общите принципи от теорията на полето, които тук ще из-
лагаме са независими от принципите на специалната теория на
относителността. И така, една система от полета в релативист-
ките означения ще се записва, като система от функции φ1(x),

. . . , φN(x) на точките x = (xµ)3
µ= 0 на пространство-времето.28

За определеност, нека да наречем полева конфигурация една
система от полеви функции φ1(x), . . . , φN(x), не зависимо дали
се подчинява или не на полевите уравнения. В една вариацион-
на задача ние приемаме, че на описваната полева система при

28припомняме: x0 := ct, x1 := x, x2 := y, x3 := z.



Теория на класическите полета I. 101

всяка полева конфигурация φ1(x), . . . , φN(x) е зададено число

S
{
φ1(x), . . . , φN(x)

}
≡ S{φ1, . . . , φN} (3.1)

наречено действие (action). Обръщаме внимание на два важни
момента в горните означения.

(i) Първо, действието S (3.1) зависи от функциите φ1(x), . . . ,

φN(x) като цяло, а не само от стойностите им в определена точ-
ка x. За да подчертаем, че S зависи от всичките стойности на
функциите φ1(x), . . . , φN(x) ние сме поставили и аргументите
на S във фигурни скоби, S

{
· · ·
}
. И така, S е изображение, на

което аргументи са други функции. Ето защо, такива изображе-
ния като S е прието да се наричат функционали и по-нататък,
винаги когато аргументите на изображение са поставени във
фигурни скоби това ще означава, че работим с функционал.
Нашият пръв пример за функционал ще бъде действието което
се съпоставя в случая на вълновото уравнение (2.1):

S{φ(x)} =
1

2

∫
Ω

∂φ

∂xµ
(x)

∂φ

∂xµ
(x) d4x , (3.2)

където сме означили d4x := dx0 dx1 dx2 dx3 и сме използвали
конвенцията (Л3.5.14) за сумиране по повтарящи се индекси.
Всъщност, подинтегралната функция в (3.2) вече беше разг-
ледана, като пример за релативистки инвариантен израз (вж.
(Л3.5.18)). По такъв начин, променливите x = (x0, x1, x2, x3) в
лявата страна на равенствата (3.1) и (3.2) са фиктивни или още,
свързани, подобно на интеграционните променливи в дясната
страна на (3.2) и на такива променливи не можем да придаваме
стойности, като на свободни променливи.

(ii) Второ, ние съпоставяме действие на всяка система от по-
леви функции φ1(x), . . . , φN(x), включително и на тези, които не
се реализират физически (т.е., не само на тези функции, които
удовлетворяват полевите уравнения). Така, ролята на S е да от-
дели физически реализируемите полеви функции посредством
условието, че за тях S достига локален минимум или в малко
по-уточнена формулировка, локален екстремум. Математичес-
ки, последното условие означава при зададени φ1(x), . . . , φN(x)



102 Лекция 4 9.11.2015/v1

да е изпълнено

d

dε
S
{
φ1(x)+εψ1(x), . . . , φN(x)+εψN(x)

}∣∣∣∣
ε = 0

= 0 , (3.3)

при всеки избор на функции ψ1(x), . . . , ψN(x). Лявата страна
на уравнение (3.3) е функционален аналог на факта, че при ло-
кален екстремум производните по всички направления са нула.

В редица вариационни задачи се оказва, че производната в
лявата страна на (3.3) се представя като

d

dε
S
{
φ1 + εψ1, . . . , φN + εψN

}∣∣∣∣
ε = 0

=

∫
F j(x)ψj(x) d4x , (3.4)

където F 1(x), . . . , FN(x) са функции на x, записани с горни
индекси с цел да приложим и в този случай отново сумацион-
ното правило за по-голяма компактност! Обръщаме внимание
на следната тънкост: функциите F j(x) при всяка фиксирана
точка x са функционали на φ1, . . . , φN . По определение, функ-
циите F j(x) се наричат вариационни производни и се означават
по следния начин:

δS

δφj(x)

{
φ1, . . . , φN

}
:= F j(x) (3.5)

(j = 1, . . . , N). Така, уравненията (3.3) са равносилни на

δS

δφj(x)

{
φ1, . . . , φN

}
= 0 за j = 1, . . . , N , (3.6)

тъй като ако (3.4) се анулира за всеки избор на функциите ψj(x),
то ще следва, че F j = 0 за всичко j. Уравненията (3.6) се на-
ричат уравнения на Лагранж–Ойлер (Lagrange–Euler / Euler–
Lagrange equations). За действието (3.2) се получава, както ще
изведем след малко,

δS

δφ(x)
{φ} =

∂2φ(x)

(∂xµ)(∂xµ)
, (3.7)

което възпроизвежда вълновото уравнение, като уравнение на
Лагранж–Ойлер. Обърнете внимание, че във формули (3.5),
(3.6) и (3.7) променливите x = (xµ) са вече свободни промен-
ливи, на които могат да се дават стойности. По такъв начин,
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вариационната производна
δ

δφ(x)
обобщава частната производ-

на
∂

∂qj
, като индексът на променливите е преминал от дискрет-

ния j към континуалния набор x = (xµ).29

Нека сега да изведем уравненията на Лагранж–Ойлер в по–
конкретен вид. За простота ще се ограничим до една полева
функция φ(x). Ще предположим, че действието се задава във
вида

S{φ(x)} =

∫
Ω

L
(
φ(x),

∂φ

∂x
(x), x

)
d4x , (3.8)

където сме означили:

• ∂φ

∂x
(x) :=

( ∂φ
∂xα

(x)
)

3

α= 0
;

• Ω е област в пространство-времето R3 × R = R4, а функ-
цията L е функция на 1 + 4 + 4 = 9 аргументи,

L = L(u,w, x) ≡ L
(
u, (wµ), (xµ)

)
(3.9)

≡ L(u,w0, w1, w2, w3, x
0, x1, x2, x3)

и се нарича лагранжиан (Lagrangean).

Така, диференцирайки сложна функция под знака на интеграла
в (3.8) получаваме

d

dε
S
{
φ(x) + εψ(x)

}∣∣∣∣
ε = 0

=

∫
Ω

∂

∂ε
L
(
φ(x) + εψ(x),

∂φ

∂x
(x) + ε

∂φ

∂x
ψ(x), x

)∣∣∣∣
ε = 0

d4x

=

∫
Ω

(
∂L

∂u

(
φ,
∂φ

∂x
, x
)
ψ(x) +

∂L

∂wµ

(
φ,
∂φ

∂x
, x
) ∂ψ

∂xµ
(x)

)
d4x

=

∫
Ω

(
∂L

∂u

(
φ,
∂φ

∂x
, x
)
− ∂L

∂wµ

(
φ,
∂φ

∂x
, x
)))

ψ(x) d4x ,

29аналогът на q в ∂
∂qj

e φ в δ
δφ(x, y, z, t)

, а на индекса j – наборът (x, y,

z, t)
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където при последното равенство сме използвали интегриране
по части при предположение, че функцията ψ(x), с която вари-
раме φ, се анулира в някаква околност на границата на областта
Ω. Последното условие се приема като стандартно предположе-
ние при вариационните задачи. И така, получихме че

δS

δφ(x)
= 0 = (3.10)

=
∂L

∂u

(
φ(x),

∂φ

∂x
(x), x

)
− ∂

∂xµ

(
∂L

∂wµ

(
φ(x),

∂φ

∂x
(x), x

))
е уравнението на Лагранж–Ойлер съответстващо на действие-
то (3.8). Обръщаме специално внимание на факта, че във ф–ла

(3.10) производните
∂

∂xµ
при µ = 0, 1, 2, 3 диференцират сложна

функция, тъй като L зависи допълнително от x = (xµ) посред-
ством φ и нейните производни.

Често аргументите u и wµ на лагранжиана L се записват ка-
то φ и ∂µφ, съответно, и тогава (3.10) придобива съвсем краткия
вид

∂L

∂φ
− D

Dxµ

(
∂L

∂(∂µφ)

)
= 0 , (3.11)

където
D

Dxµ
оказва, че се диференцира пълната зависимост на

L от x, пряко и като сложна функция, посредством φ(x) и про-
изводните й ∂µφ(x).

В частност, потвърждаваме и ф–ла (3.7), която се получава
от лагранжиан

L =
1

2
wµw

µ . (3.12)

По-внимателният читател вероятно е забелязал, че във ви-
да на действието (3.8) използвахме произволна област Ω, която
в последствие не играе роля в самите уравнения на Лагранж–
Ойлер. Областта Ω в повечето физически текстове се приема не
съвсем строго за цялото пространство и време R4, което може
да доведе до проблеми с интегрирането над област с безкра-
ен обем. От друга страна, вариационният принцип има локален
характер в смисъл, че е достатъчно да варираме полевите фун-
кции φj(x) с отклонения εψj(x), които са отлични от нула само
в малка околност на произволна точка x. Това ни дава пълна
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информация за вариационната производна (3.5) в точката x. По
такъв начин при вариационния принцип, лагранжианът L (3.9)
играе по-фундаментална роля от действието (3.8), което може
да бъде образувано по различни области Ω. Важно е също, че
лагранжианът L участва винаги в интегриране по някаква об-
ласт Ω и доколкото ние игнорирахме ролята на границата на
Ω като избрахме вариращите функции εψj(x) да се анулират в
околност на тази граница, то вариационната задача и съответ-
но, уравненията на Лагранж–Ойлер, няма да се променят, ако
към L се прибави така наречената пълна дивергенция:

L′
(
φ(x),

∂φ

∂x
(x), x

)
= L

(
φ(x),

∂φ

∂x
(x), x

)
+

∂

∂xµ

(
Kµ
(
φ(x), x

))
(3.13)

(т.е., L и L′ определят еднакви уравнения на Лагранж–Ойлер,
което трудолюбивият читател може да установи и с непосредс-
твена проверка).30

4. Симетрии и закони за запазване. Теорема
на Ньотер
В началото на XX век Еми Ньотер (Emmy Nöther) открива важ-
на връзка между законите за запазване и симетриите в теория
на полето. Накратко, доказаната от Ньотер теорема гласи, че
на всяка непрекъсната еднопараметрична симетрия на една по-
лева система съответства една запазваща се величина. С други
думи, получаваме закон за запазване. Преди да преминем към
по-детайлното изложение на този резултат ще изброим качес-
твено следствията от него, от които може да се види неговата
значимост. Първата важна непрекъсната симетрия в теория на
полето, а и в цялата физика, е симетрията спрямо транслации
по пространството и по времето. Тази симетрия е свързана с
концепцията за хомогенност на пространството и времето. Ка-
то следствие от теоремата на Ньотер получаваме, че закона за

30Обърнете внимание, че доколкото в (3.13) аргументите на L, L′ и Ks

не са във фигурни скоби, то тук ние нямаме пред вид функционална за-
висимост от φ(x), а директна зависимост от стойността на φ и нейните
производни в точката (x, y, z, t).
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запазване, който е свързан с пространствената транслационна
симетрия е законът за запазване на импулса. Аналогично, си-
метрията при транслация по времето води до запазването на
енергията. Друг фундаментален пример на закон за запазва-
не, следващ от теоремата на Ньотер, е закона за запазване на
момента на импулса. Симетрията, която поражда този закон
е симетрията спрямо въртене на пространството. Последната
отразява концепцията за изотропност на пространството, т.е.,
равноправността на всички направления. Законът за запазва-
не на електричния заряд в електродинамика също може да се
породи от полева симетрия. Това дава първия пример на така
наречените вътрешни симетрии. Обобщенията на тeзи вътреш-
ни симетрии са довели до въвеждане на допълнителни типове
запазващи се заряди в теорията на елементарните частици. В
последствие физиците и математиците са осъзнали, че вътреш-
ните симетрии могат да се усилят до така наречените локални
или още, локални калибровачни симетрии, при които “вътреш-
ната” полева трансформация се мени произволно от точка в
точка на пространството и времето. Последното е свързано с
добавянето на нов тип полета, наречени калибровачни полета,
чийто геометричен смисъл е да определят правилото за прена-
сяне на полевите стойности от една точка на пространството
и времето в друга точка. Физически тези полета придобиват
смисъл на полетата пренасящи взаимодействията, понеже най-
простия и първи пример на такова поле се оказва електромаг-
нитното поле. Всички тези идеи, започнали до известен смисъл
с осъзнаването на ролята на симетриите във физика, са довели
до създаването на стандартния модел, който е и съвременната
теоретична рамка на теорията на елементарните частици.

За простота в този параграф ще се ограничим отново до
полева система, която се характеризира с едно поле φ(x) и на
която е съпоставено действие (3.8). Динамиката на една такава
система, т.е., пълната информация за полевата функция φ(x) се
определя напълно от задаването й в даден начален момент от
време x0, заедно с първата й производна по времето,

φ0(x) := φ(x0,x),
.
φ 0(x) :=

∂φ

∂x0
(x0,x) . (4.1)
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В следствие на теоремата на Ньотер, която ще докажем, при
наличие на една непрекъсната еднопараметрична симетрия на
полевата система, ние ще можем да съпоставим функционал на
началните условия (4.1),

J
{
φ0(x),

.
φ 0(x)

}
(4.2)

такъв, че стойността му не се изменя с времето, т.е., стойността
му не се изменя, ако в полагането (4.1) променяме времето x0

при дадено (произволно) решение φ(x0, x) на полевите уравне-
ния (3.10).

Когато се говори за симетрия на една физична система, a
в случая по-горе споменахме “непрекъсната еднопараметрична
симетрия”, ние ще подразбираме преди всичко, че имаме зада-
дени някакви преобразувания върху данните, с които описваме
системата. В теория на полето ще разглеждаме трансформации,
при които се менят координатите x и полевите функции:∣∣∣∣∣ x′ µ = F µ (x) (µ = 0, 1, 2, 3)

u′ = G (x, u) ,
(4.3)

където точката x се преобразува в x′, а една полева стойност u за
x се трансформира в нова полева стойност u′ над x′ в зависимост
от целия изходен набор (x, u), както е изобразено на диаграмата

(x, u) 7−→ (x′, u′)
_

|↓
_

|↓
x 7−→ x′ .

(4.4)

По такъв, начин една полева функция φ(x) се преобразува в
нова полева функция φ′(x) по формулата31

u′ = φ′(x′) = G
(
x, φ(x)

)
(4.5)

или по-подробно,

φ′
(
F(x)

)
= G

(
x, φ(x)

)
(4.6)

31едно просто мнемонично правило за трансформационния закон (4.5)
е че заменяме в равенството u = φ(x) всички обекти с “примовани”, u′ =

φ′(x′)
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Функцията φ′(x) (4.5) физически се интерпретира като полу-
чена в резултат на трансформация на полевата система. Ето
някои примери:

(a) транслацията по направление на четиримерен вектор n =

(nµ), който е умножен по число ε, преобразува полевата функ-
ция φ(x) в

φ(ε)(x) := φ(x− εn) . (4.7)

В този случай диаграмата (4.4) придобива вида

(x, u) 7−→ (x + εn, u)
_

|↓
_

|↓
x 7−→ x + εn .

(4.8)

(б) Ротацията около някоя пространствена ос на ъгъл ε, нап-
ример около оста x3 (= z), действа като

φ′(x0, x1, x2, x3) := φ(x0, x1 cos ε− x2 sin ε, x1 sin ε+ x2 cos ε, x3) .

(4.9)
(Функция / поле, която се трансформира по горния закон се
нарича скаларна функция / поле. В по-общи случаи на не ска-
ларни полета може да се “въртят” и полевите стойности.)

(в) Нека определим и действие на мащабната трансформа-
ция посредством

φ′(x) := λ−1 φ(λ−1x) , λ = eε . (4.10)

Обърнете внимание, че в този пример на диаграмата (4.4) съ-
ответства32

(x, u) 7−→ (λx, λ−1u)
_

|↓
_

|↓
x 7−→ λx .

(4.11)

Приведените примери задават всъщност семейства от тран-
сформации ∣∣∣∣∣ x′ = F (x; ε)

u′ = G (x, u; ε) ,
(4.12)

32малко по-общо, в (4.11) може да стои λ−du вместо λ−1u, като числото
d се нарича мащабна размерност (scaling dimension) на u
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непрекъснато зависещи от параметър ε ∈ R и такива, че при
ε = 0 съответстват на идентитета,

F(x; 0) = x , G(x, u; 0) = u . (4.13)

По такъв начин и трансформираната полева функция φ′(x) (4.5)
зависи допълнително от параметъра ε, и може да се разглежда
като семейство от полеви функции

φ(ε)(F(x; ε)) = G
(
x, φ(x); ε

)
. (4.14)

Поради условието (4.13) имаме

φ(ε)(x)

∣∣∣∣
ε = 0

= φ(x) . (4.15)

При зададена трансформация (4.3) ние следва сега да оп-
ределим кога тази трансформация ще наричаме симетрия на
полевата система. Съществуват няколко различни по сила оп-
ределения за това.

(S1) Най-слабата формулировка гласи, че трансформацията
(4.3) задава симетрия на полевата система, тогава и само тогава,
когато за всяко решение φ(x) на динамичните уравнения (3.10)
функцията φ′(x) (4.5) е също решение на (3.10). Прието е такава
симетрия да се нарича “on–shell” симетрия, т.е., симетрия върху
решенията. Обърнете внимание, че при този тип симетрия няма
значение как се трансформират функциите φ(x), които не са
решения на динамичните уравнения.

(S2) Една по–силна форма на симетрия гласи, че действи-
ето S (3.8) остава инвариантно при трансформацията (4.5) на
полевите функции:∫

Ω

L
(
φ(x),

∂φ

∂x
(x), x

)
d4x =

∫
Ω

L
(
φ′(x′),

∂φ′

∂x′
(x′), x′

)
d4x′ , (4.16)

където Ω′ е образа на областта Ω под действието на трансфор-
мацията (4.3) разглеждана в случая като смяна на променливи-
те от x към x′. Ние искаме условието (4.16) да бъде изпълнено
при всеки избор на изходната полева функция φ(x) в (4.3), а
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не само за решенията на полевите уравнения. Ето защо такава
симетрия се нарича “off–shell”. Обръщаме внимание на тясна-
тa връзка на условието (4.16) с принципа на относителността,
който в случая означава, че действието се записва еднакво във
всички (инерциални) отправни системи. Така, самите полеви
трансформации могат да се разглеждат и като смяна на (инер-
циалната) отправна система.

Доколкото полевите уравнения (3.10) са определени от дейс-
твието (3.8), а последното от лагранжиана (3.9), то следва им-
пликацията

(S2) =⇒ (S1) . (4.17)

Вече сме готови да приведем формулировката на теоремата
на Ньотер. Тя гласи, че ако е зададено еднопараметрично се-
мейство от преобразования (4.12), то могат да се конструират
изрази

Jµ(u,w, x)
(

= Jµ
(
φ, (∂µφ), x

) )
за µ = 0, 1, 2, 3 , (4.18)

зависещи от стойността на полето и първите му производни,
така че е в сила тъждеството

∂

∂xµ
Jµ
(
φ(x),

∂φ

∂x
(x), x

)
= 0 , (4.19)

винаги когато φ(x) е решение на уравненията на Лагранж–Ойл-
ер (3.10). Доказателството и конструкциите от теоремата на
Ньотер сме поставили в приложение. Конструраните изрази са:

Jµ =
( ∂L

∂(∂µφ)
∂ρφ− L δµρ

)
Zρ(x)− ∂L

∂(∂µφ)
R(x, φ) , (4.20)

където

∂

∂ε
F µ(x; ε)

∣∣∣
ε = 0

=: Zµ(x) ,

∂

∂ε
G(x, u; ε)

∣∣∣
ε = 0

=: R(x, u) (4.21)

(забележете, че изразите Jµ зависят единствено от първите про-
изводни на трансформационните закони (4.12) при ε = 0).

Нека да разтълкуваме значението на тъждеството (4.19).
Съгласно него, след като заместим аргументите u и w = (wµ) на
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Jµ (4.18) със съответно, стойността на φ и нейните производни
∂φ

∂x
=
( ∂φ
∂xµ

)
в точката x, то получаваме система от функции

fµ(x) (µ = 0, 1, 2, 3), които изпълняват тъждеството

∂fµ

∂xµ
= 0 . (4.22)

Такива функции се наричат запазващи се токове, а самото тъж-
дество – уравнение за непрекъснатост. Всъщност, точно тази
форма имаше и локалния закон за запазване на електричния за-
ряд изразен в (Л1.2.3) и (Л3.5.24). Общото наименование “урав-
нение на непрекъснатост” идва от приложенията в хидродина-
миката, където неговото прилагане е свързано с локания закон
за запазването на веществото (масата). Нека в допълнение на
нашите разсъждения от лекция 1 да приведем интерпретаци-
ята на закона (4.22) в контекста на търсения от нас закон за
запазване, следващ от теоремата на Ньотер. За целта, ако ин-
тегрираме израза в лявата страна на (4.22)

0 =

t∫
0

∫
Ω0

∂fµ

∂xµ
(x0,x) d3x dx0 (4.23)

(d3x = dx1 dx2 dx3), то съгласно теоремата на Стокс33 ще полу-
чим∫

Ω0

f 0(0,x) d3x =

∫
Ω0

f 0(x0,x) d3x +

t∫
0

∫
∂Ω0

fk(τ,x) dσkdτ ,

(4.24)
където ∂Ω0 е границата на областта Ω0 ⊆ R3, а (dσ1, dσ2, dσ3)

векторът на диференциалната площ върху тази граница. В час-
тност, ако Ω0 = R3 и fµ клонят достатъчно бързо към нула при
x→∞, то ∫

R3

f 0(0,x) d3x =

∫
R3

f 0(0,x) d3x . (4.25)

33Това е един от многото варианти на тази теорема. Нейното най-пълно
и общо разбиране се постига в диференциалната геометрия с теорията на
диференциалните форми и тяхното интегриране.
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Ако се върнем към Jµ (4.18), то последната формула, (4.25), ни
дава следния израз за функционала (4.2)

J
{
φ0(x),

.
φ 0(x)

}
=

∫
R3

J0
(
φ0(x)︸ ︷︷ ︸

u

,
.
φ 0(x),

∂φ0

∂x
(x)︸ ︷︷ ︸

w = (w0,w)

, x0,x︸︷︷︸
x

)
d3x .

(4.26)
Изразите Jµ (4.18) се наричат още ньотерови запазващи се то-
кове.

Този параграф ще завършим с изброяване на приложенията
на теоремата на Ньотер за някои от основните симетрии във
физиката. Изводите на приведените формули читателя може
да намери отново в приложението към тази глава.

(а) За транслационната симетрия (4.8) съответстващия Ньо-
теров ток има вида

Jµ = T µν n
ν , (4.27)

където T µν (u,w, x) =
∂L

∂wµ
wν − L δµν ≡

∂L

∂(∂µφ)
∂νφ− L δµν

където T µν = T µν (u, w, x) (за µ, ν = 0, 1, 2, 3) се нарича тен-
зор на енергията–импулса (stress–energy tensor). Запазващите
се величини, които тази симетрия поражда са хамилтониана
(Hamiltonian) или още, енергията34 cP0 на системата, която от-
говаря на избор на четиривектора n = (1, 0, 0, 0) и също, трите
компоненти на импулса на системата, Pk за k = 1, 2, 3:

Pµ
{
φ0(x),

.
φ 0(x)

}
=

∫
R3

T 0
µ

(
φ0(x),

.
φ 0(x),

∂φ0

∂x
(x), x0,x

)
d3x

(4.28)
(µ = 0, 1, 2, 3). В частност, изразът за cT 0

0 играе роля на обем-
на плътност на полевата енергия, понеже след интегриране
по тримерното пространство ни дава пълната енергия cP0. За
примера на вълновото уравнение определено от лагранжиана
(3.12) получаваме

T µν

(
φ(x),

∂φ

∂x
(x), x

)
=

∂φ

∂xµ

∂φ

∂xν
− 1

2

∂φ

∂xρ

∂φ

∂xρ
δµν . (4.29)

34P0 подобно и на Pk има размерност на импулс, за да се премине към
единици на енергия следва да се до умножи на скоростта на светлината c.
Всичко това е просто в следствие на полагането на времевата координата
за x0 = ct.
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Забележете, че за да бъде инвариантно действие спрямо тран-
слационното преобразование (4.8) е необходимо и достатъчно
лагранжиана L(u,w, x) да не зависи от x (явно). Именно такъв
е лагранжианът (3.12), за който по-горе изчислихме тензора на
енергията-импулса.

Възниква естествен въпрос: на какви физически основания
интерпретираме запазващите се величини (4.28) свързани с хо-
могенността на времето и пространството, като енергия E =

cP0 и импулс (P1, P2, P3) на полевата система? Преди всичко,
основание е съвпадението на тези величини с вече въведени ве-
личини за енергия и импулс за физични системи от нютоновата
механика и електродинамиката. Ние няма да се занимаваме тук
с тези примери, но в последствие в този курс ще намерим допъл-
нителни потвърждения на това, че запазващите се величини на
енергията и импулса са свързани с трансформации на симетрия
при транслация във времето и пространството.
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Приложение А. Общ случай на уравненията
на Лагранж-Ойлер
Нека

L = L
(
φ , ∂φ , ∂2φ , . . . , ∂nφ , x

)
(А.1)

е лагранжиан на система отN полета φ (x) =
(
φ1(x), . . . , φN(x)

)
,

зависещ от производните им до ред n (в точката x),

∂nφ :=
(
∂µ1,...,µnφj

)
(А.2)

където j = 1, . . . , N , 0 6 µ1 6 · · · 6 µn 6 3 и наредбата е
избрана в следствие на симетрията на частните производни

∂µ1,...,µnφj :=
∂

∂xµ1
· · · ∂

∂xµn
φj (А.3)

при разместване на µ1, . . . , µn. Поради горните ограничения
върху индексите, в тази точка за по-голяма яснота няма
да следваме сумационната конвенция (Л3.5.14), но ще
изписваме явно всяка сума.

Така, условието (3.3) за функционала

S{φ (x)} =

∫
Ω

L
(
φ (x), (∂µφ (x)), . . . , (∂µ1,...,µnφ (x)), x

)
d4x

(А.4)
води, подобно на пресмятането в точка 3, до

d

dε
S
{
φ (x) + εψ (x)

}∣∣∣∣
ε = 0

=

∫
Ω

∂

∂ε
L

∣∣∣∣
ε = 0

d4x

=

∫
Ω

∑
1 6 j 6 N

0 6 k 6 n

0 6 µ1 6 · · · 6 µk 6 3

∂L

∂(∂µ1,...,µk φj)

∂kψ(x)

(∂xµ1) · · · (∂xµk)
d4x

=

∫
Ω

∑
1 6 j 6 N

0 6 k 6 n

0 6 µ1 6 · · · 6 µk 6 3

ψ(x)

( k∏
r= 1

(
− D

Dxµr

)) ∂L

∂(∂µ1,...,µk φj)
d4x ,

където в последното равенства е използвано неколкократно ин-

тегриране по части при което всяка производна
∂

∂xµr
(за r =

1, . . . , k) се прехвърля със знак минус от ψ(x) към
∂L

∂(∂µ1,...,µk φj)
,
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вече като пълна производна
D

Dxµr
. Освен това, обърнете вни-

мание, че членовете в горното пресмятане за случая k = 0 от-
говарят на липса на производни по xµ. И така, съгласно аргу-
ментацията от точка 3 получаваме, че

δS

δφj(x)
= 0 =

∂L

∂φj
−

3∑
µ= 0

D

Dxµ

( ∂L

∂(∂µφj)

)
+ · · ·

+

( k∏
r= 1

(
− D

Dxµr

)) ∂L

∂(∂µ1,...,µk φj)
. (А.5)

Обърнете внимание, че в общия случай уравненията на Лагранж–
Ойлер са от ред два пъти по-голям от най-високия ред n на про-
изводните, които участват в лагранжиана, тъй като всяка пълна

производна
D

Dxµr
ще увеличи с единица реда на производните

на φj в изразът на който действа. В тази връзка, полезна фор-
мула е формулата за пълните производни:

D

Dxµ
=

∂

∂xµ
+

N∑
j= 1

(∂µφj)
∂L

∂φj
+
∑

1 6 j 6 N

0 6 ν 6 3

(∂µ,νφj)
∂

∂(∂νφj)
+ · · ·

+
∑

1 6 j 6 N

0 6 ν1 6 · · · 6 νk 6 3

(∂µ,ν1,...,νkφj)
∂

∂(∂ν1,...,νkφj)
+ · · · (А.6)

където редът продължава докато се стигне до най високия ред
∂ν1,...,νnφj на производни на φj в израза върху който се прилага
горния оператор. В частност, първите три члена в (А.6) остават
в случая на лагранжиани и изрази, в които участват само първи
производни на полетата.

Приложение Б. Доказателство на теорема-
та на Ньотер
Трансформационните функции (4.3) записваме накратко като∣∣∣∣∣ x′ = F (x)

u′ = G (x, u) .
(Б.1)
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В допълнение към това ние ще предположим, че всички примо-
вани обекти зависят посредством F = (F µ) и G от параметър на
трансформация ε, както е в (4.12), заедно с условието (4.13). За
краткост на означенията не винаги ще изписваме зависимостта
от ε.

Ако преминем от x′ към x в (4.16) ще имаме∫
Ω

L
(
φ(x),

∂φ

∂x
(x), x

)
d4x

=

∫
Ω

L
(
φ′
(
F(x)

)
,
∂φ′

∂x′
(
F(x)

)
,F(x)

) DF

Dx
(x) d4x , (Б.2)

където
DF

Dx
е якобиянът на трансформацията x′ = F(x). Тъй

като по предположение (Б.2) е изпълнено за всяка област Ω, то

∂

∂ε

(
L
(
φ′
(
F(x)

)
,
∂φ′

∂x′
(
F(x)

)
,F(x)

) DF

Dx
(x)

)∣∣∣∣∣
ε = 0

= 0 . (Б.3)

Следва преработка на равенство (Б.3), която първо включ-
ва диференциране на сложната зависимост от ε. След това, с
помощта на правилото на Лайбниц35 ще прехвърлим всички
частни производни по пространство-времевите координати от
трансформационните функции (4.21) към лагранжиана. С това

ще се отдели от една страна желаната дивергенция
∂Jµ

∂xµ
и от

друга страна, изрази умножени по полевите уравнения (виж.
заключителното тъждество (Б.18)).

И така, преработвайки (Б.3) получаваме (виж поясненията
след равенствата):

0 =
∂

∂ε

(
L
(
G(x, φ(x)),

∂xν

∂x′
∂

∂xν
(
φ′
(
F(x)

))
,F(x)

)
(Б.4)

× DF

Dx
(x)

)∣∣∣∣∣
ε = 0

=
∂

∂ε

(
L
(
G(x, φ(x)),

∂xν

∂x′
∂

∂xν
(
G(x, φ(x))

))
,F(x)

)
(Б.5)

35f(x)
∂g
∂x

= ∂
∂x

(f(x)g(x))− ∂f
∂x

g(x)
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× DF

Dx
(x)

)∣∣∣∣
ε = 0

=
∂L

∂u

(
φ(x),

∂φ

∂x
(x), x

) ∂G
∂ε

(x, φ(x); ε)
∣∣∣
ε = 0

(Б.6)

+
∂L

∂wµ

(
φ(x),

∂φ

∂x
(x), x

)
(Б.7)

× ∂

∂ε

( ∂xν
∂x′µ

∂

∂xν
(
G(x, φ(x))

)) ∣∣∣
ε = 0

+
∂L

∂xρ

(
φ(x),

∂φ

∂x
(x), x

) ∂

∂ε

(
F ρ(x; ε)

) ∣∣∣
ε = 0

(Б.8)

+ L
(
φ(x),

∂φ

∂x
(x), x

) ∂

∂ε

(DF

Dx

) ∣∣∣
ε = 0

, (Б.9)

където

• в равенства (Б.4) и (Б.5) предварително сме обработили

израза в производната
∂

∂ε

(
· · ·
)
както следва. В (Б.4), как-

то и в (Б.5) сме използвали (4.6) за да се освободим от φ′. В
(Б.4) сме използвали още и формулата за диференциране
на сложна функция

∂

∂xν
(
G(x, φ(x)

)
=

∂φ′

∂x′µ
(
F(x)

) ∂x′µ
∂xν

(x)

и сме въвели обратната матрица на
∂x′µ

∂xν
:

∂xν

∂x′µ
∂x′µ

∂xρ
= δνρ . (Б.10)

• В (Б.6) – (Б.9) сме диференцирали по ε. Най-напред, в
(Б.6) – (Б.8) сме диференцирали L(u, w, x) по ε, последо-
вателно като сложна функция, след което сме положили
ε = 0 в получените производни на L. Обърнете внимание,
че(

φ′
(
F(x)

)
,
∂φ′

∂x′
(
F(x)

)
,F(x)

) ∣∣∣
ε = 0

=
(
φ(x),

∂φ

∂x
(x), x

)
,

DF

Dx
(x)
∣∣∣
ε = 0

= 1 .

• И последно, в (Б.9) остава диференцирания по ε якобиян
DF

Dx
.
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По–нататък, въвеждайки Zµ(x) и R(x, u) по (4.21) и извеждайки
от (Б.10)

∂

∂ε

( ∂xν
∂x′µ

)∂x′µ
∂xρ

+
∂xν

∂x′µ
∂

∂ε

(∂x′µ
∂xρ

)
= 0

=⇒
ε= 0

∂

∂ε

∂xν

∂x′µ

∣∣∣
ε = 0

= − ∂

∂ε

∂F ν

∂xµ

∣∣∣
ε = 0

= −∂Z
ν

∂xµ
(u, x)

ние заместваме

0 =
∂L

∂u

(
φ(x),

∂φ

∂x
(x), x

)
R(x, φ(x)) (Б.11)

− ∂L

∂wµ

(
φ(x),

∂φ

∂x
(x), x

) ∂Zν

∂xµ
(x)

∂φ

∂xν
(x) (Б.12)

+
∂L

∂wµ

(
φ(x),

∂φ

∂x
(x), x

) ∂

∂ε

( ∂

∂xµ
(
G(x, φ(x); ε)

)) ∣∣∣
ε = 0

(Б.13)

+
∂L

∂xρ

(
φ(x),

∂φ

∂x
(x), x

)
Zρ(x) (Б.14)

+ L
(
φ(x),

∂φ

∂x
(x), x

)∂Zρ

∂xρ
(x) , (Б.15)

където в (Б.15) сме използвали формулата

∂

∂ε

(DF

Dx

) ∣∣∣
ε = 0

=
∂Zρ

∂xρ
.

По-нататък, като отчетем в (Б.13), че

∂

∂ε

( ∂

∂xµ
(
G(x, φ(x); ε)

)) ∣∣∣
ε = 0

=
∂

∂xµ
(
R(x, φ(x))

)
,

то сумата на членове (Б.11) и (Б.13) ни дава

E .L.{φ}(x) · R(x, φ(x)) +
∂

∂xµ

[
∂L

∂wµ

(
φ(x),

∂φ

∂x
(x), x

)
R(x, φ(x))

]
,

(Б.16)
където

E .L.{φ}(x) =
δS

δφ(x)

е дясната страна на уравненията на Лагранж–Ойлер (3.7). Су-
мата на останалите членове (Б.12), (Б.14) и (Б.15) е равна на

∂

∂xρ

[
L
(
φ(x),

∂φ

∂x
(x), x

)
Zρ(x)

]
− ∂

∂xµ

[
∂L

∂wµ

(
φ(x),

∂φ

∂x
(x), x

)
Zρ(x)

∂φ

∂xρ
(x)

]
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−E .L.{φ}(x) · Zρ(x)
∂φ

∂xρ
(x) . (Б.17)

С това, получаваме

∂

∂xµ
Jµ
(
φ(x),

∂φ

∂x
(x), x

)
=
(
R(x, φ(x))−Zρ(x)

∂φ

∂xρ
(x)
)
E .L.{φ}(x)

(Б.18)
където

Jµ(u,w, x) =
∂L

∂wµ
(u,w, x)

(
Zρ(x)wρ−R(x, u)

)
−L(u,w, x)Zµ(x)

(Б.19)
в потвърждение на (4.20).

Равенство (Б.18) е централното тъждество в теоремата на
Ньотер. То именно показва, че ако φ(x) е решение на уравнени-
ята на Лагранж-Ойлер, то тогава е в сила тъждеството (4.19),
∂

∂xµ
Jµ
(
φ(x),

∂φ

∂x
(x), x

)
= 0.

На първия пример от точка 4 – транслационната симетрия
– имаме

F µ(x) = xµ+ε nµ , G(x, u; ε) = u ⇐⇒ φ′(x) = φ(x−ε n) .

От тук, Zµ = nµ и R = 0, което веднага възпроизвежда формула
(4.27) като следствие от (Б.19).
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1. Как да си приготвим теория: общи съвети
В тази точка ще въведем някои общи “рецепти” за строене на
физични теории базирани на вариационния принцип. Подобно
на обикновеното готварство и тук водещия принцип е принципа
на добавянето на разни специално подбрани съставки, в случая
– към действието: S = S1 + S2 + · · ·+ Sn.

a) Комбиниране / сдвояване на вече построени полеви мо-
дели.

Най-напред, ако имаме две отделни полеви теории определе-
ни от действия S1

{
φ

(1)
1 , . . . , φ

(1)
N1

}
и S2

{
φ

(2)
1 , . . . , φ

(2)
N2

}
за системи

от полета φ(1)
1 (x), . . . , φ

(1)
N1

(x) и φ(2)
1 (x), . . . , φ

(2)
N2

(x), съответно, то
можем да определим комбинирана теория с действие

S
{
φ

(1)
1 , . . . , φ

(1)
N1
, φ

(2)
1 , . . . , φ

(2)
N2

}
= S1

{
φ

(1)
1 , . . . , φ

(1)
N1

}
+ S2

{
φ

(2)
1 , . . . , φ

(2)
N2

}
. (1.1)
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Непосредствено се убеждаваме, че полевите уравнения за дейс-
твието S (1.1) са просто обединение на полевите уравнения за
системите φ(1)

1 (x), . . . , φ
(1)
N1

(x) и φ(2)
1 (x), . . . , φ

(2)
N2

(x). С други думи,
това е просто обединено разглеждане на полеви системи, които
не взаимодействат по между си. В потвърждение на последното
говори и факта, че пълните енергия P0 и импулс (P1, P2, P3) на
комбинираната система са сума на тези на подсистемите:36

Pµ
{
φ

(1)
1 , . . . , φ

(1)
N1
, φ

(2)
1 , . . . , φ

(2)
N2

}
= P (1)

µ

{
φ

(1)
1 , . . . , φ

(1)
N1

}
+ P (2)

µ

{
φ

(2)
1 , . . . , φ

(2)
N2

}
(1.2)

(µ = 0, 1, 2, 3). Всъщност, непосредствено се проверява, че всеки
ньотеров ток за обща симетрия на двете комбинирани теории е
сума на изходните токове,

Jµ = Jµ1 + Jµ2 .

б) Включване на взаимодействие (interaction).

Енергиите и импулсите (P
(1)
µ ) и (P

(1)
µ ) на две невзаимодейст-

ващи полеви системи се запазват както по отделно, така разбира
се и сумарно (1.2). При наличие на взаимодействие само пълни-
те енергия и импулс следва да се запазват. Разгледаното в пред-
ходната подточка до известна степен формално и идеализирано
обединение на две теории е първата стъпка при описание на
взаимодействащи полеви системи. Например, така постъпваме
в електродинамиката, когато искаме да опишем взаимодействие
на електромагнитно поле с полета описващи (токове на) зареде-
ни частици. В последния случай, както и в много други теории
на взаимодействащи полеви системи се приема, че взаимодейс-
твието може да се опише с адитивна добавка37 към действието
(1.1), която се нарича член на взаимодействие Sint,

Stot
{
φ

(1)
1 , . . . , φ

(1)
N1
, φ

(2)
1 , . . . , φ

(2)
N2

}
36Обърнете внимание, че по конструкция Pµ са функционали не на пъл-

ните полеви функции, а на началните условия, както е отбелязано за всяка
ньотерова запазваща се величина в (Л4.4.2) и (Л4.4.26). За краткост обаче
във формулите тук сме ги записали, като функционали просто на полетата,
без това да се използва съществено.

37адитивна добавка = израз добавен с операция на сумиране; мултипли-
кативна добавка = израз добавен с операция на умножение
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= S1

{
φ

(1)
1 , . . . , φ

(1)
N1

}
+ S2

{
φ

(2)
1 , . . . , φ

(2)
N2

}
+ Sint

{
φ

(1)
1 , . . . , φ

(1)
N1
, φ

(2)
1 , . . . , φ

(2)
N2

}
. (1.3)

Ако имаме полева симетрия на горното действие Stot (1.3), то
пълният ньотеров ток Jµ ще е сума на приноси Jµ1 , J

µ
2 , J

µ
int,

идващи съответно от отделните членове S1, S2 и Sint:

Jµtot = Jµ1 + Jµ2 + Jµint .

В частност, за пълната енергия и импулс на системата имаме

P (tot)
µ

{
φ

(1)
1 , . . . , φ

(1)
N1
, φ

(2)
1 , . . . , φ

(2)
N2

}
= P (1)

µ

{
φ

(1)
1 , . . . , φ

(1)
N1

}
+ P (2)

µ

{
φ

(2)
1 , . . . , φ

(2)
N2

}
+ P (int)

µ

{
φ

(1)
1 , . . . , φ

(1)
N1
, φ

(2)
1 , . . . , φ

(2)
N2

}
. (1.4)

Забележете, че сега P (1)
µ , P (2)

µ и P
(int)
µ не се запазват по отдел-

но, а единствено тяхната сума P (tot)
µ . Друго следствие е, че ако

искаме да говорим за енергия и импулс (P
(1)
µ ) и (P

(2)
µ ) на под-

системите, то общата енергия–импулс (P
(tot)
µ ) не е тяхната (век-

торна) сума. Съществува трети принос (P
(int)
µ ) в (P

(tot)
µ ), който

играе ролята на “резервоар” за енергия–импулс и той се дължи
на взаимодействието. Всъщност, при класическия закон за за-
пазване на енергията в нютоновата механика също се въвежда
подобен “резервоар” на енергия от който отделните кинетични
енергии на взаимодействащи помежду си частици могат да чер-
пят. Това е потенциалната енергия. Така, енергията–импулс на
взаимодействие се явява обобщение на понятието за потенциал-
на енергия.

в) Динамичен фон (dynamical background).

Да разгледаме лагранжиана водещ до вълновото уравнение,

L =
1

2
ηµν

∂φ

∂xµ
(x)

∂φ

∂xν
(x) , (1.5)

където (ηµν) беше обратната матрица на метричния тензор (ηµν).
В общата теория на относителността се предлага (ηµν) да се за-
мени с (тензорно) поле (ηµν(x)). В момента няма да обсъждаме
дълбоките мотиви за тази замяна. Ще отбележим, че метрич-
ния тензор е един от първите примери във физиката на фоново
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поле (background field) в теория. Има и много други ситуации,
когато се въвеждат фонови полета. Например, при описание на
система от частици във външно електромагнитно поле, послед-
ното е фоново поле. Обикновено когато се говори за фонови
полета, то те не са динамични: по тях не извършваме вариации
и не им налагаме допълнителни уравнения. В този случай фо-
новите полета участват, като “полеви параметри” в уравненията
на Лагранж-Ойлер. Ако решим обаче да “добавим” динамика на
фоновите полета, т.е., да ги направим динамичен фон, то това
става с адитивна добавка към действието. Последната добавка
отговаря за динамиката на фона сам по себе си.

г) Базисни членове на действието.

И така, както отбелязахме до тук действието в една полева
теория се строи основно на адитивен принцип, т.е., като сума
на базисни членове. А как се подбират базисните членове?

Едно от първите съображения при избор е обикновено прос-
тотата и естествеността. Образец за това миже да ни служи
лагранжиана (1.5). Съществуват разбира се и допълнителни съ-
ображения. Ако от базисните членове в действието се очаква да
описват самостоятелни полеви подсистеми, преди “включване-
то” на взаимодействие, то на нас са ни нужни изрази за дейс-
твие, съответстващи на така наречените свободни полета (free
fields). Подобно на свободните частици в механиката, които се
движат равномерно и праволинейно, също и свободните полета
могат най-общо да се характеризират, като подчинени на ли-
нейни полеви уравнения.

От своя страна, полевите уравнения

∂L

∂φj
−

3∑
µ= 0

D

Dxµ

( ∂L

∂(∂µφj)

)
= 0 (1.6)

са линейни тогава тогава и само тогава, когато лагранжианът
L е полином от степен две спрямо полетата и техните производ-
ни. Такива лагранжиани ще наричаме квадратични. Например,
(1.5) е квадратичен лагранжиан.

По-нататък, транслационната симетрия, водеща до запазва-
нето на енергията и импулса, изисква лагранжианите да не за-
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висят явно от точките x на пространство-времето,

L = L
(
φ1(x), . . . , φN(x),

∂φ1(x)

∂x
, . . . ,

∂φn(x)

∂x

)
.

Така, лагранжианите на сводните полета остават едиствено квад-
ратни полиноми на полетата и просизводните им. Това силно
ограничава произвола: един квадратен полином се определя от
краен брой параметри.

Следва съображението за ротационна и по-общо, за релати-
вистка инвариантност. То допълнително намалява броя на сво-
бодните параметри в лагранжиана и за скаларни полета, като
това участващо в (1.5) остава само още една възможност

φ(x)2 .

Така, лагранжианът (1.5) може най-общо да се обобщи до вида

L =
α

2

∂φ

∂xµ
(x)

∂φ

∂xµ
(x) +

β

2
φ(x)2 .

Тук следва да отбележим, че единият от горните два параметъ-
ра α и β е несъществен, понеже може да се “погълне” от полето.
Например, ако предефинираме φ(x) 7→

√
|α| φ(x) ще стигнем до

вида

L = σ1
1

2

∂φ

∂xµ
∂φ

∂xµ
+ σ2

m2

2
φ2 , (1.7)

където σ1, σ2 = ±1, а m > 0 е свободен непрекъснат параметър.
Поредното условие, които ще изтъкнем има физичен харак-

тер: това е изискването енергията да е неотрицателна. По-
нататък в този курс ние допълнително ще обсъдим това изис-
кване, а в момента ще изтъкнем само, че положителността на
енергията е свързана с физическото изискване за стабилност
на полевата система. От условието за неотрицателност на плът-
ността енергията T 0

0 (виж (Л4.4.27), (Л4.4.28) и (Л4.4.29))) след-
ва, че в (1.7) σ1 = −σ2 = 1, понеже

T 0
0 =

σ1

2

(( ∂φ
∂x0

)2

+
( ∂φ
∂x1

)2

+
( ∂φ
∂x2

)2

+
( ∂φ
∂x3

)2
)
− σ2m

2

2
φ2 .

Така, най-общият физически допустим вид на лагранжиан
на скаларно релативистко поле е:

L =
1

2

∂φ

∂xµ
∂φ

∂xµ
− m2

2
φ2 . (1.8)
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По нататък в този курс ще видим, че параметърът m > 0 в
(1.8) има смисъл на маса на частиците, описвани от полето φ(x)

в квантовата теория. По-общо, ние ще разгледаме квантовоме-
ханичната (кинематична) класификация на елементарните час-
тици и ще видим, че те се характеризират от два параметъра:
един непрекъснат параметър, който има смисъл на маса m > 0

и един дискретен, наречен спин (spin или още, вътрешен ъг-

лов момент) s = 0,
1

2
, 1,

3

2
, 2, . . . . При съответствието между

полета и частици в квантовата теория на полето на всеки тип
(свободна) частица съответства лагранжиан (на свободно поле).
В частност, лагранжианът (1.8) съответства на частици с маса
m и спин s = 0.

Обсъдените до тук методи за конструиране на базисни чле-
нове в лагранжиана и действието представляват едни от най-
основните принципи за това. Някои допълнителни възможности
се състоят във въвеждане на членове без производни по дадени
полета. Съгласно уравненията за движение (1.6) полетата, ко-
ито участват без производни в лагранжиана изпълняват само
алгебрични, а не диференциални уравнения. Последното озна-
чава, че всъщност такива полета се изразяват алгебрично от
останалите полета (и техните производни). Така, това са неди-
намични полета, които обикновено се въвеждат като спомага-
телни полета.

Остана да обсъдим възможностите за членовете в действи-
ето, които отговарят за взаимодействието. Съображенията за
естественост и простота разбира се отново се намесват. Една
възможност е продиктувана от ситуацията в класическата елек-
тродинамика. Уравненията на Максуел в присъствие на заряди
и токове имат вида на линейни нехомогенни частни диферен-
циални уравнения. В общия случай на уравненията (1.6) това би
означавало да се замени дясната страна с ненулеви източници
Kj(x) (за j = 1, . . . , N). За да се генерира с лагранжиан така-
ва добавка към уравненията на Лагранж–Ойлер е необходимо
просто да се добави член в действието от вида38∫

Ω

φj(x)Kj(x) d4x .

38сумира се по j = 1, . . . , N
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В случая на уравненията на Максуел източниците допълнител-
но се оказват ньотерови токове изградени от други полета (виж
(2.6) по-нататък в тази лекция).

Съществува обаче по-елегантен и естествен метод за въвеж-
дане на взаимодействия. Този метод, който бихме могли да на-
речем ‘метод на фоновите полета”, се състои във въвеждане
на допълнителни полета в лагранжианите на свободните по-
лета. Ние вече показахме как метричният тензор (метриката)
може да бъде трансформиран във фоново поле и това след-
ва да се направи за всеки един базисен член на лагранжиана.
Тъй като метриката в общата теория на относителността описва
гравитацията, то ние получаваме автоматично метод по който
да описваме взаимодействието между гравитационното поле и
всяко друго поле! В следващите точки на тази лекция ще въве-
дем друг основен тип фонови полета: калибровъчните полета

(gauge fields). В този случай частните производни
∂

∂xµ
на поле-

тата се заменят така наречените ковариантни производни ∇µ,
които имат красива и естествена геометрична интерпретация.
По такъв начин, калибровъчните полета днес се явяват основ-
ните преносители на взаимодействия, включващи в себе си и
електромагнитното поле.

2. Действие и лагранжиан на електромаг-
нитното поле
За да приведем действие пораждащо уравненията на Максуел
ще отбележим най-напред, че втората група (Л3.5.21) от урав-
нения може да се реши чрез полагането

Fµν(x) :=
∂Aµ
∂xν

(x) − ∂Aν
∂xµ

(x) , (2.1)

където четирите функции
(
Aµ(x)

)
3
µ= 0 се наричат електромаг-

нитни потенциали. Съществуването на електромагнитните по-
тенциали следва от уравнения (Л3.5.21) благодарение на така
наречената лема на Поанкаре. Така, можем да считаме, че ан-
заца (полагането) (2.1) е равносилен на уравнения (Л3.5.21), в
следствие на което остават само групата уравнения (Л3.5.20).
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Така, като първа стъпка към действието на електромагнит-
ното поле, преминаваме към основни полета Aµ(x), а полетата
Fµν приемаме като зависещи от тях

Fµν = Fµν

(∂A
∂x

(x)
)

( =
∂Aµ
∂xν

− ∂Aν
∂xµ

) . (2.2)

Тогава действието

SEM

{
(Aµ(x))3

µ= 0

}
=

1

4

∫
Ω

Fµν F
µν d4x (2.3)

води до уравненията

0 =
δSEM

δAµ(x)
=

∂2Aν
∂xν∂xµ

− ∂2Aµ
∂xν∂xν

, (2.4)

което са точно уравнения (5.20) със заместени Fµν от (2.2). Ако
се върнем към векторите на интензитета E на електричното
поле и магнитната индукция B, чрез които изразихме Fµν в
(Л3.5.19) то ще получим за лагранжиана на електромагнитното
поле израза

1

4
Fµν F

µν =
1

2

(E2

c2
−B2

)
.

Друга интересна формула е за плътността на енергията T 0
0 на

електромагнитното поле (припомняме, че съгласно формула
(Л4.4.28) T 0

0 ни дава пълната енергия P0 след интегриране по
тримерното пространство):

T 0
0 =

1

2

(E2

c2
+ B2

)
.

Важно свойство на електромагнитните потенциали е, че те
са определени от Fµν с точност до така наречените калибровач-
ни трансформации:

A′µ(x) = Aµ(x) +
∂f

∂xµ
(x) (2.5)

=⇒ Fµν

(∂A
∂x

(x)
)

= Fµν

(∂A′
∂x

(x)
)

(в следствие на спомената по-горе лема на Поанкаре следва и
обратната импликация в (2.5)). Аналогична е ситуацията с по-
тенциалната енергия във физиката, която е определена с точ-
ност до константа. Фактически, функцията A0 непосредствено
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обобщава електростатичния потенциал. Така, самите калибро-
въчни трансформации не описват реална симетрия, а по-скоро
описват свободата или още, произвола, във въведените допъл-
нителни полеви степени на свобода посредством електромагнит-
ните потенциали. Наблюдаваните физични ефекти не трябва да
зависят от този допълнителен произвол.

В теорията на електромагнетизма също се показва, че при
наличие на електрични заряди към действието на електромаг-
нитното поле се прибавя добавка∫

Ω

Aµ(x) Jµ(x) d4x , (2.6)

където Jµ(x) е функция на пространство-времето с четиример-
ни векторни стойности, която характеризира разпределението
и движението на електричните заряди и се нарича четири-
вектор на тока. Тази функция изпълнява закона за запазва-
не на електричния заряд, който подобно на (4.22) се задава в
диференциална форма с уравнението

∂

∂xµ
Jµ = 0 . (2.7)

По такъв начин пълният електричен заряд при зададен момент
от време x0 се определя по формулата∫

R3

J0(x0,x) d3x (2.8)

и не се променя с времето x0. В следствие на (2.7), добавката
към действието (2.6) се оказва калибровъчно инвариантна,∫

Ω

Aµ(x) Jµ(x) d4x =

∫
Ω

(
Aµ(x) +

∂f

∂xµ
(x)
)
Jµ(x) d4x , (2.9)

което се показва с интегриране по части (теоремата на Стокс),
при естественото предположение, че произведението Jµfµ из-
чезва върху границата на областта Ω.

3. Вътрешни симетрии и електричния заряд
Транслационната симетрия е основната пространствената си-
метрия. Тук ще разгледаме и един нов полева тип симетрия,
наречена вътрешна симетрия.



130 Лекция 5 9.11.2015/v1

За целта ще разгледаме още един пример на действие,

S
{
ψ(x0,x), ψ(x0,x)

}
(3.1)

=

∫
Ω

(
i ψ(x0,x)

∂ψ

∂x0
(x0,x)− ∂ψ

∂x1

∂ψ

∂x1
− ∂ψ

∂x2

∂ψ

∂x2
− ∂ψ

∂x3

∂ψ

∂x3

)
d4x

което възпроизвежда уравнението на Шрьодингер (Schr0̈dinger)
за една свободна нерелативистична квантова частица,

0 =
δS

δψ(x0,x)

= i
∂ψ

∂x0
(x0,x) +

∂2ψ

(∂x1)2
(· · · ) +

∂2ψ

(∂x2)2
(· · · ) +

∂2ψ

(∂x3)2
(x0,x) ,

0 =
δS

δψ(x0,x)
= −i ∂ψ

∂t
(x0,x) +

∂2ψ

(∂x)2
(· · · )

+
∂2ψ

(∂y)2
(· · · ) +

∂2ψ

(∂z)2
(x0,x) . (3.2)

Ние в последствие ще се върнем отново към това уравнение
във връзка с основните принцип на квантовата механика и в
момента ни интересува единствено полевия аспект свързан с
теоремата на Ньотер.

Обръщаме най-напред внимание на това че варираната фун-
кция ψ(x0, x1, x2, x3) е комплексно значна и поради това дейс-
твието S (3.1) е фактически действие за две реални функции,
реалната и имагинерна части, Reψ и Imψ, на ψ(x0, x1, x2, x3).
Вместо обаче да разглеждаме зависимостта на S от Reψ и Imψ

ние сме разгледали, еквивалентно, зависимостта на S от ψ и
комплексно спрегната функция ψ. Втора забележка е, че S взе-
ма реални стойности, ако ψ(x0,x) изчезва върху границата на
Ω, тъй като тогава с интегриране по части получаваме∫

Ω

i ψ(x0,x)
∂ψ

∂x0
(x0,x) d4 = −

∫
Ω

i
∂ψ

∂x0
(x0,x) ψ(x0,x) d4x .

Последното свойство на реалност на действието S е пряко
следствие от това, че в S участват модулите на ψ и нейните
производни. Ето защо не е изненада, че при трансформацията

ψ′(x, y, z, t) = eiε ψ(x, y, z, t) , ψ′(x, y, z, t) = e−iε ψ(x, y, z, t)

(3.3)
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действието S (3.1) е инвариантно,

S
{
ψ(x0,x), ψ(x0,x)

}
= S

{
ψ′(x0,x), ψ′(x0,x)

}
. (3.4)

Колкото и елементарна да е горната трансформация, тя пораж-
да изключително важен запазващ се функционал за решенията
на уравнението на Шрьодингер (3.2). Това е така наречената
хилбертова норма на функцията ψ,

Q =

∫
R3

ψ(x0,x)ψ(x0,x) d3x (3.5)

(или по-точно, нейния квадрат). Съответният ньотеров ток е

J0 = ψ(x0,x)ψ(x0,x) ,

Jk = ψ(x0,x))
∂ψ

∂xk
(x0,x)− ∂ψ

∂xk
(x0,x)ψ(x0,x) , (3.6)

k = 1, 2, 3. Читателят може непосредствено да се убеди, че при
полагането (3.6) закона за запазване

∂

∂x0
J0 +

∂

∂x1
J1 +

∂

∂x2
J2 +

∂

∂x3
J3 = 0

следва пряко от уравнението на Шрьодингер (3.2) (и неговото
комплексно спрегнато уравнение).

Прието е симетрията свързана с трансформацията (3.3) да
се нарича вътрешна симетрия, тъй като тя не е свързана с
трансформация в пространството и времето, а само засяга стой-
ностите на полето. Освен това тази симетрия се нарича също и
глобална калибровачна симетрия, значението на което ще по-
ясним по-нататък в точка 4. Още едно название на трансфор-
мацията (3.3), което е широко разпространено в литературата е
U(1)–глобална симетрия. Да припомним, че U(1) = {eiε|ε ∈ R}
е групата на комплексните числа по модул 1, което пояснява
произхода на последния термин.

4. Абелеви калибровъчни теории
Следното елементарно математическо наблюдение е довело до
грандиозни последствия във физиката и по-специално в теория
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на полето и описанието на фундаменталните взаимодействия.
В сила е тъждеството:

∂

∂xµ
eif(x) ψ(x) = eif(x)

( ∂

∂xµ
+ i

∂f

∂xµ
(x)
)
ψ(x) (4.1)

за производна комплексна функция ψ(x) и реална функция f(x).
Следователно, ако положим

∇µ :=
∂

∂xµ
− iAµ(x) , ∇′µ :=

∂

∂xµ
− iA′µ(x) , (4.2)

ψ′(x) = eif(x) ψ(x) , A′µ(x) = Aµ(x) +
∂f

∂xµ
(4.3)

то получаваме
∇′µ ψ′(x) = eif(x)∇µψ(x) . (4.4)

Въведените оператори ∇µ (4.2) се наричат ковариантни произ-
водни и имат красива геометрична интерпретация на която ще
се спрем по-подробно в следващия параграф.

Нека сега да разтълкуваме значението на горните математи-
чески тъждества. Преди всичко, внимателният читател е раз-
познал вече втората от формули (4.3), която задава калибро-
вачна трансформация на електромагнитни потенциали (2.5).
А относно първата от формули (4.3), тя пък обобщава тран-
сформацията на вътрешна симетрия (3.3), с която се запознах-
ме на примера на уравнението на Шрьодингер. Разликата е,
че в (3.3) факторът eiε е константа и не зависи от точките на
пространство-времето, което се заменя с променливия фактор
eif(x) в (4.3). По такъв начин, с направения математически трик
ние осигуряваме инвариантност на действието на Шрьодингер,
при трансформация ψ′(x) = eif(x)ψ(x), ако го разширим полева-
та система, като включим в нея и електромагнитните потенци-
али.

Нека формулираме по-общо направения извод. Нека

S0{φ, φ} =

∫
Ω

L
(
φ(x), φ(x),

∂φ(x)

∂x
,
∂φ(x)

∂x
, x
)
d4x (4.5)

е действие за една комплексна функция φ(x) (която може дори
да е и векторно значна). Да предположим, че лагранжианът L
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има инвариантността

L
(
φ(x), φ(x),

∂φ(x)

∂x
,
∂φ(x)

∂x
, x
)

= L
(
φ′(x), φ′(x),

∂φ′(x)

∂x
,
∂φ′(x)

∂x
, x
)

(4.6)
при трансформацията φ′(x) = eiε φ(x). Тогава разширеното дейс-
твие

S
{
φ(x), φ(x), A(x)

}
=

∫
Ω

L
(
φ(x), φ(x),

(
∇µφ

)3

µ= 0
,
(
∇µφ

)3

µ= 0
, x
)
d4x , (4.7)

където ∇µ =
∂

∂xµ
− iAµ (както в (4.2)), е инвариантно при тран-

сформацията φ′(x) = eif(x) φ(x), φ′(x) = e−if(x) φ(x), и A′µ(x) =

Aµ(x) +
∂f

∂xµ
.

Получаваме проста универсална рецепта за включване на
електромагнитното поле към всяко действие с глобална U(1)–
симетрия (термина виж в края на параграф ??):

всички частни производни на полетата трябва да се за-
менят с ковариантни производни.

(4.8)
Сега ще дадем допълнителна мотивация от физиката за гор-

ната рецепта (4.8). Освен, че използването на ковариантните
производни води до естествена намеса на калибровачните тран-
сформации на електромагнитните потенциали (2.5), трансфор-
мацията ψ′(x) = eif(x) ψ(x) за една вълнова функция, участваща
в уравнението на Шрьодингер, се налага също съвсем естестве-
но. Нека си припомним, че съгласно квантово механичната ин-
терпретация единствено модулът

∣∣ψ(x0,x)
∣∣2 на вълновата фун-

кция ψ(x0,x) има пряка физическа интерпретация, като плът-
ност на вероятността да намерим частицата в точката x на прос-
транството в момента от време x0. По такъв начин изменението
на фазата на вълновата функция ψ с фактор eif(x), което не
е съпроводено с изменението на плътността на вероятността, е
равносилно на въвеждане на фиктивни електромагнитни потен-

циали
∂f

∂xµ
с нулеви интензитети Fµν и следователно, не свърза-

ни с наблюдаеми физични ефекти. Тази дискусия допълнително
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ни навежда на мисълта как всъщност можем да сравняваме по-
левите стойности в различни точки на пространство–времето и
води до дълбока и красива, геометрична интерпретация на ко-
вариантните производни, като задаващи инфинитезимален па-
ралелен пренос. На тази допълнителна интерпретация ще се
спрем по-подробно в следващия параграф.

В края на настоящия параграф ще приведем още една фи-
зична мотивация за рецепта (4.8). Това ни дава повод и да да-
дем още един пример на фундаментално полево уравнение във
физиката – уравнението на Дирак (Paul Dirac):

iγµ
∂

∂xµ
ψ(x)−mψ(x) = 0 , ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

, (4.9)

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

, γ1 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

,

γ2 =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

, γ3 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

.
Както се вижда, това е едно уравнение за векторно значна, ком-
плексна функция ψ(x), наречена спинорна функция на Дирак
(spinor function). Уравнението (4.9) е записано в матрична фор-
ма с помощта на матриците γµ, които носят името матрици на
Дирак. Въпросите свързани с уравнението на Дирак заемат це-
ли монографии, което значително надхвърля нашите цели тук.
Ние ще се спрем единствено на аспекта свързан с действието,
което възпроизвежда уравнението на Дирак и неговата калиб-
ровачна U(1)–симетрия. Едно такова действие е:

S0

{
ψ(x), ψ(x)

}
=

∫
Ω

ψ(x)
(
iγµ

∂

∂xµ
−m

)
ψ(x) d4x , (4.10)

където ψ(x) е така наречената дираково спрегната спинорна
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функция, определена като

ψ(x) := ψ(x)+ γ0 ≡
(
ψ1(x) , ψ2(x) , ψ3(x) , ψ4(x)

)
γ0

=
(
ψ1(x) , ψ2(x) , −ψ3(x) , −ψ4(x)

)
. (4.11)

Прилагайки рецептата (4.8) към S0 ние получаваме

S
{
ψ(x), ψ(x), A(x)

}
=

∫
Ω

ψ(x)
(
iγµ∇µ +m

)
ψ(x) d4x

= S0

{
ψ(x), ψ(x)

}
+

∫
Ω

Aµ(x) Jµ
(
ψ(x), ψ(x)

)
d4x , (4.12)

където Jµ
(
ψ(x), ψ(x)

)
се оказва точно ньотеровия ток съответ-

стващ на глобалната U(1)–симетрия на S0,

S0

{
ψ(x), ψ(x)

}
= S0

{
eiεψ(x), e−iεψ(x)

}
и той се задава по формулата

Jµ
(
ψ(x), ψ(x)

)
= ψ(x) γµ ψ(x) . (4.13)

По такъв начин Jµ изпълнява диференциалния закон за запаз-
ване (2.7) и представлява естествен кандидат за четиривектор
на тока на електрични заряди описвани от уравнението на Ди-
рак. Освен това при прилагането на рецептата (4.8) действието
S0 приема добавка точно от вида (2.6), както се предписва от
класическата електродинамика. Последното следва от специфи-
ка на действието S0, в което първите производни на полетата
участват линейно и не е вярно за действия с лагранжиани от
вида (??). Ето защо избрахме именно уравнението на Дирак за
да илюстрираме тази допълнителна съгласуваност на предпи-
санието (4.8) с други закони на класическата електродинамика.

Забележка: Във физиката е прието пред израза за тока в (4.13)
да се поставя допълнителен числов фактор e, който се явява
характеристика на електричния заряд на полето описвано от
уравнението на Дирак,

Jµ
(
ψ(x), ψ(x)

)
= e ψ(x) γµ ψ(x) . (4.14)
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За да се съгласува това с (4.8) ние следва да модифицираме и
определението за ковариантна производна

∇µ =
∂

∂xµ
− i eAµ(x) . (4.15)

И така, пълното действие на спинорно поле на Дирак с елек-
тромагнитно поле е

STot
{
ψ(x), ψ(x), A(x)

}
= SEM

{
A(x)

}
+ S

{
ψ(x), ψ(x), A(x)

}
= SEM

{
A(x)

}
+ S0

{
ψ(x), ψ(x)

}
+

∫
Ω

Aµ J
µ d4x . (4.16)

Това е именно действието, с което се започва и в квантовата
електродинамика за описание на електрона и по такъв начин,
то има претенцията да описва голяма част от свойствата на зао-
бикалящата ни природа и в частност, всички химични явления.
Във формула (4.16) се открива и адитивния принцип за стро-
ене на действието: STot е сума на действията S0 и SEM, които
съответстват на свободни, невзаимодействащи полета, съответ-
но, поле на Дирак и електромагнитно поле; последния член в
STot е от вида (2.6) и описва добавката на взаимодействието.

Ще завършим настоящия параграф с кратка забележка по-
ясняваща термина “абелеви”, в заглавието на параграфа. Ако
приложим последователно две калибровачни трансформации

ψ(x) 7−→ eif1(x) ψ(x) 7−→ eif2(x) eif1(x) ψ(x) ,

то забелязваме, че резултата не зависи от последователността,
тъй като eif2(x)eif1(x) = eif1(x)eif2(x). Това е свойството на комута-
тивност или още наречено, абелевост, в математиката. Поради
това и разгледаните тук U(1)–калибровачни теории са в класа
на абелевите калибровачни модели.

5. Как да си приготвим теория: общи съвети
Нека φ(x) =

(
φa(x)

)
N
a= 1 е многокомпонентно (т.е., векторно знач-

но), комплексно поле. (Така, всяка компонента φa(x) е комплексно-
значна функция.) Да разгледаме следното обобщение на лаг-



Теория на класическите полета II. 137

ранжиана (??):39

L
(
φ(x),

∂φ

∂x
(x), x

)
=

1

2

N∑
a= 1

∂φa
∂xµ

(x)
∂φa
∂xµ

(x)

≡ 1

2

〈
∂φ

∂xµ
(x) ,

∂φ

∂xµ
(x)

〉
, (5.1)

където 〈
Φ,Ψ

〉
:=

N∑
a= 1

Φa Ψa ,

е ермитово (хилбертово) скаларно произведение в CN 3 Φ =(
Φa

)
N
a= 1, Ψ =

(
Ψa

)
N
a= 1. Векторното пространството CN , в което

полето φ(x) приема стойности, ще означим абстрактно с

V (N) := CN

и то може да се нарече пространство на вътрешните степени на
свобода или още, вътрешно пространство. В последствие, ние
ще стигнем до идеята, че над всяка точка x на пространство–
времето ние следва да разглеждаме независимо копие на V (N),
което може да се означи с V (N)

x . (над точката x).
Лагранжианът (5.1) има естествена вътрешна симетрия

L
(
φ(x),

∂φ

∂x
(x), x

)
= L

(
Uφ(x),

∂Uφ

∂x
(x), x

)
, (5.2)

където Uφ(x) :=
( N∑
b= 1

Uab φb(x)
)
N

a= 1
и U =

(
Uab
)
N
a,b= 1 е уни-

тарна матрица,40

U+ U = 1 = U U+ =⇒
〈
UΦ, UΨ

〉
=
〈
Φ,Ψ

〉
.

Множеството на унитарни (N×N)–матрици е затворено спрямо
операцията умножение на матрици, съдържа единичната мат-
рица и обратната на всяка от принадлежащите му матрици.
Тоест, това множество е група и тя се бележи с U(N). Затова

39конвенцията (5.10) тук прилагаме само към пространствени индекси,
докато по a, по преценка на автора, ще пишем сумата експлицитно

40U+ ≡ U
T ≡

(
Uba
)
N
a,b=1 е ермитово спрегнатата матрица. Унитарните

матрици са основен елемент от апарата на квантовата механика. Да си
припомним, че U = eiT е унитарна матрица, ако T е ермитова, т.е., T+ = T .
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и горната вътрешна симетрия (5.2) се нарича U(N)–симетрия
(глобална калибровачна). Очевидно, тази симетрия е неабелева,
тъй като при последователно прилагане на две трансформации
φ(x) 7→ Ujφ(x) за = 1, 2 резултатите по принцип са различни,
U1U2φ(x) 6= U2U1φ(x).

Първата идея за въвеждане на вътрешна неабелева симет-
рия в теория на елементарните частици е на Паули (Wolfgang
Pauli), който допуска, че поради близките маси на протона и не-
утрона, както и тяхната еквивалентност при силните (ядрени)
взаимодействия. това е всъщност една частица в две различни
вътрешни състояния. Така, той предлага протона и неутрона да
се описват от едно двукомпонентно поле с U(2)–вътрешна си-
метрия. Това поле приема стойности в V (2), като компонентата

φ1(x) по първия базисен вектор e1 =

(
1

0

)
отговаря за прото-

на, а компонентата φ2(x) по втория базисен вектор e2 =

(
0

1

)
отговаря за неутрона. U(2)–симетрията обаче указва, че всеки
друг избор e′1 и e′2 на ортонормиран репер в V (2) задава равноп-
равно описание.

Естествено е да се опитаме да направим симетрията (5.2)
от глобална – локална симетрия, т.е., зависеща от точките на
пространство–времето

φ′(x) = U(x)φ(x) , (5.3)

където U(x) е функция на точките на пространство–времето,
чийто стойности са унитарни матрици. Това е равносилно на
свободен избор на ортонормирани репери в V (N) по отделно
за всяка точка от пространство–времето и е пряко обобщение
на ситуацията в абелевите калибровачни теории. Допълнител-
но физично съображение идва от специалната теория на отно-
сителността, според която съществуват причинно не свързани
събития и за такива няма основание в теорията да има съг-
ласуваност в избора на реперите на вътрешните пространства
V (N). Приведените съображения показват, че на практика ние
можем да говорим за независими копия на V (N)

x на вътрешното
пространство над всяка точка x на пространство-времето, ко-
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ито макар и да са абстрактно изоморфни по между си, не са
канонично отъждествени едно с друго. Това е езика на така на-
речените разслоени пространства (разслоения), с теорията на
които читателя може допълнително да се запознае в [?].

В съответствие с трансформацията (5.3) тъждеството (4.1)
се обобщава до

∂

∂xµ

(
U(x)φ(x)

)
= U(x)

( ∂

∂xµ
+ U(x)−1∂U(x)

∂xµ

)
φ(x) . (5.4)

Следователно, ако на мястото на (4.2) и (4.3) положим

∇µ :=
∂

∂xµ
− iAµ(x) , ∇′µ :=

∂

∂xµ
− iA′µ(x) , (5.5)

A′µ(x) = Aµ(x)− i U(x)−1∂U(x)

∂xµ
(5.6)

то получаваме
∇′µ φ′(x) = U(x)∇µφ(x) . (5.7)

С тези полагания ние директно обобщаваме принципа (4.8) в ре-
цепта за получаване на теории с локална U(N)–симетрия от тео-
рии с глобална U(N)–симетрия. Както и в абелевия случай, това
става с цената на въвеждане на нови полета Aµ (µ = 0, 1, 2, 3),
чийто стойности сега се оказват (N ×N)–матрици.

Нека да приведем сега едно геометрично тълкувание на но-
вовъведените матрично значни полета Aµ. Те възникват във
връзка с понятието за производна. При вземане на обикновена
производна на поле по направление на някакъв вектор a = (aµ)

ние образуваме границата

lim
ε→ 0

φ(x + εa)− φ(x)

ε
= aµ

∂φ(x)

∂xµ

В последната формула обаче става изваждане на стойности на
полетата в две различни точки, а ние вече допуснахме, че век-
торните пространства CN над различни точки могат да имат
независимо избрани репери. Следователно, нужно ни е сред-
ство за сравняване и такава роля играе понятието паралелен
пренос. Нека допуснем, че при преход от точка x към x + εa по
съединяващата ги отсечка εa (a = (aµ)) стойността φ(x) на по-
лето в x се пренася с умножение на някаква унитарна матрица
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(унитарността е за да може ортонормиран репер да се изобрази
отново в ортонормиран репер):

φ(x)
папалелен

пренос7−→
(

1̂ + iε aµAµ(x) +O(ε2)
)
× φ(x) ,

където пренасящата матрица е записана като 1̂ + iε aµAµ(x) +

O(ε2), тъй като в границата ε → 0, тя трябва да съвпада с
единичната матрица 1̂. Условието за унитарност ни дава,(

1̂ + iε aµAµ(x) +O(ε2)
)+

=
(

1̂ + iε aµAµ(x) +O(ε2)
)−1

= 1̂− iε aµAµ(x)+ +O(ε2) 1̂− iε aµAµ(x) +O(ε2) =

⇐⇒ Aµ(x)+ = Aµ(x) ,

т.е., матрицата Aµ(x) ,задаваща инфинитезималния паралелен
пренос по оста µ, трябва да е унитарна за всяко µ = 0, 1, 2, 3.
Обръщаме внимание, че последното допълнително условие за
ермитовост на Aµ напълно се съгласува с трансформационния
закон (5.6), тъй като лесно се показва, че добавката −i U(x)−1

∂U(x)

∂xµ
е има винаги ермитови стойности, ако U(x) приема уни-

тарни стойности.
В светлината на въведената интерпретация на матричната

функция Aµ(x), като задаваща инфинитезималния паралелен
пренос по оста µ за всяко µ = 0, 1, 2, 3, ние достигаме до след-
ната геометрична интерпретация на ковариантната производна,
която е пояснена на диаграмата:

φ(x)
папалелен

пренос7−→

φ(x + εa)
−(

1̂ + iε aµAµ(x) +O(ε2)
)
φ(x)

_|
↑

x x + ε a

т.е., диференчното частно над точка x + εa се образува от стой-
ността φ(x + εa) на полето в x + εa и пренесената му стойност
над точката x. Така, получаваме

φ(x + εa) −
(

1̂ + iε aµAµ(x) +O(ε2)
)
φ(x)

ε
−→
ε→ 0

aµ∇µ φ(x) .
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С това достигаме до красивата геометрична интерпретация на
допълнителните полета Aµ(x), които се въвеждат за да се пос-
тигне локална калибровачна симетрия: тези полета задават ин-
финитезимално понятие за паралелен пренос в пространството
на вътрешните степени на свобода на изходните полета.

Ние искаме да продължим по-нататък аналогията с електро-
магнетизма и да направим полетата Aµ(x) динамични, със своя
собствена част в пълния лагранжиан. Тази добавка към лагран-
жиана трябва да обобщава (2.3) и така, преди всичко възниква
въпроса какъв е геометричния смисъл на полетата Fµν(x) в но-
вата интерпретация. Както отбелязахме, ∇νφ(x) изменението
на полето φ(x) по посока на оста µ спрямо паралелния пренос
на стойността му. Да пресметнем разликата от две такива из-
менения, направени последователно по две различни оси, при
размяна на реда на осите:

∇µ

(
∇νφ(x)

)
− ∇ν

(
∇µφ(x)

)
= −i Fµν

(
A(x),

∂A(x)

∂x

)
φ(x) ,

(5.8)
където Fµν се задава с израза

Fµν

(
A(x),

∂A(x)

∂x

)
=

∂Aν(x)

∂xµ
− ∂Aµ(x)

∂xν

− i
(
Aµ(x)Aν(x) − Aµ(x)Aν(x)

)
. (5.9)

Първото забележително следствие от горното пресмятане е, че в
дясната страна на (5.8) не участват производни на φ(x). Факти-
чески, тази страна би била равна на нула, ако Aµ = 0 за всяко µ,

което изразява симетрията на частните производни
∂2φ

(∂xµ)(∂xν)

=
∂2φ

(∂xν)(∂xµ)
. Второ, изразът (5.9) за Fµν възпроизвежда (2.2) в

случая когато Aµ(x) са числови функции. Така, намираме и же-
ланата геометрична интерпретация на Fµν заедно с търсеното
обобщение в неабелевия случай. Системата от полетата Fµν се
нарича тензор на кривината. Може да се покаже също, че при
пренос по инфинитезимален затворен контур представляващ ус-
поредник с връх в точката x и страни отсечки по направления
εa и εb се получава:

φ(x) 7−→ exp
(
i(−ε bν)Aν(x + εb)

)
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× exp
(
i(−ε aµ)Aµ(x + εa + εb)

)
× exp

(
iε bν Aν(x + εa)

)
× exp

(
iε aµAµ(x)

)
φ(x)

=
(

1̂− iε2 aµ bν Fµν +O(ε3)
)
φ(x)

и в съответствие с това, Fµν задава отклонението от идентите-
та, в първия ненулев порядък, при пренос по инфинитезимален
успоредник с връх в точката x разпънат от осите µ и ν.

Друго забележително свойство на тензора на кривината е не-
говата трансформация при калибровачни трансформации (5.6):

Fµν

(
A′(x),

∂A′(x)

∂x

)
= U(x)Fµν

(
A(x),

∂A(x)

∂x

)
U(x)−1 . (5.10)

Един кратък извод на (5.10) се получава, като запишем (5.7) и
(5.8) в операторен вид:

∇′µ = U(x)∇µ U(x)−1

=⇒ ∇′µ∇′ν −∇′ν ∇′µ = U(x)
(
∇µ∇ν −∇ν ∇µ

)
U(x)−1 .

С това, вече сме готови да дадем неабелевия аналог на лагран-
жиана в действието (2.3)

LYM

(
A(x),

∂A(x)

∂x

)
=

1

4

∫
Ω

Tr
(
Fµν F

µν
)
d4x

= LYM

(
A′(x),

∂A′(x)

∂x

)
, (5.11)

където Tr(M) =
N∑
a= 1

Ma,a е следата на матрицаM =
(
Ma,b

)
N
a,b= ,1.

Лагранжианът (5.11) (и действието, което той поражда) носи
имената на Янг и Милс – неговите откриватели, заедно и с урав-
ненията на Лагранж–Ойлер определени от него.

Съгласно съвременния стандартен модел на елементарните
частици, наблюдаваните взаимодействия между частиците се
описват от комбинация от абелеви и неабелеви калибровачни
полета Aµ(x).
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Приложение А. Лагранжиан за уравнението
на Шрьодингер
/...тук ще бъде преместена частта от настоящата точка 3 свързана
с уравнението на Шрьодингер.../

Приложение Б. Уравнение на Дирак
/...тук ще бъде преместена частта от настоящата точка 4 свързана
с уравнението на Дирак.../

Приложение В. Кривина и лагранжиан на Янг–
Милс
/...тук ще бъде преместена по-техническата част от настоящата
точка 5 свързана с лагранжиана на Янг–Милс.../


