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Preface

Operads are mathematical devices which describe algebraic structures of many
varieties and in various categories. Operads are particularly important /useful in
categories with a good notion of `homotopy' where they play a key role in orga-
nizing hierarchies of higher homotopies. Significant examples first appeared in the
1960's though the formal definition and appropriate generality waited for the 1970's.
These early occurrences were in algebraic topology in the study of (iterated) loop
spaces and their chain algebras. In the 1990's, there was a renaissance and fur-
ther development of the theory inspired by the discovery of new relationships with
graph cohomology, representation theory, algebraic geometry, derived categories,
Morse theory, symplectic and contact geometry, combinatorics, knot theory, mod-
uli spaces, cyclic cohomology and, not least, theoretical physics, especially string
field theory and deformation quantization. The generalization of quadratic duality
(e.g. Lie algebras as dual to commutative algebras) together with the property of
Koszulness in an essentially operadic context provided an additional computational
tool for studying homotopy properties outside of the topological setting.

The aim of this book is to exhibit operads as tools for this great variety of
applications, rather than as a theory pursued for its own sake. Most of the results
presented are scattered throughout the literature (some of them belonging to the
current authors). At times the exposition goes beyond the original sources so that
some results in the book are more general than the ones in the literature. Also a
few gaps in the available proofs are filled. Some items, such as the construction of
various free operads, are given with all the bells and whistles for the first time here.

In an extensive introduction, we review the history (and prehistory) and hope
to provide some feeling as to what operads are good for, both in a topological
context and a differential graded algebraic context. The basic examples of the en-
domorphism operad and tree operads are presented. Just as group theory without
representations is rather sterile, so operads are best appreciated by their represen-
tations, known as (varieties of) algebras, especially `strong homotopy' algebras. We
introduce the most common types: A., Lam, C.. We also consider general-
izations such as cyclic operads, modular operads and partial operads.

Next we present a technical part, reviewing basic definitions in the full glory
of the symmetric monoidal category setting and relating operads to associated
structures: triples (monads).

We then review classical results (mostly in topology) without going into great
detail in the proofs since most results exist in a well-established literature. We
emphasize the guiding principles of `recognition,' `approximation,' homotopy in-
variance and computational consequences (homology operations).

ix



x PREFACE

In a more algebraic section, we establish certain key constructions and proper-
ties: bar and cobar constructions, free operads, Koszul duality and cohomology of
operad algebras. An application is made to providing minimal models of homotopy
algebras.

The remainder of the book is devoted to providing access to some of the myr-
iad of results of the `renaissance of operads' in which operads have proved their
worth in contexts quite different from those of their birth. We emphasize algebraic
constructions for operads, geometric examples related to configuration spaces and
moduli spaces, generalizations such as cyclic and modular operads. Such gener-
alizations are motivated by applications to deformation quantization, string field
theory, quantum cohomology and Gromov-Witten invariants. We have had to be
somewhat selective in our choice of topics influenced by our own personal tastes.
We are confident that we have failed to include all the latest applications since the
field is progressing so rapidly; see also the Epilog.

The book is intended for researchers and students as well as anyone who wishes
to get the flavor of operads and their application. We have tried to provide overviews
and introductions as well as technical machinery for the reader's use. Particularly
technical details have been sequestered to appendices; in Frank Adams' language,
to operate the machine, it is not necessary to raise the bonnet (look under the
hood).

ACKNOWLEDGMENTS: We wish to thank the following people, with the stan-
dard reservation that although they helped us with this book in many ways, they
are not responsible for the mistakes, which are solely our own sins. We thank
J.M. Boardman, J. Bernstein, Y.-Z. Huang, M.M. Kapranov, T. Kimura, P. van
der Laan, J.-L. Loday, J.P. May, D.H. Van Osdol, P. Salvatore, P. Somberg, R. Vogt
and A.A. Voronov.

Many others who have contributed to our research in this field also deserve our
appreciation. The senior author wishes to give particular thanks to John Coleman
Moore and J. Frank Adams who started him on the road to operads. The junior
author wishes to express his thanks to Jifi Bok who pried the door to mathematics
open for him.

Our collaboration has benefited from facilities at the University of North Car-
olina at Chapel Hill, USA, at the University of Pennsylvania, Philadelphia, USA,
at the Mathematical Institute of the Academy of Sciences of the Czech Republic at
Prague and at Bar Ilan University, Ramat Gan, Israel.

The first author was supported by grant GA CR 201/99/0675, grant ME 333
and grant DMS-9803435. The second author was partially supported by the Israel
Science Foundation - Center of Excellence Program founded by the Israel Acad-
emy of Sciences and Humanities. The third author was supported by grant DMS-
9803435.

CONVENTION: The book consists of two parts. When referring to theorems,
formulas, etc., we write the roman numeral of the part explicitly only when the
item we refer to is not in the current part of the book.
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CHAPTER 1

Introduction and History

A prehistory

Operads involve an abstraction of a family of composable functions of several
variables Map (X", X) together with an action of permutations of variables. As
such, they have appeared in various ways over the last century and have recently
had a great variety of applications which have provided the impetus for this book.

Operads as such were originally studied as a tool in homotopy theory, specif-
ically for iterated loop spaces, but the theory of operads has recently received
new inspiration from homological algebra, category theory, algebraic geometry and
mathematical physics. The name operad and the formal definition appear first in the
early 1970's in J. Peter May's "The Geometry of Iterated Loop Spaces" [May72],
but a year or more earlier, Boardman and Vogt described the same concept under
the name `categories of operators in standard form,' inspired by PROPs and PACTs
of Adams and Mac Lane. In fact, there is an abundance of prehistory. Weibel [Wei]
points out that the concept first arose a century ago in A.N. Whitehead's "A Trea-
tise on Universal Algebra" [Whi98], published in 1898.

Whitehead was actually describing quadratic operads in the category of vector
spaces, specifically those generated by a single binary product. In sections 20-22,
under the title `complete algebraic system,' he fixes a product and refers to the
order of higher products determined by iterated compositions thereof. In section
92 (p. 172) he defines `invariant equations of condition'; in modern language these
are exactly the relations on the free operad on a single binary operation needed
to produce the operad in question. He goes on in section 93 to add associativity
explicitly and studies the resulting theory of symmetric and exterior algebras.

Operads (or, more precisely, `systems with compositions') arose again in the
mid-1950's in the work of Lazard on formal groups.

1.1. Lazard's formal group laws

In 1954, M. Lazard, studying formal group laws, introduced the structure of
`analyseur' to axiomatize composition laws. This structure is a refinement of a more
basic structure, `a family of polynomial functions,' which is probably the earliest
explicit example of an operad in the category of modules over a ring. Of course
the Hochschild cochain complex, which had been introduced a decade earlier, has
an operadic structure, but this was not really explicit until the work of Gersten-
haber [Ger63] some nine years later. The description we give here follows Lazard's
review of his work in Seminaire Bourbaki 1954-1955 [Laz59] and Chevalley's ex-
tensive review [Che56] of Lazard's full length paper [Laz55].

3



4 1 INTRODUCTION AND HISTORY

Let k be a commutative ring with unity and E a unitary k-module. A not
necessarily linear function f c Map(E®", E) will be called a function of n variables
and will be denoted f (xi, ... , xn). The set of such functions has the structure of
a k-module. An argument xi of f (x1, ... , xn,) is called neutral if f (al, ... , a,,,) =
f (bl,... , bn) whenever aj = bj for all j i; the function is then said to be neutral
in that argument. Composition of a function of n arguments with any one of the
natural projections E® ("+k) --> Ee' `adds neutral arguments,' that is, defines a
function of n+k arguments which does not depend on k of the arguments. Similarly
we can reduce a function by deleting its neutral arguments; i.e. by factoring it
through the projection that eliminates those arguments. There are then several
conditions that describe what Lazard calls a family P of polynomial functions on a
k-module E.

A family is a graded k-module,

P = ®P", where P' C Map(E®", E),
o«

which is closed under composition of one function f of m variables with m `input'
functions gi, 1 < i < n, each depending on the same number n of arguments. We
also assume that P contains the identity function WE : E -> E.

The next step is to introduce the concept of homomorphism and equivalence,
so that one can eventually define an abstract object independent of the particular
k-module which appears as the domain of definition of the functions.

A homomorphism 0 : P -* P from a family P of polynomial functions on a
module E to a family P of polynomial functions on a module E' respects the num-
ber of variables, composition and the corresponding identity maps. An isomorphism
of families is then an invertible homomorphism.

An `analyseur incomplet' is defined as an equivalence class of families of polyno-
mial functions, under the equivalence relation given by isomorphism. A (complete)
analyseur is defined by a completion process analogous to the completion of a
polynomial ring to a formal power series ring.

A basic example of analyseur is given by the polynomial functions without
constant term on an infinite field. A group law in an analyseur A is an element of
A2 satisfying

f (x, y) = x + y modulo terms of homogeneity > 2, and

f(f(x,y),z) - f(x,f(y,z)) = 0.
Lazard defines a q-germ of a group law as one that satisfies the associativity axiom
modulo terms of homogeneity q+ 1. He then introduces a cohomological obstruction
to the extension of a q-germ to a q + 1 germ which anticipates the Gerstenhaber
deformation theory of algebras; see [Ger64].

1.2. PROPS and PACTs

Towards the end of the 1950's, Adams and Mac Lane were motivated by prob-
lems in algebraic topology, namely situations such as coproducts in iterated bar
constructions or simplicial chain complexes which were commutative only `up to
higher homotopies.' There are, to quote Mac Lane [Mac65], `so many of them
that general conceptual methods are needed for their treatment.' They therefore
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invented PROPs and PACTs, although the first publication from this collaboration
did not appear until 1963 [Mac63b].

PROPs are categories H (an abbreviation of PROduct and Permutation cate-
gory) with objects the natural numbers {0, 1, 2, ... } and `Hom-sets' of maps from
m to n denoted

H(n)
There is a strictly associative `monoidal structure' (denoted by ®) given by com-
position on `Hom-sets'

(1.1) ®: H(n) X H(') -> H(P)

which is suitably symmetric. In particular, H(n) contains the symmetric group En,
as a specified subgroup; thus the `tensor product' (1.1) induces a left E,,,,-, right
En-action on H(7).

Let us point out that the convention given here is opposite to the convention
we use in the book and follows the `categorial' composition rule for arrows, not for
maps. Intuitively, the space H(m) parameterizes operations with m inputs and n
outputs.

PACTs were PROPs in which the Hom-sets H (M.) were dg modules over a com-
mutative ring with the `tensor' product (1.1) and symmetric group actions being
compatible with the dg structure.

Of special importance is the endomorphism PROP EndX (') of maps XOm
Xon for any object X in a monoidal category with a product O. An action of a
PROP H on an object X is then a map of PROPs H -> EndX. In this situation
we also say that X is an algebra over H or that X is an H-space.

1.3. Non-E operads and operads

In addition to the publication of PACTs and PROPs, 1963 was a good year
for operads with the publication of Gerstenhaber `comp algebras' in his study of
Hochschild cohomology [Ger63] and Stasheff's `associahedra' for his homotopy
characterization of loop spaces [Sta63a]. With hindsight, we can say that these
constructions are examples of what are now often called `non-E operads,' the 'non-
E' indicating that we do not assume any symmetric group action.

In 1966/67, Mac Lane ran a seminar on PACTs and PROPs at the Univer-
sity of Chicago. Among the participants were Adams, Boardman, Stasheff and
Vogt [Vog98]. Boardman's linear isometries PROP (later reincarnated as an op-
erad) provided the key to developing an understanding of infinite loop spaces, as
was his `little cubes PROP' the key to understanding iterated loop spaces in general.
The following year, May built upon Boardman and Vogt's structures to finalize the
notion he dubbed `operad.'

The model is the set Map(X', X) of all functions of n variables in a set X for
all n > 1. Let

(1.2) of : Map(Xn,X) X Map(Xm,X) , Map(Xn+m-1 X)

be given, for 1 < i < n, by

(J of g)(x1.... . Xm+n-1) = f (xi.... . Xi-L g(Xi, ... , Xi+m-1), xi+m),
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FIGURE 1. Viewing elements of operads as abstract operations.

A non-E operad (P, oi) in the category of sets consists of a sequence of sets
{P(n)}n>1i a unit map 1 E P(1) and products of : P(m) x P(n) -> P(m + n -
1) for m, n > 1, 1 < i < m, satisfying the relations manifest in the example
P(n) := Map(X', X). Analogous objects for the category of graded modules were
introduced by Gerstenhaber [Ger63] under the name comp algebra.

Non-E operads can be defined in any monoidal category (apparently first re-
marked by Malraison in the mid-1970's [Ma174]) and operads in any symmetric
monoidal category (see Section 11.1.2). May's original definition, motivated by the
topological applications, was in the category of compactly generated topological
spaces.

Passing to associated chain complexes and hence to the category of differential
graded modules was implicit already in Stasheff's work, but apparently was not
formalized until the early 1980's by Hinich and Schechtman [HS87].

An operad is a non-E operad (P, oi) with an action of the symmetric group
E. on P(n) for each n. These actions are compatible with the oi-operations as
manifest in the example of the endomorphism operad EndX := {Map(Xn, X)}n>1.
Observe that each non-E operad can be made an operad replacing, for each n > 1,
P(n) by P(n) x E0 and extending the structure operations of to be compatible
with the action of the symmetric groups; see also Remark 11.1.15.

It is sometimes useful to visualize elements of P(n) as abstract `operations' with
n inputs and one output; f of g can be then interpreted as the result of inserting
the output of g into the ith input of f. In Figure 1, f E P(5), g E P(3) and
f 03 g E P(7).

We will notationally distinguish non-E operads from operads by underlining.
Thus, for example, the non-E operad describing topological monoids will be denoted
by Mon and its symmetrized version by Mon. There is, however, one exception
to this rule in the book: the operad V discussed in Section 1.16 is an ordinary
E-operad.

May's original definition (see Section 11.1.2) includes P(0) which is a single
point. More importantly, rather than deal with the individual oi-operations, May's
definition combines them into a single operation

(1.3) -y : P(k) X P(jl) x ... X P(jk) -' P(jl + ... + jk)
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satisfying upon iteration the relations of associativity and symmetry manifest in
the example of the endomorphism operad {Map(X", X)}n>1. In general, -y can be
obtained, by iterating appropriate oz's, as

7(f x 91 x ... X 9n) := (...(((f 01 91) °h+1 92) °h+12+1 93) ...) ...
where lz is the arity of g2. In turn, using the identity 1 E P(1), the composition
f o; g can be reconstructed as

f o, g = y(f x l x ... x g x ... x 1) (g at the ith position).
Thus, under the presence of a unit, both approaches are equivalent. The advantage
of the of-approach is that the defining operations are binary, thus giving rise to a
natural grading of free objects (see also discussion in 11.1.9). The relation between
the -y- and oz-formalisms will be discussed in Section 11.1.7.

Operads are important not in and of themselves but, like PROPS, through their
representations, more commonly called 'algebras over operads.' An algebra A over
an operad P is a map of operads P -> EndA. This is just a fancy way of saying
that an algebra A is a set (an object in the category) with a coherent system of
maps P(n) x An -* A.

Each operad P generates a PROP H with H(i) := P(m) for each m > 1 such
that algebras over the PROP H are the same as algebras over the operad P; see also
Remark 11.1.57. But it is not true that each PROP is generated by an operad. An
example is provided by bialgebras (= Hopf algebras without antipode). They are
objects consisting of a vector space V together with an associative multiplication
µ : V ® V -* V and coassociative comultiplication A : V - V 0 V such that A is
a morphism of algebras (equivalently, µ is a morphism of cialgebras).

While bialgebras are algebras over a certain PROP [Mar96a], operads cannot
accommodate both the multiplication µ and the comultiplication A.

1.4. Theories

Another formalization of the concept of a variety of algebras given by oper-
ations and laws without existential quantifiers was introduced in 1963 by Law-
vere [Law63].

Let 8 be the category whose objects are finite sets [n] n} and
morphisms all set maps between these finite sets. The dual category C3°P is a
category with finite products in which every object [m] is the n-fold product [1]xn
of the distinguished object [1].

A (finitary) algebraic theory is then a category O with the same objects as
67°P, together with a faithful functor C7°P -* 0 that preserves objects and products.
A 9-space, or a 6-algebra, in a category C is a functor A : © -+ C preserving the
products. The object X := A([1]) E C is the underlying space of the algebra A.

The existence of the functor 87°P -> O means that each E)-structure on a space
X necessarily contains operations

n m0,*: X X , U* 21,... ,2.n) = 201),... ,2Q(-)),
for a : {1, . . . , m} -> {1, . . . , n} E C7 ([m], [n]). In particular, each O-structure
contains projections and permutations of variables.

Each operad P generates a theory O such that O([m], [1]) is obtained from
P(m) by adjoining all projections [m] = [1]'m . [1]. Algebras in a category C over



8 1 INTRODUCTION AND HISTORY
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FIGURE 2. Grafting planar trees.

the theory e are the same as algebras over the operad P provided the monoidal
structure of C is given by products. This construction was studied in detail by
Boardman and Vogt in [BV73]; they call P the spine of the theory O.

On the other hand, it is not true that all theories are of this form. For example,
Boolean rings where we require x2 = x cannot be described as algebras over an
operad. Roughly speaking, a Lawvere theory is generated by an operad (spine) if
and only if the defining axioms of the theory involve no repetitions and each axiom
is homogeneous in the number of variables.

Since O([m], [n]) = O([m], [1])x" for each m,n > 1, Lawvere's theories are
intrinsically `algebraic,' thus they, like operads, cannot accommodate objects with
`coalgebraic' operations, like coalgebras or Hopf algebras.

1.5. Tree operads

In the early days, three examples were particularly important in the develop-
ment of the subject; the linear isometries operad, the little cubes operad and the
associahedra non-E operad (see respectively Sections 11.2.7, 11.2.2 and 11-1.6). The
underlying tree operads have received more attention as the subject has developed.

To quote Boardman and Vogt [BV73], `the trees are inspired by the attempt
to obtain a general composite operation from a collection of indecomposable oper-
ations.'

Let Tree(n) be the set of (isomorphism classes of) planar trees with 1 root at
the bottom and n leaves at the top, regarded as labeled from left to right: 1 through
n. The sequence Tree = {Tree(n)J,,,>1 forms a non-E operad in the category of
sets: Given trees S E Tree(k), T E Tree(j), for each 1 < i < k, let S oz T be the
tree obtained by grafting the root of T to the leaf of S labeled i. This is indicated
in Figure 2.

Similarly, let Tree(n) be the set of isomorphism classes of non-planar, abstract
trees with 1 root and n leaves labeled (arbitrarily) 1 through n. The collection
Tree = {Tree(n)J,,,>1 of tree spaces forms an operad by the same rule as for planar
trees using the labeling: Given trees S E Tree(k),T E Tree(j), for each 1 < i < k,
let S og T be the tree obtained by grafting the root of T to the leaf of S labeled i.
The symmetric groups act by permuting the labels.

We will see later in Section 11.1.9 that Tree = {Tree(n)},>1 and Tree =
{Tree(n)J,>1 are respectively a free non-E operad and a free operad and play
a central role in many applications.

A brief note regarding the `direction of gravity' is in order here. We talk about
trees, grafting, etc., and this botanical terminology naturally suggests to draw these
objects as in Figure 2, with the root at the bottom.
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(ab)(cd)

a((bc)d) (a(bc))d

FIGURE 3. The pentagon. The sides represent a single application
of a specific associating homotopy h(u, v, w) from u(vw) to (uv)w.
For example, the bottom edge above from left to right is given by
h(a, bc, d).

On the other hand, we should always keep in mind that these pictures symbolize
operations, that is, they are in fact a kind of flow chart, so it is more natural and
convenient to have inputs at the bottom rather on the top and use 'up-rooted' trees
instead.

The authors' personal inclination is the second convention, while a traditional
one is the first. So in this historical overview we use botanical trees, and then
we switch to up-rooted ones. The only exceptions from the up-rooted convention
will be Sections 11.3.4 and 11.3.5 with trees associated to surjections and trees with
levels which are more natural to draw with the root at the bottom.

1.6. A.-spaces and loop spaces

In 1957, Sugawara began to publish a series of papers [Sug57a, Sug57b,
Sug6l] characterizing H-spaces and loop spaces. One of his most important results
was a recognition principle in homotopy invariant terms identifying which H-spaces
were of the homotopy type of a loop space. This led in 1961 to Stasheff's homotopy
characterization of connected based loop spaces in terms of what we would now call
the non-E operad of associahedra [Sta63a].

In the course of simplifying Sugawara's recognition principle for loop spaces
(by eliminating the use of homotopy inverses), Stasheff was led to consider higher
homotopies for associativity, e.g. the pentagon in Figure 3

While Stasheff continued this work on H-spaces as a student in Oxford, Frank
Adams came to visit the Mathematical Institute and discussed his work with
Mac Lane on PACTs and PROPs. With a key idea from Adams, Stasheff cre-
ated the polytopes now known as associahedra [Sta6l, Sta63a]. The name is due
to Gil Kalai, a geometric combinatorialist [Lee89, Lee85].

The associahedron K,,, can be described now as a convex polytope with one
vertex for each way of associating n ordered variables, that is, ways of inserting
parentheses in a meaningful way in a word of n letters. For n = 5, a portrait due
to Masahico Saito is in Figure 4.

To describe all the cells of K,,, the language of planar rooted trees is helpful,
as Adams indicated to Stasheff. The dimension d-cells of K, are all of the form
rjk 1 K,,, where d = n1 + + nk - 2k. In particular all the facets (cells of
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FIGURE 4. Saito's portrait of K5.

FIGURE 5. The corolla.

codimension one) are of the form K, x K,, r + s = n + 1. If we let the top
dimensional cell of K. be indexed by the corolla, the planar tree with n leaves (see
Figure 5), then the facets of e.g. K4 are labeled as in Figure 6.

In general, the facets are labeled by grafting the s-corolla to leaf i of the r-
corolla. The corresponding inclusion of facets

oi:K,.xK,'-->K,.+,4_1

makes the set of associahedra K = {K},>, into a non-E operad.
Jumping ahead in time, there was an `open' problem in combinatorial geometry

(posed around 1978 and solved in 1984 by Haiman) as to whether there was a convex
polytope realizing the associahedron. As originally constructed, the K,,, were convex
but curvilinear, although linearized early on by Milnor (unpublished).

Thanks to Kapranov, who bridged between the topological and combinatorial
communities, the combinatorialists realized that the solution predated the question.
A particular realization as a truncation of the standard simplex and related to sym-
plectic moment maps and toric varieties was presented by Shnider and Sternberg
in their book ([SS94], second edition). The cover illustration describes K5 as a
truncated 3-simplex. The general case is described in more detail in an appendix
to [Sta97].

An A.-space Y is a topological space Y together with a family of maps

m,,, : K, x Y' Y

which fit together to make Y an algebra over the non-E operad IC = {K,,,},,>1. The
main result is the following theorem.



1 6 A_-SPACES AND LOOP SPACES 11

FIGURE 6. K4 with facets labeled by trees.

THEOREM. A connected space Y (of the homotopy type of a CW-complex with
a nondegenerate base point) has the homotopy type of a based loop space f2X for
some X if and only if Y admits the structure of an A--space.

This result, like Sugawara's, is the archetype of results in the theory of homo-
topy invariant structures on topological spaces. To show that a connected A.-space
Y has the homotopy type of a loop space involves constructing a `classifying space'
BY, defined as a quotient

BY:=llKn+2xYn/
n>0

where the identification - involves the structure maps Mn- One then shows that
Y has the homotopy type of the loop space 52BY.

After his work categorizing loops spaces homotopy theoretically, Sugawara con-
sidered `strongly homotopy commutative' strictly associative H-spaces as a step to-
ward identifying two fold loop spaces 522X. The loop multiplication on 112X must
be homotopy commutative (cf. the standard proof that 7r1(52X) is abelian), but
the commuting homotopy must satisfy a whole family of coherence relations with
regard to products of an arbitrary number of elements. In fact, for an associative
H-space Y, the existence of an H-space structure BY x BY -> BY requires a coher-
ent family of higher homotopies hn : In-1 X Yn -> Y of which h2 is a commuting
homotopy and h3 is related to Mac Lane's hexagon condition for coherence of a
monoidal category.
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Such a family {h.} is a special case of the A.-maps between A.-spaces X
and Y whose homotopy classes correspond precisely to homotopy classes of maps
BX - BY (see Proposition 11.2.23). Sugawara's strong homotopy commutativity
was a homotopy invariant description for a connected associative H-space having
the homotopy type of the loop space on an H-space; such a characterization of a
double loop space (the loop space of a loop space) awaited the invention of operads.

1.7. E.-spaces and iterated loop spaces

A major force in the development of this sort of higher homotopy structure was
the study of infinite loop spaces, originating with Bott periodicity which showed
that the classifying space BU of the unitary K-theory had the homotopy type of the
connected component of the double loop space S22BU and hence can be regarded
as an iterated loop space Q"Xk for all k.

A space Xo is called an infinite loop space if there is a sequence of spaces Xk and
homotopy equivalences Xk - IZXk+1 for k > 0. The early work of Boardman and
Vogt on this problem dealt with characterizing such spaces as `homotopy everything'
spaces or what are now called E,-spaces. Homotopy everything is a bit of an
exaggeration (as they acknowledge in [BV73]) since an E,-operad action implies
that, up to homotopy, we are dealing with a single binary operation.

In May's terminology [May72], an operad P = {P(n)}n>1 is an E.-operad
if and only if each P(n) is En-free and contractible. Similarly, a non-E operad
P = {P(n)}n>1 is an A.-operad if and only if each P(n) is contractible.

THEOREM. A connected space Y (of the homotopy type of a CW-complex with
a nondegenerate base point) has the homotopy type of a based infinite loop space,
i.e. has the homotopy type of f2"Xk for some spaces Xk for all k, if Y admits the
structure of an E,-space.

Boardman and Vogt were able to identify many infinite loop spaces, e.g. the
classifying space BPL for PL bordisms, by use of the linear isometries operad (see
Section 11.2.7), which has recently been used to great advantage in a very powerful
approach to the stable homotopy category [May98].

Homotopy characterization of iterated loop spaces IZkXk for some space Xk for
some particular k required the full power of the theory of operads (see Section 11.2.2).
The relevant operad is one of the most basic topological examples, the little k-cubes
operad originally due to Boardman and Vogt [BV68], Ck = {Ck(n)},>1, where
Ck(n) consists of an ordered collection of n k-cubes linearly embedded in the stan-
dard k-dimensional unit cube Ik with disjoint interiors and axes parallel to those
of Ik.

THEOREM. A connected space Y (of the homotopy type of a CW-complex with a
nondegenerate base point) has the homotopy type of a based k -fold loop space I2kXk
for some space Xk if Y admits the structure of a Ck-space.

For k = 1, C1 is an A.-operad of which the earlier associahedron operad
IC forms a small `model.' Small models for the Ck for k > 1 came much later;
see [GJ94, MS99].

For some applications, particularly to mathematical physics, the little k-disks
operad Dk = {Dk(n)}n>1 has some advantages. Let Bk C IRk denote the standard
unit ball. The space Dk(n) consists of an ordered collection of n embeddings of Bk
in Bk by translation and dilation with disjoint interiors.
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Since an element of f2'Xk can be regarded as a based map (S', *) --> (Xk, *),
there is an action of the rotation group SO(k) on IlkXk. The operad that reflects
this symmetry is the framed little k-disks operad fDk = {fDk(n)}n>1. The space
fDk(n) consists of an ordered collection of k embeddings of Bk in Bk by translation,
rotation and dilation with disjoint interiors. This extra SO(k)-symmetry is relevant
to the study of free loop spaces and mapping spaces XSk-1 [SW01], and other
applications (see Section 11.4.1).

For A.-spaces and E.-spaces, we have the simple description of A.-non-E-
and E.-operads as having contractible components; for Ca-spaces, the characteri-
zation of an operad homotopy type is more subtle; see also Section 11.2.1.

1.8. A_-algebras

Although introduced originally in the category of topological spaces, (non-
E) operads were implicit almost immediately in the differential graded category.
Thanks to the cellular structure of the associahedra K11f the cellular chain complexes
{CC,(K,)(n)}n>1 form a non-E operad Ass. in the category of dg 7G-modules.
Algebras over Ass. (called A,-algebras) generalize dg associative algebras and
can be defined directly.

An A--algebra (or strongly homotopy associative algebra) consists of a graded
module V with maps

m. : V o' - V of degree n - 2

satisfying suitable compatibility conditions (A,,,),,,>1. In particular,

(A1) m1 = d is a differential,
(A2) m = m2 : V ® V -# V is a chain map, that is, d is a derivation with respect

to m = m2i
(A3) M3 : V®3 -> V is a chain homotopy for associativity of the multiplication

m, i.e.

dm3 = m(m (9 11) - m(1[ ® m),

where d[3' denotes d ® 11®2 + 11 ® d ® 11 + 11®2 ®d,
(A4) m4 is a `higher homotopy' such that m4d141 - dm4 has five terms, corre-

sponding to the edges of the pentagon K4:

m4d141-dm4 = m3(m2(&Il®2-ll®m2®]L+11®2®m2)-m2(m3®11+Il(&m3).

A precise formulation of axioms for A.-algebras is given in Example 11.3.132.
An alternative formulation generalizes the bar construction for an associative

differential graded algebra: An A.-algebra structure on a graded vector space A
is equivalent to a coderivation differential 6 of degree -1 with respect to the total
grading on the tensor coalgebraT°(T A) on the suspension of the graded vector
space A (see Example 11.3.90). As a coderivation, 6 is determined by the formula
6 = 61 + 62 + , where

6.(T a1(9 ...®Tan):=e' Imn(al(9 ...®a.,), for al,..., a.E A,

where e is an appropriate sign; see also [Mar92].
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1.9. Partiality and A_-categories

The definition of an operad postulates the operations 'y or oi being defined for
all elements of P(k) X P(j1) x . x P(jk), respectively all elements of P(k) x P(j),
just as the n-ary operations of an algebra are usually specified to be defined for
all n-tuples of elements. There are, however, many naturally occurring examples
in which the relevant operations are defined only on specified subsets (compare
relaxing the definition of a monoid to that of a category). Such partial structures
are of interest in a variety of ways.

A partial algebra [KM93] X over an operad P denotes a structure in which
there are specified En-invariant domains X. C Xn and maps P(n) x Xn -> X
satisfying the appropriately restricted version of the usual axioms.

The definition of a partial operad similarly relaxes the definition by specifying
domains of composable elements in P(k) x P(j1) x x P(jk) and requiring the sym-
metries and associativity relations to hold only on such composable domains. A sig-
nificant example is provided by vertex operator algebras (VOAs) [Hua94, HL93].
Another kind of partial operad structure is considered in [Mar99a] on configura-
tion spaces of points in a Riemannian manifold. The Axelrod-Singer compactifica-
tion [AS94] of the configuration space is then shown to be an appropriate operadic
completion of this partial operad structure; see Section 11.4.3.

A,-CATEGORIES. Just as a category can be considered as a partial algebra
over the non-E associative operad Ass, so an A.-category is a partial algebra over
the non-E operad Ass. for Aco-algebras.

As the archetype of an Aco-space is the space of based loops, so the archetype
of a topological A00-category is the free path space XI = Map(I,X) considered
as the space of morphisms for the space of objects X. Since the paths are of
fixed parameter length, composition is associative only up to (higher) homotopy.
However, the trivial path at a particular point acts as a unit only up to higher
homotopy, an aspect we will avoid. To generalize in other contexts, think of a
monoid as a category with one object and then proceed to a multi-object version.
This was first done by Smirnov in 1987 [Smi92] to handle functorial homology
operations and their dependence on choices (cf. indeterminacy).

More recently, Fukaya [FS97] reinvented A00-categories with remarkable appli-
cations to Morse theory and Floer homology. He [FS97] did this first in a graded
module context where an A.-category C consists of

(i) a class of objects Ob(C),
(ii) for any two objects X,Y E C, a 7L-graded abelian group of morphisms

Hom(X, Y),
(iii) for all n > 1, composition maps

mn : Hom(X1iX2) ®Hom(X27X3) Hom(Xn,XX}1) -a

of degree 2 - n,

such that the composition maps satisfy obvious modifications of the A.-identities
recalled in Section 1.8 and Example 11.3.132.

Since m2 = 0, the modules of morphisms are in fact dg modules with a differ-
ential d = m1 of degree +1. For morphisms f , g, h for which (f g) h and f (9h) are
defined, these composites are required to be homotopic in the space of morphisms,
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the pentagon condition must be satisfied up to homotopy, etc. There is also a topo-
logical version of the above notion. Namely, a topological A.-category C consists
of

(i) a space of objects Ob(C),
(ii) for any two objects X, Y E C, a space of morphisms Hom(X, Y), with con-

tinuous target and source maps,
(iii) for all n > 1, continuous composition maps

m : K, x Horn(Xi, X2) x Hom(X2, X3) Hom(X,, Hom(X1, X,+1)

such that the composition maps satisfy obvious modifications of the axioms for A.-
spaces (Section 1.6). Observe that in the above definitions we do not assume any
kind of (homotopy) units. A very similar concept is that of A-category introduced
by Vogt and Schwanzl in [SV92b].

Fukaya introduced A00-categories to study Floer homology in terms of Morse
theory. He shows how Morse theory on a manifold M gives rise to an A00-category
whose objects are smooth functions f c C0(M). Let us briefly recall, follow-
ing [FS97, Lecture 2], his construction. To avoid sign issues, we will assume that
the coefficients are Z2 = Z/2Z.

For an n-dimensional smooth manifold M and a Morse function f E C0(M),
the Morse homology of M is defined as follows. Let Ci(M, f) be the free Z2-module
generated by the (finite) set of critical points p of f of index µ(p) = i, 0 < i < n.
For two critical points p and q of f, let M (p, q) be the set of the negative (downhill)
gradient flow lines which flow from p to q. It can be shown that, for lc(q) = p(p) -1,
the set .M(p, q) is `generically' finite. The differential a : Ci(M, f) -> Ci_1(M, f)
is defined by

Ci(M, f) :) p'-- 9(p) := #M(p, q)q E Ci_1(M, f),

where #M(p, q) denotes the number of elements of M(p, q). The homology of this
complex coincides with the ordinary homology of M,

H*(C*(M, f), a) =H-(M;Z2),

see also [Sch93, Definition 4.2]. Morse cochains are introduced as the vector space
duals, C'(M, f) (Ci(M, f))*; let d : Ct(M, f) .- Ci+1(M, f) be the dual of a.
Observe that

Ci(M,f)C' (M,-f)
For f,g E C' (M) such that f - g is a Morse function, Fukaya defines Homi(f,g)
to be the cochain complex

Hom'(f,g) CZ(M,f - g).
The differential d = m1 is the differential of the Morse cochain complex recalled
above.

The higher order m,'s are determined by graphs whose edge interiors corre-
spond to negative (downhill) gradient flow lines relating n+1 critical points of n+1
functions.

For example, the product m2 is determined using the graph r3 with one vertex
and three semi-infinite edges ei, i E {1, 2, 3} (which are identified with the non-
negative reals) as follows. Given fi E C0(M) such that fl + f2 + f3 = 0, let pi be
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P2

63

9

f

FIGURE 7. A scheme for computing m2. If we read anticlockwise
starting with the domain denoted by f, we see that el is the gra-
dient line of g - f, e2 is the gradient line of h - g and e3 off - h.

P2 P1

e2 9
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e1

f

P3 P4

FIGURE 8. A graph used in Fukaya's definition of m3.

critical points of fi respectively. Define M(p1,P2,P3) C Map(F3i M) as those maps
u such that ulei is a gradient line for fi converging to pi. For µ(p1)+µ(p2)+µ(p3) =
2n, the space M (P1i P2, p3) is `generically' a finite set of points. Fukaya then defines,
for i + j + k = 2n,

Z3: Ci(M,fl) 0Cj(M,f2) 0Ck(M,f3) --' Z2
by

Z3 (P1 ®P2 ®P3) := #M(P1,P2,P3)

Dualization gives

m2 Ci(M, -f1)®C2(M, -f2) -> Ci+j(M, f3)
Now for three maps f, g, h, put f1 := g - f, f2 = h - g and f3 = f - h to get the
structure map

m2 : Homy (f, g) ®Hom (g, h) --> Homy+j (f, h).

The situation is schematically illustrated in Figure 7.
The higher m, 's are defined in a similar way, but using the moduli space of

graphs (which in this case means planar unrooted trees with all vertices of valence
> 3) with n + 1 semi-infinite legs and internal edges of finite length.

An example of such a graph r used in the definition of m3 is given in Figure 8.
It has four 'semi-infinite' legs, e1, ... , e4, and one oriented internal edge e5 of a finite
length t > 0. For smooth functions f, g, h, k such that f1 := g - f, f2 := h - g,
f3 := k - h, f4 := f - k and fs := k - g are Morse functions, consider the space
of all maps u : F --> M such that use is the gradient flow of fi, 1 G i < 5. It can
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be shown that, for µ(p1) + µ(p2) + µ(P3) + µ(p4) = 3n - 1, the set of such maps is
`generically' finite. We may define, as before, for i + j + k + 1 = 3n - 1,

z4 : C1(M, f1) ® CJ(M, f2) ® Ck(M, f3)®C1(M, f4) - Z2.
A dualization gives the structure operation

m3 : Hom'(f,9) ®Hom3(9,h)®Homk(h,1) -> Hom'+3+k-1(f'1).

Fukaya's Ate-categories regarded critical points of a Morse function as the
objects and gradient flows as morphisms. Morse-Bott theory [Bot88] allows for
critical sets which are not points, e.g. closed loops or paths with fixed boundaries.
In the setting of symplectic and contact geometry, the morphisms can be taken to
be special pseudo-holomorphic disks [E1i00, ENSO1, DeiOO]. In fact, the moduli
spaces of such disks can be developed into an operad or the Swiss-cheese general-
ization [Vor99b]; see also Section 1.19.

Inspired by Fukaya's work, Nest and Tsygan [NT97] have proposed an
category with automorphisms of an associative algebra as objects and for the space
of morphisms, a correspondingly `twisted' version of the Hochschild complex of the
corresponding endomorphism algebras.

Categories can be related to classifying spaces via the realization of the nerve
of the category. As A,-maps can be (up to homotopy) identified with maps of the
corresponding classifying spaces (see Proposition 11.2.23), so lax functors (which
are the name for A.-maps between categories) can be identified with maps of
the corresponding realized nerves. Iterated classifying spaces appear in relation to
monoidal categories, braided monoidal categories, etc.; see [BFSV].

1.10. L_-algebras

Perhaps because the very definition of a Lie algebra involves an additive struc-
ture and thus has no analog for spaces, the Lie analog L,,-algebras of A.-algebras
did not appear until the early 1980's in the work of Schlessinger and Stasheff [SS85,
SS84] on perturbations of rational homotopy types, though examples abound in
Sullivan's minimal models [Su177] in the 1970's.

Just as an A,-algebra can be described either in terms of a family of multi-
linear operations or in terms of a coderivation differential on a tensor coalgebra, so
an L.-algebra can be described either in terms of suitably symmetric n-ary brack-
ets or in terms of a coderivation differential on the corresponding cocommutative
coassociative coalgebra Ac.

Since the Jacobi identity, consisting of three terms, does not correspond to
a commutative diagram, one could not expect the axioms of L,-algebras to be
modeled on a nice sequence of polyhedra as A,-algebras are modeled by the chain
complex of the associahedra, the reason being roughly that there are no segments
with three ends. But there is still a sequence of bipartite graphs which reflects
the axioms of L,-algebras, introduced in [MSO1] and called the Lie-hedra. The
fourth term of this sequence is a bipartite graph derived from the Peterson graph
in Figure 9. A precise definition of L,-algebras is given in Example 11.3.133.

These L,-algebras became explicit in the context of deformation theory where
the guiding principle (going back to Grothendieck but championed by Deligne and
Schlessinger-Stasheff) is that a deformation problem is `controlled' by a dg Lie
algebra or, rather, by a homotopy type of dg Lie algebra.
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FIGURE 9. The Peterson graph.

FIGURE 10. Two closed strings forming a third one.

In the early 1990's, L,-algebras appeared in various contexts, the most novel
being that of closed string field theory as constructed by the physicist Zwiebach,
where the relation to moduli spaces of punctured Riemann spheres is crucial.

As part of his closed string field theory [Zwi93], Zwiebach introduced a bracket
on the differential forms on the free loop space of a manifold. The idea is that two
closed strings (free loops) Y and Z join to form a third Y * Z if a semicircle of one
agrees with a reverse oriented semicircle of the other, as indicated in Figure 10.
The loop Y * Z is formed from the complementary semicircles of each.

On functions or differential forms on the free loop space, the convolution bracket
then corresponds to all ways of decomposing a free loop in the form Y * Z. To
be more precise, the convolution product of two fields 0, Eli, i.e. complex-valued
functions on the space of strings, is defined by the formula

(1.4) (0*0 (U)
U

0(Z)0(Y)dFu,
=Z*Y

where the integration is taken over all decompositions of the string U into Z and
Y as in Figure 10, and µ is a certain measure which is in fact known to people who
deal with stochastic integrals as a Brownian bridge, an analog of Brownian motion
with both ends of the path fixed.

It can be shown that the product (1.4) is a bracket of a certain L00-structure
whose higher homotopies can be described by similar explicit formulas over some
more complicated configuration spaces.

The operad Lie. for L. algebras appeared independently about the same
time [GK94, HS93]. Surprisingly, the operad for ordinary Lie algebras appears
to have occurred first in [HS93], though it is clearly implicit in [Coh88]. Hinich
and Schechtman give a description of the operad for L--algebras in the language
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of trees, but attribute the discovery to Ginzburg and Kapranov, who moreover
give the operad a very nice geometric interpretation which clarifies the relation to
physics via (a stratification of) a real compactification of moduli spaces of Riemann
spheres with punctures (see Section 11.4.2). Ginzburg and Kapranov also put it
in the context of the quadratic duality for operads they developed [GK94] (see
Section 11.3.2).

1.11. C.-algebras

Just as we have both A,-spaces and A,-algebras, so too we have E,-spaces
and E.-algebras. These are algebras over an operad P for which the components
P(n) are En-free and contractible dg modules, which are homotopy commutative
and have all sorts of higher homotopies.

For algebras over an A,-operad, the small representative provided by the as-
sociahedra or their cellular chains has been very useful. We have no such small
representatives of E.-operads and so no nice small set of higher homotopies for
commutativity, though some explicit constructions of algebraic E00-operads were
given [Smi94].

An interesting alternative is to consider strictly commutative A.-algebras. In
that case, what symmetry should we require of the homotopies for associativity?
There are `standard constructions' which provide adjoint functors from dg Lie al-
gebras to cocommutative dg coalgebras and from commutative dg algebras to dg
Lie coalgebras ([Qui.69, Moo71], see also the tables in Section 1.13). For dg Lie
algebras L, the standard construction is the graded symmetric coalgebra on the
suspension of L and thus the n-ary brackets of an Lam-algebra have corresponding
symmetry. The standard construction for dg commutative algebras is the Harri-
son chain complex, which is a dg Lie coalgebra (see Section 11.3.8). This can be
described, using a result of Ree [Ree58], as the quotient of the tensor coalgebra
by the `shuffle decomposables.' Thus an appropriate specification for a `strictly
commutative' A,-algebra A, to be called a C,-algebra (also known as a balanced
Ate-algebra), is via a coderivation on the graded Lie coalgebra on the suspension
of A or equivalently in terms of a coherent set of n-ary products which vanish on
shuffles.

1.12. n-ary algebras

Although we have emphasized that operads parameterize families of operations
of various `arities,' all the examples considered so far start with binary operations.
On the other hand, there are generalizations of binary algebras which are gen-
erated by a single n-ary operation. Remarkably, in the case of Lie algebras, such
generalizations have received considerable attention, beginning with Filipov in 1985
and continuing, independently, by Hanlon and Wachs [HW95] (combinatorial alge-
braists), by Azcdrraga and Bueno [APB97] (physicists), and by Gnedbaye [Gne96]
who is the only one to treat them operadically. n-Lie algebras have an alternating
(or graded skew symmetric in the graded case) n-multilinear bracket [ ]

which satisfies

E (-1)sgn(a)[,,(1),V0(2),... ,Vo(n_1), [vo(n),... Vo(2n_1)]] = 0.
oEE2n-1
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For n = 2, the above equation is the standard Jacobi identity, thus 2-Lie algebras
are ordinary Lie algebras. The above axiom is, up to degree and signs, that of an
Lam-algebra with only a single n-ary operation nonzero. See also [VV98].

On the other hand, Nambu invented, as a `toy model' for quarks considered
as triples, a trilinear bracket given, for smooth functions fl, f2, f3 on R3, by the
Jacobian:

{fl, f2, f3}
a(fl, f2, f3) _ E (-1)sgn(o) afl aft af3
a(x1, x2, x3) oEEa 49X,(1) (7x0(2) (9X,(3)

This skew-symmetric trilinear product satisfies another generalization of Jacobi
identity, namely

f{lfl, f2, f3},f4, f5}+{f3,{f1, f2, f4},f5}+{f3, f4,{fl, f2, f5}}={fl, f2,{f3, f4, f5}}.

This was further generalized by Takhtajan [Tak94] to the fundamental identity for
the generalized Nambu n-linear `bracket.' This identity was known also to Flato
and Fronsdal in 1992, though unpublished, and to Sahoo and Valsakumar [SV92a].

For a comparison of these two distinct generalizations of the Jacobi identity
for n-ary brackets, see [VV98]. Other examples of n-ary algebras are introduced
in [Gne96].

1.13. Operadic bar construction and Koszul duality

Since, as we will see in Section 11.1.8, a dg operad P is itself a monoid in a
symmetric monoidal category, the bar construction expressed in the appropriate
generality applies to P, producing a dg cooperad 13(P). The linear dual of 13(P) is
then a dg operad denoted by C(P) and called the cobar complex of the operad P,
see Section II.3.1. We will also need the dual dg operad D(P), which is just C(P)
suitably regraded. The operads C(P) and D(P) were introduced by Ginzburg and
Kapranov in [GK94] while the operad 13(P) was introduced by Getzler and Jones
in [GJ94).

If Ass is the operad for associative algebras, then D(Ass) is the operad Ass.
for A,,,,-algebras and the homology H,(D(Ass)) is again the operad Ass for asso-
ciative algebras. If Lie is the operad for Lie algebras, then D(Lie) is the operad
Com., for C,-algebras and H.(D(Lie)) = Cons, the operad for commutative al-
gebras. Similarly, the dual dg operad of the operad Cone is the operad Lies for
L,-algebras and the cohomology H,(D(Com.)) is the operad Lie. We may system-
ize the above facts as:

if P = Ass, then D(P) = Ass. and H,(D(P)) = Ass,
(1.5) if P = Lie, then D(P) = Co-m, and H.(D(P)) = Corn and

if P = Cone, then D(P) =Lie. and H,(D(P)) = Lie.

A similar pattern was observed in rational homotopy theory, where the following
correspondence has been folklore:

associative algebra products
square zero coderivations S on the tensor
coassociative coalgebra 'd (T A) with- - on a vector space A deg(a)+1
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commutative associative alge- square zero coderivations 6 on the Lie
bra products - - on a graded coalgebra LC(T A) with
vector space A 6([Ta,Tb]) _ (-1)deg(a)+1 T(a b)

square zero coderivations 6 on the
Lie algebra brackets [-, -] on cocommutative coassociative coalgebra
a graded vector space A

-i
Ac(T V) with
6(T aA Tb) _ (-1)deg(a)+1 T [a, b]

On a more sophisticated level, the above pattern manifests itself in the L. -
C* duality between Quillen and Sullivan models of a topological space or, even
more abstractly, in the equivalence between the homotopy category of differential
graded Lie algebras and the homotopy category of differential graded commutative
algebras [Tan83].

A conceptual, operadic explanation for this pattern was provided by Ginzburg
and Kapranov by their concept of quadratic (sometimes also called Koszul) duality
for operads which defines, for any quadratic operad P, its quadratic dual P'.

Quadratic operads are defined as those having a presentation of a special type
(see Section II.3.2). As we will see later, all three operads Ass, Lie and Cam are
quadratic, thus their duals are defined and they are

Ass' = Ass, Coat' = Lie and Lie' = Corn.

Ginzburg and Kapranov went further and introduced a certain homological property
of quadratic operads. Operads sharing this property are called Koszul (quadratic)
operads and are characterized by the isomorphism H(D(P)) = P'. So table (1.5)
above expresses the fact that all three operads Ass, Lie and Corn are Koszul.

The concept of quadratic dual and of Koszulness was inspired by a similar
classical concept of Priddy for associative algebras, which is in accord with the
opening remark of this section that operads are associative monoids in a suitable
category.

Of course, mention of the bar construction should bring to mind the possibil-
ity of defining the `homology of an operad' by analogy with Hochschild homology
of an associative algebra. This was first considered by Markl in the context of
PROPs [Mar96a] as a tool for the study of deformations of general algebraic struc-
tures, but the theory was not fully developed until the advent of Koszulness for
operads as special cases of PROPs, which made explicit calculations possible.

As suggested by [MS01], the homology of an operad is closely related to the
coherence of corresponding algebraic or categorial structures. A closed model cat-
egory structure on the category of operads was studied by Hinich [Hin97]. The
work of Baues, Jibladze and Tonks [BJT97] then introduced a homology theory
for monoids in a monoidal category of which operads are special cases.

1.14. Cyclic operads

Algebras with invariant inner products (-, -) are of considerable importance
in mathematics and especially in mathematical physics; invariance means that
(ab, c) = (a, bc) in the associative case and ([a, b], c) = (a, [b, c]) in the Lie case.
Using the inner product, the n-ary operations A®" --> A can be converted to op-
erations A®"+1 -> k with cyclic symmetry. To handle such algebras via operads,
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the notion of a cyclic operad was introduced by Getzler and Kapranov [GK95]
following ideas of Kontsevich [Kon94]. The formal definitions and applications are
given in Sections 11.5.1 and 11.5.2, but the basic idea is well illustrated by the planar
tree operad and by the associahedra. If we treat the root of a planar tree as just
another leaf, then the order of leaves is now cyclic rather than linear. We no longer
have a grafting operation of but rather can define io7 by grafting the ith leaf of
the first tree to the jth leaf of the second tree and renumbering accordingly. It is
obvious that the pentagon (see Figure 3) admits an action by the cyclic group Z/5Z
and an alternate view of K5 shows a 6-fold symmetry. Recall (Section 1.6) that
the associahedra form a non-E operad IC = {Kn}n>1 which generates an operad
IC = {K(n)}n>1 freely: IC(n) = En x K. Corresponding to the cyclic symmetry of
unrooted planar trees with n + 1 leaves and the visible cyclic symmetry of K4 and
K5, the associahedra can be regarded as forming a cyclic non-E operad.

Now consider an A,-algebra with an inner product and convert the n-ary op-
erations A®n - A to operations A®n+1 -> k with cyclic symmetry. These cyclic
A--algebras, as well as their Lie and commutative analogs, play a key role in Kont-
sevich's formal noncommutative symplectic geometry via his graph cohomology (see
Section 11.5.5). They also make an appearance in the algebra of string field theory.

1.15. Moduli spaces and modular operads

One reason for the explosive development of operad theory in the 1990's was the
introduction of operadic structures in topological field theories, e.g. CFT's (confor-
mal field theories) and SFT's (string field theories), which in turn was inspired by
the importance of moduli spaces of Riemann surfaces with punctures or boundaries
(or other decorations) in these physical theories. A major tool in the study of such
moduli spaces is the combinatorial structure of decompositions of Riemann surfaces
into elementary pieces, such as a Riemann sphere with holes. The combinatorics
can be described simply in terms of a graph so that a tubular neighborhood of the
graph is topologically the surface. If the graph is a tree, the corresponding surface
has genus 0; physicists will speak of a theory at tree level when it is governed by a
moduli space of Riemann spheres with boundaries.

Since trees play such a fertile role in the theory of operads, it is perhaps not
surprising that there is a generalization called a modular operad for which graphs
provide the basic combinatorial structure [GK98].

To be more precise, while the `flow chart' for an operad is a tree, the flow chart
for a modular operad is given by a stable labeled graph, that is, by a graph equipped
with a map g from the vertices to the natural numbers. In other words, g labels
each vertex of the graph by a natural number, called the genus of the vertex. The
labels are subject to the stability condition: at each vertex v, we have

2(g(v) - 1) + val(v) > 0,

where val denotes the valence of the vertex, the number of (half) edges incident
with the vertex.

The analog of `leaves' for trees are the legs of a graph, i.e. half-edges with a
vertex at only one end. If the legs of a labeled graph are labeled by a finite set
S, the grafting operation for trees can be extended to graphs, with the additional
subtlety that two legs of a single graph are allowed to be grafted to each other.
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time

FIGURE 11. A word sheet representing four closed strings evolv-
ing into three via some nontrivial interactions.

The formal definition of a modular operad based on these operations is given
in Section 11.5.3. They play a central role in the physical theories mentioned above
and considered in detail in Section 11.5.7. That same `down to earth' combinatorial
quality reflected in the study of moduli spaces appeared earlier in Grothendieck's
`Esquisse' (see Section 1.1).

1.16. Operadic interpretation of closed string field theory

String theory deals with particles as maps of an interval into space (open
strings) or of a circle into space (closed strings). In contrast, string field theory
deals with fields which can be thought of as functions on or sections of a bundle
over the space of such strings, i.e. a path space or a free loop space. The alge-
bra of such fields is quite subtle since it is not given by pointwise multiplication
of functions but rather is a convolution algebra derived from a (partially defined)
product/composition of strings. Further, as strings evolve in space-time, they trace
out world sheets, that is, maps of a Riemann surface with boundary into space-
time. The surfaces are not just cylinders as the strings compose or decompose, as
indicated in Figure 11. Such a surface can be regarded as a tubular neighborhood
of a graph which in physics is a Feynman diagram. Tree level refers to tubular
neighborhoods of trees or, equivalently, to Riemann surfaces of genus 0.

The algebra of a closed string field theory (CSFT) can be formalized while
retaining the importance of the Riemann surfaces as generating the relevant operad.
The structure is quite elaborate, so we start with a conformal field theory (CFT). We
then extend it to a topological conformal field theory (TCFT) or `string background'
which is a certain complex known as a BRST complex involving the Lie algebra of
vector fields on the circle. Finally we use `string vertices' which form a map of
operads s : N --> Mo, where the nth component N(n) of Af is a compactification
of the moduli space of Riemann spheres with n + 1 marked and `decorated' points
while the nth component MLlo(n) of .Mo is the moduli space of Riemann spheres
with n+1 punctures and disjoint holomorphic disks at each puncture. More precise
definitions of these spaces are given below. Combining all the above data and
passing to singular chains, we arrive at a CSFT at tree level as an algebra over the
operad C.(N) = {C.(Af)(n)}n>1 of singular chains.
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Somewhat more formally, a string field theory is formulated in terms of a `state
space' 7-f which has the structure of a conformal field theory (CFT). Physicists
usually have a (possibly indefinite) complex Hilbert space as their state space N. We
will initially need only a vector space still denoted N. A CFT can be described, at
tree level, as giving 7-l the structure of an algebra over an operad .Mo = {M0 (n) },> 1
constructed from the moduli spaces .M0(n) of nondegenerate Riemann spheres E
with n + 1 punctures (labeled 1, ... , n, oo) and disjoint holomorphic disks at each
puncture (disjoint holomorphic embeddings of the standard disk zJ < 1 into E
centered at the punctures). The spaces .M0(n), n > 1, form an operad under
sewing Riemann spheres at punctures (cutting out the disks zJ < r and awl < r for
some r = 1- E at sewn punctures i and oo and identifying the annuli r < IzI < 1/r
and r < awl < 1/r via w = 1/z). The symmetric group En interchanges punctures
along with the holomorphic disks, as usual. The action of the operad Mo is usually
written as Mo(n) D E JE) E Hom(N®",7{).

The physics of closed strings requires that the theory be invariant under repa-
rameterization of the strings, that is, invariant under diffeomorphisms of the circle.
The corresponding Lie algebra, the algebra of smooth vector fields on the circle,
is known as the Virasoro algebra Vir with central charge 0. Let us denote by V
the complexification of this algebra, V := Vir OR C = Vir ® Vir. It is an infinite
dimensional topological Lie algebra generated by the elements L_ := z-tla/az,
m E Z, with the commutators given by the formula [L-, L,] = (n - m)Lm+n, and
by their complex conjugates Lm.

A CFT has an implicit action T of V on N induced from the action of Vir on
Mo given as follows: For m > 0, the vector field L, extends to the disk inside the
circle and exponentiates to a diffeomorphism of the disk. The corresponding twice
punctured Riemann sphere has the disk at 0 given by this diffeomorphism, the disk
at oo being standard. For m < 0, the roles of 0 and oo are reversed.

To qualify as a string background, a CFT must have the following additional
data:

(i) a Z-grading by the ghost number, N = ®V,
(ii) a differential (of square 0) of degree 1, denoted Q,
(iii) a representation T : V - End(N) of degree 0,
(iv) a map of degree -1, b : V -> End(H) such that b(v)2 = 0 for all v E V.

For V E Vir, b(v) is called an antighost operator. The reason for the `ghost-
antighost' terminology will appear below. These data must satisfy certain com-
patibility axioms:

(v) as operators, for vl, v2, v E Vir,
(a) [T(vl),b(v2)] =b([v1,v2]), (b) [Q, T(v)] = 0, (c) [Q, b(v)] = T(v) and

(vi) the operators JE) are homogeneous of ghost degree 0.

Notice that [Q, b(v)] = T(v) indicates that b(v) is a homotopy operator showing
T (v) is homotopic to zero, reflecting the fact that the action of V induces the trivial
action on cohomology.

The graded space N with the operator Q is called a BRST complex. The
homology of (H, Q) is called the BRST cohomology, emphasizing the special role
of the Lie algebra in the complex. For a more detailed exposition of this approach
to TCFT, see [Vor94].
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There is a special realization of such a state space R, the Batalin-Vilkovisky
or BV-complex, which contains the Chevalley-Eilenberg complex for the V-module
N. This is the structure utilized by Zwiebach [Zwi93]. In addition to being a dg
commutative algebra, N has a Gerstenhaber bracket {-, -} : hp ®N . xP+q-1
which is also called an antibracket. This means, after a shift in degree, (N, {-, -})
is a graded Lie algebra and

{x, yz} = {x, y}z + (-1)(&g(x)+1) deg(y)y{x, z}.

In other words, R forms a Gerstenhaber algebra, see Section 1.17.
This is achieved by starting with a space of fields P with basis qya and adjoining

a free graded commutative algebra generated by antighosts b b,,,, of degree 2 and
ghosts cm, cm of degree -1 as well as antifields qla of degree 1. The antighost
operators are now implemented as inner derivations: b(L-) _ [b,,,, -]. The ghosts
implement the Lie algebra differential as inner derivations [c,,,, -]; see [BV81,
Zwi93].

One of the nicest implications of the above structure of a string background is
the construction of a morphism of dg operads from the operad of singular chains
C.(Mo) =

C.(Mo(n)) -> Hom(Ho',?t),
extending linearly the action

E E Co(Mo(n)) --> E)

of the operad Mo. This makes N into an algebra over the operad C.()Co) which,
in turn, makes the BRST cohomology into an algebra over the operad H.(M0) =

The operad Mo is homotopy equivalent to the framed little
disks operad (Section 1.7), therefore, by Getzler's theorem [Get94a], N has an
additional operator 0 which, together with the Gerstenhaber algebra structure,
yields the structure of a BV (Batalin-Vilkovisky) algebra (see also Theorem 11.4.7).

Let us consider the moduli space N(n) of Riemann spheres with n + 1 decorated
marked points, where a decoration is a choice of a real tangent direction at the
marked point. In phyzspeak, these decorations are called `phase parameters' at the
point. There is a natural map M0(n) -> N(n) given by assigning
to each holomorphic coordinate u : U -+ E, where U = {z E C I IzI < 11 is the unit
disk, its `phase parameter' or argument arg(u) defined by

arg(u) := arg u(t) t c R.dt
t=o

The space N(n) has a natural compactification N(n) which can be described in
terms of stable n-punctured complex curves of genus 0 decorated with `relative
phase parameters' at double points and `phase parameters' at punctures. The
collection N = forms a pseudo-operad, with o;,-operations defined by
identifying the relevant marked points and introducing nodal singularities as for
the configuration pseudo-operad M in Section 11.4.2.

Then a closed string field theory (CSFT) over the string background as above
involves a choice of a smooth map of operads s N - Mo. The components
s(n) : N(n) -> Mo(n) of s may be constructed as `inverses' of the natural mappings
Mo(n) -+ N(n) - N(n). The construction, due to Zwiebach and Wolf [WZ94],
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is highly nontrivial. It is convenient to add the space N(1) := (S')2 (the space
of phase parameters 01 and 02 at 0 and oo), defining the composition oi(01,02)
for (01i 02) E 1V(1) just by changing the phase parameter at the corresponding
puncture by 01 + 02. This encodes the action of the rotation group on the spaces
N(1). The images s(N(n)) C .Mo(n) of these mappings are called string vertices.

Finally, the map of operads s : N -* M0 allows us to define a CSFT at tree
level as an algebra over the operad C, (N) = {C , (N) (n) }n>1 of singular chains.

A CSFT implies the existence of an L.-algebra structure on ltre,, a BRST sub-
complex (which is called semirelative in the physical literature and relative in the
mathematics literature). The space ltrei is defined as the subcomplex annihilated
by the operators corresponding to rigid rotations of the disk: bo := b(Lo - Lo) and
Lo := Lo - Lo (see, for example, [KSV95, Section 4]).

We believe that the reader will find useful the following `road map' which
summarizes the constructions above:

CFT := an .M0-algebra f ,
string background := CFT + BRST differential + action of Vir,

CSFT := string background + string vertices.

A full-fledged closed string field theory (CSFT) requires an extension of the
above structure to Riemann surfaces of arbitrary genera. In Section 11.5.7 we take
up this considerably more complicated structure which depends on the notion of
modular operad due to Getzler and Kapranov [GK98] discussed in Section 11.5.3.

1.17. FY-om topological operads to dg operads

For a topological operad P, chain complexes which respect products (func-
tors from topological spaces to dg modules taking products to products) provide a
chain operad, an operad in the category of dg modules over the ground ring, with
the monoidal structure given by the tensor product. For example, the singular
chain complex always works. Given a chain operad P, the corresponding homolo-
gies H,(P(n)) form an operad H,(P) = {H,(P(n)}n>1 in the category of graded
modules.

Since the associahedra are themselves cells or, rather, regular cell complexes
with the operad structure given by the cellular inclusions of : K, x KS - Kr+s_,,
their cellular chain complexes {CC.(Kn}n>1 form a non-E chain operad, which is
precisely the non-E operad Ass. for A.-algebras, while the homology H.(&) is
the non-E operad Ass for associative algebras.

For any E.-operad, the homology operad is that for commutative associative
algebras. The calculation for the little cubes operad is not so simple, but is known,
thanks to the calculations of Fred Cohen [Coh76]. As a space, Ck(n) has the
homotopy type of the configuration space Con(Rk,n) of ordered n-tuples of points
in IRk.

THEOREM. Let k > 2. An algebra over the operad H,(Ck) is a graded algebra
with two operations:

(i) a graded commutative associative product, a ® b i-4 ab, and
(ii) a graded anticommutative `bracket' of degree k - 1, a 0 b [a, b]
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such that, after regrading, the bracket satisfies the usual graded Jacobi identity and
the two operations are related by a graded Leibniz rule:

[a, bc] = [a, b] c + (_1)(deg(°)+k+1) deg(b)b[a, c].

Some authors refer to this bracket structure as a `k-Lie algebra'; unfortunately
the same phrase is used for generalizations of Lie algebra in terms of a single k-ary
`bracket' [VV98], as mentioned above.

An algebra over the full homology H. (Ck) is known as a k-braid algebra because
of the relation of the homology to the braid group. It is a graded analog of a Poisson
algebra (the k = 1 case of the above algebraic structure).

The original work on operads and comp algebras came together unexpectedly
in 1994 when it was pointed out by Getzler [Get94a] that the Gerstenhaber al-
gebra structure on the Hochschild cohomology of an associative algebra A with
coefficients in itself was an algebra over H. (C2). Nowadays any algebra over H. (C2)
(or sometimes over the homology H_.(C2) with the opposite grading), is called a
Gerstenhaber algebra. The situation at the chain level is much more subtle and will
be discussed in Section 1.19.

There is another way to construct dg operads from topological ones. Axelrod
and Singer constructed in [AS94] a real compactification Fk (n) of the moduli space
of configurations of n distinct points in lick. The collection Fk = {Fk(n)}",>1 is
known to be an operad in the category of manifolds-with-corners [Mar99a]. It
has a natural stratification with strata labeled by trees, and the E1-term of the
spectral sequence of this stratification is isomorphic to D(Bk), the dual dg operad
of the quadratic dual 13k of the operad 13k for k-braid algebras. The dual dg operad
D(Bk) contains the operad Lie. as a suboperad generated by the quadratic dual
of Corn C B.

Thus, although there is no known topological operad with chains that give the
Lie. operad, the operad Lie_ is still a suboperad of a dg operad with a geometrical
origin.

1.18. Homotopy invariance in algebra and topology

As mentioned in Section 1.6, operads were prefigured in the early investigations
of loop spaces, topological groups and monoids in homotopy invariant terms. Board-
man and Vogt's groundbreaking book "Homotopy Invariant Algebraic Structures
on Topological Spaces" [BV73] begins with a brief history starting (in their Intro-
duction) with Mac Lane's seminar at the University of Chicago in 1967. A detailed
account of this seminar and its seminal influence has been given by Vogt [Vog98],
who kept excellent notes. They remark:

`The disadvantage of topological groups and rnonoids is that they do
not live in homotopy theory,'

meaning that a space homotopy equivalent to a topological monoid need not ad-
mit a strictly associative multiplication (with unit) recognized by the equivalence.
Stasheff's Ate-spaces did live in homotopy theory; indeed, this was a major reason
for studying them.

Boardman and Vogt developed their theory initially to establish various stable
groups as infinite loop spaces, but soon expanded their research to more general
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homotopy invariant algebraic structures. Their book is written in the language
of `categories of operators' called PROPS. Operads give rise to a special class of
PROPS and serve much the same purpose for the main applications.

Although the initial emphasis was on homotopy theory for topological spaces,
from the very beginning there was implicit the study of homotopy invariant al-
gebraic structures in other contexts. The appropriate setting for describing al-
gebraic structures is now acknowledged to be that of a monoidal category (see
Section II.1.1), while for homotopy theory it is that of a (closed) model category
(CMC); see [Qui67]. We are content to work with (compactly generated) topolog-
ical spaces or dg modules (chain complexes).

Since there is a very simple operad Mon describing topological monoids, with
Mon(n) = En, n > 1, (except for Mon(0) which is a singleton) and the more
complicated IC for the homotopy invariant version of monoids, called Ate-spaces,
an operad must have some special properties to capture an algebraic structure
homotopy invariantly. Somewhat analogously, for an associative algebra (without
unit) the corresponding operad is Ass with Ass(n) = k[E.], n > 1, with the more
complicated Ass. for A,,-algebras; see Section 11.3.10.

Given an operad P for an (ordinary) algebraic theory, a strongly homotopy
P-algebra is to be a homotopy invariant concept. By this we mean that each
`space' (which may be either a topological space or a chain complex, depending
on the category we work in), homotopy equivalent to a P-space, admits a strongly
homotopy P-structure recognized by the equivalence. In particular, each P-space
is of course also a strongly homotopy P-space. From our modern perspective, a
conceptual understanding of homotopy invariance is the following.

There exists, at least `philosophically,' a closed model category (CMC) structure
on the category of operads, both on the topological and on the algebraic side, though
rigorous constructions of these closed model structures have been given only in some
special cases. A strongly homotopy P-algebra is now understood to be an algebra
over a cofibrant model of P. With respect to such a CMC structure, a cofibrant
model of P is, by definition, a cofibrant operad C together with a weak equivalence
(again in the CMC structure above) a : C -> P. Homotopy invariance of a structure
means that an object possesses the structure if and only if any homotopy equivalent
object possesses the same structure induced by the homotopy equivalence. The
importance of cofibrant operads is in this context expressed by the principle:

'Algebras over cofibrant operads are homotopy invariant.'

On the topological side, this principle is implicit in the above mentioned book by
Boardman and Vogt [BV73], where a cofibrant resolution was provided by the W-
construction WP. The cofibrant nature of WP was clarified much later, in [Vog].
On the algebraic side, the analogous results were worked out in [Mar99c]. While
a general cofibrant model is unique only up to a weak equivalence, in the category
of chain complexes there exist special cofibrant operads, called minimal operads,
having the wonderful property that they are isomorphic if and only if they are
weakly equivalent; see Proposition 11.3.120. A cofibrant model of P using this
special kind of cofibrant operads is called the minimal model of P [Mar96c].

In the category of chain complexes (= differential graded modules), all classical
strong homotopy algebras are algebras over these minimal cofibrant operads, so they
are homotopy invariant in this category. See also Section 11.3.10.
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1.19. Formality, quantization and Deligne's conjecture

From the earliest days, operads have played a central role in the study of H-
spaces with algebraic structures up to homotopy, but, in contrast, the role and
importance of operads as a tool to describe and work with more general strong
homotopy algebras was realized comparatively lately.

As explained in detail for topological spaces in Section 11.2.9, a'strongly homo-
topy P-algebra' is defined so as to be a concept independent of the representative of
the given homotopy type. As an extreme case, over a field, the homology H(V) of
a dg vector space (V, d) has the same chain homotopy type as (V, d) itself. If (V, d)
has the structure of a dg P-algebra, so does H(V) with d = 0, but they are not
necessarily equivalent as dg P-algebras. A choice of homotopy equivalence of H(V)
with V (for example, for dg vector spaces over a field, a 'Hodge' decomposition
V = H ® X ® dX) induces a structure of strongly homotopy P-algebra on H(V),
which is equivalent to the original dg P-algebra structure on V as strongly homo-
topy P-algebra. This was first shown by Kadeishvili [Kad80], though implicit in
Gugenheim [Gug82]: For the case of dg associative algebras A, the homology H(A)
is a (strictly) associative algebra, but still may have induced nontrivial homotopies
forming an A.-structure (see Section 11.2.6).

Sometimes the induced structure has trivial homotopies, e.g. mi = 0 for i > 2 in
the A,-case. This is formalized as follows (following the initial concept in rational
homotopy theory):

DEFINITION. For a dg operad P, an P-algebra A is formal if there is a 'P-
algebra X with P-algebra morphisms A <- X -> H(A) inducing isomorphisms in
homology.

For the associative commutative case in characteristic zero, this is often ex-
pressed informally by saying that `vanishing of Massey products implies formality';
see the discussion of Massey products in Section 11.2.6. Under some mild assump-
tions and over a field, formality is equivalent to the existence of a `strongly homotopy
P-algebra map' H(A) ---> A which induces an isomorphism in homology.

For differential graded commutative algebras, examples abound in rational ho-
motopy theory. Recall that a smooth manifold M is formal if the commutative
associative dg algebra Q2 R(M) of de Rham forms is formal in the sense of the
above definition. Examples of formal manifolds are compact Kahler manifolds, Lie
groups and complete intersections [DMGS75, HaI83].

For differential graded Lie algebras, the most striking example is the dg Lie
algebra of the Hochschild complex for the algebra A = C°°(M) of smooth func-
tions on M, where M is a Poisson manifold [Kon97]. This example occurs in the
theory of deformation quantization, which refers to deforming a Poisson algebra to
a noncommutative algebra with the deformation being given, to first order, by the
Poisson bracket. The deformation theory of any associative algebra is controlled by
the Lie algebra which is the Hochschild cochain complex CH* (A; A) of A with coeffi-
cients in itself, the bracket being the one defined by Gerstenhaber [Ger63]; see also
Section 11.3.9. When A is a Poisson algebra, the Poisson bracket represents a class
9 in the second Hochschild cohomology HH2 (A; A) which corresponds to an 'infini-
tesimal' deformation of the commutative product on A. The primary obstruction to
extending the deformation, given by the Gerstenhaber bracket [9, 9] E HH3 (A; A),
vanishes but there are higher obstructions which do not, in general, vanish [Mat97].
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Formality of the Hochschild complex CH* (A; A) as differential graded Lie algebra
implies the vanishing of all the higher obstructions. Kontsevich proves the formal-
ity for A = C°°(M) in the case of a Poisson manifold by constructing an L.-map
from HH* (A; A) to CH* (A; A), thus exhibiting the higher order terms in the defor-
mation. (Mathieu [Mat97] has an example to show that not every Poisson algebra
can be deformation quantized.) Cattaneo and Felder [CF99] have given a E-model
derivation of Kontsevich's quantization; it relates to the 'Swiss-cheese' operad of
Voronov [Vor98].

Since operads themselves can be regarded as generalized algebras, it is not hard
to define `formality' for dg operads [Mar96c]:

DEFINITION. A dg operad P is formal if there is a dg operad X with dg operad
morphisms P - X -> H(P) which induce isomorphisms in homology.

Here the important example is the operad variously known as e2 or the G-
operad describing Gerstenhaber algebras. The formality is an essential ingredient
in some proofs of the Deligne conjecture, as we now explain.

DELIGNE'S CONJECTURE. The Hochschild complex of an arbitrary associative
algebra is naturally an algebra over a chain model of the little disks operad D2.

This has now been verified by several researchers. The answer turns out to
be somewhat less exciting than the original conjecture as many of the homotopies
visible in the chains of the little disks operad act trivially on the Hochschild cochain
complex. However, the variety of techniques developed in attacking the conjecture
amply justify the effort.

Gerstenhaber's original work included specific homotopies for the commutativ-
ity of the cup product and for the Leibniz relation. In [GV95], Gerstenhaber and
Voronov applied to the Hochschild complex multi-variable brace operations, intro-
duced by Kadeishvili [Kad88] and later by Getzler [Get94a]. Gerstenhaber and
Voronov interpreted these operations as homotopies (and higher homotopies) for
the G-algebra identities. The relations of these operations together with the cup
product on the Hochschild complex are given explicitly in [GV95]. It was clear in
their work that the G-operad e2 had a natural morphism to the homology of the
operad describing the braces and the cup product. The latter leads to yet another
interpretation of a `homotopy G-algebra,' with an operad to be denoted ?t9 which
acts naturally on the Hochschild complex via the braces and the dot product. This
particular operad, ?iG, was first described as such by McClure-Smith [MS99].

Deligne's conjecture is verified in a variety of ways, but all first provide a map
of dg operads C,(V2) -> ?LG, where C,(D2) is a chain model of the little discs
operad D2.

Getzler and Jones [GJ94] showed that the brace operations further implied the
structure of a B.-algebra on the Hochschild complex. B,-algebras were introduced
by Baues in his study of the double bar construction [Bau8l]. (N.B. There is no
operad B of which B, is the higher homotopy version.) The B,-structure is given
by identifying some of the Baues operations with braces and the cup product and
sending the others to 0.

There is another set of higher homotopies defined in terms of the G,-operad
which is the minimal model, in the sense of Markl [Mar96c], of the G-operad
e2 = H,(D2); see also Section 11.3.10. The operad G, can also be described as the
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dual dg operad of the quadratic dual of the G-operad as introduced in Ginzburg-
Kapranov [GK94].

Notice that, compared to 7{G, there are different choices here as to which
relations are to be relaxed up to higher homotopy.

By a very involved construction, Tamarkin [Tam98a] provided an operad map
G, -> B_ Then he [Tam98b] showed that the singular chain operad C,(D2) is
formal, i.e. quasi-isomorphic to its homology e2 = H,(D2). Kontsevich then found
a simpler geometric proof of this result. The quasi-isomorphism in turn implies
a map of operads G. --> C,(D2). Later Tamarkin and Tsygan [TTOO] found a
rather simple algebraic construction of G,,, -> B,.

Then Voronov gave a solution of Deligne's Conjecture which involves a mor-
phism G, - B. which comes from his realization of B. as a quotient of another
cofibrant model of e2 obtained directly from the topology of moduli space of points
on Cpl.

In contrast, the recent proof by Kontsevich and Soibelman [KSOO] constructs
a combinatorial model of 'HG which has a map to a cell model of e2 which they
prove is a quasi-isomorphism. Their combinatorial model for 7{9 is particularly
interesting since it involves the `insertion' of one tree at a vertex of another; see
Section 1.20. Perhaps the following will keep track of the relations among the
several operads:

Goo

f f3-- 7{G 4 End (CH* (A; A))C- (D2) B,
The operad map fl was constructed/implicit in Tamarkin's work [Tam98b] and
given a new proof by Kontsevich [Kon99] who also extended it to higher dimensions
(n-algebras). Similarly f2 was first constructed by Tamarkin and then simplified
by Tamarkin and Tsygan [TTOO] and given an alternate geometric construction by
Voronov [Vor98]. The map f3 was implicit in Getzler and Jones [GJ94] who give
f4 o f3 while Gerstenhaber-Voronov [GV95, Lemma 8] describe f3 and f4 explicitly.
(We could add an arrow from 'HG to C. (D2) if we take the chains to be the cellular
chains of the McClure-Smith cellular model. Also Kontsevich-Soibelman [KS00]
construct one from the W-resolution of 'HG to another cell model of D2.)

1.20. Insertion operads

Insertion of one tree or more generally one graph in another leads to a variety

of operads corresponding to at least three different types of insertion.
Inside the 7{G-operad mentioned in Section 1.19 is the operad Brace for an

abstract brace algebra (forgetting the cup product), first described as such by
Chapoton [ChaOO] using the insertion operations of Kontsevich and Soibelman.
We follow the exposition by Chapoton, of [ChaOO, Section 2], together with the
pictures in [Cha00, CLOO] somewhat adapted.

Again we are dealing with rooted planar trees but where each leaf has two
vertices while the root edge has only one. All the vertices are labelled (say by a
finite set I). Define Brace(I) to be the Z-module generated by the set of such
trees. Depict the tree T as lying in the unit upper semidisk centered at the origin



32 1 INTRODUCTION AND HISTORY

FIGURE 12. Angles (lines ending outside the semicircle) of a planar tree.

If T = and S =

a

then T 02 S = +

+

FIGURE 13. Example of composition operation T oj S.

except for the root which extends below; see Figure 12. Define Angles(T) as non-
intersecting arcs issuing from each vertex, one lying in each angle formed by adjacent
edges at the vertex and ending at the upper semicircle boundary. These angles are
ordered from left to right along the semicircle as are the edges of In(j) entering
each vertex j.

The insertion of a tree S into a tree T at a vertex j will be defined in terms of
a monotone nondecreasing function f from the ordered set of edges In(j) entering
j to the ordered set Angles(S). Given such an f, define T o. S by excising a
neighborhood of j leaving some dangling edges. The incoming edges are then
grafted to the vertices of S along the angles indicated by the function f. The
root edge of S is then identified with the outgoing edge from j The composition
operation T oj S is just the sum over all such f ; see Figure 13.
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2
02 =

1

FIGURE 14. An edge insertion.

For the full fig-operad, the trees are slightly more elaborate to accommodate
the cup product, but the insertion idea is the same.

Physicists, too, are fond of insertions, leading to other operads and algebras
over them. The o;-operations correspond to inserting one tree or more generally
one graph into another, either into an edge or into a vertex, in a way quite different
from that of Kontsevich and Soibelman.

WARNING: Although terminology within graph theory is well established, in
applications to physics and related parts of mathematics, terminology is not fixed.
In particular watch out for the following: Leaves of a tree or legs of a graph may
have one vertex at one end only or may have two vertices, one at each end. Rooted
trees may have just a root vertex or may have a root edge ending in a root vertex.
Trees may be oriented toward the root or away from it; cf. Section 11.1.5.

Insertion of a graph with two external legs into a graph with labeled edges
plays a very important role in `renormalization of Feynman diagrams' and the
Hopf algebras of Connes and Kreimer [CKOO]. One edge is cut and the dangling
edges are identified with the external legs of the graph being inserted. Either the
edges are oriented or there is a sum over the two possibilities. See Figure 14.

The collection of all graphs with two external legs and numbered internal edges
forms an operad under such insertions according to the numbers.

Various classes of graphs form operads under vertex insertion. For example,
consider the vector space spanned by all k-valent graphs with the same number k
of external legs and all vertices numbered. Given two such graphs T and S, the
composition T o; S is obtained by `inserting' S into vertex i, that is, removing the
vertex i of T and identifying the dangling edges with the leaves of S, averaging over
all such identifications. Repeated insertions lead to graphs such as, for k = 3, in
Figure 15, which is very reminiscent of the little squares operad. For renormaliza-
tion, there will be a need to consider edges decorated with 'momenta'; there's more
to come!
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FIGURE 15. Vertex insertions.



Part II





CHAPTER 1

Operads in a Symmetric Monoidal Category

1.1. Symmetric monoidal categories

In this section we develop some of the tools necessary for the study of operads
in full generality, beginning with some basic definitions and results from category
theory [Mac63b, Mac65].

A category with multiplication is a category C and a covariant bifunctor O
C x C - C. The multiplication is associative if there is an invertible natural trans-
formation called the associator or associativity constraint,

(1.1) a : 0(11 x 0) -> 0(O x 11)

aA,B,c : A 0 (B (DC) (A® B) O C, for A, B, C E C,

where, as usual, 11 denotes the identity functor, AO(B(DC) = 0(idx(D)(A, B, C), etc.
Having such an associator, we can consider diagrams whose vertices are iterates

of 0 and whose edges are applications of instances of a. Then (C, (D) is called coher-
ent if all these diagrams commute, the simplest being the pentagon (see Figure 1).
Mac Lane [Mac65] proved that commutativity of the pentagon is a necessary and
sufficient condition for coherence.

A category C is called monoidal if it has a multiplication 0 with an associator
a satisfying the Mac Lane pentagon condition and there is an object 1 E C called
the unit object together with natural isomorphisms

l=lA:lOA - A, r=rA:A01- A
such that, in addition to the pentagon condition on a, the triangles in Figure 2
commute. It is an easy exercise (see [Ke164]) that commutativity of the triangle at
the bottom together with the naturality of l and r imply the commutativity of the
other two triangles. A monoidal category is called strict when all the aA,B,C, 1A
and rA are identity morphisms. One formulation of Mac Lane's coherence theorem
is that any monoidal category is equivalent to a strict monoidal category. Stated
in this form, Mac Lane's theorem is sometimes called a rectification theorem.

A monoidal category is called symmetric if there exists a natural transformation

SA,B:A0B--->B0A,
which is of order two, sB,ASA,B = idAOB, and satisfies the hexagon identity, which
is equivalent to the commutativity of the diagram in Figure 3.

REMARK 1.1. There is an inconsistency in the notation in the literature, as to
whether the associator should go from A O (B (D C) --> (A O B) O C or vice versa,
but by the invertibility assumption, it does not matter which we chose. However,
the different choices imply alternative forms of the pentagon identity. Mac Lane
uses the symbol a for associativity and by this means that the parentheses are to

37
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(A (D B) O (COD)

AO(BO(C(D D)) ; ((A(D B)OC)0D

AO((B0C)(D D) (AO(B(D C))OD

FIGURE 1. The pentagon.

AO (BO1)--a (A0B)O1

id O r

10(A0B) --a (10A)OB

AOB

A®(l0B) --(A01)0B

idol /rOid

AOB

AOB

1 (D id

FIGURE 2. The coherence conditions on the unit. Actually, the
condition at the bottom suffices.

be moved to the left. Drinfel'd uses the symbol 4) to mean the operation of moving
the parentheses to the right.

The structure of braided monoidal category generalizes the structure of sym-
metric monoidal category by allowing a symmetry which is not necessarily of order
two. In this case there is another hexagon identity (which is redundant in the
symmetric monoidal case) given by commutativity of a diagram similar to Figure 3
with 3AGB,c, SB,c and sA c replaced by scA®B, Sc B and sC A, respectively.

In the following discussion we will focus on two main examples. The first
example is the category Modk of k-modules for a commutative ring k and, more
generally, differential graded k-modules. When k is a field, we will sometimes write
Vec instead of Modk, gVec for the category of graded k-modules and dgVec for the
category of differential graded k-modules.

The second example is the category Set of sets and its specialization to topolog-
ical spaces. The category Modk has a monoidal structure arising from the standard
tensor product over k,

A O B := A®kB for A, B E Modk and 1 := k.



1 1 SYMMETRIC MONOIDAL CATEGORIES 39

AO(B(D C)

idA O 8B,C

A O (C(D B) (A (D B) O C

a
l SAOB,C

(AOC)OB CO(A(D B)

SA,C 0 id

(COA)OB

FIGURE 3. The hexagon.

The monoidal structure on Set is given by the cartesian product

X O Y := X x Y for X, Y E Set and 1 := {x}, the set with one element.

The subcategory of the category of sets consisting of Hausdorff spaces with
compactly generated topology and continuous maps has a monoidal structure given
by the cartesian product with the compactly generated topology. This was the
setting in which operads were first defined by May, [May72].

In all the cases in the previous paragraph, the associator and the isomorphisms
in the definition of the left and right units are given by the standard identifications.
The symmetry is given by transposing factors. In the graded case, there is a sign
factor, as described below. We point out that although these examples are not
strictly monoidal, the identifications are canonical and the categories are coherent.
An example of a strict monoidal category is given by the category of endofunctors
on a given category with natural transformations as morphisms and composition
as the monoidal structure.

To define a symmetric monoidal structure on the category of differential graded
k-modules, dgModk, extend the tensor product of k-modules to a tensor product of
complexes in the standard way:

(A* ®B*)k At ®k B2,
i+j=k

(1.2) dA®B(a ®b) := dA(a) ® b + (-1)deg(a)a 0 dB (b),

sA,B(a ® b) (_1)deg(a)deg(b)b ® a,

for (A*, dA), (B*, dB) objects of dgModk, a E A*, b E B* homogeneous elements.
We will assume that all differentials have degree 1 unless explicitly stated otherwise
The unit object 1 = (1*, d1 = 0) is given by

k when j = 0 and
0 when j 0.

A monoidal category is precisely the setting for the categorical concept of
a monoid or "algebra" in Mac Lane's original terminology, [Mac63b]. Given a
monoidal category C, an object A is called a C-monoid if there are C-morphisms
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y : A 0 A -> A, q7 : 1 --> A (respectively called the "multiplication" and "unit" for
A) which satisfy associativity and unitarity conditions:

(1.3) µ(idA O µ) = µ(µ O idA)aA,A,A, p(idA O 77) = rA, µ(77 (DidA) = lA.

The definition of morphisms of C-monoids is the usual one; they must be compatible
with all of the morphisms in the definition of a C-monoid. We use Mon(C) to denote
the resulting category.

1.2. Operads

Let Set f be the category of nonempty finite sets and bijections. The category
Set f is equivalent to its skeleton, a small category E, called the symmetric groupoid.
The objects of E are the natural numbers identified with the sets [n] = {1, , n},
and the morphisms are naturally identified with the symmetric groups

E,,, = Endr([n]) = Endsetf([n]), n > 1.

In general, for a finite set X, define

EX := EndSet f(X).

The category Fun(Set f", C) of contravariant functors from Set f to C is called
the category of Set f-modules and denoted Set f-Mod. The category Fun(E°P, C) of
contravariant functors from E to C is called the category of E-modules and will be
denoted E-Mod.

Note that for each Setf-module A and X E Setf, the object A(X) in C has a
right Ex-action. A E-module A is represented by a sequence of objects, {A([n])},,,>1
in C with a right on A([n]). We will use the notation A(n) in place of
A([n]).

May's original definition of an operad [May72] was for the category of topolog-
ical spaces, with compactly generated topology, but it generalizes with a few minor
assumptions to an arbitrary symmetric monoidal category C with multiplication
denoted by O. In Section 1.7 we will reformulate the definition for Setf-modules,
but it is simpler to begin with a definition for E-modules.

One of the axioms in the definition of an operad involves an equivariance con-
dition. The precise formulation is based on the following definition.

DEFINITION 1.2. For an ordered partition m = (m1, ... , m,,,) of m = I:i=1 mi
and v E E,,, define the block permutation v,,,,, In E E,,, to be the permutation
which acts on the set [m] by permuting n intervals of lengths m1, m2, ... , Mn in
exactly the same way that or permutes the numbers 1, ... , n. More precisely, if

(m 1,... ,mn) := Q(m1,... (mQ-i(1),... Ma-1(n)),

then Q,,,,, In is defined to be one-to-one monotonic from the ith subinterval

{jl j
of the partition (mi) onto the w(i)th subinterval

{k( mi +... + m'Q(i)_1 < k < ml ... + nio(i)}

of the partition (m,D.
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Block permutations satisfy the composition rule

(aT)ml, ,mn = am.-1(i), ,m+-1(n)Tmi,. ,m,,.

EXAMPLE 1.3. For the purposes of this example, we will represent an element
aEEnbythe2xnmatrix

1 2 ... n
a(1) a(2) ... U(n)

If n = 3, m = 7, (ml, m2i m3) = (2, 2, 3) and

_ 1 2 3
a

3 2 1

then (mi, ms, ms) = (3, 2, 2).
The subintervals determined by m and m' are respectively (12 134 1567) and

(123 1 45 1 67). The block permutation a2,2,3 permutes subintervals according to
the permutation a, that is, it sends the first and third intervals of (12 134 1567) to
the third and first intervals, respectively, of (123 1 45 167):

1 2 3 4 5 6 7x2'2'3 _
6 7 4 5 1 2 3

DEFINITION 1.4. (Operad - May's original version) An operad in a (strict)
symmetric monoidal category C is a E-module P together with a family of structure
morphisms

ryn,m1, ,m,a : P(n) O P(m1) O ... O P(mn) --> P(ml + ....+ Mn),

for n > 1, ml,. .. , mn > 1, satisfying the axioms:

1. Associativity. Given natural numbers mi for 1 < i < n and li,.i for 1 < i < n
and 1 < j < mi, define

m :_ E1<i<n mi, li :_ >1<j<m. li,.7, 1 :_ E1<i<n 1,

and

li (li,1.... ,li,m.), Y :_ (11i... ,ln)

Let

P[rn] := P(m1) o ... O P(mn), P[li] := P(1i,1) O ... 0

P[1] := P(11,1) O ... 0 P(l1) 0 (D P(ln)

and

-P[1'1:= P(11) O ... 0 P(ln).
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Then the following diagram commutes

P(n) 0 P[m] 0 P[l] : P(n) 0 (P(m1) 0 P[l']) 0 ... 0 (P(mn) O P[ln])

7m;1

Il o o 1 7mi;1,

P(n) O P[1']

17n;1'

P(m) 0 P[1] P(l)
where p applies the symmetry in C to permute the factors in P[m] 0 P[l] to
give a product of the factors (P(mti) O P[lz]) for 1 < i < n.

2. Eguivariance. Given or E En and an n-tuple m = (MI, ... , Mn), define
am := ,ma-llnl). Let v : P[m] - P[am] be the permutation
of the factors given by the symmetry in C and a,n the block permutation
described in Definition 1.2. Then the following diagram commutes:

IlOv
P(n) 0 P[m] P(n) O P[am]

7n;am

a

OIL

P(m)

7n;m
am

P(n) 0 P[m] P(m).

3. Unit. If 1 is the unit object of C, then there is an 77 : 1 --+ P(1) such that
the composite morphisms

P(n) o 1°n
L0no"

P(n) 0 P(1) o ... o P(1) 7n'1' P(n)

and

1 O P(m) P(1) O P(m) - P(m)

are respectively the iterated right unit morphism and the left unit morphism
for the underlying monoidal category C.

Operads form a subcategory 0pc, or simply Op when C is understood, of the
category of E-modules. Morphisms of operads are required to respect the structure
morphisms in the source and target.

EXAMPLE 1.5. A trivial example of an operad in the category of sets is i
{i(n)}n>1i where

[1] for n = 1 and
0 forn>1,

with the obvious structure morphisms.

EXAMPLE 1.6. A slightly less trivial example is C := {C(n)J,>1 with

C(n) := [1] for n > 1,

with the trivial action of E. and the obvious structure morphisms.

One of the most important examples of an operad is the endomorphism operad.
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DEFINITION 1.7. Let (C, O) be a symmetric monoidal category with internal
Hom functor, Hom,,. The endomorphism operad £ndx for an object X E C is
defined by

(1.6) Sndx(n) := Hom^(X°n,X).

The structure morphism

'Yn;mi, Mn ,: £ndx(n) O (£ndx(ml) (D (D £ndx(mn)) - Endx (mi + .....F Mn)

is defined by

7n;mi, ,m+,(o,,/B1,... ,/3n) ao (01 O...(D /3n)

The right E, action on £ndx (n) is defined by composition with the left En-
action on X°n induced by the symmetric monoidal structure on C.

The operad £ndx is particularly important because the theory of operads was
developed as a tool in understanding algebraic or topological structures involving a
sequence of n-ary operations on an object of a symmetric monoidal category. Such
a sequence can be described as a morphism of E-modules P --> Endx, or under
additional compatibility conditions, a morphism of operads. In the latter case, X
is called a P-algebra. A formal definition is given in Section 1.4 below.

EXAMPLE 1.8. To illustrate the equivariance axiom in Definition 1.4, consider
the following data from the endomorphism operad £ndx in the category Set: f, g :
X72 -> X E £ndx(2) and h : X73 --, X E £ndx(3). Let a E E2 be the generator.
The composition in £ndx of the vertical arrow on the left of diagram (1.5) with
the lower horizontal arrow applied to the 5-tuple (a, b, c, d, e) E X 5 is

((fa) o (h, g) ) (a, b, c, d, e) = (f or) (h(a, b), g(c, d, e)) = f (g(c, d, e), h(a, b)).

On the other hand, the result of composing the upper horizontal arrow of the
diagram with the first vertical arrow on the left applied to the same 5-tuple is

(f ° (&(h, g)),2,3) (a, b, c, d, e) = f o (g, h) (c, d, e, a, b) = f (g(c, d, e), h(a, b))

We see that these two expressions coincide.

There is also a dual concept of P-coalgebra based on the coendomorphism
operad.

DEFINITION 1.9. Let (C, (D) be a symmetric monoidal category with internal
Hom functor, Homr. The coendomorphism operad Co£ndx for an object X E C is
defined by

(1.7) CoEndx(n) Homc(X,XOn).

The structure morphism

7,., m 1 .. m
Co£ndx(m1 +- +mn)
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is defined by the diagram

Co£ndx(n)O(Co£ndx(m1) O° (D Co£ndx(mn))
'Y

Co£ndx(m1 + + Mn)

(CoEndx(mi) O Co£ndx(n)

The right En-action on Co£ndx(n) is defined by composition with the right
En-action on XOn induced by the symmetric monoidal structure on C.

Another important example of an operad is given by the sequence of permu-
tation groups E := {En}n>1 with structure morphisms defined with the help of
Definition 1.2.

PROPOSITION 1.10. The sequence of permutation groups E := {En}n>1 with
morphisms

Yn;m1,

7n;ml,

mn:En XE.m1X ... XEmn -'Emit +mn,

,Mn (a, P1, ... , Pn) := Qml, mn ° (P1 X ... X Pn)

defined using the block permutations from Definition 1.2 has the structure of an
operad in the category Setf.

PROOF. The proof is left as an exercise for the reader.

DEFINITION 1.11. Given an operad P in the category of sets, there is an asso-
ciated operad k[P] in the category Modk of k-modules called the k-linearization of
P which is defined by

k[P](n) := k[P(n)], n > 1.
That is, the arity n component is the free k-module with basis given by the set
P(n).

DEFINITION 1.12. The associative operad Ass in Modk is defined by

Ass := k[E],

where E is the operad in Set defined in Proposition 1.10. The commutative operad
Com in Modk is defined by

Com := k[C],

where C is the operad in Set defined in Example 1.6.

REMARK 1.13. We will see in Section 1.4 that the operad Ass is the operad
describing associative algebras and the operad Com is the operad defining com-
mutative algebras. The strange composition law in Proposition 1.10 comes from a
natural composition law in the operad describing associative algebras. See Propo-
sition 1.27 below.

It is sometimes useful to drop the equivariance axiom for an operad. This leads
to the concept of a non-E operad.
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DEFINITION 1.14. A nonsymmetric operad or non-E operad in a (not neces-
sarily symmetric) monoidal category C is a sequence {P(n)}n>1 of objects in C
satisfying the associativity axiom and the unit axiom in Definition 1.4.

REMARK 1.15. Each operad can be considered as a non-E operad by forgetting
the E,,,-actions. On the other hand, given a non-E operad P, there is an associated
operad P with P(n) := P(n) x En, n > 1, with the structure operations induced by
structure operations of P and the operad E introduced in Proposition 1.10. Here
we mean by P(n) x E, the coproduct of copies of P(n) indexed by En. We call
this process the symmetrization of a non-E operad.

For example, the operad Ass from Definition 1.12 is the symmetrization of the
non-E operad Ass given by Ass(n) := k for each n > 1. Other examples of non-E
operads can be found in Section 1.5, Definition 1.41 and Section 1.6.

1.3. Pseudo-operads

Pseudo-operads are a variation on the theme of operads where the "many vari-
able" operad composition laws are replaced with a family of binary composition
laws. The axioms for these composition laws are the same as those for the "oi-
operations" introduced by Gerstenhaber [Ger63] in his study of the Hochschild
cochain complex of an associative algebra, with the difference that in [Ger63]
there was no symmetric group action, therefore no equivariance condition. For an
operad there are analogous oi-operations defined by composing the operad structure
morphisms with the unit as follows:

oi:P(m)0P(n) _-

P(n) is placed in position i of the factor in parentheses. The structure map
7m;nl, nm is recovered as a composition of these of product maps. Also, using this
approach one can avoid the multi-indexing required in the standard description of
the operad composition laws.

Markl in [Mar96c] defined `pseudo-operads' or 'non-unitary' operads as E-
modules with oti operations which satisfy axioms equivalent to the associativity and
equivariance axioms of Definition 1.4 but without a unit axiom. In the definition
below, operation f of g should be thought of as `substitution of g in position i of
f.' This reverses the convention in [Mar96c], so the axioms are slightly different.

To deal with permutations, we use the composition law for permutations defined
in Proposition 1.10. Let a E E,n, P E En, and define a of p E En,,+n_1 by

(1.8) a-oip:=Q1, 1n1 .,10(1x. .xpx...x 1),
where v1, 1 is defined in Definition 1.2.

DEFINITION 1.16. (Markl's pseudo-operads) A pseudo-operad in a monoidal
category C is a E-module P together with composition operations

of : P(m) 0 P(n) ----> P(m + n - 1), m, n > 1, 1 < i < m,

satisfying the axioms:
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1. Associativity. For the iterated compositions of P(m) O P(n) O P(p), the
following associativity holds:

0i+P-1(oi O 11)(11 (DT), for 1 <i <j-1,

(1.9) oi(oi O 11) = oj(1l (D of-,+1), for j < i < j + n - 1, and
oj (oi_+1 (D 11) (11 (D 7) for j + n < i,

where T : P(n) O P(p) --> P(p) O P(n) is the transposition given by the
symmetry.

2. Equivariance. The operation of is equivariant in the sense:

(1.10) °i(,7 O p) = (a of p) °o(i) on P(m) o P(n),

where (c, of p) is defined in equation (1.8).

REMARK 1.17. The associativity axiom can be understood by considering the
endomorphism operad Endx for X E Modk; cf. Definition 1.7. In this case the
strange terms displayed on the right of (1.9) can be seen to arise from the relabeling
of the positions of the arguments after a of operation. The symmetry r is simply
transposition. For example, for a E Sndx(m), 0 E Endx(n) and 'y E Endx(p) and
1<i<j-1,

oi(oi G 1I)(a o o O y)

(a °,7 /3) °i y = (a(llQj-1 (D,3 O ]LOm-J)) (n0i-1 O y O nom+-1-i)
a(IlOz-1 0,y 0 llo.i-i-1l`O Q O IlOm-j)

(a(llpz-1 O y O llOm-i)) (110i+P-1 ONO n®m-j-1)

(a °i 7) °7+p-1 /3 _ °j+P-1(°i O ll)(ll O r)(a O /J O y).

Just as there is a non-E version of May's operads, there is also a non-E version
of pseudo-operads.

DEFINITION 1.18. A nonsymmetric pseudo-operad or non-E pseudo-operad in
a monoidal category C is a sequence {P(n)},>1 of objects in C with of operations
satisfying the associativity axioms (1.9).

REMARK 1.19. There are examples of pseudo-operads that are not `natural'
operads (that is, we need to add the unit artificially if we wish to have an operad),
such as the operad of stable marked genus 0 surfaces; see Section 4.2. The relation
between operads and' pseudo-operads will be made more precise in Section 1.7.

1.4. Operad algebras

As mentioned above, operads arose as a tool for studying algebraic or topolog-
ical structures defined by a sequence of n-ary operations on an object in a suitable
symmetric monoidal category. The following definition gives a more precise formu-
lation.

DEFINITION 1.20. Let P be an operad in C a category with internal Hom
functor as in Definition 1.7 and X an object in C. A P-algebra structure on the
object X is a morphism of operads ax : P --> Endx, that is, a family of E,,,-
equivariant morphisms

ax(n) : P(n) --+ Endx(n), n > 1,
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compatible with the structure maps of P and Endx. The ax (n) are called P-algebra
structure morphisms or simply P-structure morphisms.

Equivalently, a P-algebra structure on X is a family of En-equivariant mor-
phisms in C

ax(n) . P(n) O X°n ---> X,
where the En-action on the target X is trivial. We also say that X is an algebra
over P.

The equivalence of the two descriptions follows immediately from the adjoint
functor isomorphism for Homc,

Homc(P(n),Home (X®' X)) = Homc(P(n) 0X°n, X),
which preserves equivariance.

If we assume the category C has finite colimits, hence finite coequalizers, we
can define a (D-product of P(n) and X°n over En by

(1.11) P(n)Ox, XG' := coequalizer { v-1 O Q : P(n)OX°n ----> P(n)OX®n I.
aEE,

Expressed in terms of the (D-product over En, a P-algebra structure on X is a
compatible family of morphisms in C

&x(n) : P(n) OE X°n -* X.
DEFINITION 1.21. Let X and Y be P-algebras. A morphism cp E Homc (X, Y)

is a morphism of P-algebras if the following diagram commutes for all n > 1:
«x (n)

P(n) OE X°n _ X

1 OE Woni
1 W

aIn)
P(n) OE YO' = Y

Let P-alg denote the category of P-algebras.

REMARK 1.22. The definition of P-algebra is formulated so that Ass-algebras
and Com-algebras coincide with the standard definitions, where Ass and Com are
defined in Definition 1.12. The definition of the operad Lie describing Lie algebras
is not as easy to define as Ass and Com, but there is a shortcut based on the free
operad algebra.

DEFINITION 1.23. For P an operad in a symmetric monoidal category C, the
free P-algebra functor.Pp(-) is the (unique up to isomorphism) left adjoint to the
forgetful functor Up : P-alg -> C, that is, for X an object in C, F2(X) satisfies
the defining relation for a left adjoint functor:

Home-aig(.PP(X),Y) -_ H07-C (X, Up (Y)).

DEFINITION 1.24. Let C be a symmetric monoidal category such that 0 is
distributive over coproducts. Given an object X E C, define a functor on C called
the Schur functor of P:

S2(X) := 11 P(n) or, X°n.
n>1
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Observe that there are, for n > 1, obvious isomorphisms:

P(n) O Sp(X)°' - ll P(n)O ((P(m1)(DEmiX®ml)0...0(P(mn)(DrmnX°mn)) .

PROPOSITION 1.25. If we define

cs(n;mi.... 'Mn) P(n)O((P(m1)0E,..,X°ml)0... 0(7J(m')0EmnX°mn))

P(n)O(P(ml)O...(DP(m,.))O£m,x xE n(X°m10...OX°mn)

7n;m., ,,nn01
P (Ml + ... + Mn) OE, XO(m1+ +mn)

then the morphisms

csS (x)(n) := 11 cti(n;ml,... P(n) OSp(X)°ve _* SP (X),

induce a P-algebra structure on SP(X). The free P-algebra functor is isomorphic
to the Schur functor Sp ,

SP (X) .PP(X)

with the structure morphisms defined above.

PROOF. The structure morphisms for SP(X) are induced by the symmetries of
the symmetric monoidal category and the composition morphisms for the operad
P, therefore the P-algebra axioms for SP(X) follow from the naturality of the
symmetries and the equivariance axioms for the operad P.

In order for Sp(-) to be a free P-algebra functor, it should be a left adjoint to
the forgetful functor Up from the category of P-algebras to C. According to [HS71,
Theorem II.7.2), the adjoint relation (adjunction) Sp -1 Up is equivalent to the
existence of two natural transformations:

:R-+UPSPand X:SPUp-AIL,

establishing a bijective correspondence

Hom,p-.1g(SP(X),Y) = Homc (X, Up (Y)),

(1.12) cp F---4 Up(co) o cX,

xY o Sp(zb) <--t b,

for each X E C and Y E P-alg. Define (x E Homc(X, UpSp(X)),

(x: X= 10X ->P(1)OX---> II
,,>1

On the other hand, if X is a P-algebra, then the structure morphisms ax (n)
P(n) O X°n - X determine

Xx:SPUp(X)= JJP(n)OEnX°" -p X.
n>1

This defines the adjunctions. Bijectivity of the correspondence (1.12) follows im-
mediately from the commutative diagram for a P-algebra morphism:
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P(n) OE SP(X)On D P(n) OEn X®"
ds,(x)(n) P(n)

OE,
XOn C SP(X)

1 Go, won wn

T 6, Y(n)

P(n) OEn yen Y

which shows that all the higher degree components (Pn of a P-algebra morphism
cp : SP(X) -* Y are determined uniquely by the `linear term'

UOUP (w)-(xcpi:X=10X- P(1) OX P(1)OY-- Y.
EXAMPLE 1.26. In the symmetric monoidal category (Modk, (D := Ok), the free

Ass-algebra is the tensor algebra and the free Com-algebra is the symmetric algebra,

.Pass (X) := ®k[En] Ok[E,.1 X ®n = ®X ®n and

.com(X) :=

n=1 n=1

® 11 X®n = ®'S"(X )
n=1 n=1

The following proposition shows how to reconstruct the operad from the free
algebra functor.

PROPOSITION 1.27. Let P be an operad in Modk and Xn the free k-module with
basis {x1.... , xn} for indeterminates xi. Let.Py(n) be the k-submodule of.T'p(Xn)
spanned by those tensor products with each xi appearing precisely once,

--pp (n) := Span {a Or, (xil O ... O xin) I ij 54 ik for j # k} C P(n) Or, X ®n.

Define a right action of En on .Tp(n) by

(a 0 (xi ®... 0 xin )) u := a ® (xv-1 (ii) ®... 0 xa-, (in) )

Then the map

p:P(n)->.FP(n), p:a-a®(xl®...®xn)
is a En-equivariant isomorphism of k-modules.

The oi-operations in P and P-algebra composition in .Pp are connected by the
following equation:

(1.13) (a of Q)(xl O... O xn+m-1)

= a (x1 0... ® xi_1 ® 13(xti 0... 0 xi+,n-1) 0 xi+m 0... 0 xn+m.-1)

where xi is identified with 10 xi E P(1) 0 Xm+n-1.

PROOF. Using the En-action any element of .Pp (n) can be represented in the
form a ® (xl ®. . . ®xn) for some a E P(n), therefore, p is onto. On the other hand
a ® (x1 ® ... 0 x") = 0 E P(n) or, (Xn)®n implies a = 0 so p is one-to-one. Since

P(a)a _ (a Or. (xi O ... ®xn)) u
= a ®En (xo-1(1) ®... 0 X,-I(n)) = a ®En or(x1 0 ... 0 xn)
= ao OE, (xl 0 ... O xn) = P(aa),
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p is E,-equivariant. The proof of the last assertion is an exercise in manipulating
the definition of the composition law.

If there is an alternative description of the free algebra associated to a known
algebraic structure, one can use Proposition 1.27 and the uniqueness of the free
operad functor to describe the associated operad. An important example is that of
Lie algebras, for which Proposition 1.27 allows us to define the Lie operad in terms
of the free Lie algebra.

DEFINITION 1.28. Let Freerie(xi.... , x,,,) be the free Lie algebra generated
by {x1,... ,x, } in Modk. The Lie operad Lie := {Lie(n)1n>1 in Modk has an arity
n component isomorphic to the k submodule of Freeci,(x1,... ,x,) generated by
the Lie products which are linear in each of the xi. The oi-operations are defined
by a substitution of the type appearing on the right side of (1.13).

For k = C, there is a beautiful formula due to Klyatchko [Kly74] describing
{Lie(n)},>I as induced representations of En induced up from the cyclic subgroup
CC :_{(12...n)' k=0,...,n-1}CEn:

Lie(n) = Ind T rn

where ( is the one-dimensional complex representation of C,,,

(n((12...n),) = eXp 27r7z

n

1.5. The pseudo-operad of labeled rooted trees

The operad of trees which we will now describe is not just an interesting exam-
ple, but is also a very useful tool in the general theory of operads. We begin this
section with some basic definitions and terminology.

A tree is a finite connected contractible graph. We will modify the standard
convention according to which all edges in a graph have two adjacent vertices and
delete the vertices with only one adjacent edge. This means that some edges will
have only one adjacent vertex and we call these edges external edges or legs. The
edges which are adjacent to two vertices will be called internal edges. Occasionally
it will be convenient to use the standard convention with two vertices adjacent to
every edge, in which case we call a vertex adjacent to just one edge an external
vertex. The remaining vertices will be called internal vertices. A more formal
definition of a graph will be given in Section 5.3 on modular operads.

All trees are assumed to have at least one edge; the tree with just one edge
(and no vertices) is called the trivial tree. A corolla is a tree with no internal
edges. A rooted tree is a tree with a distinguished external edge, called the root.
The remaining external edges are called leaves. An external vertex adjacent to a
leaf will be called a leaf vertex, and the external vertex adjacent to the root, the
root vertex. A rooted tree has a natural orientation with each edge oriented in the
direction of the vertex closest to the root. The root edge is oriented toward the root
vertex, but in the case of the trivial tree, this is ambiguous so we have to choose an
orientation. In any rooted tree, every vertex is adjacent to a single outgoing edge.
The arity of the vertex is the number of incoming edges. A tree with no vertices
of arity one is called reduced. Unless otherwise indicated, we will assume all trees
are rooted and oriented in the above sense.
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We denote the set of (internal) vertices of a tree T by Vert (T) and the set of
edges coming into a vertex v by In(v). When we need to include external vertices,
Vert(T) will denote the full set of vertices. The set of all edges of T, including the
root edge, will be denoted Edge(T), the set of internal edges by edge(T), and the
set of leaves by Leaf (T). We will also need the set Edg(T) of all edges without the
root (that is, `Edge = Edg + e'). Thus

Edg(T) = edge(T) Li Leaf (T) and Edge(T) = Edg(T) U {the root edge of T}.

We will occasionally use the notation (v, v') to represent an edge, where v, v' E
Vert(T).

Trees form a subcategory of the category of graphs, but not a full subcategory.
A morphism T --> S in the category of graphs is an epimorphism f : Vert(T)
Vert(S) such that

if (v, v') E Edge(T), then either
l

(z) (f (v), f (v')) E Edge (S) or

l (ii) f (v) = f (v ).

In case (ii), we say that f collapses or contracts the edge e = (v, v') to the ver-
tex f (v). Morphisms of trees are more restricted than morphisms of graphs. In
the case of trees, a morphism may collapse only internal edges. We also assume
that morphisms preserve roots of rooted trees. A morphism of trees is clearly an
isomorphism if and only if no edge is contracted.

The height of an internal vertex is the number of edges separating it from the
root of the tree. If we include external vertices, then we define the root vertex to
be at height -1 (under ground). The height of a tree is the maximum height of its
vertices including leaf vertices. Thus a corolla has height one.

DEFINITION 1.29. An elementary morphism (or an elementary contraction)
Ire : T --> T/e collapses one internal edge e and preserves the complement of e.
We use the notation 7r{e,, 10 : T --> T/{el,... , en} to denote the composition of
elementary morphisms collapsing the edges {el, ... , e}.

The above definition is, of course, informal - we did not even say what the
vertices of T/e are. Let e = (u, v) for some v, w E Vert(T), then

Vert(T/e) = (Vert(T) - {v,w}) U {e},

with the symbol {e} labeling the vertex of Vert(T/e) obtained by collapsing the
edge e and identifying v and w. The corresponding elementary contraction is then
given by f : Vert(T) -> Vert(T/e) defined

f (u)
u, for u V {v, w} and

Sl e, for u = v or u = w.

We will use these informal definitions quite often in the book. It will always be
clear how to make them formally correct.

REMARK 1.30. Each morphism of trees f : T ---* S induces a map f*
Edge(S) - Edge(T) - notice the unexpected direction! For example, if f : T - T/e
is an elementary contraction as in Definition 1.29, then Edge(T/e) = Edge(T) - {e}
and f* : Edge(T/e) °--* Edge(T) is the inclusion.

Each morphism of trees is clearly a composition of elementary contractions and
isomorphisms.
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A planar imbedding of a tree T is a monomorphism f : Vert(T) - R2 such that,
as (v, v') runs over Edge (T), all the line segments ] f (v) f (v') [ (excluding endpoints
f (v) and f (v')) are disjoint. The geometric realization of T associated to a planar
imbedding is the subset of the plane formed by the union of the line segments
[f (v) f (v')] (including endpoints). Two realizations are called equivalent if they
are related by a continuous isotopy of the plane. A planar tree is a (rooted) tree
together with an equivalence class of geometric realizations.

An X -labeled tree is a pair (T, f) where T is a (rooted) tree and f : Leaf (T) =
X is a bijection from the set of leaves of T to the set X. We use the term n-labeled
tree for the case when X = [n] and leaf-labeled tree when no particular labeling
set is specified. There are no nontrivial automorphisms of a leaf-labeled tree which
preserve the labels. A fully-labeled tree has labels assigned to all the vertices in
Vert(T). There need be no relation between the labeling sets for the leaf vertices
and for the internal vertices.

Each morphism f : T --> S induces an isomorphism (denoted by the same sym-
bol) f : Leaf (T) - - Leaf (S). We say that f preserves X-labelings f : Leaf (T) -=-->
X and A : Leaf (S) X if A o f = Q. Thus for each labeling 2 of T, f induces a
morphism f : (T, Q) - (S,Qo f-1) of labeled trees.

DEFINITION 1.31. The category Tree has as objects leaf-labeled rooted trees.
Morphisms of Tree are morphisms of trees preserving labelings.

For a finite set X we denote by Tree(X) or Treex the full subcategory of Tree
whose objects are X-labeled trees. We also denote Tree, := Tree({1, ... , n}) and
call elements of Tree, n-trees. The group EX of bijections of the set X acts on the
left on the set of X-labeled trees by permuting the labels,

v: (T,t) r--> (T, o, oQ).

The above correspondence can be extended to an endofunctor of the category Treex
which sends a morphism f : (T, Q) - (S, A) to f : (T, o, o e) --> (S,,7 o A). We will
call this action of EX on the category Treex the leaf relabeling action. We will
also use the opposite action

o-:

which we call the operadic action.
There is also an action from the right of the automorphism group of the under-

lying tree on the X-labelings: An automorphism b : T - T defines a new labeling
Q o 0. If 0 is an automorphism of T and 2 : Leaf (T) -> X is a labeling of the leaves,
then there exists a ore(o) E EX such that

(1.14) £00=oe(o)oL.
In the sequel, for brevity, we will delete the symbol c for composition. Observe that

Ue(VVY') = o't'A0")MV)')

and that

Qe(ll) = It and v&-1) = ae(O)-1.

EXAMPLE 1.32. Let X = {1, 2, 3} and let T be the 3-tree depicted in Figure 4.
Let 0 be the unique automorphism of T such that lb(u) = v and lb(v) = u. Then
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FIGURE 4.

at (7p) is clearly the permutation

1 2 3

( 2 1 3
E3

Equation (1.14) defines an imbedding ae : Aut(T) - EX whose image will be
denoted by E(T, e). Given any two X-labelings e and .\ of T, there is a p E EX
such that pe = A. Then, for 0 E Aut(T),

aa(")) = ape(o) = Pae('b)P-1

and

E(T, A) = E(T, pQ) = pE(T, e)p-.

The following proposition is obvious.

PROPOSITION 1.33. The relation e - e?i for E Aut(T) defines an equiva-
lence relation on the X-labelings of T. Two X -labeled trees (T, e) and (T, A) are
isomorphic in Treex if and only if P - A.

DEFINITION 1.34. Let [T, B] denote the isomorphism class of an X-labeled tree
(T, e) in Treex. We denote by Tree(X) the set of isomorphism classes of X-labeled
trees,

Tree(X) := {[T, e] I (T, e) E X-labeled trees}.

LEMMA 1.35. Fix an X -labeling e of T. The assignment p E-, pe establishes
a one-to-one correspondence between the right cosets of E(T, e) in EX and the
equivalence classes of X-labelings of a tree T.

PROOF. Two labelings p'e and pt of the tree T are equivalent if and only if
there is an automorphism V) of T such that p'e = peb = pae(7P)e. Since t is a
bijection, this is equivalent to p' = pae(b).

The following proposition is obvious.

PROPOSITION 1.36. Define a (right) action of Ex on Tree(X) by

Tree(a) : [T, e] H [T, or -'e].

Then

X - Tree(X), EX E) a -4 Tree (a) E Homs.t, (Tree (X), Tree (X))

defines a contravariant functor

Tree : Set f - Set f.



54 1 OPERADS IN A SYMMETRIC MONOIDAL CATEGORY

Proposition 1.36 says that Tree is a Setf-module. In the case X = [n], we
omit the brackets and write Tree(n). The operation which we now define endows
Tree := {Tree(n)J,,,>1 with a pseudo-operad structure.

DEFINITION 1.37. Given an n-labeled tree (T, f), an m-labeled tree (S, A) and
an integer i, 1 < i < n, there is a tree, denoted by T of S, called the grafting of S
to T along leaf i, given by identifying the root edge of S with the leaf i of T. Label
the leaves of the new tree as follows:

(i) a leaf coming from T which carried a label j, 1 < j < i - 1, retains its label,
(ii) a leaf coming from S having label j is relabeled j + i - 1 and
(iii) a leaf coming from T which carried a label j, i + 1 < j < n, is relabeled

j+m-1.
This labeling will be denoted 2 of A.

Note that the set of internal vertices of the new tree is the disjoint union

Vert(T of S) = Vert(T) Li Vert(S).

REMARK 1.38. There is an obvious extension of the oi-operation on n-labeled
trees to an operation (T, S) T ox S defined for arbitrary leaf-labeled trees T and
S with leaves labeled by finite sets X and Y, respectively, and x the label on the
leaf of T to which S is grafted. The set of leaves for the new tree is

(1.15) XuxY:_(X-x)uY
and

Vert(T o, S) = Vert(T) Li Vert(S).

PROPOSITION 1.39. The oi-compositions of Definition 1.37 are well defined on
the isomorphism classes [T, 2] by the equation

[T, f] of [S, A] := [T of S, f of A]

and they endow Tree = {Tree(n)1n>1 with the structure of a pseudo-operad in the
category of sets.

PROOF. It is easy to see that arbitrary isomorphisms f : (T, f) --> (T, f') and
g : (S, A) - (S', A') of labeled rooted trees extend to an isomorphism

f oig: (ToiS,foiA) - (T'oiS',2'o A').
Thus the operation of is well defined on isomorphism classes of labeled trees.

The associativity and equivariance conditions of Definition 1.16 for the oi-operations
are obvious.

REMARK 1.40. The isomorphism class of the trivial tree with the unique 1-
labeling defines a unit element, making Tree a pseudo-operad with unit in the
category of sets. By Theorem 1.61, it is an operad.

There is a non-E analog of the operad Tree based on planar trees, defined as
follows:

DEFINITION 1.41. Let Tree := {Tree(n)},,,>1i where Tree(n) is the set of iso-
morphism classes of planar rooted trees with n-leaves and each such tree is given
the n-labeling coming from numbering the leaves from left to right relative to the
standard (counterclockwise) orientation of the plane.
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1 2 3

FIGURE 5. The difference between trees and isomorphism classes
of trees Both T1 E Tree3 and T2 E Tree3 use the same sets of
names for their edges and vertices: Edge (Ti) = {r, s, t, u, v} and
Vert(TZ) _ {a, b, c, d, e, f }, i = 1, 2, but T1 # T2 because the names
are permuted. On the other hand, they both belong to the same
isomorphism class depicted by the `naive' labeled tree T E Tree(3).

The following statement is a non-E version of Proposition 1.39.

PROPOSITION 1.42. The o2-operations defined by grafting at the ith leaf endow
Tree = {Tree(n)j,,,>1 with the structure of a non-E pseudo-operad.

It is obvious that the component Tree(n) of the pseudo-operad Tree is, for each
n > 1, an infinite set. We will consider the sub-pseudo-operad Rtree consisting of
isomorphism classes of reduced trees (trees with no vertices of arity one). For this
pseudo-operad, Rtree(1) = 0 and Rtree(n) is finite for each n > 2.

There is a similar sub-pseudo-operad of the operad Tree, the pseudo-operad
Rtree of reduced planar trees. As we will see in Section 1.6, the cells of the Stasheff
associahedron K, are labeled by the nth component Rtree(n) of this pseudo-operad.

REMARK 1.43. Although the operads Tree, Tree, Rtree and Rtree introduced
above consist of isomorphism classes of labeled rooted trees, we will sometimes
simply call their elements trees and omit explicit notations for labelings.

The difference between trees and isomorphism classes of trees can be informally
described as follows. A tree T is, by definition, a graph, that is, each vertex of T
and also each edge of T has its `name' - an element of Vert(T) for each vertex and
an element of Edge(T) for each edge. Working with isomorphism classes means
forgetting these names. An isomorphism class is then a `shape' of a tree, without
explicit names for edges and vertices. These shapes are in fact what is usually
meant by a tree in human language. In other words, the difference between - for
example - Tree, and Tree(n) is that elements of Tree,,, are trees considered as
graphs (that is, graphs with no loops), while elements of Tree(n) are `naive' trees.
See also Figure 5.

Since there are no nontrivial automorphisms of labeled trees, labeling edges
and vertices of a representative of an isomorphism class of trees defines a unique
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labeling of each representative of this isomorphism class, therefore it makes sense
to speak about labeling edges and vertices of an `isomorphism class.'

1.6. The Stasheff associahedra

One of the earliest and most important examples of a topological operad is
derived from the sequence of Stasheff associahedra K = {Kn}n>1 which were dis-
cussed briefly in Section 1.1.6. The Stasheff associahedra form a cellular non-E
pseudo-operad, that is, a sequence of topological spaces with oi-operations which
are cellular maps satisfying the associativity conditions in Definition 1.16. In fact,
Stasheff's realization of the associahedron K, was as a convex subspace of the cube
In-2 designed so that specific maps of : K, x K, -> K, could be given in terms of
coordinate formulas. The cells of dimension k in K. are labeled by planar rooted
trees with n - 2 - k internal edges. See Figure 6 in Section 1.1.6.

Although convex, this realization was curvilinear in part, not a polytope in the
classical sense. Here we will sketch an alternative realization as a convex polytope;
it bears some similarity to the first such realization due to Mark Haiman [Hai84]
in 1984. For the present construction, notice there is another labeling of the cells
of Kn using as labels bracketings of a sequence of n 's (as position markers); this
is more immediately related to associativity in terms of moving parentheses; see
Section 1.1.6.

To be more precise, there is a bijection between the set of planar rooted trees
with n leaves and s internal edges and the set of bracketings of sequence of n 's with
s pairs of parentheses - every internal edge introduces a parentheses around the
terms corresponding to the input edges. If the tree T corresponds to a bracketing
b and the tree T' corresponds to b', then the tree created by grafting T' to T
at the leaf labeled i corresponds to the bracketing created by replacing the ith

in b with (b'), that is, placing b' inside a set of parentheses in position i. For
example, if b = b' = (corresponding to the 2-corolla with no internal edge), then
b o1 b' = See also Figure 6. Figure 7 shows the cells of the pentagon K4
indexed by bracketings of four 's.

This section is organized as follows. In Theorem 1.44 we state that there exists,
for each n > 2, a convex polytope whose poset of faces is isomorphic to the poset
of bracketings of n 's. This polytope will be constructed as a truncation of the
(n - 2)-dimensional simplex by hyperplanes. This truncation depends on a choice
of functions {cn}n>2i but the cellular isomorphism class of the result does not
depend on these functions (Proposition 1.47). The facial structure of the polytope
is reflected by a certain inequality of the functions defining the truncation.

The material in this section is very technical. Since we will not need it in the
rest of the book, our proofs will be merely sketched.

THEOREM 1.44. [Hai84] There is a convex polytope Ln C R-1 whose lat-
tice of faces (= cells) represents the lattice of bracketings of n 's and thus is a
realization of the associahedron.

The polytope Ln is constructed by truncating an (n - 2)-dimensional simplex
in II8n-1,

n-1
Ac-2 = It = (t1.... stn-1) I ti > 0, Y ti = e},

k=1



1 6 THE STASHEFF ASSOCIAHEDRA 57
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FIGURE 6. Correspondence between trees and parenthesized

strings. For n = 4, only binary trees are shown.

where c is a positive number. In order to keep track of the truncation procedure, we
introduce a family of positive real-valued functions c = {c, }n>2 with the domain
of definition of c, being the set of subintervals I of (1, ... , n - 1)

c {I I I is a subinterval of (1,... , n - 1) } -+ R+,

and satisfying, for n > 2 and subintervals I, J C (1, ... , n - 1), the condition

(1.16) c,,,(I) + c,,,(J) < c,,,(I U J)

if I U J is an interval properly containing both I and J.

EXAMPLE 1.45. A possible choice of the function c, satisfying (1.16) is c,(I)
a .3 ..d1i1D for any positive number a, where card(I) is the number of elements in I.
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1.((..).).

FIGURE 7. Labeling the cells of K4 by bracketings of four .'s.

This function depends only on the size of the subinterval; however, the analysis of
the facial structure of L, in Proposition 1.47 and the construction of oi-operations
in Corollary 1.49 requires the use of functions which are not of this simple type.

Let cn := cn((1,... ,n - 1)), and for a subinterval I := (j + 1,... , j + i) c
(1, ...,n-1),let

tI:= (t1+1,... ,tj+i) and Itil :=ti+l+...+tj+i
DEFINITION 1.46. Let c = {cn}n>2 be a family of functions satisfying (1.16).

polytope Ln as the truncation of the simplexDefine an (n - 2)-dimensional
ItAT -2
{t I

tl + + to-1 = en, ti > o}
by the affine hyperplanes PI defined by It1I = cn(I), that is,

L'n := It = (t1,... ,tn-1) I tl +... + to-1 = en, t1l ? en(I)),
for I c (1,...,n - 1).

Polytope L4 for c = {c},>2 as in Example 1.45 is depicted in Figure 8. Note
that the affine hyperplanes Pl are all transversal so that the codimension of a cell
of Ln is the number of intersecting hyperplanes. Moreover, as part of the proof of
Theorem 1.44 (see the second edition of [SS94]) one shows that the construction
of Definition 1.46 does not depend on the family c = {cn}n>2 and that all the L;,
are isomorphic as cell complexes to Kn:

PROPOSITION 1.47. The cell complex Ln does not depend on c, that is, for
any two families c' and c" satisfying (1.16) there exists a cellular isomorphism
p : L" - Lx'. The poset of faces of Ln is isomorphic to that of K.

SKETCH OF PROOF. Let us analyze the facial structure of L. We define a
family of embeddings

oiLr xLs
for r + s = n + 1, 1 < i < r, with suitable families c' and c" of functions satisfy-
ing (1.16). In general, the families c' and c" will not be of the type in Example 1.45,
but to keep the discussion from becoming too technical, we are not going to give
their precise definition here. In coordinates, the embedding is the obvious one:

(1.17) oz :(t')X(t")H(t'1, 1 t"_1,t ', z 1, , , s z, , r-1
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3 18 24

FIGURE 8. The (t 1, t3)-projection of L4 with c4(I) = 3`a d(l).

The trick is to show that the topological boundary of L' decomposes as a union
of the images of the oi:

(1.18) 8Lc = U oi(LT x LS
2<,<n.-i

Furthermore, for the new functions c' and c" and the labeling of the faces by
bracketings as described below, the closed faces oi(Lr x Ls') intersect for distinct
i, r, s if and only if the corresponding bracketings labeling the unique open cell in
the face oi(LT x Ls1) enclose either disjoint intervals or strictly nested intervals.
See Figure 7 for n = 4.

The open cell in the face oi(Lr x L"') is labeled by the bracketing bI of s
's in the positions (i, ... , i + s - 1). Note that an interval of length s - 1 in the
indices of the ti corresponds to an interval of length s in the 's, a single variable
ti corresponding to in positions i, i + 1.

EXAMPLE 1.48. The faces of L4 in Figure 8 are labeled as follows.

The face P(,,,,) n L4 = tl(L2 x L3 ') is labeled by
the face P('2,3) fl L4 = t2(L2 x L3 ') is labeled by
the face P'11 fl L4 = ti (L3 x L2 is labeled by
the face P(2) nL4 = t2(L3 x L2is labeled by and
the face P(3) n L4 = L3 (L" x L2') is labeled by is

The above correspondence shows how to identify L4 and pentagon K4 in Figure 7.

The incidence relations of the faces of L° should be such that the intersection
PI fl PJ fl L` is nonempty precisely when the bracketings bI and bJ are nested or
disjoint. This follows from condition (1.16) which implies that if the intersection
PI n Pj n L` is nonempty, then I U J cannot be an interval properly containing both
I and J. Indeed, (1.16) implies that if I U J were an interval properly containing
both I and J, then for t E PI fl PJ and ti > 0,
(1.19) Itluil <- I tjl + I c(I) + c(J) < c(I U J)



60 1 OPERADS IN A SYMMETRIC MONOIDAL CATEGORY

Thus, either

(1.20) 1) J C I or 2) ICJ or 3) I U J is not an interval.

Either of the conditions 1) or 2) in (1.20) implies that the bracketings br and
bj are nested. Condition 3) implies that bI and bj are disjoint, since the intervals
I and J are disjoint and not adjacent. By induction on the number of parentheses
or, equivalently, the number of internal edges of the trees, the full isomorphism of
the lattices of faces of K,,, and L' is established.

In the following corollary which follows from the above considerations, we write
Ln instead of L' because, as we know from Proposition 1.47, the cellular isomor-
phism class of L;, does not depend on the family c as long as it satisfies (1.16).

COROLLARY 1.49. The sequence {Ln}n>2 with

of:LrxL.->Ln
defined by the of in (1.17) form a cellular (topological) non-E pseudo-operad with
the cells of dimension s in Ln indexed by the planar trees with n leaves and n - s - 2
internal edges.

We will identify {Ln}n>2 with the operad of Stasheff associahedra {Kn}n>2.
Let us close this section with a couple of general remarks.

It is well known [Sta95] that Kn is the real compactification of the configuration
space of n - 2 distinct labeled points in the unit interval. As such, it is a real
manifold-with-corners and the tubular neigborhood theorem for manifolds-with-
corners implies that it is a truncation of its interior, which is the simplex An-2;

see [Mar99a, Proposition 6.1] for details.
Devadoss in [Dev01] argues that the truncation scheme discussed above corre-

sponds to connected subdiagrams of the Coxeter diagram of A. But none of these
general arguments give an explicit truncation as described in this section.

1.7. Operads defined in terms of arbitrary finite sets

In the discussion of free operads in Section 1.9 and in the operadic cobar con-
struction in Section 3.9, it will be useful to evaluate an operad (considered as a
functor) on an arbitrary finite set, that is, we want to define operads in terms of
Set f-modules as opposed to the E-module formulation in Definition 1.4. If we make
fairly weak assumptions on the underlying category C, namely, that it has small
colimits and that for any object X, the endofunctor X O - preserves colimits, the
extension of a E-module to a Set f-module presents no problem.

In fact, it will be useful to extend further the category Set f to the category
of labeled unordered partitions of finite sets, a finite set being identified with the
trivial partition. In this context, expressions such as A(mi) O ... 0 A(mn) for a
E-module A represent the value of the extended functor associated to A on the
ordered partition (ml,... , mn) of m = m1 + + mn.

An equivalent formulation uses surjections of finite sets instead of partitions.
A Setf-Mod extends naturally to this enlarged category Surjf whose objects are
surjections of finite sets and whose morphisms are commutative diagrams in which
f, f' are surjections and p, a- are bijections:
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(1.21)

X

fI

Y

P

01

X'

If,

Y'.
In terms of surjections, we can represent an ordered partition (mI, . . , mn)

by a surjection mapping a sequence of subintervals of lengths (ml, .. ,m,,) on the
sequence of integers (1, ... , n) :

f : [m] -" [n], f (j) := i, if mi + ... + mi_i < j < mi + ... _{.. mi.

Then if we define

(1.22) A[f] A(f-1(1)) (D ... 0 A(f -I(n)) - A(m,i) 0 0 A(mn),

the operad composition associates a morphism A[g] O A[f] -+ A[g o f] to each
sequence [m] -f++ [n] -4+ [1]. More generally, the operad composition law is a
natural transformation

-'g;f:A[g](D A[f]-'A[gof]

defined for any sequence X 2++ Y --q Z. The associativity axiom (see below)
takes the form of the equality of two composite natural transformations arising
from a sequence X -4+ Y 4 Z -++ W. See Theorem 1.60 below. The usefulness
of the formulation in terms of surjections will be clear when we compare different
resolutions of operads in Sections 3.5 and 3.6.

DEFINITION 1.50. There is a symmetric monoidal structure on Surj f with
multiplication U given by concatenation of surjections

(X4 Y)U(X'-f-++Y'):=(XUX'
and symmetry coming from the natural identification of X U X' and Y U Y' with
X' U X and Y' U Y, respectively. The unit object is defined purely formally as the
`emptyset surjection' 0 : 0 -++ 0.

Note that any surjection is the U-product of several surjections onto singleton
sets, and that, in general,

(1.23) if f = fi U f 2 U . . . U f,, then A[f] - A[fi] O A[f2] O . . O A[fn].

Equation (1.23) says that the functor f -+ A[f] is a monoidal functor once we
add the condition A[0] = 1. In fact, (1.23) shows that there is a unique extension
of a Setf-module to a monoidal functor on Surj f.

A related description of pseudo-operads is presented later in the section, and

at the same time, we will make more precise the distinction between operads and
pseudo-operads.

There are two functors R (restriction) and E (extension) which allow us to pass
back and forth between the categories Set f-Mod and E-Mod. The compositions RE
and ER are isomorphic to the respective identity functors, therefore we have the
following proposition.

PROPOSITION 1.51. The categories Setf-Mod and E-Mod are isomorphic.
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The restriction functor is defined in the obvious way. The extension functor
E : E-Mod -> Set f-Mod uses a standard coequalizer construction. If n is the
cardinality of the finite set X, then define the set of orderings of X:

Ord(X) := {fIf : X Z [n] },
consisting of all bijections from X to [n], and let fi'(X) be the coproduct of A(n)
over the orderings of X,

A'(X) := II A(n).
fEOrd(X)

For each or E E there is an endomorphism A'(v)X : A'(X) -> A'(X) induced by
the isomorphisms A(Q-1) : A(n)f -* A(n)oof between the factors of the coproduct.
Let EA(X) be the coequalizer of the family of morphisms A'(o-)X,

(1.24) EA(X) := coequalizer {A'(v)X : A'(X) - A'(X) I.
a E E,

EXAMPLE 1.52. In the case of Modk, EA(X) is the module of E,-coinvariants:

(1.25) EPA(X) :_ ® A(n)
fEOrd(X) En

In the case of Set, EA(X) is the quotient of the disjoint union of the A(n) by the
equivalence relation A(n) f D x - A(o)x E A(n)QO f, a- E E,,:

/ .(1.26) EA(X) := I H A(n)
fEOrd(X) 1

CONVENTION. From now on, to simplify notation, we will denote EA(X) by
A(X) and make no distinction between E- and Set f-modules.

Before giving the definition of an operad in terms of surjections, we need to
introduce some more notation and definitions. Define

(1.27) Surj [Y, X] :_ {hl X -» Y} and Surj [n, m] := Surj [[n], [m]].

The strange reversal of order Y, X instead of X, Y is explained in Remark 1.56
below.

DEFINITION 1.53. Given a E-module A and a surjection f : X -** [n], define

A[f] := A(f-1(1)) O ... 0 A (f -' (n)).

Note that for f : X .- [1], A[f] = A(X), and for any permutation or E E,,,
A[o] = A(1)°n

In the discussion above we have been assuming that even if the monoidal struc-
ture is not strict, the associativity constraint for the symmetric monoidal category
(C, 0) is simple enough that there is no need to specify brackets in the multiple
product. Define

(1.28) A[n,X] := ll A[f].
f E Surj [n, X ]

The morphisms & : A[ f ] - A[o o f ],

(1.29) v : A(f-1(1))0...OA(f-1(n))-A(f 1(o--1(1)))0...®A (f-1( (n))) ,
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given by the symmetric monoidal structure on the category C, define a left E,action
on A[n,X].

To extend the definition of A[f] to surjections f : X -->+ Y with arbitrary finite
codomain Y but with no preferred ordering, we need to define an unordered tensor
product. This can be done using a coequalizer construction analogous to that used
in the definition of the extension functor (1.24).

Let f : X - Y be a surjection onto a finite set Y of cardinality n. For any
ordering g E Ord(Y), A[g o f] has been defined in Definition 1.53. Let

A'[f] := ll A[g o f]
gEOrd(Y)

For c- E En, the morphism a : A[g o f] - A[, o g o f] defined in (1.29) extends to a
morphism of the coproduct

A'(r) : A[f] -+ A'[f]

DEFINITION 1.54. Define A[f] to be the coequalizer of the morphisms A'(v):

A[f] := coequalizer { A'(-) : A'[f] --+ A[f] I.
a EE,

For any p E Ey, f E Surj [Y, X] and g E Ord(Y), g o p o g-1 E En and the
morphisms g o p o g-1 : A[g o f] -+ A[g o p o f] give rise to a morphism from the
coproduct A'[f] to A'[po f] compatible with the morphisms defining the coequalizer
A[f]. Therefore, there is a morphism of coequalizers denoted simply p : A[f]
A[po f]. If

(1.30) A[Y,X] := J_1 A[f],
fESurj[Y,X]

then EY D p H p defines a left Ey-action on A[Y, X].
For any h E EX there is a restricted bijection of finite sets h : h-1(f-1(y)) _,

f-1(y) and by the contravariance of A, there is a morphism A(h) :
A(Jf

-1(y)) ---+
A(h-1(f -1(y))). By functoriality of the 0-product and the coproduct, we get A(h) :
A'[f] --* A'[f o h] compatible with the morphisms defining the coequalizer A[f],
therefore, there is a well-defined morphism A(h) : A[f] -+ A[f o h].

DEFINITION 1.55. The right action of h E EX on A[Y, X] is defined as the
endomorphism of the coproduct (1.30) induced by the morphisms A(h) : A[f]
A[f o h].

In summary, for any two finite sets X, Y and for a E-module A we have con-
structed a left Ey- right EX-module A[Y, X]. An example of this construction
appears in Section 1.10, Example 1.95.

REMARK 1.56. We use the notation [Y, X] corresponding to X -++ Y to em-
phasize that the Ey-action on A[Y, X] is a left action on the target Y and the
EX-action is a right action on the source X. Another reason for the choice is
in order to have the composition A[g] O A[f] -+ A[g o f] for g E Surj[Z,Y] and
f E Surj [Y, X] take the same form as the composition law in the associativity axiom
in Definition 1.4
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REMARK 1.57. The above constructions make the relation between operads
and PROPs, mentioned in Section 1.1.3, more precise: Given an operad P, then the
P[m, n] are the components of the PROP generated by P.

In general, given any set Y of cardinality n and an assignment of an object A.
in C to every element of Y, we can define for each g E Ord(Y) an (D-product

01 Ay Ag-i(1) Q... (D Ag-i(n).

The symmetry in C determines a permutation morphism o : Qg Ay - 0,.g Ay
for each a- E En.

DEFINITION 1.58. The unordered 0-product is defined by

(1.31) OYA5 := coequalizer
l

Q : Ay - Ay
° E E^

ll 09 JQ g}.
gEOrd(Y) gEOrd(Y)

As with A[Y, X], there is a left Ey-action on 0 A5.

The association of an object A[f] to a surjection f : X -» Y can be considered
as determining a functor on Surj f with values in C. For the next theorem it will
be convenient to introduce a new category Surj f.

DEFINITION 1.59. Let Surjf be the category with surjection sequences X f
Y q Z as the objects and the obvious commutative diagrams (generalizing dia-
gram (1.21)) as morphisms.

THEOREM 1.60. (Definition of an operad - Finite sets and surjections version)
An operad in a symmetric monoidal category C is equivalent to a contravariant
monoidal functor

(f : X --H Y) . . P[f],
from the symmetric monoidal category (Surj f, LJ) (Definition 1.50), together with
a natural transformation

'rg,f : P[g] o P[f] P[g o f]

of functors on the category of Surjf of surjection sequences X 4 Y -» Z. The
natural transformation 'y (which encodes the set of operad composition laws) satisfies
the following axioms:

1. Associativity. Given a sequence X ->4 Y - H Z - W, the following diagram
commutes

P[h]OP[g](D P[f]
n 0ygf

P[h]OP[gof]

%h;g (D I1
1

yhog: f

'Yh;gof

P[hog]0P[.f] P[hogo.f]
2. Unit. If 1 is the unit object of C, then there is a morphism rl : 1 --* P(1)

such that for any surjection f : X -*+ Y, the composite morphisms
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P[f] O 1°"
1.077 O°

P[f] O P[llx]
7r +

P[f]
and

1°"` O P[fl
aon

P[IlY] o P[f] -" P[f]
(X has n elements and Y has m elements) are respectively the iterated left
unit morphism and the right unit morphism for the underlying monoidal
category C. Here we use the natural identification of P(1) and P({x}) for
any singleton set W.

PROOF. Given P E Set f-Mod satisfying the conditions in Theorem 1.60, if
we apply the restriction functor, the E-module RP satisfies the axioms in Def-
inition 1.4. If the target of a surjection is ordered, we can identify it with [n],
f : X [n] and decompose f = f1 U ... U f,,, where fi := f If -lil. By definition of
a monoidal functor, there is an isomorphism P[f] = P(f -1(1)) O . . . O P(f -1(n)).
The natural transformation -y,, f for the sequence [m] -f*+ [n] ; * [1] is the operad
composition as given in Definition 1.4 and the associativity axiom as given above
applied to [l] -f» [m]+ [n] - N [1] is the associativity axiom of Definition 1.4.
The equivariance axiom in that definition is a consequence of the fact that the
morphisms yy;f are well defined on the (D-product of coequalizers P[g] O P[f] .

Conversely, given P E E-Mod satisfying the axioms of Definition 1.4, the corre-
sponding EP E Set f-Mod extends to a functor on Surj f which satisfies the axioms
in Theorem 1.60. First of all, since symmetry for U identifies {y1} U .. U and
{yi1 } U ... U {yin }, P[f] coequalizes the maps

P(f-I(yi)) O ... (D P(f-1(yn)) - P(f(yi,)) O ... 0 P(f-1(yin))
induced by permuting the yi. Hence the unordered (D-product Q}, P(f -1(y)) maps
onto P[f]. There is an obvious inverse,

P[fl -'P(f-1(yi))O...OP(f-I(yn)) nP(f-1(y)),

so P[f] = QYP(f-1(y)). The associativity and unit axioms follow immediately
from the extension procedure.

In this description, operads form a subcategory 0pc of Set f-Mod in C. When C
is understood, we denote it simply Op.

Given a pseudo-operad P considered as a E-module with oi-operations satis-
fying the axioms in Definition 1.16, it is possible to use the methods of the proof
of Theorem 1.60 to define ox-operations on the Set f-module extension P. We will
use the same notation for the extension.

The definition of the ox-operations on a pseudo-operad P is straightforward.
Given f : [n] Z X and g : [ml -Z Y, with f (i) = x define f Ux g : [m + n - 1] ->
X Ux Y, where X Ux Y was introduced in (1.15), by

f(i), 1 <3 <i-1,
(f Ux g)(7) = g(7 - i + 1), i < j < i + m - 1, and

f(j-m+l), i+m<j<m+n-1.
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Then define ox as the composition

P(f)OP(g) o 1)
(1.32) P(X)OP(Y) P(n)OP(m) P(n+m-1) P(XuxY).

The pseudo-operad equivariance axiom implies that ox is well defined indepen-
dent of the choice of f, g.

The associativity axioms for the ox-operations are

(1.33)
ox(1[(Do,)=oy(oxOll) : P(X)OP(Y)OP(Z) -+P(X Ux (YUy Z))

0x2(ox,(D1L)=ox (ox20n)(nOT):P(x)OP(Y)OP(z) P((xux1Y)

Here we have used the equalities of sets,

X Ux (Y Uy Z) = (X Ux Y) U, Z and (X Ux, Y) Ux2 Z = (X Ux2 Z) Uxl Y,

where x, x1i x2 E X and y E Y.

THEOREM 1.61. (Set f-definition of a pseudo-operad) A pseudo-operad P with
values in C as defined in Definition 1.16 extends to a Set f-module, also denoted P,
together with operations ox : P(X) O P(Y) ---> P(X Ux Y) satisfying the associa-
tivity axioms (1.33). Conversely, a Set f-module with operations ox satisfying the
associativity axioms (1.33) restricts to a E-module which satisfies the associativity
and equivariance axioms of Definition 1.16.

The proof is an exercise, left to the reader, in the use of the extension and
restriction functors.

1.7.1. Operads versus pseudo-operads. The relation between the struc-
ture maps of operads and pseudo-operads (both considered as Set f-modules) can
be described as follows. First, given a pseudo-operad P, define the natural trans-
formation

"yg,f : P[g] O P[f] - P[g o f],
i.e. the operad composition law, by

(1.34) 'yg,f : P[g] O2[f] = 2[g] 0 P(f-1(yl)) O... O P(f-1(y, ))

o. (°Yn_10') (°Yl0 On)
P[gof]

The associativity conditions (1.33) imply that the ryg, f satisfy the associativity
axiom of Theorem 1.60. The unit axiom in that theorem is fulfilled if there exist
morphisms g : 1 --* P(1) such that, when extended to P({x}), for all finite sets
X D x, the following diagrams commute

r lP(X) O 1 ' P(X) 1 O P(X) P(X)

(1.35) IL (D,7. I / O rlx O Il
1

P(X) O P({x}) P({x})OP(X)
Conversely, if P is a Set f-module with an operad structure, we can define ox-

operations giving P the structure of pseudo-operad as follows. Given two finite sets
X, Y, first define a surjection

(1.36) f :XUxY-4+X , f (y) := x for y E Y, and f(x'):=x'for x5x'EX.
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Let 77: 1 - P({x}) be the unit for the operad structure and define j - P(Y) -+ P[f]
by

P(Y) - P(Y) O 1°l, 1)

nonocn-v

P[A
where n := #(X). Using the natural identification t : P(X) = P[g] for g : X
define ox by the following diagram:

ox

P(X)OP(Y) P[gof]=P(XLixY)

(1.37)
tOj

P[9] O P[f]

The associativity conditions (1.33) for these ox operations follow directly from the
associativity axiom in Theorem 1.60.

NOTE: For the rest of the book we will freely use the alternative definitions
of operads and pseudo-operads and not distinguish between E-modules and Set (-
modules.

REMARK 1.62. It is clear from the above exposition that the full subcategory
of the category IYOp of pseudo-operads P in C such that P(1) = 0 is isomorphic
to the full subcategory of Op consisting of operads Q with Q(1) = 1. So we will
usually make no distinction between pseudo-operads with P(1) = 0 and operads
with Q(1) = 1.

The ox-operations reappear in Theorem 1.73 below where we define a functor
from the category of trees to the category C. In fact, we will prove that there is an
equivalence between pseudo-operad structures on a Set f-module P in a symmetric
monoidal category C and functors from the category of trees to C. Various construc-
tions using trees, such as free functors and cobar resolutions, are more appropriate
to pseudo-operads than operads, although they are used in both contexts.

1.8. Operads as monoids

There is yet another definition of operads using a monoidal structure on E-Mod
(the -product defined below) which combines the data for all the composition
operations. Relative to this monoidal structure, an operad is a monoid and the
construction of the free operad can be understood as a modified free monoid con-
struction. See Section 1.9.

Smirnov [Smi82] introduced the -product in the context of operads. Joyal
had studied it in the context of general category theory [Joy8l] where Set f is
known as the permutation category.

A species is a contravariant symmetric monoidal functor from Set f to a cate-
gory C, which satisfies some auxiliary conditions not of interest here. The monoidal
structure on the category of species is called the substitution product and is essen-
tially the same as the -product defined below.
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DEFINITION 1.63. Define the -product on E-Mod by

(n) := ll (A(m) Or_ B[m,n]).
M=I

REMARK 1.64. One motivation for the definition of the -product is the fol-
lowing relation with Schur functors (see Definition 1.24)

'FA(YB(X))

To show that the -product defines a monoidal structure, we need to check
the axioms for the unit and for associativity. The associativity constraint involves
a rather complicated re-shuffling of factors and the crucial identity is given in the
following proposition which will prove useful later when we compare different char-
acterizations of the Koszul property.

PROPOSITION 1.65. For each A, B E E-Mod and natural numbers n, p > 1,

[n,p] - ll A[n,m] OF_ B[m,p],
n<m<p

where A[n, m], B[m, p], etc., were introduced in equation (1.28).

In the case of n = 1, this reduces to the definition of on E-Mod. The
details of the proof are rather technical and will be deferred to the appendix to this
section.

The associativity constraint for comes from the isomorphism in Proposi-
tion 1.65:

ll OE_ C[m,p]
1<m<p

II (A(n) OE B[n, m]) Or_ C[m, p]

(1.38) 1<n<m<p

ll A(n) OF, (B[n,m] OE,.. C[m,p])
1 <n <m <p

ll A(n) OE
1<n<p

Regarding the unit object, we have the following proposition.

PROPOSITION 1.66. If the monoidal category C has an initial object 0, then a
unit object for the -product on E-modules is given by the functor defined by

J 1c, when card(X) = 1, and
1£ M°d(X) 0, otherwise.

The definition for morphisms follows from the properties of the unit and the initial
object.

PROOF. Both isomorphisms

(10A)(n) = A(n) and (A01)(n) = A(n)
follow immediately from the unitarity axioms and the isomorphisms

(1.39) OX=0=X00
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and

(1.40) 0UX-X=XJJ0.
Since the initial object is the colimit over an empty index set, the isomor-

phisms in (1.39) follow from our assumption that the multiplication O on C com-
mutes with colimits. The isomorphisms in (1.40) are implied by the Yoneda lemma
(see [Mac71, Lemma 111.2.2] or [HS71, Proposition 11.4.1]) and the following iso-
morphisms:

Homc(X II Y, Z) - Homc(X, Z) x Homc(Y, Z) and Homc(O, Z) = {1}.

DEFINITION 1.67. (Operad as monoid) An operad is a monoid for the -
product.

THEOREM 1.68. Definition 1.4, and hence also the definition in Theorem 1.60,
are equivalent to Definition 1.67.

PROOF. Let P be a monoid for the -product. Since POP is a coproduct
of terms P(n) OE (P(ml) (D O P(mn)), a monoid structure p : POP --> P
defines a set of operations yn,m1, m, of the type appearing in Definition 1.4. The
equivariance axiom for these operations follows from the fact that the -product is
defined using the reduced 0-product (Dr.; see equation (1.11). The commutative
diagram expressing the associativity axiom in Definition 1.4 is equivalent to

(POP)OP --f P.
This follows from the description of ap,p,p as the composition of the isomorphisms
in (1.38) which have the effect of shuffling terms in the same way as the morphism
p at the top of the commutative diagram (1.4). The unit axiom in May's definition
is equivalent to the fact that 1E-Mad is a unit for µ.

Conversely, let P be an operad as in Definition 1.4. Then the structure op-
erations _/n;m1, ,,,n define on P a -monoid structure in an obvious manner.

1.8.1. Appendix. In this appendix we prove Proposition 1.65. By definition,

[n,p] = ll (AD B) [f]
f E Sur7 [n, pi

A given surjection f : [p] [n] partitions [p] into n subsets and then runs
over all partitions of each of these subsets. By definition

O
1<i<n

card(TfTT-1(i))

0 ll A(mi) OF_, 11 B[gi]
1<i<n m,=1 9,ESur7[[m:],f-1(0]

card((fT 1(i))

O 11 A(mi) (DE,.., LL 0 B(g 1(j))
1<i<n m,=1 9=ESur7[[m,],f-1(i)] 1<j<-,

The rather complicated indexing describes what one might call `a nested partition,'
the subsets f-1(i) partition [p] into n parts and the subsubsets g-1(j) for 1 < j
mi partition each f -1(i) into mi parts.
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We can distribute the first 0 product (indexed by i) over the adjacent coproduct
and permute factors so that all the A(mi) terms are together and all the B(g,-1(j))
terms are together. When is rewritten in this form, we have a coproduct
over all nested partitions of [p] given by the f -1(i) and g,-. 1(j),

<m,<#(f 1(,))
E, 1<i<n 1 ,9=U9

mj x XEm,. 11 0 B(g-1(j))
Ju[-:lLjE

Let m = m1 := E I mi whenever m = (ml, ... , mn) E Nn and define a 'standard
partition' via the nondecreasing surjection hm : [m] [n] by

(1.41) hm(j)=ifor ml+....+mi_i<j<ml+....+m;

Then we can write the preceding sum as:

II A[hm] (D,_, x
{m 1<m,<#(f 1(i))}

{m 1<m

xEm 11
gES, m,p]

hog=f

(A[hm] OF_, x xE,..,. 1[m, m]) Or- 11 B[g]
g ESu [m,p]

hog=f

If we now take the coproduct over the surjections f : [p] - H [n], this removes the
conditions on the individual m and allows for arbitrary g, so that

ll [f]
f ESurj [n,p]

(1.42) = ll (A[hm] OEm1 x XE,..,, 1[m, m]) OE,.. I 11 B[g] I .

mEN^
In+ISp

g E Snrj [m,p]

We need to show that this is isomorphic to 11n<m<p A[n, m] OE B[m, p], and since
the factor on the right of the O-product in (1.42) equals B[m, p], we need only
identify the term on the left of the (D-product. The following lemma, whose proof
is left as an exercise, completes the proof.

LEMMA 1.69. There is a right Em-module left En-module isomorphism:

A[n,m] = ll (A[hm] OEm x XE,.,,, 1[m, m])

The index set for the coproduct is the set of ordered partitions of m into n nonempty
parts.

Since the map a®o -- a v is also a left En-module morphism, this completes
the proof of Proposition 1.65.
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1.9. Free operads and free pseudo-operads

In this section we give an explicit construction of the free pseudo-operad gen-
erated by a E-module. Adjoining a unit gives the free operad. To help the reader
keep track of the steps in the construction, we will give a general description of the
method before going into the details.

Given a E-module A, the first step in the construction is to assign to each
labeled tree (T, e) the unordered (D-product A(T, f) := Q 11(T) A(In(v)), where
In(v) is the set of input edges at the vertex v. The unordered (D-product was defined
in Definition 1.58. The free operad generated by A is then the colimit of A(T, f)
as (T, f) runs over the category Tree of labeled rooted trees; see Definition 1.77. A
more explicit construction of the free operad can be given as follows.

The automorphism group of T acts on the coproduct of the A(T, 2) as f runs
over an equivalence class of labelings and we denote by A[T, f] the coequalizer of
this action. The free operad generated by A is then the coproduct of the A[T, f] as
[T, l?] runs over the set of isomorphism classes of labeled rooted trees (see Proposi-
tion 1.82). As objects in C, for a fixed T, all the A(T, 2) and A[T, 2] are isomorphic,
but we need to assign a labeling in order to define a representation of En (see Defini-
tion 1.81 and equation (1.50)). In Proposition 1.87 we describe this representation
as an induced representation and then give some examples.

One can also use A(T, f) to define a functor from the category Iso (Tree) of
isomorphisms of Tree to the symmetric monoidal category C where the E-module
A take its values; see Proposition 1.72. Theorem 1.73 and Corollary 1.74 state that
this functor extends to all morphisms of Tree if and only if A is a pseudo-operad.
This shows that the category of trees is actually better suited to the description of
pseudo-operads than to operads and explains why we first describe the free pseudo-
operad functor I and then describe the free operad functor I' by adjoining a unit
to '; see (1.58).

To motivate the construction and explain the reason why the construction is as
complicated as it is, consider two familiar examples of a free monoid in a monoidal
category:

.F®e (X) _ ® X On for X E Modk
n>o

and

.F',"(X) = II Xxn for X E Set,
n>0

where X"0 equals some fixed singleton set.
More generally, if C has countable coproducts and the multiplication commutes

with coproducts in both arguments, then the free monoid on X E C has a form
analogous to the two examples above:

T reOe(X) = 11 X®n.

n>0

This form was used by Barr [Bar66] to define a cohomology theory for monoids in
any category satisfying the above requirements. Similarly, the homological algebra
of operads uses in an essential way the free operad.
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For the Smirnov monoidal structure defined in Section 1.2, the multiplication
in the category of E-modules is distributive over coproducts on the left but not on
the right. For example, (E O (F 11 G)) (2) contains a component E(2) OF(l) O G(1)
which does not appear in or and therefore, in general

This creates a problem with the naive construction of the free monoid given
above. A more sophisticated construction valid for multiplications which are left
distributive over coproducts and commute with filtered colimits on the right (as
in the case of the -product) has been described by Baues, Jibladze and Tonks
in [BJT97]. In this section we describe a different construction of the free operad
due to Ginzburg and Kapranov [GK94] using trees. It will appear in Section 3.1
as the cobar complex of an operad. In Section 3.3 we introduce another complex
closely related to free monoid construction of Baues et al.

The idea underlying the model .F°e(X) = X®' for the free monoid gen-
erated by X is that there is a subobject X®' corresponding to the input data for
the n-fold iterated composition law for a monoid structure on X. By analogy, we
expect the free operad to contain a subobject corresponding to the input data for
each possible sequence of operadic compositions. Since the objects of the category
Tree, of rooted trees provide combinatorial objects representing all m-ary oper-
ations coming from sequences of k-ary operations, it is natural to use Tree- to
describe the arity m component of the free operad generated by a E-module.

Given a labeled tree (T, P) and a E-module A, in order to describe the input
data for a sequence of operad compositions of various A(k), we form the unordered
0-product (defined in (1.31)) of the A(In(v)) as v runs over the vertices of T.

DEFINITION 1.70. Let A be a E-module in C. For a labeled tree (T, e), define

A(T,P) 0 A(In(v)),
Vert(T )

where A(In(v)) is the object of C corresponding to the finite set In(v) of input
edges of v.

Note that A(T, f) does not depend on f as an object in C. If no confusion is
possible, we will write simply A(T) instead of A(T, P). An example of A(T) is given
in Figure 9

REMARK 1.71. Elements of A(T) will often be written as sequences

with a E A(In(v)).
We may interpret a as a color of the vertex v and A(T) as the set of A-colorings
of the vertices of T.

In the main definition of this section, Definition 1.77, we will use a certain
functoriality of the correspondence A A(T, 2) described in the following proposi-
tion. For a category D, let Iso (D) denote the subcategory of isomorphisms, that is,
the subcategory with the same objects but whose morphisms are the isomorphisms
of D.

PROPOSITION 1.72. The correspondence (T, f) A(T, f) determines, for each
E-module A, a covariant functor Iso (Tree) -> C.
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FIGURE 9. An example of a rooted tree with root vertex r, with
A(T) = A({x, y, z}) 0 A({s, t}) 0 A({u, v, w}).

PROOF. By definition, a E-module in the category C is a contravariant functor
from E to C, therefore a bijection g : X - Y of finite sets determines an isomor-
phism A(g) : A(Y) -# A(X). An isomorphism f : (T, f) -+ (S, f f -1) of labeled
rooted trees defines a bijection f* : Edge(S) --> Edge(T) (see Remark 1.30) which
induces, for each v c Vert(T), a bijection In(f(v)) = In(v) and thus also an
isomorphism fv : A(In(v)) --> A(In(f(v))). Define

7:= O fv : O A(In(v)) -* O A(In(f(v)))
Vert(T) Vert(T) Vert(T)

and, finally, A(f) : A(T) -> A(S) as the composition

(1.43) A(f) : A(T,P) = O A(In(v)) -L
vE Vet (T) vE Vert(T)

A(In(f(v)))

n A(In(w)) = A(S,2f-1),
wEVert(S)

where the last isomorphism is induced by the bijection Vert(T) => Vert(S). The
functoriality of the above construction is evident.

For an operad or pseudo-operad A, it is possible to extend the construction of
Proposition 1.72 to define a functor from Tree to C by extending the definition of
A(f) to all morphisms f in Tree.

Because each morphism in Tree is a composition of isomorphisms and elemen-
tary morphisms, it is enough to define the value of the functor A on elementary
morphisms. If e, is an edge oriented from v to w, X = In(w), Y = In(v), then the
following composite morphism A(7rx) is associated to an elementary morphism of
trees Try : T -+ T/ex of the type shown in Figure 10:
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Y

os

X Ux Y

FIGURE 10. The morphism A(7rx) : A(T) - A(T/ex) where 7rx
collapses edge ex with label x to a vertex U.

(1.44) 0 A(In(u)) = A(X) O A(Y) O O A(In(u))
uEVert(T) uE V-(T)

A(X Ux Y) O 0 A(In(u)) = 0 A(In(u)).
+.E V-t(T/e.) uE Vert(T/es)

#a

where the ox -operation for a pseudo-operad is defined in (1.32). So we have defined,
for any elementary contraction, a morphism:

A(7rx) : A(T) ---> A(T/ex).

The functoriality of the above construction is characterized by the following prop-
osition.

THEOREM 1.73. Let A be a E-module in C. Assume that there are, for each
pair of finite sets X and Y and each x E X, well-defined operations

ox : A(X) O A(Y) -> A(X Ux Y).

For a composition of elementary morphisms

f = 7rx, o ... o 7rxn : T -> T/{ex...... ex,.}

we define

(1.45) A(f) := A(7rx1) ... A(7rxn) : A(T) --> A(T/{exl, ... , ex,.}).

Then a necessary and sufficient condition that definition (1.45) be independent
of the representation of f and further that A(f'f") = A(f')A(f") for any two
composable elementary morphisms f' and f" is that the composition operations ox
satisfy the associativity axiom (1.33).

PROOF. The associativity axiom is precisely the assertion that the composition
of A(7rx) and A(7r,) is independent of the order. The generalization to the compo-
sition of an arbitrary number of ox -operations is an elementary exercise.

The following corollary easily follows from Theorem 1.73.
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COROLLARY 1 74. Let P be a pseudo-operad in C. Then the correspondence

T P(T) extends to a covariant functor Tree -j C.

REMARK 1.75. Theorem 1.73 and Corollary 1.74 show that the category of
trees is more suited to the description of pseudo-operads than to operads. The unit
axiom in the definition of an operad is an independent piece of data not expressed
in terms of morphisms A(T) -> A(S). Therefore we will use trees to describe the
free pseudo-operad before describing the free operad.

Let us recall the following standard notions. Given a category D and a covariant
functor F : D -> C, let

colim F(x)
xED

be an element of C together with a system

Icy : F(y) -j colimF(x)J
x E D J yEOb(D)

of morphisms of C such that ty for each y, z E Ob(D) and for each
f E HomD(y, z), having the obvious universal property. We will assume that in C
appropriate colimits exist.

EXAMPLE 1.76. If C = Modk, then the colimit of a covariant functor F : D -> C
is the quotient

(1.46) colimF(x) = ®F(-)/
X E D xED

where - is the equivalence generated by

F(y) D a - F(f)(a) E F(z),

for each a E F(y), y, z E Ob(D) and f E Homv(y, z). If C is the category of
topological spaces, the formula for the colimit is formally the same as (1.46), with
the direct sum replaced by the disjoint union.

We are ready to define the free pseudo-operad functor.

DEFINITION 1.77. For a E-module A in C and a finite set X define

(1.47) W(A)(X) := colim A(T,f).
(T,t) E Iso (Treex)

Let A and B be E-modules and a : A -* B a morphism. For each labeled tree
T, there are morphisms A(In(v)) -> B(In(v)) for each vertex v of T, therefore,
by functoriality of the (D-product, there is also a morphism a(T) : A(T) -> B(T).
Then define

T(a)(X) := colim a(T) : W(A)(X) ---> %P(B)(X).
T E Iso(Treex)

This shows that 1J(A)(X) is `functorial in A.' It is equally easy to show that the
opposite leaf relabeling' (T, 2) H (T, o'-1Q) of objects of Iso (Tree) determines, for

each bijection o : X - -- Y, a morphism T(A)(c) : T(A)(Y) -> T(A)(X) of the
colimit, making '(A) a E-module in C.
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PROPOSITION 1.78. The E-module IY(A) defined in Definition 1.77 is, for each
E-module A in C, a pseudo-operad in C, called the free pseudo-operad generated
by A.

PROOF. Recall that in Remark 1.38 we defined, for each X-tree T, each Y-
tree S and each x E X, the X Ux Y-labeled tree T ox S with Vert(T ox S) _
Vert(T) U Vert(S). The colimit of the natural identifications

(1.48) ox : A(T)OA(S) = U A(In(v)) O () A(In(w))
vE Vert(T) wE Vert(S)

0 A(In(u)) = 0 A(I-(u)) = A(T ox S)
ue Vert(T)U Vert(S) uE Vert(TLJ S)

induces the required structure operations (denoted again ox)

(1.49) ox : t1(A)(X) O IF(A)(Y) -+'(A)(X Ux Y).

By Theorem 1.61, to check that T(A) is a pseudo-operad, it is enough to check
the associativityconditionns (1.33). The commutativity /of the /diagram

A(T 1) O A(T2) O A(T3) Ox2(°x1 O A((T1 oxl l2) °x2 T3)

A(T1) O A(T3) O A(T2)

follows from the definition of the unordered 0-product. The second equation in the
associativity axioms (1.33) is then obtained as the colimit of these diagrams over
T1iT2,T3 E Iso (Tree). The first equation in the associativity axioms (1.33) is true
for a similar reason.

The proof that W(A) is indeed the free pseudo-operad on A is postponed to the
end of this section (Theorem 1.91).

EXAMPLE 1.79. Let C = Set and A the E-module with A(n) = {point} for
each n > 1. Then T(A) = Tree, the operad of isomorphism classes of labeled rooted
trees introduced in Section 1.5.

To verify this, observe that, for an arbitrary X-labeled tree, A(T) = {point},
thus the colimit (1.47) is the disjoint union of one-point sets indexed by isomorphism
classes of X-labeled trees, which is, of course, Tree(X).

Similarly, let B be the E-module with B(n) = {point} for each n > 2 and
B(1) = 0. Then 1Y(B)(X) = Rtree(X), the set of isomorphism classes of reduced
rooted labeled trees.

We are going to give a more explicit description of W(A) as a coproduct of
simpler elements introduced in the following definition.

DEFINITION 1.80. Let A be a E-module with values in a symmetric monoidal
category C and [T, t] an equivalence class of X-labeled trees. For any automorphism
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Eli E Aut(T), let A(O). A(T,t) -* be the isomorphism in (1.43) and
define

A[T, t] coequalizer { A(z,b) : ll A(T, A) , ll A(T, A) }
' E Aut(T) (T,a)E[T,d] (T,A)E[T,P]

For any or E Ex, there is a `leaf relabeling' sending the labeling t to at. Since
both A(T, t) and A(T, Qt) are copies of the same object in the category C, we have
a `leaf relabeling' morphism

& : A(T, t) = 0 A(In(v)) 0 A(In(v)) = A(T, at).
Vert(T) Vert(T)

Leaf relabeling clearly commutes with the action of automorphisms of the tree T
and therefore defines an isomorphism of the coequalizers

Q : A[T, t] ---> A[T, at].

It is clear from the above formula that A[T, t] is not, in general, Ex-closed.
The Ex-closure of A[T, t] is described in the following definition.

DEFINITION 1.81. For a E-module A, finite set X and a rooted tree T, let

A[T]x := 11 A[T,t]
equivalence classes
of X-labelings of T

coequalizer { A(lb) : ll A(T, t) --+ ll A(T, t) }.
,P E Aut(T) all X-labelings of T all X-labelings of T

In the case X = [n], we write A[T] := A[T][,,,]. Leaf relabeling defines a
representation of Ex on A[T]x:

(1.50) PT : Ex - Autc(A[T]x)
Let Ex denote the set of isomorphism classes of rooted trees with Leg(T)

X but with no concrete X-labeling specified. The following proposition follows
immediately from definitions.

PROPOSITION 1.82. Under the assumptions of Definition 1.77, there are de-
compositions

(1.51) IY(A)(X) =
J__L

A[T]x = ll A[T,t].
[T]ETx [T,P]ETree(X)

In the first decomposition we choose a representative T for each isomorphism
class in Ex and take the coproduct over these representatives. The second decom-
position has a similar obvious meaning. Decompositions (1.51) are canonical up to
these choices.

Proposition 1.82 gives a very explicit description of the free pseudo-operad.
The operadic, right EX-action on WY(A)(X) is compatible with the opposite action
of the leaf relabeling action (1.50) on the components of the first decomposition
in (1.51).

By definition, there is a canonical morphism jp : A(T, p) - A[T, t] for any
labeling p in the equivalence class [T, t]. The morphisms

A(T, pb) 9 s F A(z/))a E A(T, p)
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determine a morphism from the coproduct

7r : ll A(T, A) - 11 A(T, pzb) ---4 A(T, p)
(T,A)E[T,e] 'bEAut(T)

such that 7rA(/) = 7r for all O'E Aut(T). By the universal property of the coequal-
izer defining A[T, t], 7r induces a morphism from A[T, t] to A(T, p) which is inverse
to j,,. Therefore,

ip : A(T, p) _-' A[T, t].

Let us formulate the particular case p = t as a corollary:

COROLLARY 1.83. The canonical morphism je : A(T, t) - A[T,t] is an iso-
morphism for any labeled tree (T, t).

REMARK 1.84. Because A(T, t) is canonically isomorphic to A[T, t], one could
as well write WP(A)(X) = LI[T,el,Treex A(T, f) or even

(1.52) " T (A) (X) = H A(T),
TET-e(X)

which is certainly simpler than Definition 1.77 based on the colimit. The drawback
of (1.52) is that it assumes a choice of a representative T of each isomorphism class in
Tree(X). This would complicate the definition of the EX-action; see Remark 1.85.
Also defining the operad structure would be difficult - if (T, t) and (S, A) are our
representatives of isomorphism classes [T, t] and [S, A], then (T of S, t of A) need not
be our chosen representative of the isomorphism class [T oi S, t o2 A].

To simplify the exposition, we will, however, often make no distinction between
A(T, t) and A[T, t] and represent l'(A) (and similar objects) as in (1.52), but we
must always be aware of the subtleties explained above.

REMARK 1.85. If we choose a representative labeling t and identify A[T, t]
with A(T, t) as in Corollary 1.83, the induced action of oe(7li) E E(T, f) on A(T, f)
is given by the composite map

A(T, t) D a ti &e(7/i)a E A(T, at(O)f)

= A(T, t7b) 3 &e(7b)a E--' A(7i)&e(0) a E A(7', t);

see Section 1.5 for the notation.

REMARK 1.86. It follows from the definition of the colimit that, given a labeled
tree (T,t), there exists a canonical map t = t(T,e) : A(T,t) ---> 'P(A)(X). This
map, in fact, identifies A(T, t) with A[T, t] in the last decomposition of (1.51) and
coincides with the identification described in Corollary 1.83, as indicated by the
diagram

t (T,e)

A(T, t) T (A) (X)

A[T,f]- `P(A)(X),
where the bottom arrow is the canonical map given by the decomposition (1.51).
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Particularly important is the case when the tree T is the X-labeled corolla
c(X). Then

A(c(X)) = A[c(X)] = A[c(X)] = A(X)

and we denote the map cc(x) by

(A (X) : A(X) --> IP (A) (X).

In the case of the symmetric monoidal category (Veck, (9k), we can describe
the leaf relabeling representation PT of (1.50) as an induced representation.

PROPOSITION 1.87. Let P(T,s) be the leaf relabeling representation PT described
in equation (1.50), restricted to the subgroup E(T,f) C Ex. The composition of
P(T,e) with the isomorphism at : Aut(T) - E(T, 2) (equation (1.14)) coincides with
the action of the automorphism group of T on A(T, 2) as described in Remark 1.85
and

PT = Ind Iv() P(T,t)

as representations of Ex on A[T]x.

PROOF. In category Veck the coequalizer A[T]x defined in Definition 1.81 is
isomorphic to the quotient of ®A(T, 2) modulo the subspace spanned by a-A(ili)a,
where a E A(T,f), A(i/))a E A(T,to-') and 4l E Aut(T). Define a morphism
x : A(T, 2) ®k[Ex] - A[T]x by

X : a ®ry a E A(T,-y`t) [a] E A[T, ry-12] - A[T]x

Then for z1 E Aut(T),

X:a®at(zb)Y

X:A(ib )a®ry

Since

a E A(T,-y-1aP(b)_' )
= A(T,ry-1Qo-1)

A(0-1)a E A(T,-y-'Q).

A(T, 7_1eiG-1) ® A(T, -y-'P) 3 a - A(0-1)a 0 E A[T]x,

X defines a morphism

Ind P(T,t) = A[T,t] ®k[E(T,t)] k[Ex] - A[T]x

It is clear that k is surjective, and since the dimensions of the domain and range
both equal dim A(T, f) x [Ex : E(T, P)], X is an isomorphism. One checks immedi-
ately that it is equivariant with respect to Ex.

The fact that PT is well defined as a representation of Ex independent of the
choice of labeling e follows from the next proposition.

PROPOSITION 1.88. Let G be a finite group, H C G a subgroup, H' = aHa-1
and (V, p) and (V', p') representations of H and H' respectively, such that there is
an isomorphism p: V -. V' satisfying

o(vp(h)) = co(v)p'(aha-') for v E H and h E H.

Then the induced representations Ind TH p and Ind TH, p' are isomorphic.
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FIGURE 11.

(a ®,Q) * (i, j, k) E A(T, (i, j, k)).

-> (al ® a2 (3 a3) * (i,.9, k, 1) E A(T, t)

FIGURE 12.

PROOF. If the induced representation is given in terms of group algebras
Ind TH P = V ®k[H] k[G] and Ind TH, P' = V' ®k[H'] k[G], then the isomorphism
'D : V ®k[H] k[G] - V' ®k[H'] k[G] is defined by D(v (9 g) := <p(v) ® ag.

EXAMPLE 1.89. If T is the binary tree with three leaves, then the direct sum
®p A(T, t) has a basis corresponding to fully-labeled trees in Figure 11, where a
and 3 run over a basis of A(2) and (i, j, k) represents the labeling of the leaves of
T. In this form the equivalences given by the coequalizer in Definition 1.80 are

(a ®Q) * (i, j, k) - (a ®3 T) * (j, i, k)

for T the generator of E2. The isomorphism

(A(2) (9 A(2)) ®k[E2] k[E3] = Ind TEZ (A(2) ®A(2)) ZA[T]

(where E2 acts on the first factor of A(2) (9 A(2)) is given by

(a (9 0) ®Q i--> (a (DQ) * (a-1(1), a-1(2), a-1(3)).

EXAMPLE 1.90. For the tree pictured in Figure 12, Aut(T) = D4, the dihedral
group of symmetries of the square. The direct sum ®e A(T, 2) has a basis indexed
by fully-labeled trees as shown in Figure 12. The equivalence relation given by the
action of Aut(T) on ®E A(T,P) is generated by the following relations

(Cel ®a2 (9 a3) * (i, j, k, l) .., (al ® (a2 T) (9 a3) * (j, i, k, l),
(1.53) (a1 ®a2 (3a3) * (i, j, k, 1) - (a l ®a2 ®(Ce3 ' T)) * (i, j, 1, k),

(a1 ®a2 (3a3) * (Z, j, k, 1) - (-1)1213 ((a1 T) ® a3 (9 a2) * (k, 1, i, j),

and the isomorphism A[T] = Ind TD; (A(2)®A(2)(DA(2)) is described by a formula
analogous to the one given in Example 1.89.

Let us prove that W(A) is indeed the free pseudo-operad on the E-module A.
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THEOREM 1.91. Suppose that 0 is distributive over coproducts on the right
and the left, then W(A) with compositions

o.: T(A)(X) O'Y(A)(Y) - 41(A)(X Li, Y)
defined in the proof of Proposition 1.78 is the free pseudo-operad, that is, the functor
T : E-Mod -> 4'Op is left adjoint to the forgetful functor .Por :'Op -> E-Mod.

PROOF. To verify that is left adjoint to Por, we need to show that for any
A E E-Mod and a pseudo-operad P E 'Op, there is a bijection

P

(1.54) Hompo9(W(A),P) Homy-Mod(A,.Por(P))

Note that both sets of morphisms consist of natural transformations between
contravariant functors from the category Set f to C, the only difference being that
in IPOp there is a condition of compatibility with the pseudo-operad composition
operations which is not required in E-Mod. The adjoint relation (adjunction) XP -
.Por is equivalent to the existence of two natural transformations:

(1.55) : IlE-Mod-.PortI/ and x : I/Por- lI op,

called, respectively, the unit and counit of the adjunction, satisfying

(1.56) X4' o'( = It,, and PorX o S.Por = 11 ,

where XWY(A) := XqI(A), W ((A) := W((A) and 11 is the identity natural transfor-
mation of 4' to itself. The terms in the second equation are defined similarly.

Given ( and X, the bijective correspondence (1.54) is defined by

p(a) := .Por(n) o (A and (,3) := Xp o `W (,3)

for a E Homwo8(T(A),P) and ,Q E HomE-Mod (A,.Por(P))
After describing ( and X, rather than proving (1.56), we establish directly

the bijection (1.54) by showing that p and l; are inverse to each other. The map
(A E HomE-Mod(A,.Por`I'(A)) is defined by morphisms

CA(X) : A(X) -* (J0,W(A))(X)
which were, for each X E Setf, introduced in Remark 1.86. Thus p(-)(X)
A(X) --> (.PorP)(X) is the composition of

(Pora)(X) : (PorW(A))(X) _ (.Por P)(X)
with (A(X).

To define X, note that c(X) is the terminal object of Treex, i.e. there is a
unique tree morphism 7r : T -> c(X) for any tree T E Treex, which is given by
contracting all internal edges of T.

Then, for any pseudo-operad P, there is, by Corollary 1.74, a morphism P(7r)
P(T) -+ P(c(X)) = P(X). This extends to the colimit (1.47) over T E Treex and
determines a collection of C-morphisms, one for each finite set X E Set f,

(1.57) XP(X) : `h(.PorP)(X) P(X).
Together these form a morphism Xp E Hom,9o9(4.Por(P), P) for each P E Top and
define the natural transformation X. Thus (3)(X) : T(A)(X) P(X) is the com-
position of W(0) : %P(A)(X) -> 4'(.PorP)(X) with the morphism 4'(.Po,P)(X)
P(X) given by the pseudo-operad structure on P.
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The equation p composes 6(0) : 1(A) -> P
with (A(X) : A(X) = A(c(X)) -> WY(A)(X) and this composition is just Q since
c(X) has no edges to collapse.

To prove s(p(a)) = a, we need to use the compatibility condition on a E
Homq,op(W (A), P) which says that the following diagram commutes, for each pair
of finite sets Y, Z and x E Y:

a(Y) O a(Z)
W(A)(Y) O T(A)(Z) P(Y) OP(Z)

t a(y ux Z) t
W(A)(Y ux Z) P(Y ux Z).

The vertical arrow on the left is the colimit of the isomorphisms A(T) 0A(S) ->
A(T ox S) over trees T E Treey, S E Treez. Since W (A) (X) is a coproduct of A(T)
over the trees in Treex, the morphism a(X) is determined by its compositions with
cT : A(T) -> W(A)(X). Any tree can be represented as a sequence of ox-products
of corollae as x varies over the internal edges of the tree. For each tree T, repeated
use of the diagram shows that a(X)tT is the (D-product of a's acting on corollae
followed by the composition in P. But this is the extension of p(a), proving that
s(p(a)) = a.

We defined the free pseudo-operad first because the associativity and equivari-
ance axioms for a pseudo-operad (as opposed to the unit axiom for an operad) are
naturally expressed in terms of trees. To define the free operad, we simply adjoin
a unit to the free pseudo-operad. This leads us to define a new functor

(1.58) r(A) := 111 T(A).

PROPOSITION 1.92. The functor r(A) defines the free operad generated by an
object A E E-Mod.

PROOF. If we define rlx : 1 - r(A)({x}) by the obvious inclusion, then we
have the commutative diagrams (1.35) for the unit:

r
r(A)(X) O 1 r(A) (X) 1 O r(A)(X)

(1.59) it O 1qx1 ox 'Ix O 21

l

r(A)(X)

r(A)(X) O r(A)({x}) r(A)({x}) O r(A) (X)

The adjointness relation

(1.60) HomE-Mod(A,.Por(P)) <--* Homop(r(A),P)

follows from Theorem 1.91.

Note that 1'(A)(1) is the free nonunital associative monoid on A(1) while
r(A)(1) is the free unital associative monoid on A(1). Another description of r(A)
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uses the trivial tree To, which is a unit relative to grafting,

To oxS=S= Soy To.

The o.-operation for the free pseudo-operad, defined using the natural identifica-
tion (1.48), when applied to A(To) on the right or left has the property of a unit:

or Ox

A(S) O A(To) A(S ox To) A(T0) O A(S) - A(To ox S)

= I I = = I I =

A(S) O 1 A(S) 1 O A(S) A(S)

Thus, we could simply define A(T0) := 1 and allow the trivial tree in for-
mula (1.52):

F(A) = A(To) LT(A).

1.9.1. Appendix. In this appendix we assume, for simplicity, that the under-
lying monoidal category C is the category Modk of k-modules. In some examples, in
particular the discussion of quadratic operads and Koszul operads (see Section 3.2),
it is convenient to pick representatives of the equivalence classes in Tree by using
planar n-trees. For planar trees the orientation of the plane orders the edges at each
vertex and the labels A(In(v)) can be replaced with the simpler object A(a(v)),
where a(v) := #In(v) is the arity of v. Moreover, the vertices of an up-rooted
planar tree have a natural order which we call the planar order. In the planar
order the root vertex is first, followed by the vertices at height one (connected by
one edge to the root) in order from left to right, next in order are vertices at height
two, listed from left to right, and so on. In this way all tensor products over the
set of vertices have a natural order. The drawback is that the indexing set for the
coequalizer expressed in terms of planar trees in Definition 1.80 involves isomor-
phisms as well as automorphisms, since distinct planar trees may be isomorphic as
abstract trees.

For example, there is only one (isomorphism class of a) binary rooted tree with
three leaves, but there are two (isomorphism classes of) planar binary trees with
three leaves. For each of the planar trees there are six labelings of the leaves given
by the six permutations (i, j, k) of (1, 2, 3). For a E-module A with basis {al} in
arity two (and assuming A(3) = 0), I'(A)(3) is defined as a quotient space of the
vector space of dimension 12(dim A(2))2 with a basis indexed by the labeled planar
trees shown in Figure 13 as al and a,,,, run over a basis for A(2).

REMARK 1.93. Using planar trees can be viewed as a kind of `blowing up' of
the formulas of the previous sections by replacing each abstract tree by the set of
planar trees that are equivalent to it.

If we use planar trees to describe A[T, 2], then

A[T, 2] :_ ® A(T, A) /W,
equivalent planar (TA)
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(at 01 am.)®(i, j, k) (at 02 a,,,.)®(I, j, k)

k

FIGURE 13. Generators of the space F(A)(3).

where the form of the relation W follows from Definition 1.80. In the example given
above, the subspace W is spanned by the terms

(i) (at (&1 a-)®(i, j, k) - (at r (32 am)®(k, i, j),
(1.61) (ii) (at ®1 a,,,,)®(i,j, k) - (at (91 a,,,, r)®(j, i, k),

(iii) (at (&2 am)®(i, j, k) - (at ®2 am r)®(i, k, j)
By a standard isomorphism theorem, one can define the quotient space in two steps,
first taking the quotient by the subspace generated by the terms in line (i), and
then taking the quotient by the subspace generated by the cosets of the elements
in lines (ii) and (iii).

Equivalently, A[T, 2] could be defined by using only (at (91 a-)®(i, j, k) (the
terms pictured on the left) or alternatively, (at (32 a,,,.)®(i, j, k) (the terms pictured
on the right). In general, we can always choose a set of planar trees representing
the distinct equivalence classes of abstract trees. If we pick the set on the left,
then A[T, 2] is defined as the quotient of the space with basis {(at 01 a,,,,)®(i, j, k)}
modulo the subspace spanned by

(1.62) (at 01 a-)®(i,7, k) - (at (31 a,,,, r)®(j, i, k)
There are occasions where this is not the most convenient form (cf., the example
of the associative operad given in Section 3.2 below).

1.10. Collections, K-collections and K-operads

In their paper on Koszul operads [GK94], Ginzburg and Kapranov work with
K-collections for K an algebra over a field k and give a construction of the free
operad using a modified form of W(A) with tensor products over K. The idea
behind the definition of a K-collection is expressed in the next proposition, which
is a list of useful, if obvious, observations. For the next two sections, we will restrict
our attention to the category C = k-Mod although most of what we do can be done
in an arbitrary symmetric monoidal category.

PROPOSITION 1.94. If a E-module A has a `partial operad structure' involving
only the structure morphisms ryI,1, -/1,n and 7n;I, . 1, n > 2, which are assumed to
satisfy the relevant operad axioms, then setting K := A(1),

-y1,1 K ® K -> K defines a monoid structure on K,

ry1;n : K ® A(n) -> A(n) defines a left K-module structure on A(n) and

1'n;,, ,1 : A(n) 0 K®n -j A(n) defines a right KO'-module structure on A(n).
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Moreover, the morphism ryn 1, ,1 descends to A(n) Or, K®n. The product Or,
is defined using the right En-action on A(n) and the left En,-action on K®n given
by

X , - 1Or for x1,. . , xn E K and or E En.

The last part of the proposition follows from equivariance of the structure
morphisms and the existence of a right action of A[n, n] (see the definition in equa-
tion (1.28)) on A(n) which extends the right action of KO':

A(n) ® A[n, n] -> A(n).

EXAMPLE 1.95. If C = Modk, then K is a k-algebra and A[n, n] is the `twisted
group algebra,' KT[En], defined as the k-module spanned by the expressions

(y1®...(gyn)o for yj EK, QEEn,
where ® = ®k, with multiplication given by:

(xl ®... (9 xn) u . (yl ®... (9 yn)T = (xlyo-1(1) ®... ®xnyo-1(n)l UT.

DEFINITION 1.96. A collection in C is a E-module such that A(1) is a C-monoid
and each A(n) is a left A(1)- and right A[n, n]-module. For a fixed C-monoid K,
a K-collection in C is a collection such that A(1) = K. The category of collections
will be denoted by Col and the category of K-collections by C01K.

Thus a K-collection is a E-module with the properties listed in Proposition 1.94.

REMARK 1.97. Introducing K-collections allows us to remove the restriction
that A(1) = k in various constructions. Furthermore, if we assume that K is
a semisimple k-algebra, then every K-module decomposes into a direct sum of
irreducible submodules and such a decomposition can be applied to each component
A(n), leading to the concept of a colored operad introduced, in the topological
setting, by Boardman and Vogt [BV73].

For example, if K = k ® k, we obtain bicolored operads describing algebras
and their maps; see also Section 2.9 or [Mar99c, KSOO].

A morphism a E Homcol(A,B) consists of a morphism of C monoids a(1)
A(1) -# B(1) and morphisms a(n) : A(n) --> B(n), n > 2, compatible (in the
obvious sense) with the A(1)-A[n, n] bimodule structure on A(n) and the B(1)-
B[n,n] bimodule structure on B(n). In the category C01K, all morphisms satisfy,
by definition, a(1) = 11K so we can start at degree 2 and require that a(n) be a
morphism of K-K[n, n] bimodules.

In [GK94, paragraph 1.2.11], the definition of a K-collection in the category
Modk is a sequence A = {A(n)}n>2 such that A(n) is a left K- and right KT[En]-
module; see Example 1.95. Thus it is a special case of our definitions.

We will define, by modifying Smirnov's construction, a new monoidal structure
for the category Co1K. First define 1K E C01K by

K, for n = 1, and
(1.63) 1K(n) = 0, for n > 2,

and let K[n, n] denote 1K [n, n] = KT [En].
In the new monoidal structure OK on C01K, we use the multiplication ®K[n,nl,

defined for X a right and Y a left K[n, n]-module, by letting X ®K[n,n] Y be the
coequalizer of the two morphisms
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p®Il

X®K[n,n]®Y X®Y,

ll®a
where p is the right K[n, n]-module structure on X and A the left K[n, n]-module
structure on Y.

Suppose that A and B are K-collections; for n > 2 we modify the formula in
Definition 1.63, defining

n

(1.64) 11 A(j) ®K[j,al B[.7, n].
j=1

Note that BD, n] is defined as before using ® so that it is a left K[j, j]-, right
K[n,n]-module. The unit object is defined in (1.63). The associativity of K is
proved just as for .

The following definition should be compared to Definition 1.67.

DEFINITION 1.98. A K-operad is a monoid in the category of C01K relative to
the K-product.

We have defined a K-operad as a monoid in C01K, but it is easy to see that
K-operads are precisely operads in the sense of May (Definition 1.4) with P(1) = K.

1.11. The GK-construction

We now describe the Ginzburg and Kapranov (which we abbreviate GK) con-
struction of the free K-operad generated by a K-collection.

The definition of a K-operad implies that the underlying E-module is a K-
collection. The Ginzburg-Kapranov construction involves tensor products reduced
using the K-K[n, n] bimodule structure on a K-collection. There is a further sim-
plification in considering only reduced trees, that is, with no vertices having one
incoming edge. Furthermore, since the identity axiom is part of the K-K[n, n] bi-
module structure on a K-collection, A(T1) = A(1) = K, where To is the trivial
tree, provides a unit for the free operad.

To begin with, they define an object AK(T) involving tensor products over
K. It is convenient to describe the reduction of a tensor product over the field
k to a tensor product over K in terms of collapsing edges adjacent to vertices of
arity one. Just as for a pseudo-operad, where there is a morphism A(T) --> A(T/e)
corresponding to contracting an internal edge e, so for a K-collection, there is
a morphism corresponding to contracting an internal edge which has a vertex of
arity one. A vertex of arity one may be adjacent to a leaf or the root edge, as in
the case of the vertices a and c in Figure 14.

In either of the latter two cases, the vertex is adjacent to only one internal edge
and there is only one choice of an internal edge to collapse. But if the vertex of
arity one is adjacent to two internal edges as in the case of the vertex marked b in
Figure 14, then there are two possible edges, e, e', to collapse. Both possibilities
leave us with the same tree, T/e = T/e'. Thus we have two morphisms,
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FIGURE 14. An unreduced tree with vertices of arity one.

Ire

A(T) - A(T/e).
7re'

The GK reduction procedure involves taking the coequalizer of all these mor-
phisms. More precisely, for any reduced tree T, we can construct an unreduced
tree t, having one new vertex of arity one on each of the internal edges. Let n,
be the number of internal edges and r,(T) the set of 2' tree morphisms t -> T
corresponding to all the possibilities of collapsing one of the adjacent edges at each
of the new vertices of arity one. Define

(1.65) AK(T) := coequalizer {A(7r) : A(T) - A(T)}.
itEi.(T)

Less formally, AK(T) is defined by replacing the tensor products ®k in A(T)
with ®K.

Let Rtreex be the full subcategory of Treex consisting of reduced trees and
let Iso (Rtreex) be the category of isomorphisms of Rtreex. It is possible to show,
similarly as in Proposition 1.72, that the correspondence T H AK(T) determines
a covariant functor Iso (Rtreex) -, C.

DEFINITION 1.99. (GK construction of a free operad) For A E C01K define

I'K(A)(X) := colim AK(T).
T E Rtreex

The operad structure is given by grafting, as in the proof of Proposition 1.78. The
unit is provided by

FK(A)({x}) := A(To) = K,
where To is the trivial tree with one leaf.

For any tree T, there is an associated reduced form Tred given by deleting all
vertices of arity one. By choosing a sequence of edge collapsings, one for each vertex
of arity one, we can define a morphism 0 : A(T) - A(TLed). By composing with the
coequalizer epimorphism 7rTred : A(Tred) _, AK(Tred) that is, reduction to ®K, we
get a morphism

(1.66) 7rTred o xb : A(T) - AK(Tred).

Passing to the colimit over Treex gives a morphism

(1.67) 7rK : 1(A) FK(A).
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REMARK 1.100. If A E Co1K, then W(A) is nearly a K-operad, except that

T(A) (1) = K ®K®Z ®K®3 ...

with the right module (or left module) structure given by right (left) multiplication
of the last factor on the right (left). On the other hand

rK(A)(1) = K.

THEOREM 1.101. The functorrK : C01K--*OpK is left adjoint to the forgetful
functor .For : OpK --f C01K, hence defines the free operad functor on C01K.

PFOGi.. One can give a direct proof similar to the proof of Theorem 1.91 or
one can prove this as a corollary of that theorem.

1.12. Triples

In this section, we review the definition of a triple (monad) and give a descrip-
tion of pseudo-operads and operads in terms of triples and algebras over a triple.
The relevant triples come from the endofunctors ', F and FK.

Let End (C) be the strict symmetric monoidal category of endofunctors on C
where multiplication is composition of functors, 1 is the identity functor and all of
r, 1, a in Section 1.1 are identity morphisms.

DEFINITION 1.102. A triple (also called a monad) T on a category C is an
associative and unital monoid (T, M, v) in End(C). The multiplication u and unit
morphism v satisfy the axioms given by commutativity of the diagrams in Figure 15.

Triples arise naturally from pairs of adjoint functors. Given an adjoint pair
G

A B,

with associated bijection F

Hom.A(F(X),Y) <--> HomH(X,G(Y)),

there is a triple in B defined by T = GF. The unit of the adjunction IL -> GF
defines the unit v of the triple and the counit of the adjunction FG -> 1L induces a
natural transformation GFGF -> GF which defines the multiplication M. In fact, it
is a theorem of Eilenberg and Moore (see [EM65]) that all triples arise in this way
from adjoint pairs. This is exactly the situation with the free pseudo-operad functor
that was described in Section 1.9. We will show how operads and pseudo-operads
can actually be defined using the concept, introduced in the next definition, of an
algebra over a triple.

DEFINITION 1.103. A T-algebra (A, a) or algebra over the triple T is an object
A of C together with a structure morphism a : T(A) --> A satisfying

a(T(a)) = O(AA) and aVA = RA-

See Figure 16.

Morphisms of T-algebras must commute with the structure maps. The category
of T-algebras in C will be denoted A1gT(C). Since the free pseudo-operad functor
I' and the free operad functor F described in Section 1.9 are left adjoints to .For :
IYOp - E-Mod and For : Op -> E-Mod, respectively, the functors (denoted
simply IF) and .ForF (denoted F) define triples on E-Mod. Similarly, FK is left
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FIGURE 15. Associativity and unit axioms for a triple.

T(a)
VA

T(T(A)) - T(A) A -T(A)

A a Il a
a

T(A) A A

FIGURE 16. T-algebra structure.
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adjoint to .F,,.: 0pK - C01K and there is a corresponding triple Fo JK (denoted
I'K) on Co1K.

DEFINITION 1.104. The multiplication p,y is defined by setting B ='Y(A) in
equation (1.57),

(1.68) W(T(A)) W(A).

We can use the right and left unit morphisms B O 1 - B and 1 O B -> B,
respectively, to define

c : W(1ll `I' (A)) -->'I'(`I'(A))

and use t to define the multiplication pr for the triple IT as the composite

(1.69)

I'(F(A)) = 111 lY (1 ll w(A)) Ill T(w(A)) Ill T(A) = I'(A).

For the triple FK, the multiplication AFK is the reduction of pr to FK(IK(A)) using
the fact that operad composition for a K-operad (in this case I'K(A)) is defined
over ®K.

We describe Aq, in a little more detail. If we write (see the `simplified for-
mula' (1.52))

`I'(1f(A))(X) _

ll O ll
TETree(X) vEVert(T)

11 IF(A)(T) = ll O `F(A)(In(v))
TETree(X) TETree(X) vEVert(T)
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P(4)

FIGURE 17. This diagram shows how the associativity axiom for
or-compositions follows from the triple axiom aµ4, = aW(a) for
a %Y-algebra, which implies that the subdiagrams on the right and
left sides of the figure commute. Both subdiagrams have the same
binary tree as a starting point if we forget the circles and the two
distinct compositions of arrows on the extreme right and extreme
left of the figure correspond to the two sides of the equation o, (IL(D
oy) = oy(o, (D Il) in the particular case of P(2) OP(2) OP(2). Note
that the multiplication µq, can be represented in terms of grafting
(inserting) subtrees into the vertices of a given tree. On the other
hand for a T-algebra P, the multiplication a : µ,y(P) - P is
represented in terms of collapsing all the internal edges of a tree.

and then move the 0-product past the coproduct, the result is the coproduct

vEVert(T)
ll 0 A(Sz).l

Let To {SvIv E Vert(T)} be the new tree given by replacing the vertex v E Vert(T)
(more precisely, replacing the corolla at the vertex v) with a tree S. having In(v)
leaves (compare the insertion operads in Section 1.1.20). Then the component of
W(T(A)) corresponding to the index (T,

0 0 A(In(w)) = A(T o E Vert(T)}),
EVert(T) EVert(T)})

Sr E7-(Th(o))
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is also a component of %P (A) (X) and we get for each finite set X and each component
('P(A))(T) of 'P('P(A))(X) a morphism of that component into 1P(A)(X). These
morphisms combine to form the natural transformation up : T(1P(A)) -> IP(A). A
very similar argument will come up again in Theorem 3.24 of Section 3.1.

THEOREM 1.105. A E-module P is a 1P-algebra if and only if it is a pseudo-
operad and it is a r-algebra if and only if it is an operad. An object P E C01K is
a rK-algebra if and only if it is a K-operad. In shorthand notation, we can write

A1g,y(E-Mod) = 1POp,

A1gr(E-Mod) = Op and

AlgrK(Co1K) = 1POpK.

PROOF. We outline the proof of the implication in one direction, from algebra
to pseudo-operad or operad. The converse is left as an exercise for the reader.
Let P be a tiP-algebra. Restriction of the structure morphism a : 1P(P)->P to the
components of %P (P) given by trees with one internal edge defines the pseudo-operad
composition maps, o.. See Figure 10.

The associativity axioms for the ox-operations follow from the W-algebra axiom
aW(a) = aµ4. Figure 17 gives a pictorial proof in a special case. The right and
left subdiagrams in the figure commute because of the axiom app = a'P(ca) for a
1P-algebra. The two subdiagrams actually have the same binary tree as a starting
point if we forget the circles. The two distinct compositions of arrows on the
extreme right and extreme left of the figure correspond to the two sides of the
equation ox(11 O o5) = o,(o® (D 11) for the associativity axiom in the particular case
of P(2) OP(2) OP(2). From this example the general argument is clear, but writing
out the details would be tedious.

Shifting our attention to µr, the associativity can be proved as was the asso-
ciativity of pq,. The unit morphism can be discussed as follows. The structure
morphism a : r(P)({x}) = 1 JJP({x}) - P({x}) restricted to the component 1 is
the unit morphism q : 1 -> P({x}). We will prove the unit axiom for an operad as
expressed in the commutative diagrams (1.35). Consider a tree T with two vertices,
one of arity one and one of arity n, and the component of 1'(P) (T) of r(r(P)). La-
bel the vertex of arity one by 1 and the vertex of arity n by P(c(X)) (a component
of r(P)(X)) where X is the set of incoming edges. Consider for the moment the
ordered (D-product with the label on the root vertex appearing first. In this case
the condition ar(a) = aµr is expressed by the diagrams below.

ar ur
P(c(X)) O 1 - P(c(X)) 1 o P(c(X)) - P(c(X))

r(a) a F(a) a

a a
P(X) O P({x}) - P(X) P({x}) O P(X) - P(X)

The arrow r(a) applies the unit morphism rlx : 1 --* P({x}) at the vertex of
arity one and the identification P(c(X)) = P(X) at the other vertex. According to
Definition 1.104, the restriction of /'.r to the component 1OP(c(X )) or P(c(X)) 01
applies the unit axiom for the O product to remove the factor 1. The vertical arrows
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on the right are both the identification P(c(X)) =2(X) and the bottom arrow is
or. Thus these two diagrams are equivalent to the diagrams (1.35).

The implication from FK-algebra to K-operad is essentially the same as the
implication from T-algebra to operad.



CHAPTER 2

Topology - Review of Classical Results

2.1. Iterated loop spaces

May introduced the concept and terminology of operads to study iterated loop
spaces. Here we provide an overview of the main techniques of several authors,
referring to the original papers for some of the more technical details.

By an iterated loop space we mean a k-fold loop space for 1 < k < oo or an
infinite loop space. Let us remark that the standard terminology is an n-fold loop
space, but since in our book the letter `n' almost exclusively denotes the arity, we
decided, to avoid confusion, to change the terminology a bit.

DEFINITION 2.1. A k-fold loop space 11' X is the space of based maps of the
sphere Sk to a space X, 1 < k < oo. Equivalently, Q X = {A : (Ik, (9Ik) -> (X, *)}.

It is helpful to interpret `k-fold loop space' as the sequence {Y = Q1+1 I 1

i < k} with

1 k = X, Yk-1 = OX, ... , Y1 = OkX.

An infinite loop space (k = cc) is then a sequence {Y = OYt1 1 < i}.

May emphasized three uses of operads in this study: a recognition principle, a
`geometric' approximation construction and a theory of homology operations. His
recognition principle carried further the work of Stasheff [Sta63a] recognizing loop
spaces, Beck [Bec69] for k-fold loop spaces and Boardman-Vogt for k-fold and
infinite loop spaces [BV73].

By a recognition principle (in the strong sense) for k-fold loop spaces is meant
a specification of appropriate structure on a space Y such that Y possesses this
structure if and only if Y has the homotopy type of a k-fold loop space. In the
cases we consider, the structure is specified as that of an algebra over a certain
operad. There are operads (cf. the little k-cubes operad below (Definition 2.2))
for which the algebras are of the homotopy type of a k-fold loop space, but for
which the reverse implication may fail. For that inverse implication, one must
replace the operad by an equivalent cofibrant one [Vog]. One may use for example
a functorial cofibrant replacement provided by the W-construction of Boardman
and Vogt [BV73, pages 72-75].

For k = 1, recognition is provided by the non-E operad K of Stasheff (Sec-
tion 1.1.6), which happens to be cofibrant (see discussions in Section 1.1.18) and
which is in fact in a sense a minimal cofibrant replacement for the little intervals
operad which we recall in Section 2.2.

For the two extreme cases, k = 1 and k = oo, we can characterize the ap-
propriate operad whose algebras have the homotopy type of an n-fold loop space
quite simply as a non-E operad with each component contractible, respectively as a

93
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E-operad with each component contractible and with a free E-action [May72]. For
k = 2, Fiedorowicz [BFSV] has recently given a characterization of appropriate
operads in terms of a braided structure. For 2 < k < oo, the question is open.

Geometric approximation constructs a space of the homotopy type of 111 SkX
for 1 < k < oo or

Q'S'X := lim 52SS'X for k = oo,

built from products of X and certain standard spaces depending only on k. For
k = 1, this was done by James [Jam55], fork < oo by Milgram [Mi166], Boardman
and Vogt [BV68], May [May72], Segal [Seg73] and for k = oo first by Dyer and
Lashof [DL] and later by Barratt [Bar7l] and Segal [Seg74]. The standard spaces
are related to operads and include classical configuration spaces, the permutahedra
and Milgram's polyhedra built from permutahedra as well as May's construction in
terms of the little cubes operads.

Prior to his introduction of operads, May in [May70] reformulated the alge-
bra behind Steenrod's work so that it applied also to the homology of iterated
loop spaces. There the operations were first introduced, mod 2, by Kudo and
Araki [KA56] and, mod p > 2, by Dyer and Lashof [DL62]. The notions of op-
erad and especially E.-operad and E.-space simplify the construction, analysis
and understanding of these operations and those of Steenrod as well as their re-
lation. May in [KM95, page 33] wrote: `Actually, [May70] should be read as a
paper about operad actions. Unfortunately, it was written shortly before operads
were invented.'

Although the simplification is somewhat less substantial, the use of operads
is also relevant to our understanding of Massey operations in Section 2.6, origi-
nally defined in cohomology [MU57, Mas58] and their generalizations [Sta63b,
May69, Ret93, Po198].

2.2. Recognition

For k = 1, recognition is provided by the nonsymmetric operad 1C of Stasheff
(cf. Section 1.1.6) while for 1 < k < oo, an algebra over the little k-cubes operad
invented by Boardman and Vogt is of the homotopy type of a k-fold loop space.
The little k-cubes operad is defined as follows.

Let Ik denote the standard k-dimensional unit cube. A little k-cube is a linear
embedding c : Ik _--> Ik with parallel axes, that is, the components of

c(tl,. ..,tn.) = (cl(tl),c2(t2),..., c"(tn)), ti E I for 1 <i <n,

are linear functions ci : I --> I of the form ci(t) = (yi-xi)t+xi with 0 < xi < yi < 1,
1 < i < n. This means that each function ci consists of a shrinking by the factor
yi - xi and translation by xi.

DEFINITION 2.2. The little k-cubes operad Ck = {Ck(n)}n,>o consists of the

spaces Ck (n) of n-tuples (ca, ... , c.,,) of little k-cubes such that the images cl (Ik),_,
0 0

c,(Ik) of the interior Ik of Ik are mutually disjoint. For j = 0, Ck(0) is defined to
be the one-point space.
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02

FIGURE 1. The o2-product of an element of C2 (3) with an element
of C2(2). The result is an element of C2(4).

As topological space, Ck(n) can be identified with an open subspace of R2nk
using the {yi,xi}k 1 as coordinates. The operad structure is obvious- The sym-
metric group En acts on Ck(n) by permuting the labels of little cubes and the
structure map -y is given by composition of embeddings. To be more precise, let
c : U1 II Ik and cs : [j s1 I s -> Ik (where IS and I s are identical copies of
the standard k-cube) be elements of Ck(n), respectively Ck(ms), 1 < s < n. Then
'y(C; cl,..., c,) E Ck(Ml +''-+M,) is the map

n Ms

Y(cic1,...,cn): LJH Ijks- Ik
s=1 j=1

given by

-y(C;cl,..., en)[jk :=C0 Csn

where we interpret cs as a map C. uj s1 Is -> Is I. The composition law is
illustrated in Figure 1. The unit 1 E Ck (1) is the identity map Elk : I k _ I k

The operad C1 is also called the little intervals operad, while C2 is called simply
the little squares operad and denoted C. The `infinite' version of Ck is introduced
as follows.

DEFINITION 2.3. The operad Cc = {Cc(n)}n>o is defined by C, = lim Ck
with respect to the morphisms of operads ak : Ck -> Ck+1 given by

a(n)(cl, ... , cn) := (Cl x 111, ... , cn x li), n > 1.

Boardman and Vogt constructed an action ABV : Ck -* EndX of the little k-
cubes operad Ck on a k-fold loop space X = 52kY as follows. Given an n-tuple .Xi :

(Ik, ark) _ (Y, *) E 5 kY, 1 < i < n, and a little k-cube c = (ci.... , cn) E Ck(n),
the action ABV(c)(.X1i... , An) is the map defined to be Ai (suitably resealed) on
the image of ci and to be * on the complement of all the images of the maps ci.

Therefore each k-fold loop space is a Ck-space. On the other hand, the following
theorem, whose proof we indicate in Section 2.9, is true:

THEOREM 2.4. (Boardman-Vogt [BV73], May [May72]) A connected Ck-space
X is of the homotopy type of a k-fold loop space.

As for Stasheff's result recognizing a space of the homotopy type of a loop space
by an action of the operad K of associahedra, an iterated 'de-looping' is constructed
explicitly. For this purpose, we use further generalizations of bar constructions.
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2.3. The bar construction: theme and variations

The bar construction occurred first in the work of Eilenberg and Mac Lane
(see [EML53]) in their extension of Hopf's work [Hop42], one of the earliest works
on the cohomology of groups. Originally invented for the group ring of a discrete
group, it has been reincarnated time and again in a variety of categories: differential
graded algebraic [Sem], topological [Mi156, DL59, Mi166], categorical [May72,
BV73]. As far as operads are concerned, there is a bar construction for algebras
over a given operad P and also a bar construction for operads themselves.

To be more precise, the term `bar construction' is ambiguous, even in a specified
category. Originally there was an acyclic bar construction BA for an algebra _A over
a ground ring R which was free as an A-module generated by an R-module BA, the
reduced bar construction. Over time, with increased attention paid to the reduced
bar construction (cf. a classifying space versus the corresponding universal principal
bundle), the notation BA was commonly used for the reduced construction; we will
follow this convention.

These two variants and more are covered by the general 'two-sided bar con-
struction' B(L, A, R) which we now describe in a way that works equally well
if

(i) A is an algebra (ordinary or dg) with right module R and left module L,
(ii) A is a monoid (abstract or topological) with right A-space R and left A-space

L,
(iii) L, A, R are categories with functors A -* R and A --> L,
(iv) A is itself an operad and R and L are either modules over A or algebras over

A or one of each or
(v) A is a monad (= triple), L is an A-functor and R is an A-space.

We assume we are working in a category with finite products. Given the data
L, A, R, form the facial (presimplicial) object B. (L, A, R) which in degree n is
L x A" x R, with face maps

di : B"(L,A,R) B"_1(L,A,R)

given by

- the structure map on L x A if i = 0,
- the structure map on A x A if 1 < i < n, and
- the structure map on A x R if i = n,.

Then the two-sided bar construction B(L, A, R) is the realization of B.(L, A, R) in
the original category.

Three special cases are of particular importance, corresponding to the classical
universal bundle for a topological group or monoid G and a point *:

B(G, G, G) -_ G -> B(G, G, *) = EG --> B(*, G, *) = BG.

In the general setting, * is the terminal object in the category, so the A-action is
trivial. The contractibility of the universal total space EG is a special case of the
(weak) equivalence

(2.1) X - B(A, A, X)

which holds for any A-object X.
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Now we are ready to sketch a proof of Theorem 2.4 according to May. Boardman
and Vogt in their book [BV73] used a somewhat different iterative method.

As we already explained in Section 1.12, each operad P defines a triple P
Top -> Top with the property that P-algebras are precisely algebras over the triple
P. In particular, the little k-cubes operad Ck induces the triple Ck. Given a
triple P, May introduced P-functors as functors on which the triple P acts in an
appropriate sense; see [May72, page 86]. The triple P is a functor over itself.

May considered two important Ck-functors, the functor Sk : Top Top
assigning to each topological space X its k-fold suspension Sk and the functor
StkSk : Top Top assigning to each topological space X the k-fold iterated loop
space of its k-fold suspension f2kSkX. He then proved [May72, Theorem 13.11
that there is, for a connected space X, a sequence of (weak) homotopy equivalences

(2.2) X «- B(Ck, Ck, X) B(f2kSk, Ck, X) -' SZkB(Sk, Ck, X).

The map on the left is a homotopy equivalence because of the general property (2.1).
The middle map is a homotopy equivalence because the functor t1 Sk is, in a suit-
able sense, homotopy equivalent to Ck, as follows from the approximation theorem
(Theorem 2.7). Finally, the right map is a homotopy equivalence as a consequence
of a certain interchange rule between the geometric realization and the functor Q.
Sequence (2.2) then explicitly represents X as the k-fold loop space of B(Sk, Ck, X)
up to homotopy type.

2.4. Approximation

The first approximation theorem of the type mentioned in Section 2.1 is James'
reduced product construction JX, the free topological monoid generated by X, as
a model for f1SX for a well-pointed space X:

JX:= [Xn/
n>o

Here X° and the equivalence relation is defined by

X'1 E) (xl, ... , xi = *.... , xn) - (x1, ... , xi-1, xi+1, , xn) E
X n-1,

for anyn>landI<i<n.
We are going to describe approximations similar to that of James for iterated

loop spaces. In proving his cobar construction models the chains on a loop space,
Adams [Ada56] gave a combinatorial map from the cube In to the space of paths
in the simplex An+1 from the first to the last vertex. Milgram generalizes this by
giving a combinatorial map from the polytope known as the permutahedron Pn to
the space of paths in the cube In from (0, ... , 0) to (1, ... , 1) The permutahedron
Pn can be described as an (n - 1)-dimensional convex polytope with n! vertices,
one for each permutation of n variables.

DEFINITION 2.5. As a subspace of R', the permutahedron P. is the convex
hull of the permutation group En itself embedded into Hn by its action on the
point (1, 2, ... , n) E lRn.

As a cellular complex, the permutahedron P. is the realization of the poset T.
of ordered partitions of the set {1, 2, .. . , n}. To be precise, the poset Tn consists



98 2 TOPOLOGY - REVIEW OF CLASSICAL RESULTS

(1,2,3)

(1,23)

(1,3,2)

(13,2)

(3,1,2)

(12,3)

FIGURE 2. The poset structure ofT3.

FIGURE 3. The polyhedron P4.

of ordered partitions (j1.... , jw), ji C {1, 2, ... , n}, 1 < w < n. The partial order
is generated by

(31e...,.1w) ,iiUji+i.... eM, 1 < i <w.
Geometrically, the cell corresponding to (jl,...,jw) E T. (and denoted again
(j'..... jw)) is the convex hull of the subgroup leaving the decomposition (ii,..., jw)
fixed. It is immediate to see from this description that the face (j' , ... , j,,,) has di-
mension n - w. There is a unique maximal element (ji) E i, , jl = {1, 2, ... , n}
and n! minimal elements (vertices) indexed by permutations

(2.3) E,,, D or -* (a(1), ... , a(n)) E q3.

The poset structure of q33 is illustrated in Figure 2. The polyhedron P4 is portrayed
in Figure 3.

It is clear from the definition of the permutahedron that each P. is acted on
by the symmetric group En. The natural left action is given on vertices by

T(a(1), ... > a(n)) (ra(1), ... ,Ta(n))
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(1,2,3) (2,1,3)

(3,1,2) (3,2,1)

FIGURE 4. The noncellularity of the operad structure on P = {P(-)}n>1-

for a,r E En. Since we would like to consider the sequence P = {P(n)},,,>1 as a
collection, we must, to comply with the conventions accepted in this book, flip the
above action to the right action setting

(a(1),... ,a(n))r:_ (r-la(1)...... -Ia(n))
It is clear that this action respects the cellular structure, giving rise to a cellular

right En action on P, for each n > 1.
Recall that the collection E := {E.,}n>o has an operad structure given by

its identification with the operad Mon for topological monoids. This induces a
corresponding operad structure on P = {P,5}n,>1 by taking convex hulls (affine
extensions in Berger's terminology [Ber97]), but this structure is not cellular with
respect to the above cells. For example, consider the 1-cell (12) of P2 and describe
the image (12) 02 (12) in P3. To this end, we must understand how 02 acts on the
vertices (1, 2) and (2, 1) of (12). It can be easily calculated that

(1, 2) 02 (1, 2) = (1, 2, 3), (1, 2) 02 (2,1) = (1, 3, 2),

(2,1) 02 (1, 2) = (2, 3, 1), (2,1) 02 (2, 1) = (3, 2, 1),

therefore the image (12) 02 (12) is the rectangle depicted in Figure 4.
Milgram [Mi166] builds an approximation to SZkSkX using the permutahedra,

though not in an obviously operadic way. He defines, for k > 1 and n > 1, spaces

(2.4) Jnk) ((P0)k-1 X En)/

where the equivalence relation identifies certain boundary cells. For k = 1,
reduces to a point. Let us explicitly describe the space 421. Recall that the
faces of the permutahedron P,,, are indexed by decompositions (jl,..., j,,,) of the
set {1,... , n}. Denote ai := card(j1). Then the decompositions (ii..... j,,,) are
in one-to-one correspondence with elements r E En with the property that, for
1<s<W,
(2.5) r(a1 + -- + as-1 + 1) < T(ai + + as_1 + 2) < --- < T(al + + as),
that is, r is increasing on each interval [a1 + + as-1 + 1, a1 + - + as]. Such
elements are called (a,.... , aw)-unshuffles; let unsh(a1,... , aw) C E, denote the
set of all these unshuffles.

Now let
j(2) (P5 X E5)/
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with the relation - defined as follows: For each face (j1, jw) of Pn and for each
p c (j1, , jw) we identify

PT Xor -px7-a,

where T E unsh(a1i ... , a,,,) is the unshuffle corresponding to (j1i ... , jw)
For higher k > 2, the description of the relation in (2.4) is more complicated,

so we will not give it here and refer to [Ber97] or [Mi174, page 24] instead.

The collection j(k) = {j(k)},,,>1 does not form an operad nor do the config-
uration spaces Con(IRk) _ {Con(Rk,n)},>1, where by Con(Rk,n) we denote the
configuration space of n distinct labeled points in the affine space Rk with the
group En acting by permuting the labels. But it turns out that for the purpose
of approximation the relevant structure is that of `degeneracies' (compare the op-
eration of `adding neutral arguments' mentioned in Section 1.1.1). In the case of
algebras, these correspond to the reductions achieved by replacing one variable by
a unit. This structure is formalized in the definition of a preoperad [Ber96] (or
coefficient system; cf. [CMT78]).

DEFINITION 2.6. A (topological) preoperad is a functor P : A°" ---> Top, where
A is the category of (nonempty) finite sets and injective maps.

It is clear that morphisms of the category A are generated by permutations and
maps d7 :{1,...,n}---*{1,...,n+1} defined, forI<i<n+1, by

(2.6) di (t) := t, for 1 < t < i, and
t+l, fori<t<n.

It is clear from this description that a preoperad P is uniquely determined by a
collection P = {P(n)j,>1 together with degeneracy maps Dz := P(di) : P(n +
1) -* P(n), i = 1, ... , n + 1, satisfying the appropriate relations. For a pointed
operad P, these degeneracy maps are given by evaluation:

DZ (t) := yp (t; 1, ... , 1 , *,1, ... ,1) (* E P(0) at the ith position)

where t E P(n + 1), 1 E P(1) is the unit of the operad, * E P(O) is the constant
and1<i<n+1.

In the particular case of the operad Mon for monoids with Mon(n) = En,
n > 1, the degeneracies D* : En+1 -> En are given by deleting i and its image a(i)
for each permutation a E En+l. To be more precise,

DZ (a) = eo(j) o a o dn,

where di was defined in (2.6) and

e; :{1,...,j-1}U{j+1,...,n+1}- {1,...,n}
is, for 1 < j < n + 1, the unique order-preserving isomorphism. Degeneracies for
the permutahedra are then induced by taking convex hulls of the maps D, defined
above. They can be shown to commute with the defining relation of (2.4), thus
giving rise to a preoperad structure on the collection j(k) = {j(k)(n)}n>1.

Similarly, for the little cubes operad, we have degeneracies Dz : Ck(n + 1) --->
Ck(n) given by omitting the ith little cube, and for the configuration spaces, de-
generacies Di : F(Rk, n + 1) ---* F(Rk, n) given by omitting the ith point of the
configuration.
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In general, for any preoperad P and space (X, *), we can form the space

PX:=(UPxE, X')/-,
n>1

where the equivalence relation is given by

P(n) x X' z) (t,xl,..., xi = *,..., xn)
..i (Di (t), x1, , xi-1, litl, ... , xn) E P(n - 1) x Xn'-1,

1<i<n.
Now apply this construction using Jlkl to define the Milgram model J(k)X of

SZkSkX for any space (X, *). For n = 1, Jl'1X is just the free monoid generated by
the pointed space (X, *), that is, the James model for 1SX. Using the preoperads
Con(1Rk, n) or CkX instead, we get the May models Con(1Rk)X and CkX of 1kSkX.

THEOREM 2.7. (Berger [Ber96]) The configuration preoperad Con(Rk), Mil-
gram's preoperad j(k) and the little cubes operad Ck are homotopy equivalent as
preoperads. For a well-pointed space (X, *), the May models and the Milgram model
are all (weakly) homotopy equivalent.

Recall that May proved in [May72, Theorem 6.1, page 50] that CkX is weakly
homotopy equivalent to S2kSkX. Thus all three models in Theorem 2.7 have the
homotopy type of the k-loop space S2kSkX.

2.5. F-spaces

Segal's recognition principle and construction is similar but with several sig-
nificant differences. In [Seg74], he treats only infinite loop spaces (loop spectra in
his terminology.) In an unpublished manuscript, Bousfield [Bou92] adapts Segal's
approach to finitely iterated loop spaces. Instead of finding an operad which is suf-
ficiently elastic to keep track of all the homotopies necessary, Segal uses a special
discrete category r to define `special' simplicial spaces. In the following definition,
2T denotes the set of all subsets of T.

DEFINITION 2.8. F is the category whose objects are all finite sets and whose
morphisms from S to T are maps 0 : S -> 2T such that 0(a) and 0(b) are disjoint
if a and b are distinct.

Let n denote the set {1, 2, ... , n}. The following definition of r spaces should
be compared to that of a finitary algebraic theory of Lawvere [Law63]

DEFINITION 2.9. A F-space is a contravariant functor A from r to topological
spaces such that

(i) A(O) is contractible and
(ii) for any n, the map pn : A(n) -> A(1) x x A(1) induced by the n obvious

maps 1 -, n is a homotopy equivalence.

Any F-space can be regarded as a simplicial space (hence the terminology 'spe-
cial' simplicial spaces) via the functor from the category A to r which takes the
finite ordered set [n] = {0, 1, , n} to n and a nondecreasing map f : [p] -> [q]
to 9 : p --, q with 9(i) = {j E q : f(i - 1) < j < f(i)}. Any simplicial space A
has a realization as a topological space (in fact, there are several, all of the same
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homotopy type for reasonable spaces). Using an appropriate realization, Segal con-
structs a `classifying space' BA for any P-space A which is again a F-space. Also,
any r-space has an H-space structure on A(1) given by the map

A(1) x A(1) Pz 1 ' A(2) A(V)' A(1),

where p21 is an arbitrary homotopy inverse of p2 A(2) --> A(1) x A(1) and
v : 1 -* 2 is the map sending 1 E 1 to {1, 2} C 22.

PROPOSITION 2.10. A(1) has the homotopy type of 5lBA(1) if and only if the
H-space structure on A(1) has a homotopy inverse.

Segal observes that BA(1) in turn always has a homotopy inverse for its H-
space structure and so A(1) is then an infinite loop space.

As for approximation, Segal considers U BE, (where BEn is the classifying
space of the symmetric group) as BE(1) of a r-space BE induced from the category
of finite sets with disjoint union as monoidal structure. Similarly, for a space X,
he considers a I'-space BEX with BEX(1) = U(EEn x X')/En (where EE, is the
total space of a universal principal En bundle). The following two theorems are
proved in [BP72, Pri711.

THEOREM 2.11. (Barratt-Priddy-Quillen) As an infinite loop space, B(BE) is
homotopy equivalent to 1'°S°°, the `sphere spectrum.'

THEOREM 2.12. As an infinite loop space, B(BEX) is homotopy equivalent to
1l°°S°°X+, where X+ denotes the disjoint union of X with a point.

2.6. Homology operations

In this section we present a unifying operadic approach to primary (co)homology
operations, due to May [May70], and a brief survey of multi-variable higher order
operations. We will respect the original sign and degree conventions, though in
some cases they might be different from conventions used today.

We first review the Steenrod algebra in terms of higher homotopy commutativ-
ity. Let K := C' (X) be the complex of singular cochains on a topological space X.
The classical cup product --: K®K --> K is a (strictly) associative multiplication.
It is commutative up to a homotopy, which is traditionally denoted by -1:

(2.7) u--v-(-1)I-Ilvly- u=h(u-1v)+8u--1v+u--1Jv.
The homotopy '--1: K®K K is homotopy anticommutative and there exists a
hierarchy {--i}z>1 of homotopies such that

(-1)'u -i v - (-1)lullvly --i u
= b(u ---i+1 v) + (-1)i6u --i+1 v + (-1)i+lulu -i+1 5v.

Using the concept of graded commutativity, we may read the above equation as
saying that the degree -i map --i is graded commutative up to a homotopy --i+1
Steenrod squares Sqi : HP(X;Z2) ---> HP+i(X;7 Z2) in mod 2 cohomology are then
obtained as Sq'([u]) := [u ---P_i u].

The above can be rewritten as follows. Let Z[Z2] be the group ring of the
abelian group Z2 and let W = (W, d) be the `standard' 7G[Z2]-free resolution of 7G
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taken with the opposite grading, i.e. Wi := the 76[762]-free module with one generator
ei of degree i < 0, and the differential d acting as

dei := ei+1 + (-1)'Tei+1, T the generator of 762.

The reason why we take W with the opposite grading is so that the differential
of the resolution has the same degree as the differential in the cochain complex
C*(X), which is +1. Another possibility would be to flip the grading of C*(X), the
convention used in [May70, par. 5]. It is easy to verify that the map 0 : W®K®2 -*
K defined by

B(e-i®u®v) = (-1)i(i-1)/2u 'i v and
(2.8)

i(i-1)/2+IfhI
I

is 762-equivariant with B(eo®u®v) = u -- v. An elementary exposition of these
facts can be found in [MT68, Section 2].

More generally, it follows from an acyclic models argument that, for an arbitrary
prime number r > 2 and a 76[76,.]-free resolution W of Z such that Wo is generated
by eo, there exists a 76r-equivariant map 0: W®K®' - K of chain complexes such
that 0]{,.}0K01 is the iterated cup product. This map gives rise to mod r reduced
powers Pi : HP(X;Z,.) - HP}2i(r-1)(X;76r); see [SE62, VII] for details.

A similar situation arises when we take K : = C. (Y), the singular chain complex
of an (n+l)-fold loop space. Then, as we know from Section 2.2, the space Y admits
an action of the little (n+l)-cubes operad Cn,+1 which has the property that Cn,+1 (r)
is a E, free, (n - 1)-connected space.

Let W be the same 76[76x]-free resolution as above, but this time with the
standard, positive grading. The resolution W will not act on the chains C*(Y),
but W(n), the n-skeleton of W, will. The 76[76x]-freeness of W(n) together with the
(n - 1)-acyclicity of C*(Cn+1(r)) give a 76x-equivariant map C*(Cn+i(r)).
This map, combined with the action Cn+1 (r) x Y"r -* Y, induces a 76x-equivariant
map 0: ®K®r ---> K with the property that 9]{eo}®K01 is chain homotopic to
the loop space multiplication. By the same mechanism as above, the map 0 gives
rise to Kudo-Araki operations, introduced in [KA56]

Q,(2) : Hp(Y; Z2) --* Hp+i(Y; Z2), for p < i < p + n,

and, if r > 2 is an odd prime, Dyer-Lashof operations, introduced in [DL62]:

Qtr) : Hp(Y;76r) Hp+2i(r-i)(Y;Zr), for p(r - 1) < 2i(r - 1) < p(r - 1) + no.

Let Y be an (n + 1)-fold loop space as above and consider again the action
0: W(n)®K®2 -> K. As in (2.8), the formula u -i v := (-1)i(i-1)/20(ei®u(Dv)

defines, for 0 < i < n, a family of bilinear degree i maps such that --i is, for
0 < i < n - 1, graded commutative up to the homotopy Vi+l. The obstruction
cycle to the graded homotopy commutativity of -, (taken with appropriate signs)
induces, for any coefficient ring A, the so-called Browder operation [Bro60]:

an : Hp (Y; A) ®He (Y; A) -' Hp+q+, (Y; A)

The importance of the operation an is related to the property that A. = 0 if Y is
an (n + 2)-fold loop space, thus it forms an obstruction for Y to be a (n + 2)-fold
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loop space. The map A, is a degree n map which satisfies the following form of the
graded Jacobi identity

(-1)(a+n)(c+n)A.(x, An(y, z)) + (-1)(b+n)(c+'n)An(y, An(z, x))+
+(_1)(c+n)(b+n)A,(z,

A. (x, y)) = 0,

for x E H, (Y; A), y E Hb(Y; A) and z E H, (Y; A), and which is symmetric in the
sense that

An(x y) = (-1),b+1+n(a+b+1)An(y x), for x E H, (Y; A) and y c Hb(Y; A).

The sign convention follows the original work of Browder. Today, one would replace
an(x,y) by (-1)IxIan(x,y); this new an would then be a graded antisymmetric
degree n-Lie bracket; see Section 1.1.12.

Let us remark that W. Browder introduced his operations for a quite large class
of topological spaces, which he called Hn-spaces. An Hn-space is, by definition, a
topological space Y equipped with an `S' -action,' which is a Z2-equivariant map

0: s'L X Yx2_Y
with Z2 acting on the sphere S' via the antipodal map. It is easy to see that any
(n + 1)-fold loop space is an Ha-space.

Common features of the above constructions are summarized in the following
definition due to May [May70]. For an integer r, a commutative ring A, a subgroup
7r C E, of the symmetric group E, and for a A[7r]-free resolution W of A with
Wo = Aeo, he introduced a category C(1r, n, A), whose objects are pairs (K, B)
consisting of a homotopy associative (but not strongly homotopy associative in the
sense of Section 1.1.8) differential A-algebra K and a A[71-equivariant morphism
0 : W(n)®K®' -, K of differential complexes, where W(n) denotes the n-skeleton
of W. The map 0 has to satisfy several conditions, the most important being the
requirement that the restriction of 0 to {eo}®K®' is A-homotopic to the iterated
product K®' - K.

If 7r is the cyclic group of prime order r, we write simply C(r, n) instead of
C(7r, n, Z,). Suppose that (K, 0) E C(r, n). If r = 2, then 0 induces operations

Pi :H,(K)-*HT,+i (K), fori<p+n.
Similarly, for an odd prime r > 2, there are the operations

Pi : Hp(K) - Hp+2i(r-1)(K),

for 2i(r - 1) p(r - 1) + n, and

,3Pi : Hp(K) -' Hp+2i(r-1)-1(K),

for 2i(r - 1) < p(r - 1) + n + 1. Let us remark that, in general, Po ll.

The operation ,3Pi need not be the composition of the Bockstein with Pi as
suggested by the notation. This is, however, true for so-called r-reduced objects
(K, 0) E C(r, n). By definition, (K, 0) is r-reduced if it is obtained as the mod r
reduction of some (K, B) E C(7r, n, Z), where K is a flat Z-module. Observe that
both examples discussed above are r-reduced.

Let us give another, purely algebraic, example. For an associative A-algebra A,
let CHp(A, A) := HomA(A®p, A) be the complex of Hochschild cochains of A with
coefficients in itself, with Hochschild differential S [Mac63a, X.3]. In the classical
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paper [Ger63], M. Gerstenhaber considered the (obviously associative) cup product
CHP(A; A)®CHq(A; A) CHP+q(A; A):

( D ( D ( D

The cup product induces an associative product (which we denote by the same
symbol) in the Hochschild cohomology HH*(A;A). Some indications based on the
relation to deformation theory of associative algebras suggested that this product
must be commutative, though the definition did not look commutative at all!

To prove this, M. Gerstenhaber introduced, for f E CHP(A; A) and g E
CHq(A; A), the composition product f o g E CHP}q-1 (A; A) by

(f o 9)(a1 ®...®ap+q-1)

:_ E (-1)(i-1)qf (a1 ®- ® ai-1®g(ai ®...® ai+q-1)(3aq+i+1 ®...® ap+q_1),

1<i<p

The above formula is clearly the sum of oi-compositions f of g (obvious linear ver-
sions of f oig's recalled in Section 1.1.3) taken with appropriate signs. Gerstenhaber
then proved the formula

f o Sg - 6(f o 9) + (-l)q-1bf o 9 = (-1)q-1 [g `- f - (-l)pq f ., 9]

which means that the chain-level cup product is homotopy commutative. A harm-
less modification of signs, f -1 g := (_l)Pq+q f 0 g, gives a --1-product satisfy-
ing (2.7). The corresponding Browder operation a1 defines the bracket product
[x, y] :_ (-1)kxIA1(x, y) in Hochschild cohomology. The triple

(HH`(A; A), [-, -])
(again with a small sign modification) is an example of algebraic structure which
today is called a Gerstenhaber or C-algebra; see Section 1.1.17.

We saw that Hochschild complex exhibits some properties of 2-fold loop spaces.
This lead P. Deligne [Del93) to conjecture that the complex CH* (A; A) admits an
action of some operad, chain homotopy equivalent to the operad of singular chains
on the little 2-cubes operad C2; see Section 1.1.19.

Heuristically, the existence of a `W-action' 9 : W®K®' - K means that the
multiplication in K is homotopy commutative (or, if r > 2, that its iterates are
homotopy symmetric), with a hierarchy of higher coherent homotopies. We saw
that the `W-action' was in some concrete examples induced from an action of an
acyclic or at least highly connected operad, which meant that the multiplication in
K was homotopically very close to a commutative and associative one, again with
a coherent system of higher homotopies.

It is thus a very important fact that the first example of this section, the
example of the reduced chain complex of a topological space, also admits an action
of an acyclic operad.

One such action was constructed by V.A. Smirnov [Smi85] (and indepen-
dently also by V.A. Hinich and V.V. Schechtman in [HS87]) who proved that
the `Eilenberg-Zilber operad' £2 of endomorphisms of the reduced chain complex
of the simplex acts on C,(X). Notice, however, that the Eilenberg-Zilber operad is
not concentrated in positive degrees and it is not E-free.

Another, closely related, construction belongs to Justin Smith [Smi94]. He
constructed an operad R = {R(n)},>o with the property that R(n) is the bar
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resolution of Z over the symmetric group ring Z[E,,,] and proved that also this
operad acts naturally on the singular chain complex C*(X). Both actions contain
very strong information about the space X itself, for instance, under some mild
assumptions they fix the weak homotopy type of X. For a p-adic version, see
M.A. Mandell [Man0l].

The operations considered by May for which operads are so useful are operations
derived from the higher homotopy commutativity embodied in the Eilenberg-Zilber
theorem, so the action of the symmetric groups plays a key role. On the other hand,
the nonsymmetric Ate-operad Ass_ is relevant to the higher order operations of
several variables introduced by Uehara and Massey [MU57, Mas58], even though
the Alexander-Whitney map provides a strictly associative multiplication at the
cochain level.

The definition of Massey products in the homology of a loop space [Sta70]
makes essential use of the A,-structure on the chains of an A.-space. For example,
the definition of the Massey triple product <u, v, w> uses the associating homotopy
m3. For u, v, w E H(A) such that uv = 0 = vw, we can choose representatives
it E u, v E v, w E w and chains a, b E A such that uv = da and viv = db. Since the
multiplication is not associative, (-l)I"Iub-a2need not be a cycle, but (-1)I"Iub-
aw + M3 (it 0 v 0 w) is and represents <u, v, w>, which is defined as the coset of
H*(A) modulo the indeterminacy uH*(A) +H*(A)w to accommodate the choices
made.

Aco-algebras can also be used to define Massey products in the homology of
associative cochain algebras as follows. As proved in [Kad85], for a given asso-
ciative dg algebra A and a linear map A -> H(A) inducing an isomorphism of
homology, H(A) admits an A.-structure for which the linear map extends to an
A.-map. Since d = 0, the algebra H(A) is strictly associative, but the induced
A.-structure maps mi : H(A)®' H(A), i > 3, need not be trivial. For example,
m3 : H(A)®3 -* H(A) may be a nontrivial homotopy between the unique triple
product and itself. The operation m3 is related to the Massey triple product as
follows: If uv = vw = 0, then m3(u, v, w) represents <u, v, w> in H(A) modulo
uH(A) + H(A)w.

The usefulness of the Massey product is well illustrated in two important ex-
amples: the Massey triple product which detects the linking of the Borromean
rings [Mas69, Mas98] and the Massey triple products in H*(Sp(5)/SU(5)) which
distinguish the homotopy type of Sp(5)/SU(5) from that of the connected sum
(S6 X S25)#(S10 X S21) [Bor53, Sta83] which has the same cohomology algebra.

If the A.-structure on H(A) induced from that on A is trivial, A is called
formal, a term first introduced in rational homotopy theory. The concept of for-
mality plays an important role in many recent developments, especially in relation
to deformation quantization [Kon97] which uses the Lam-operad (see Section 1.1.10
and Example 3.133), providing the Lie analog of A.-structure (Section 1.1.8 and
Example 3.132). The Lie analogs of Massey products are known as Lie-Massey
brackets or just Massey brackets [Ret93].

2.7. The linear isometries operad and infinite loop spaces

Many infinite loop spaces are recognized in terms of an operad, called the
linear isometries operad and denoted Li, which more recently has played a major
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role in a streamlined approach to the stable homotopy category [KM95, May98].
Following Boardman and Vogt [BV73], we describe this operad as follows.

Let LI denote the symmetric monoidal category of real inner-product spaces
of countable dimension and linear isometric maps. Let us point out that by a
linear isometric map we mean just a linear isometric embedding, not necessarily an
isomorphism.

Topologize objects of LI by the direct limit topology of all the finite dimensional
subspaces, which are given the usual metric topology. Topologize the morphism sets
with the compactly generated function space topology. The monoidal structure is
that of direct sum with the canonical identifications of vector spaces for associativ-
ity, commutativity and R as unit for tensor products. There is a special object in
the category LI, the direct limit

II8°° := lim Rn.

The basic property of R°° is formulated in the following lemma, whose proof we
take almost literally from [BV73, pages 207-208].

LEMMA 2.13. The space LI(V R°°) is contractible for any vector space V E
Ob(LI).

PROOF. A contracting homotopy is easy to construct, its construction being
somewhat analogous to the 'Rota swindle.' Let {ei, e2.... } be an orthonormal
basis for R. Let h : R' II8°° ® R°° be the isometry

h(e2n) = (en, 0) and h(e2, _1) = (0, en), n > 1.

By applying the Gram-Schmidt orthogonalization process to the homotopy given
by

gt(en) := (1 - t)e, + teen, n > 1, t E [0, 1],

we obtain a homotopy through isometries from 1LR- to g := g1i given by g(en)
e2n.

Similarly, construct a homotopy between the two axial inclusions i1, i2 : V
V ® V by applying the Gram-Schmidt process to the homotopy

(1 - t)i1 + tie, t E [0,1].

Let k : V --* R°° be a fixed isometry. Let us compose the above homotopies to
define a contraction of Gi(V R°°) into the point h-1 o (k (D k) o i2 E Gi(V R°°).

For any isometry f : V -* R°°, the contraction runs from f = h-1 o h o f to
h-1 o h o g o f =h-1oi1 o f =h-1o (f(D k) oil

(using the homotopy between Il1too and g) and thence to h-1 0 (f ® k) 0 i2 =
h-1 0 (k (D k) o i2 (using the homotopy between i1 and i2).

The `classical' infinite loop spaces can be described in terms of symmetric mono-
idal functors LI . -> Top. The category LI determines the linear isometries operad,
denoted Li

DEFINITION 2.14. The operad Li = {Gi(n)}n>1 is given by

Li(n) := LI(®'R°°, R°°), n > 1.
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Strictly speaking, the n-fold direct sum is given by a fixed choice of iteration.
The symmetric groups act by permuting the summands in ®" R°°; since the maps
in Li(n) are imbeddings, the induced action is free.

THEOREM 2.15. The operad Li is an E.-operad. Any continuous symmetric
monoidal functor F : LI --> Top induces, up to homotopy equivalence, an infinite
loop space structure on F(Il8°°).

PROOF. The first part of the theorem follows immediately from Lemma 2.13.
For the second part, let X := F(Il8°°). Application of a continuous symmetric
monoidal functor F : LI --> Top induces, for n > 1, maps

Li(n) = LI(E)" I[8°°, R°°) -> £nd(X)(n) = Map (X", X)

which form a map of operads: Li -* End (X). Thus F(R°°) is an Li-space and hence
it has the homotopy type of an infinite loop space, by Proposition 2.33.

Applications of Theorem 2.15 abound. The classical ones are given in the
following examples.

EXAMPLE 2.16. Let F : LI --> Top be given by F(V) := O(V), the orthogonal
group of V, so F(R°°) = O(R°°) is the stable orthogonal group, which is thus an
infinite loop space. We may think of the multiplication as being induced by

Ae0(p),BEO(q)HA®BE0(p+q)
where, in terms of matrices,

Observe that the infinite loop space structure above does not use the group structure
of the orthogonal group.

We can apply the ordinary classifying space functor B so that F(V) := BO(V).
This choice also gives a monoidal functor, as follows from the homeomorphism

B(GxH)=BGxBH
for any two compact groups G and H. Thus the classifying space BO := BO(R°°)
for real K-theory is again an infinite loop space with respect to the multiplication
given by the classifying map for the Whitney sum of bundles.

The analogous results for U and BU (respectively Sp and BSp) follow imme-
diately by considering F(V) = U(V (D C) (respectively F(V) = U(V ® H) where H
denotes the quaternions).

EXAMPLE 2.17. Only slightly more subtle is F(V) := 1-l(V U oo), the space
of homotopy self-equivalences of the sphere obtained as the one-point compactifi-
cation of V. For F(V) := Homeo(V), the space of homeomorphisms of V to itself,
the topology is considerably more subtle; Boardman and Vogt resort to replacing
Homeo(V) by the weakly equivalent realization of its singular complex.

The maps V -> V ® C -* V 0 H induce infinite loop space maps as do the
forgetful maps V ® C ---> V ® R2 and V O H -> V 0 ]184 as well as the maps
0(V) Homeo(V) 7-l (V U oo) and all the respective maps of classifying spaces.
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EXAMPLE 2.18. The tensor product of matrices

0 : O(p) X O(q) --> O(pq), A, B -, A ®B,

induces a different structure on the infinite orthogonal group O(1R' ). This, and
the corresponding structure on the classifying space BO, can again be shown to be
an infinite loop space structure, but this time using Segal's approach (Section 2.5)
and not that of Boardman and Vogt, as they point out. The analogous results are
true also for U, Sp, etc.

2.8. W-construction

Another major contribution of Boardman and Vogt [BV73, BV681 is their
W-construction, which was their main tool in the analysis of homotopy invariant
structures. Here we will present the essential ideas of the W-construction, its prop-
erties and applications. A detailed modern sophisticated treatment has recently
been given by Vogt [Vog].

Essential ideas of the construction WP can be demonstrated on the operad
they call the operad of trees, but which we prefer to call the operad of metric trees.
To simplify our exposition, we will in fact ignore (homotopy) units and work with
reduced (that is, with no vertices of arity one) trees only.

To simplify our exposition, we will make no distinction between isomorphism
classes of trees and trees representing these classes; see also remarks in Section 1.9
Recall that edge(T) denotes the set of internal edges of a tree T.

DEFINITION 2.19. A metric tree is a tree in the sense of Section 1.5 (i.e. with
one root and a finite number of leaves) together with a length function (also called
a metric) h : edge(T) -* [0, 1].

For a given tree T, the set of metrics Met(T) on T can be realized as a cube
1', where the dimension k is the number of internal edges of the tree.

Recall that for an edge e E edge(T), T/e denotes the tree obtained from T
by shrinking e to a point. For any length function h : edge(T/e) -> [0, 11, let
se(h) : edge(T) -i [0, 1] be the obvious function which is 0 on e and agrees with
h on the other edges. So we have defined, for any e E edge(T), a `degeneracy'
se : Met(T/e) ---* Met(T).

Now define, for a given n > 2, the space of reduced metric trees Rmtree(n)
of arity n to be the polytope formed from the union of all (isomorphism classes
of) reduced metric trees of arity n by identifying Met(T/e) as a cube with the
corresponding face of the cube Met(T) or, formally,

Met(T) z) se(h) - h c Met(T/e),

for any T E Rtree(n) and e E edge(T). Here Rtree(n) denotes the set of isomor-
phism classes of reduced rooted n-trees (recall that it is in fact the nth component
of the operad of reduced rooted trees recalled in Section 1.5). Since Rtree(n) is
finite, the polytope Rmtree(n) is finite as well.

For metric trees, the grafting operation should be considered as identifying
the root edge with the appropriate leaf edge and assigning the length of this new
internal edge to be 1. This grafting induces (in fact, piecewise cubical) embeddings
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of : Rmtree(r) x Rmtree(s) ---> 7Zmtree(r + s - 1), r, s > 2,

giving Rmtree = {Rmtree(n)}n>2 the structure of a topological pseudo-operad.
The W-construction on an operad P is then a generalization of the operad

Rmtree in the sense that we consider metric trees with vertices colored by elements
of the operad P. A precise definition is given below.

The original construction [BV73] described WP as a quotient of the space of
P-colored metric (not necessarily reduced) trees by two types of relations, the first
type used (in our terminology) the pseudo-operad structure of P only; the second,
more complicated one involved the unit of P. We will avoid introducing the second
type of relation by assuming that

(2.9) P(1) = * (the one-point space);

these operads are general enough for our purposes. The functor (-)+ : op - 'Pop
defined by

(2.10) P+(n) := 0, for n = 1, and
f P(n), for n > 2,

induces an equivalence of the category of (topological) operads with P(1) and
the category of pseudo-operads Q with Q(1) = 0, the inverse functor given by
formally adjoining the unit.

So we start with an operad P satisfying (2.9), then consider the pseudo-operad
P+, construct a pseudo-operad WP+, and finally define the operad WP by adjoin-
ing the unit to WP+. Recall (Section 1.9) that

P+(T) = X P+(In(v))
vE Vert(T)

denotes the set of all P+-colorings of the tree T. Clearly P+(T) may be nonempty
only when T is reduced. Recall also that the pseudo-operad structure on P+ in-
duces, for each e E edge(T), a map

(2.11) -ye : P+ (T) - P+(T/e).

Now let WP+(1) := 0 and, for n > 2, define WP+(n) as the quotient of

(2.12) U Met(T) x P+(T)
T E Rtree (n)

by the relation:

Met(T) x P+(T) 3 (se(h), f) - (h,ye(f )) E Met(T/e) x P+(T/e),

where T E Rtree(n), e E edge(T) and rye is the contraction as in (2.11). The above
definition is of the same informal type as that of (1.52); the doubting reader may
rewrite it in terms of colimits.

Intuitively, the above relation means that we remove edges of length 0 by
composing in P+, as indicated in Figure 5. The quotient is topologized using
the topology on P together with that of the cubes.

The pseudo-operad structure on WP+ is given as follows. Observe that (2.12)
is the union of products of ingredients making up the pseudo-operad Rmtree (the
Met(-)-factor) and those making up the free pseudo-operad (the P+(-)-factor).
The pseudo-operad structure on WP+ is then induced diagonally by these two



2 8 W-CONSTRUCTION 111

FIGURE 5. Removing an edge of length 0.

pseudo-operad structures. Finally, the operad WP is obtained by adjoining the
unit 1 E WP(1) := * to WP+.

The augmentation e : WP -* P has components e(n) : WP(n) ---> P(n) induced
by the composition

Met(T) x P+(T)
Pr,1 P+ (T) - P+ (n) = P(n), T E Rtree(n), n> 2,

where 'yT denotes the composition along T E Rtree(n). Informally, this means that
e is defined by shrinking every edge (length) to 0 and correspondingly composing
the operad elements associated to the vertices at the ends of the edge.

As a matter of fact, the collection P is a subcollection (but not a suboperad)
of WP under the natural inclusion t : P -> WP given by

t(n)(p) := h,(n) x p E Met(c(n)) x P+(n),

where h,(n) is the unique trivial metric on the corolla c(n) with n input leaves,
n > 2: Metric contraction of the edges induces a deformation contraction of WP
to P.

THEOREM 2.20. The W-construction is a functor W : Op -> Op which, from
any (topological) operad P, produces an operad WP and an augmentation e
WP -* P which is a cofibrant resolution of P.

For a detailed proof, see [BV73, Proposition 11.3.6, Theorem II.3.17]. `Cofi-
brant' refers to an appropriate Closed Model Category structure, which we briefly
discussed in Section 1.1.18. One of the implications of the cofibrancy is that, given
a diagram of operads

WP
with g a homotopy equivalence of operads, there exists a lift f : WP ---> P such
that g o f and f are homotopic as maps of operads.

EXAMPLE 2.21. The operad Cmon = {Cmon(n)}, >1 for commutative associa-
tive topological monoids (not to be mistaken with the operad Com for commu-
tative associative algebras) is given by Cmon(n) = *, for n > 1. The pseudo-
operad Rmtree of metric trees is then exactly the W-construction on Cmon, that
is, Rmtree = WCmon+.

There is an obvious non-E version W of the W-construction defined for non-
E operads in exactly the same way as W was for ordinary operads, except that
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FIGURE 6. A portrait of CK4 as the pentagon decomposed into
five cubes. The cubes are indexed by binary trees T E Rtree(4).

we use planar trees instead of abstract ones. If P is a non-E operad, these two
constructions are related by

W(P(n)) = W(P)(n) x En, n > 1.

EXAMPLE 2.22. The W-construction applied to the non-E operad .Mon for
associative monoids defined by Mon(n) := * for each n > 1 coincides with the
operad associated to the non-E pseudo-operad Rmtree := {Rmtree(n)}n>2 of planar
metric reduced trees, an obvious analog of the pseudo-operad Rmtree defined above.
The space Rmtree(n) can also be described as a certain cubical decomposition CKn
of the associahedron Kn. A portrait of CK4 is given in Figure 6.

2.9. Algebraic structures up to strong homotopy

As mentioned in Section 1.1.18, the W-construction plays a key role in Board-
man and Vogt's study of homotopy invariant algebraic structures. To investigate
that concept fully, we first need to address the issue of maps of algebras over an op-
erad P. We will work in the category of (compactly generated) topological spaces,
though with some subtlety the analogous discussion makes sense in any monoidal
closed model category.

MAPS OF A.-SPACES. Suppose we are given two P-spaces X and Y. A (strict)
P-homomorphism f : X -> Y respects the structure maps precisely:

f (p(x1, ... , xn)) = p(f (x1), ... , Ax-))
for each n > 1, x1i ... , xn E X and each n-ary operation p E P(n).

However, from a homotopy point of view this is too much to ask; it is important
to consider maps that respect the structure up to (strong) homotopy. The earliest
example of this phenomenon is perhaps that of the structures of well-pointed H-
spaces (X, e) and H-maps. Recall that an H-space is a space X with a map m :
X x X -* X such that m(x, e) = x = m(e, x) and an H-map f : X -* Y between
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two H-spaces is a map f such that fm is homotopic to m(f x f) (preserving the
base point e).

Higher homotopies are of interest even for strict algebraic structures If X
and Y are topological monoids (associative H-spaces), Sugawara [Sug6l] defined
f : X ---* Y to be strongly homotopy multiplicative if there exists a family of maps

fi Ii-1 X Xi -> Y

such that f1 = f and for 1 < j < i - 1,

(2.13) fi(tl,...,ti-1;a1,...,ai)
iftj=0,

11 fj(tl,...,tj-1;a1....,aj)fi-j(tj+1....,ti;aj+1,...,ai), if tj = 1,

where tj indicates tj is omitted.
A very important example of such a map which helps explain some of the

subtlety of transferring structure via a homotopy equivalence is the example com-
paring X = Map(W, W) and Y = Map(Z, Z) via the map f : X ---> Y induced by
homotopy inverses 0: W Z : V).

Let h : I Map(Z, Z) be a homotopy with h(0) = Idz and h(1) = OV). Define
f : Map (W, W) -* Map (Z, Z) by f (a) = OaV) for a E Map (W, W) and further

f i(ti, ... , ti-1; a1..... ai) = 0aih(t1)a2h(t2) ... h(ti-1)aj%.

The boundary conditions (2.13) are easy to verify.
If X is an A.-space with structure maps

(2.14) ms:KsxX5->X, s>1
and Y is a topological monoid, we then say f : X ---> Y is an A--map if there exists
a family of maps

(2.15) K,+1 x Xi -> Y, i > 1,

such that f1 = f and fi restricted to a face of Ki+1 is of the appropriate form,
which means the following. Recall that the associahedron Ki+I is of dimension i -1
and has codimension one faces K, of Ks, where r + s = i + 2 and 1 < j < r. The
restriction of fi to Kr of K. is

fi(poj a; al,-,ai)

I fr-1 (p; al,-, aj-1, ms(a, aj,-, aj+s-1), a7+s,-, ai), for j < r, and

f,-1(p; ar-1)fs-1(a; ar,-, ai), for j = r,

see [Sta7O, page 54]. Observe that the associahedra appear both in definition (2.14)
of an A.-space (as they should) and in definition (2.15) of an A,-map with the
arity shifted by one. We have no conceptual explanation for this latter phenomenon.

If both X and Y are A.-spaces, still more complicated polyhedra, occasionally
called multiplihedra, are used in defining A0-maps. For example, we begin with
an ordinary homotopy, i.e. f (xy) ^_- f (x) f (y), but for three variables, the polygon
has six edges; see Figure 7. For four variables [Sta70, page 53] the polyhedron is
depicted in Figure 8.

The following characterization of A.-maps between A--spaces in terms of the
B-construction (see Section 1.1.6) was proved in [Sta70, Theorem 8.12].
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f (x(y(zw))

f (x)f (y (Z-)

f(xXf(y)f(zw)

f(x(yz))

f(x)(f(y)f(z)) (f(x)f(y))f(z)
FIGURE 7. The multiplihedron for 3 variables.
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FIGURE 8. The multiplihedron for four variables.

PROPOSITION 2.23. Suppose that X and Y are A.-spaces. There exists a
one-to-one correspondence between homotopy classes of A,-maps X -. Y and
homotopy classes of continuous maps BX --> BY.

A.-maps play a key role in the homotopy characterization of associative struc-
tures. Assuming modest topological restrictions, e.g. being of the homotopy type of
a CW-complex, a space is of the homotopy type of a topological monoid if and only
if it is an A.-space; moreover, given the A00-space, the homotopy equivalence with
a topological monoid will be via A00-maps. Thus A00-structures provide homotopy
invariant remains of monoidal structure. Being homotopy invariant, A.-structures
provide a model for a more general theory of homotopy invariant algebraic struc-
tures - the leitmotif of Boardman and Vogt's work [BV73].
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THE MEANING OF HOMOTOPY INVARIANT ALGEBRAIC STRUCTURE. With this
background, we can look at Boardman and Vogt's study of homotopy invariant
algebraic structures. We take algebraic structures on a space X to mean the struc-
ture of a Q-space for some operad Q. To be called a homotopy invariant algebraic
structure, the structure should be given by an operad Q satisfying the three criteria
of Boardman and Vogt [BV73, page 1], where Q-map refers to the analog of A,
map for Q-spaces, explicated below:

(i) If X is a Q-space and f : X -. Y is a homotopy equivalence, then Y admits
the structure of a Q-space and f that of a Q-map.

(ii) If f : X -. Y is a Q-map of Q-spaces and g is homotopic to f, then g admits
the structure of a Q-map.

(iii) If f : X -* Y is a Q-map of Q-spaces and a homotopy equivalence, then any
homotopy inverse to f admits the structure of a Q-map.

Notice this leads to a further issue: One would like the structure of a Q-map
on any homotopy inverse to f to make it a homotopy inverse as Q-maps, but that
requires defining `homotopy of Q-maps,' beginning an infinite regression [Mar99c].

MAPS OF P-SPACES. To address these issues of homotopy invariance, we need
the analog of A.-maps for algebras over general operads and, as Boardman and
Vogt point out [BV73, page 68], to study such maps of spaces over more general
operads, it serves us well to have a subtle generalization of operad known as a
bicolored operad. Still more colorful operads can be defined, but they are currently
not of great importance.

We are not going to give here a formal definition of colored operads (which
can be found in [BV73] or [Mar99c]); we only indicate how to construct a {B, W}-
colored operad PB-w so that an algebra over PB-w consists of two P-spaces A
and B and a continuous map f : A ---> B which is also a P-homomorphism; see
again [Mar99c] for details.

DEFINITION 2.24. For an ordinary operad P, define the {B, W}-colored operad
PB-.w as the quotient

PB*Pw*F(f)(2.16) _wPB (faB=awf> , b'aEP(n), n>1).
In this formula, PB (respectively Pw) denotes the copy of P `concentrated' in

the color B (respectively W). The symbol f, interpreted as f : B ---* W, is a new
generator of the free {B, W}-colored operad, F(f), which consists only of f, since
there is no way to compose f with itself. The asterix * denotes the free product
of colored operads, so PB_.w consists of all manifestly meaningful compositions of
f with operations of PB (respectively Pw). The equation faB = aw f xn generating
the ideal in the denominator of (2.16) expresses the fact that f commutes with all
operations of the operad P. The operad PB_.w is the same as P ®G1 of [BV73]

HOMOTOPY INVARIANT ALGEBRAIC STRUCTURES. As the operad K for A.-
spaces can be regarded as WMon (or K as the nonsymmetric version W (.Mon) (see
Example 2.22)), so for any operad P, the operad WP provides the proper notion of
a homotopy invariant structure. The more common parlance is to speak of a WP
structure as a P-structure up to (strong) homotopy:

DEFINITION 2.25. A strongly homotopy P-space is a topological space with an
action of the operad WP.
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We adopt the terminology that a WP-homomorphism of WP-spaces means a
single map that respects the WP-structure precisely, while a strongly homotopy
P-map refers to the higher homotopy notion exemplified by an A.-map of A,-
spaces. We use W(PB-.w) to make that higher homotopy notion precise. Notice
that our terminology differs slightly from the one used in [BV73].

DEFINITION 2.26. A strongly homotopy P-map between WP-spaces A and B
is an algebra over W (PB,w).

The importance of WP-structures is expressed by the following theorem proved
in [BV73, Theorem 4.37].

THEOREM 2.27. A topological space X admits a WP-structure if and only if
X is of the homotopy type of a P-space. Moreover, given X of the homotopy type
of a P-space Y, X is a WP-space in such a way that the homotopy equivalences
between X and Y are strongly homotopy P-maps.

REMARK 2.28. Here the cofibrancy of WP is crucial for the `if' statement. For
example, although a space over the little n-cubes operad Cn has the homotopy type
of an n-fold loop space, the converse is, for n > 2, not true in general, because the
operad C, is not cofibrant.

For the A,-case, the proof of Theorem 2.27 was first accomplished by con-
structing a `classifying space' BX and then taking Y to be the Moore space of
loops on BX. Later [Ada, BV73, Lad76], other constructions were provided.
Here we sketch a more straightforward approach.

THE M-CONSTRUCTION. We construct the space Y from the given data on X
via the M-construction, a strict P-space MX, sometimes called the rectification of
the WP-space X.

THEOREM 2.29. Under mild topological assumptions, there exists, for a WP-
space X, a strict P-space MX such that X is a strong deformation retract of MX,

t:X'-MX,
with t a strongly homotopy P-map.

A construction of MX for a general operad P was given by Boardman and
Vogt in [BV73, Theorem 4.49]. We illustrate basic ideas of the construction on
A,-spaces (i.e. with P = Ass), in which case the construction is actually due to
Adams [Ada].

In Example 2.22 we recalled the non-E pseudo-operad of reduced metric planar
trees Rmtree := {7Zmtree(n)}n>2 and observed that the space Rmtree(n) provides
a certain cubical decomposition CK, of the associahedron K.,,. Let Rmtreee(n) (e
for extended) denote, for n > 2, the space of (isomorphism classes of) metric planar
n-trees such that a length in [0, 1] is assigned also to the root edge, so, in fact

Rmtreee(n) -- Rmtree(n) x [0, 1].

For n = 1 we put Rmtreee(1) :_ {T0}, where To is the trivial 1-tree interpreted as
a metric tree with the unique edge (which is both the root and leaf) of length 1.

For S E Rmtreee(k), T E Rmtree(l), 1< i < k and l> 2, let S oi T E
Rmtreee (k + l - 1) be the tree obtained by grafting T at the ith leaf of S, with the
metric induced by the metric of S and T and the length of the internal edge created
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FIGURE 9. The right Rmtree-module structure of Rmtreee.

x1 x2 x3 x4 x5 X6 m(T; xi, x2, x3) x4 x5 x6

FIGURE 10. Representing elements of MX.

by grafting set equal to 1, as indicated in Figure 9 These operations induce on
{1Zmtreee(n)}n>1 a right Rmtree-module structure in the sense of Definition 3.26,
but we will not need this observation. If k = 1, To E Rmtreee(1) the unique element
and T E Rmtree(l), then To 01 T is T interpreted as an element of Rmtreee(1) with
root of length 1.

DEFINITION 2.30. Let X be an A.-space with an action

{m, : Rmtree(n) x X"n - X, n > 2}.

Define MX to be the quotient of the disjoint union

U Rmtreee(n) x X"n
n>1

modulo the relation

Rmtreee(n) X X"n D S of T x (x1,..., xn)

r S x0) E Rmtreee(k) X X"k,

fork>1,6>2,n=k+l-l and I <-i-<k.
An element of MX can be represented by a metric tree with vertices labeled by

elements of X. There are two types of relations. The first type comes from Rmtree
and says that internal edges of length 0 are collapsed. The second relation says
that if an internal edge or root has length 1, the tree "below" (in the up-rooted
convention) this edge or root is interpreted as an element of Rmtree and used to
compose the X-labels of this tree; see Figure 10.

Let us indicate how to prove that the space MX in Definition 2.30 indeed
has the properties stated in Theorem 2.29. For two metric trees U E Rmtreee(a),
V E Rmtreee(b) and a + b > 1, let U V E Rmtreee(a + b) be the tree obtained
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FIGURE 11. The product U . V.

by grafting U (respectively V) at the left (respectively right) leaf of the planar
2-corolla, with the metric induced by the metric of U and V and the length of the
root equal 0. This operation is symbolized in Figure 11. Define a multiplication on
MX by

(U x (xI,..., x, )) . (V x (yL,...,yb)) := U - V x (x1i..., x, , yl, ...,y,),
for U E Rmtreee(a) and V E Rmtreee(b). It is easy to verify that this formula
defines an associative multiplication on MX. There is a natural inclusion c : X -4
MX given by

X E) x H To x x E Rmtreee(1) x X,

where To is the trivial tree with the unique edge being the root of length 1. As
follows from [BV73], this map is an A00-homotopy equivalence.

The proof for a general operad P is similar. The rectification MX is again
constructed by `extending' more general P-colored trees forming WP instead of
planar trees above.

E_-STRUCTURES. As recalled in Section 2.3, given a space X over the little
n-cubes operad Cn,, May produced a space Y so that X had the homotopy type
of S2"Y by building Y as a two-sided bar construction. In contrast, Boardman
and Vogt [BV73, Chapter VI] approach the problem of identifying iterated loop
spaces by investigating how (if at all) structure on a space X can be transferred
to its classifying space BX. Here X must be at least an A,-space and they take
the classifying space BX to be the classifying space of Dold and Lashof [DL59] or
of Milgram [Mi167] applied to the monoid MX, though one could as well use the
direct construction in Section 1.1.6. There are mild topological restrictions assumed
for the rest of this section.

In the following Proposition 2.32, which gives the induction step for the ap-
proach of Boardman and Vogt, we need the (9-product of operads.

DEFINITION 2.31. Let P and S be two topological operads. Then P®S is
defined to be the operad with the property that a topological space X is an algebra
for this operad if and only if X is both a P- and an S-algebra and these two
structures commute with each other.

The product P®S is constructed explicitly in [BV73]. Observe that this prod-
uct is essentially different from the tensor product of modules, though we denote
both by the same symbol. The following proposition is [BV73, Propositon 6.21].

PROPOSITION 2.32. For an operad P and for a W(C 0 P)-space X, the clas-
sifying space BX is a WP-space.
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Boardman and Vogt apply this result iteratively to show that a space X over the
little n-cubes operad Cn admits a classifying space BX (so X has the homotopy
type of SlBX), which admits a classifying space B2X (so X has the homotopy
type of p2 B 2X), which admits ..., so that ultimately X has the homotopy type of
1 B'X.

To do this, they observe there is a map of operads from 1C to the little 1-
cubes or little intervals operad C1 which is a homotopy equivalence since both have
contractible components indexed by E,. Thus, given an operad P, they can show
that a W (C1 ® P)-action on X induces a W (IC (9 P)-action on X and hence a
WP-action on BX. Finally there are fairly manifest operad maps Cn_1 --* C. from
which more subtle operad maps C1 0 C,_1 --> C, can be constructed. This then
permits the iteration: X being a C,,-space implies BX is a Ca_1-space so BBX
exists and is a C-2-space ...., until B'X is just a plain, ordinary space, but its
existence is what we are after.

The operad maps Cn_1 -. Cn allow the definition of C. as the direct limit,
C, = lim C,, so that if X is a C,-space, it has the homotopy type of S2"BnX for
all n > 0. Thus Theorem 2.4 is established.

Similar results hold for more general E.-operads S by comparison with WC_.
Recall that an operad E is an E.-operad if each E(n), n > 1, is contractible and
the right E,-action is free.

This means that there exists a morphism of operads E -. Mon which is a `free
topological' resolution, though not necessarily a cofibrant one From the cofibrancy
of WC. we know that there is a morphism of operads WC_ - E; see [Vog]. For
application to identifying infinite loop spaces, we use the linear isometries operad
.Ci presented in Section 2.7. This is an E.-operad (Theorem 2.15), thus there
exists a map of operads WC_ -..Ci, therefore each Li-space is also a WC.-space.
We conclude:

PROPOSITION 2.33. Each Li-space is an infinite loop space.





CHAPTER 3

Algebra

3.1. The cobar complex of an operad

In order to study the homological algebra of operads, in particular, homotopy
algebra structures, it is necessary to extend the base category from modules over
a commutative ring k, which was the main example in Chapter 1, to the category
of differential graded k-modules. To simplify the presentation, we will assume that
k is a field of characteristic zero and restrict our attention to the categories Vec
of k-vector spaces, gVec of graded k-vector spaces and dgVec of differential graded
k-vector spaces.

In the following sections we define several complexes. The cobar complex C(P)
and the dual dg operad D(P) are more or less the same, up to operadic suspension
(defined below). The Koszul complex K(P) is important, in part, because the
cochain complex of the free P-algebra generated by a vector space V factors into
a tensor product of K(P) and tensor powers of V. The categorical cobar complex
N(P) is the middle link in a quasi-isomorphism between C(P) and K(P) in the
sense that there are two spectral sequences on N(P), one reducing at stage El to
C(P), the second one reducing at stage El to K(P).

The objects (V*, d) of dgVec are cochain complexes of vector spaces with k-
linear differentials raising degree by 1. The symmetric monoidal structure was
defined in (1.2). We use ® to denote both ®k and the graded tensor product. The
meaning will be clear from the context.

For the sign factor in the symmetry a(v ® w) :_ (-1)'w ® v, we will use the
notation (-1)v := (_1)deg(v) (_1)vw :_ (_1)deg(v)deg(w) etc. There is a potential
ambiguity in the symbol (-1)" since the exponent could be either deg(v)deg(w)
or deg(vw). In our convention it will always have the meaning deg(v)deg(w).

The dual complex V# = (V*, d*) of V = (V, d) is defined by

(V#)i := Hom(V-',k),
(3.1) d#(a) (-1)aa o d,

where a E V# and Hom denotes Homk. We use the superscript # to denote
the linear dual complex to avoid confusion with * for grading and o for simplicial
degree. In general, we will use the symbols P, Q, etc., for operads and the symbols
A, B, etc., for E-modules.

DEFINITION 3.1. A differential graded E-module (dg E-module) is a E-module
A := {A(n)}",>l such that A(n) E dgVec for all n > 1 and the differential d(n)i :
A(n)' ---> A(n)i+' is k-linear and En equivariant. The component A(n)' is said to
have internal degree i. Differential graded E-modules form a category dg-E-Mod.

121
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The morphisms of dg-E-Mod co : A -, B satisfy the condition that for each n,
co(n) : A(n) -* B(n) is a En-equivariant morphisn of dgVec.

DEFINITION 3.2 A differential graded operad (or dg operad) is a differential
graded E-module with an operad structure for which the operad structure maps
are dgVec morphisms. A dg pseudo-operad is a differential graded E-module for
which the pseudo-operad structure maps of are dgVec morphisms.

Using the graded tensor product in dgVec, one can extend the monoidal struc-
ture on E-Mod defined in (1.64) to dg-E-Mod by

n

®A(7) ®E, B[7,n].
i=1

One can also define a dg operad as a monoid in dg-E-Mod relative to the -monoidal
structure.

The remainder of this section uses the definition of the cobar complex in [GK94,
Section 3.2], but our point of view is slightly different. As a first step in defining
the cobar complex of an operad, we need to dualize the of operations. In general,
we will not need the unit axiom so it will be enough to consider pseudo-operads;
however, to simplify the statements we will use the generic term "operad" unless it
is necessary to make a distinction. Moreover, to make sure that all dual operations
are well defined, we consider only operads P such that P(n) is of finite type for all
n, that is, all the graded components of P(n) are finite dimensional.

DEFINITION 3.3. Let P be a dg operad. Dualizing the oi-operations defines a
family of dg maps on the dual dg E-module {P#(n)}n>1. If we define

Az P# (m + n - 1) _* P# (n) ®P# (m)

by

Di'-(A)(a ®/3) = A(a of Q),

then
Di,m (A) := E A(i,1) ®A(i,2),

where

,\(a of Q) (-1)«a z A(i,1) (a)A(i,2) (/3),

for A E P#(m + n - 1). The above two equations use Sweedler notation, i.e. the
summation index is suppressed.

REMARK 3.4. The assumption that P(n) is of finite type implies that the
(graded) dual of the tensor product is the (graded) tensor product of the (graded)
duals (P(n) (9 P(m))# - P#(n) ® P#(m). The operations A"' define the struc-
ture of pseudo-cooperad with axioms dual to those of a pseudo-operad. We leave
the precise formulation of the axioms to the enthusiastic reader.

When the pseudo-operad structure is described in terms of P(T) as in The-
orem 1.73 and Corollary 1.74, the basic operations are the os-operations, one for
each tree-morphism ire : T' - T'/ex = T such as that appearing in Figure 1.
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P#(T') D

Y

FIGURE 1. The operation AT,T' dualizing ox.

Recall that X Lix Y := (X Li Y) - {x} (see (1.15)) is the set resulting from
replacing the element x of X with the set Y and the pseudo-operad composition
ox is a morphism

ox : P(X) ® P(Y) , P(X Lx Y).

Dualizing this operation in the same way the morphism A"' was defined in Defini-
tion 3.3, we have a morphism Dy ,Y : P#(X L1xY) , P#(X)®P#(Y) for arbitrary
sets X, Y. Let T' be a tree with an edge ex such that the input vertex (the one
farthest from the root) has incident edges labeled by Y and the output vertex (the
one closest to the root) has incident edges labeled by X, (x E X), i.e. the situation
as in Figure 1. Let T := T'/ex. Applying A ,Y at vertex 7r(ex) in the tensor
product P#(T) (where ir(x) is the vertex which is created by collapsing the edge
ex) defines an operation:

(3.2) DT,T' : P#(T) -> P#(T').

The following result on extending the dg structure on A(n) or A#(n) follows
immediately from the fact that we defined A(T) for any monoidal category, in
particular, for the monoidal category of differential graded vector spaces, so A(T)
is an object of the same category. The only subtlety here is that A(T) involves
the unordered tensor product of A(In(v)) over the vertices of T (a colimit over the
different simple orderings (see Definition 1.58)). The differential commutes with
the symmetry; therefore, it commutes with the symmetric group action permuting
factors in the ordered tensor products and hence defines a differential on the colimit
A(T).

PROPOSITION 3.5. If A is a dg E-module, then for any tree T the dg structure
on A (or A#) extends to A(T) (or A#(T)) and the

A T
in equation (3.2) are dg

maps.

Recall (Section 1.5) that for any tree T, edge(T) denotes the set of internal edges
of T. We also denoted the number of internal edges of T by TJ := card(edge(T)).
For any A E dgVec, the suspension is defined by

(T A)'
.

:= Ai-1.
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DEFINITION 3.6. For any finite set S, let Tks be the free k-module with basis
S considered as a dg vector space concentrated in degree 1 and define the one-
dimensional dg vector space concentrated in degree ISI:

det(S) = det(ks) := AI5I(Tks).

We may interpret ks also as the space of k-valued functions on S, therefore det(ks)
is `contravariant in S.' Define

det(T) :=T det(kedge(T))

Thus det(T) is concentrated in degree ITI + 1. An ordering ( e l , e2, ... , eITI) of
the edges of T determines a basis element el A e2 A ... A eIT E det(T). Since the
correspondence T H edge(T), f H f*, is a contravariant functor on the category
Tree of rooted labeled trees (see Section 1.5), the correspondence T H det(T)
extends to a covariant functor on the category Iso (Tree) of isomorphisms of Tree.

REMARK 3.7. The degree shift in the definition of det(T) can be explained as
follows. Let eedge(T) (extended set of edges) be the set of internal edges of T plus
the root edge. What we really want in definitions below is det(T) defined as the
determinant of the set eedge(T), that is, det(T) = det(eedge(T)). But, since the
root of a rooted tree is always `marked,' there are canonical isomorphisms

det(eedge(T)) = det(edge(T) U {the root edge of T})
det(edge(T))®det({the root edge of T}) det(edge(T)),

therefore the definition of det(T) based on the extended set of edges would be the
same as the former one.

The cobar bicomplex of an operad P in arity n (operad-degree n) is a double
complex

C(P)(n)* * = ® C(P)(n)i,j
i>1,jEZ

with

C(P)(n)z'3 = colim P#(T)i ® det(T),
T E Iso

DTI+1=i

where Rtreen is the category of reduced rooted labeled n-trees; compare the defi-
nition of the free pseudo-operad (1.47). We call i the tree degree and j the internal
degree.

The cobar differential will consist of two pieces: the tree differential and the
internal differential.

The tree differential is a sum 5 S , where the ith degree component

(3.3) bi : C(P)i,* = colim P#(T)®det(T)
ITS+1=i- colim P#(T')®det(T') = C(P)(n)i+l,*

IT'I+1=z+1
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is the colimit of its matrix components

Ae ,T' ®e n (-), if T = T'/e, and
(3.4) 6T.T' f 0, if T T'/e,
where e A (-) is the map

e A (-) : det(T) - e A det(T) = det(T')

and De ,T' was introduced in (3.2). The condition j2 = 0 follows immediately from
dualizing the associativity identities for o.. The tree differential gives rise to what
we will call the 8-complex

(3.5) P#(n)* 6 colim P#(T)` ®det(T) -s - colim P#(T)* 0 det(T),
DTI=1 JTI=n-2

where the component corresponding to trees T with DTI = i has tree degree i + 1
and the condition T E Iso (Rtree,) is implicit in all the colimits.

The internal differential 6p has components

(3.6) 6P = dp#®11 : P#(T)i®det(T) --> P#(T)2+1®det(T),

where dp# : P#(T)2 . P#(T)j+1 is the induced differential; see Proposition 3.5.

REMARK 3.8. The precise meaning of the `matrix components' (3.4) is the
following. Suppose that there is some T' E Rtreen and e E edge(T) such that
f : S = T'/e = T and g : S' -°- T' for some isomorphisms f and g in Rtreen.
Then we define

(3.7) 6s s, [P#(9 1)De'T P#(f)]®[det(g-1)(eA(-))det(f)]

Otherwise we put 8s,s, := 0. The first line of (3.4) is (3.7) for S = T'/e and
S' = T'; (3.7) is then the unique extension of (3.4) compatible with the colimits.
Equation (3.6) has the similar obvious meaning.

DEFINITION 3.9. The cobar complex of an operad P is the differential graded
E-module C(P) := {C(P)(n)}n>1 with arity one component set equal to 0,

C(P)(1) := 0

and the arity n component for n > 2 given by the total complex of the cobar
bicomplex in arity n

(C(P)(n)* *, d := 6+ (-1)ITI6p),

where 6 is the tree differential and 6p is the internal differential defined above.

In sections 3.4, 3.5 and 3.6 we use another representation of C(P), as the direct
sum over representatives of isomorphism classes of labeled trees,

(3.8) C(P) = ® P#[T]Odet(T);
TETree(n)

compare Proposition 1.82 and formula (1.52).

DEFINITION 3.10. Given A E dg-E-Mod, the reduced suspension T A is the dg
E-module defined by

(T A) (n) f T (A (n)), if n >
2, and
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This definition implies that the free pseudo-operad T(TA) on the E-module TA
is a colimit over reduced trees. We use the language of pseudo-operads here to em-
phasize that we have set the arity one components equal to zero in the construction
of C(P).

THEOREM 3.11. For each arity n > 2, there is an isomorphism of dg vector
spaces between the cobar complex graded by total degree with differential 6p (ignoring
the tree differential) and the free pseudo-operad W(TP#) on the dg E-module TP#
with differential dp# induced from the differential on P:

(3.9) C(P)(n) = 1Y(TP#)(n).

PROOF. It is clear that if we ignore the factors det(T) and degrees, then
(C(P)(n),6,) is isomorphic to (T(P#)(n),d9#). The following lemma ([GK94,
Lemma 3.2.9]) describes what happens when we include det(T) and the grading
in P.

LEMMA 3.12. For any finite set I of m elements and Wi c dgVec, i E I, there
is a canonical isomorphism

®(T Wi) - ®W® ® det(k' ).
Tel iEI

For A E dg-E-Mod, there is a canonical isomorphism

(3.10) (T A) (T) = A(T) ® det(T)

of covariant functors on Iso (Tree).

PROOF. See the appendix to this section.

COROLLARY 3.13. The cobar complex C(P), with the pseudo-operad structure
defined by isomorphism (3.9) in Theorem 3.11 and differential d = 8 + (-1) T SP,
as a dg operad. It defines a contravariant functor C : dgtiIOp -- dgwOp which
preserves quasi-isomorphisms.

PROOF. The operad composition on C(P) comes from identification (3.9) with
i(I P#). It follows immediately from the definition, which uses the grafting of trees
(cf. the proof of Proposition 1.78), that both the tree differential and the internal
differential are derivations relative to the oz operations. The functor C preserves
quasi-isomorphisms because the same is true of the functor P --> P#(T) for any
tree T.

REMARK 3.14. We constructed C(P) in such away that it `ignores' the compo-
nent P(1). More precisely, recall that, given P, the pseudo-operad P+ was defined
in (2.10) by

P+(n) j P(n), if n > 2, and
l 0, for n = 1.

Then C(-) factors through the functor P H P+ defined above. Our approach
differs slightly from the one of [GK94] based on K-collections
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The complex D(P) which we define below is a form of the cobar complex with
cochain degree shifted by -n+1 so that the maximal cochain degree is normalized
to be 0. Both complexes C(P) and D(P) are necessary for the study of quadratic
operads and the Koszul property (the topic of Section 3.3). The construction of
D(P) uses the notions of operadic suspension and desuspension, which will be
important in a number of other contexts as well.

DEFINITION 3.15. For any dg E-module A, the operadic suspension sA is the
dg E-module whose arity n component is defined by

sA(n) := T"-1 A(n) ® sgnn.

The operadic desuspension s-1A is defined analogously:

5-1A(n) := 1"-1 A(n) ® Sgnn

It is easy to see that if P is an operad, then the E-modules sP and s-1P have
the operadic composition naturally induced from the operadic composition on P.

LEMMA 3.16. The operadic desuspension of the endomorphism operad is iso-
morphic to the endomorphism operad of the suspension:

s-1Endv - End1v.

PROOF. The isomorphism of the lemma is a consequence of the following
sequence of isomorphisms and identifications

Endiv(n) = Homz ((TV)®", TV) = ®Hom (((TV)®') , (TV)'+j)
/jEZ

®Hom((V®n)j_n Vi}j-1) ®sgnn = Hom'+"-1(V®",V) ®sgnn
jEZ

= Endue '-1(n) ®sgnn = (s-1Endv(n))'.

REMARK 3.17. It is not surprising that s-1Endv(n) and Endiv(n) are isomor-
phic as vector spaces. What is surprising is that the signum representation arises
from the commutation relations between the suspension and 0. This calculation
explains why we need sgn in the definition of the operadic suspension.

DEFINITION 3.18. The dual dg pseudo-operad D(P) is the operadic desuspen-
sion of C(P):

D(P) := s-1C(P).

REMARK 3.19. Theorem 3.24 below shows that by iterating the functor P -*
D(P) we get a `standard resolution' of P. Moreover, we will see in Theorem 3.39
that D(P) is also related to the `quadratic dual operad,' hence the name dual
dg pseudo-operad. The next proposition and the remarks that follow describe the
structure of D(P) in a little more detail.

PROPOSITION 3.20. The suspension functor and the free pseudo-operadfunctor
commute up to a natural transformation, that is, there is a natural transformation
of functors from dg-E-Mod to dggfOp:

'D :50T -- 'F o s.
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The proof is given in the appendix to this section. Putting Definition 3.18,
Proposition 3.20 and Theorem 3.11 together, we conclude

(3.11) D(P) s-1C(P) =s-'41(T P#) = WY(s-1 TP#).

REMARK 3.21. Ginzburg and Kapranov [GK94] construct D(P) using what
they call the determinant operad, which is defined as follows.

DEFINITION 3.22. The determinant operad A is the desuspension of the com-
mutative operad,

A := s-1Com.
In other words, the arity n component A(n) is a one-dimensional graded vector
space concentrated in internal degree 1 - n carrying the signum representation of
En

The tensor product of operads C(P) ® Com defined by (C(P) (9 Com) (n) :=
C(P) (n) ®Com(n) is naturally isomorphic to C(P). Therefore, since tensoring with
Com followed by s-1 is equivalent to tensoring with s-'Com,

D(P) = s-'C(P) = s-'(C(P) 0 Com) = C(P) 0 s-'Com = C(P) 0 A
The last term is the definition of D(P) in [GK94].

DEFINITION 3.23. Recall that DTI = card(edge(T)), the number of internal
edges of the tree T. Recall also that Edg(T) denotes the set of all edges of T
excluding the root edge. Let L(T) = card(Leaf (T)) and E(T) := card(Edg(T)) _
L(T) + T1. Define

Det(T) :=j2L(T)-2 AE(T)(TkEdg(T)).

Thus Det(T) is a graded vector space of dimension 1 concentrated in (non-
positive) degree DTI + 2 - L(T), which is the degree of the `operadic desuspension'
of det(T). With this definition, the complex D(P) relative to the tree differential
8 is

P#(n) a colim P#(T) ® Det(T) + - colim P#(T) ® Det(T).
ITI=1 ITI=n-2

The component P#(T)®Det(T) corresponding to a tree T has tree degree JTJ +2-
L(T), so the complex is concentrated in tree (2 -L(T),... , 0). The internal degree
is induced by the grading on the P#(n) and the usual rule for the tensor products
appearing in P#(T). The En-action is described in more detail in the appendix to
this section.

THEOREM 3.24. If P is a dg pseudo-operad such that each P(n) is of finite
type, then there is a canonical quasi-isomorphism D(D(P)) ---f P+, where P+
was defined in (2.10).

PROOF. See the appendix to this section.
It follows from this theorem and Theorem 3.11 that D(D(P)) is a free resolu-

tion of P+. It is an algebraic equivalent of the W-construction of Boardman and
Vogt [BV73] which we recalled in Section 2.8. This becomes clear in the course
of the proof given in the appendix, where it is shown that D(D(P)) is indexed by
trees with vertices labeled by elements of P, and with edges of two types: one type
(which we will call primary edges) arising from the first application of the functor
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D and the other type (which we will call secondary edges) arising from the second
application of the functor D. Note that in Figure 3 in the appendix, the secondary
edges are those which appear inside the circles.

The differential in D(D(P)) has three components. The first component comes
from the differential in the dg operad P (internal differential), the second component
is a sum of terms each of which involves collapsing a secondary edge and composing
the labels on the adjacent vertices using the composition law for the operad P and
the last component of the differential is a sum of terms each of which involves
relabeling a secondary edge as a primary edge.

In the W-construction recalled in Section 2.8 the metric edges are considered
as cells of dimension 1 and trees with m metric edges label the m-cells (an m-fold
product of 1-cells). If an edge is labeled with t = 0 or t = 1, the corresponding
product represents two (m - 1)-dimensional faces, but the relations in the W-
construction imply that the edges with t = 0 are collapsed and the labels on the
adjacent vertices are combined by operad composition, giving rise to a tree with
m - 1 metric edges.

Given a cellular (topological) operad Q, let C.(Q) be its operad of cellular
chains. Let us see what happens in the preceding paragraph if P = C. (Q). For
any tree indexing a component of D(D(C.(Q))), define a corresponding metric tree
(cell) in the W-construction on Q with a metric edge for each secondary edge and
an edge with label t = 1 for each primary edge. Using this correspondence one
can define a map from D(D(C.(Q))) to C.(W(Q)). The internal differential on
the complex C.(W(Q)), that is, the one induced by the differential on C.(Q), is
the same as the internal differential on D(D(C.(Q))). The differential given by
the sum of the second and third components of the differential in D(D(C.(Q))), as
described in the proof, corresponds to the differential on the cellular chains arising
from the cells given by metric trees in the W-construction because the relations in
the W-construction imply that assigning the value t = 0 to a metric edge collapses
that edge and composes the labels on the adjacent vertices by the operad law.

3.1.1. Appendix. The technical lemmas proved in this appendix show that
the symmetries in dgVec (in particular, the signs) are compatible with the various
maps. They are then used to prove Theorem 3.11.

PROOF OF LEMMA 3.12. If we choose an ordering {i1.... , i_} of I and rep-
resent ®i,r Wi as Wi, ® ® W,,,,, then we can define

cp T Wi, --> ® Wii ® det(k')
1<j<m 1<j<m

by

(3.12) (P(T w1 ®... 0 T w-) =

where T wj ET Wi, and wj E Wi, are corresponding elements and, in our nota-
tion, (-1)"' :_ (-1)deg(w) By the definition of det(k'), cp preserves degree. The



130 3 ALGEBRA

following equations show that co commutes with the differentials:

co(d(T w1 (9 ... (9 Twm))

E1co(Tw1 (9 ...® Tdwj ®...®Twm)
1<j<-

E E2(w1®...(9 dwj0 ...0 wm)®(iiA...Aim)=dv(Twl0 ...0 Twm)
1 <3<m

The sign factors above are

E1 = and

E2 = (-1)(E,# w.+j) _ w,)

Next we show that cp commutes with a E E,,, and hence is well defined in-
dependent of the choice of ordering of I. It is enough to consider of transposing
factors wj, wj+1,

O(oj(Twl (D ...® Twm))

=E1V(Twi0...0Twj+1®Twj®...(9 Twm)

= E2 (wl ®... ®wj+1 (9 wj ®... ®Wm) 0 (ii A ... A ij+i t ij A ...Aim)
= of (E3(w1 ® ®wj ®wj+l 0 ... 0 wm)) 0 (i1 A ... A ij A ij}1 A... Aim)
= (,7j 0...(9 Twm)

The signs are given as follows

El = (-1)(wi+1)(wi+1+1) ,

E2 = (-1)Eiwe-wi+1+wj+(Wi+1)(w3+1+1) = (_1)(Eiw1+wgwi+l+1) and

E3 = (-1)Eiw`.
The extra term -wj+l+wj in the exponent in the third line comes from the reversed
order of wj and wj}1. Therefore cp commutes with all permutations and generates
a morphism of the colimit defining the unordered tensor product.

To prove isomorphism (3.10), note that there is a canonical identification of
AITl+1(kven(T)) and ATt (kedge(T)) coming from the ordered splitting

kvert(T) -- kedge(T)

where a vertex corresponds to its outgoing edge and trout is the basis element of
kVert(T) corresponding to the root vertex. Then there is a dg isomorphism

(T A) (T) = A(T) 0 det(kVe' t(T)) = A(T)® T det(kedge(T)) = A(T) ® det(T).

The proof of Proposition 3.20 uses a lemma, for which we need some preliminary
definitions and reminders. For the rest of the appendix, we return to the notation
(T, f) for a labeled tree. Recall that in Proposition 1.82 we showed that the arity n
component of the free pseudo-operad generated by a E-module A can be represented
as a direct sum over isomorphism classes of (unlabeled) trees with n-leaves:

1I(A)(n) = ®A[T],

where A[T] was defined in Definition 1.81. In Proposition 1.87 we then proved the
isomorphism

A[T] = ®E(T,t) k[Enl
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1 2 3 4 5 6

FIGURE 2. Labeling leaves of a planar tree.

of E,-modules. Define

and

s(A[T]) :=Tn-1 A[T] ®
sgnn,

(sA) [T] := (sA)(T,1) ®E(T,t) k[E,,]
In other words, (sA) [T] is A[T] derived from the E-module sA instead of A.

LEMMA 3.25. For each E-module A, there is a En-equivariant isomorphism

'PA,T : s(A[T]) --, (sA)[T].

The correspondence A - 4'A,T is a natural transformation of functors A -+ s(A[T])
and A H (sA) [T] on dg-E-Mod.

PROOF. Let s(A(T, B)) := T'-1 A(T, f) 0 sgn,, where sgn,,, in fact means here
the restriction of the signum representation to the subgroup E(T, P) C En. Initially,
we define

(3.13) IYA,T,t : sA(T, B) --> (sA) (T, f)

by induction on the height of the tree T. Then we will show that IYA,T,t is equi-
variant relative to E(T, t), and therefore, extends to a well-defined map s(A[T]) -
(sA) [T]. The most convenient way to present A(T, f) is to choose as a represen-
tative of the equivalence class [T, B] a planar tree with leaves labeled from left to
right in the standard counterclockwise planar orientation, as indicated in Figure 2.

For a tree of height one, that is, a corolla, the assertions of the lemma simply
restate the definition of the functor s. Suppose that we have constructed the map
of (3.13) for trees of height m and we want to construct 'YA,T,t for trees of height
m + 1. Any labeled tree (T, .2) of height m + 1 is the result of grafting labeled trees
(Ti, 1),... , (Tk, Pk) of height at most m to a corolla t(k). We represent the labeled
tree (T, P) by

(T, E) = (... (t (k) °k (Tk, fk)) °k-1 ...) 01 (T1, P1),

where the of operation on trees is grafting along the ith leaf. Then A(T, t) can be
represented

(3.14) A(T, .2) = A(k) ®G (A(T1, P1) ®... ®A(Tk, fk)) ,

where G is the subgroup of Ek which permutes isomorphic trees in the sequence
(Ti,... , Tk); see (1.14). Under this identification, the image E(T, Q) of the tree
automorphism group in E, is the normalizer of E(T1, f1) x x E(Tk, fk) in E, .

The map '1A,T,t is defined inductively as the composition of two maps. If Ak
is a basis element for the one-dimensional signum representation of Ek, then

'PA,T,t :_ (Il ®G WA,T1,t1 ® ... 0 WA,Tk,tk) 0 W A,T
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where

SAT : s(A(T)) -(sA)(k) ®c s(A(T1)) ® .. ®$(A(Tk))

is defined by

A,T(T (a0®...®ak ® A,))

(-1)e(1 apT ® Ak) ® ... ® (T-k-1 ak ® Amk),

for Zi .= ao ® ®ak (9 A, and the exponent of the sign factor (coming from moving
T across the terms of the tensor product) is:

(T -1
a):=(ml-I)Iaol + (-2 2-1)(laol + lad) +...+ (Mk-1)(10101 +...+ yak-1I)-

The equivariance of the follows from the induction hypothesis; therefore,
the E(T, k)-equivariance of the composition `PA,T,t is proved once we have proved
the equivariance of 1PA,T.

We will prove the equivariance of WA T when T has height 2. The proof for the
general inductive step from height m to height m + 1 is completely analogous.

If T has height 2 and is the result of grafting k corollae with ml,... , Mk leaves
respectively to a corolla with k leaves, the group E(T, B) is the normalizer of the
subgroup E,,,, x x Emk C E. and is generated by two types of elements. The
first type of element is in the image of the imbeddings ti : Em, ' E,,. The second
type of element transposes two adjacent intervals of integers of the same length mi.

The elements & := ei(a) of the first type act on the tensor product A(k) 0
A(m1) ® ® A(mk) according to the action of E,,,,, in the ith factor (counting
A(k) as the 0th factor). The elements p of the second type act by transposing
adjacent factors A(mi) = A(mi}1) while at the same time acting on A(k) as the
transposition of i and i + 1. Clearly ql'4 T is equivariant with respect to the action
of the first type of elements, since

sgn I E,,, = sgnm, .

We need only verify that it is equivariant with respect to the action of the second
type. If mi = mi+1, let p be the transposition of intervals i and i + 1 and T =
(i, i + 1) E Ek be the transposition of i, i + 1. Then

'I`AT(Tn 1
(ao®...®ai®ai+1®...®ak0A

'FA,T (sgn.(P)(-1)a" +' T"-1
(aaT ®... 0 ai+1 ®ai ®... ®ak 0 A,))

(-1)£(1 apT ® Ak) ®...

® (Tm'-1 ai+1 0 Ami ® (Tm'-1 ai 0 Am,) ® ... ® (T-k-1 ak 0 Amk).

The new terms in the exponent of the coefficient come from the substitution
(-1)m and the transposition of ai and ai}1. The expression a' is the
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tensor product with factors ai and ai+1 transposed. On the other hand

'Pi4,T(Tn-I (ao ®... (g a ®ai+i 0 ... 0 ak ®A N
E1

((T'`-1 ao ® Ak) ® ... ® (Tmi-1 ai+1 ® A,) ® (1T-'-1 ai 0 Am,)®

.. ®(Tmk-1 ak ® Amk)) P

E2(Tk-1 ao (9 Ak)T ® ... ® (Tm1 -1 ai+1 0 nm,) 0 (Tm,-1 ai 0 Am,) 0
mk-1

E3(Tk-1 aoT O Ak) ®... (9 (Tm`-1 a,+1 0 Am,) ®(Tm`-1 ai 0 Am,) ®
... ® (Tmk-1 ak 0 Amk)

The sign factors are

E1 _
(-1)e(1"-1R))

E2 _ (-1)£(1° +m, 1) and

E3 _

One checks immediately that the exponents (1' a)+(jail+mi-1)0a,+1l+
mi - 1) + 1 and (1i-1 a') + jaiIlai+lI + m? have the same parity so tiYA,T and p
commute.

Since 11YA,T,t is E(T, P)-equivariant, the morphism q'A,T,t ®£(T,t) 11k[F,] has a
well-defined extension to s(A[T]). Then define

'DA,T W A,T,t OE(T,e) l1k[E, ]

All constructions above are clearly functorial in A, therefore W-,T : s(-(T))
(s-)(T) defines a natural transformation of functors on dg-E-Mod.

PROOF OF PROPOSITION 3.20. Define

'DA ®WA,T : ®s(A[T]) =sW(A) -+®(sA)[T] = T(sA),

where the summation is over isomorphism classes of unlabeled reduced trees.

Lemma 3.25 shows that 'DA is a natural transformation. The verification that
it is a morphism of operads (i.e. is compatible with operad composition) and hence
that D is a natural transformation of functors from dg-E-Mod to dgop will be left
to the industrious reader.

PROOF OF THEOREM 3.24. The complex D(D(P)) is tri-graded, with multi-
index (i, j, k). The index i is the tree-degree coming from the last application of
the functor D. The corresponding tree differential will be denoted by b1. The
index j is the negative of the tree-degree coming from the first application of D,
negative because the dual D(P)# enters in the definition of D(D(P)). The internal
differential on D(P)# has two components b2 and dp. The differential S2 is dual
to the tree differential on D(P) from the first application of the functor D and
therefore expresses the composition law on the operad P. The differential dp is
induced by the internal differential on P and raises the last index k by one. If
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a(v) = card(In(v)), then by definition,

D(D(P))z'1'k(n) = colimD(P)#(T)2'k ® Det(T)
I

j,k

colim I ® D(P)#(In(v)) 0 Det(T)
I vE Vert(T) J

1#
colim ® (colim 0 I ®Det(T)

I K J

coIim ((&K
(colimP(Sv)k° 0 Det(Sv)# I I ®Det(T).

The indexing categories for the colimits are

I = {T E Iso (Rtreen), ITS + 2 - n = i} and
J = {S,, E Iso (Rtree(In(v))), IS,I +2 - a(v)

and the indexing set for the tensor product is

K = {(v, jv, kv) I v E Vert(T), E jv = j, E kv = k}.

We believe that the meaning of the above definitions is clear, for example, I denotes
the full subcategory of Iso (Rtreen) of trees with DTI + 2 - n = i.

These isomorphisms are explained as follows. Since P(n)k is finite dimensional
for all n, k and # indicates the graded dual, we have ((P(Sv)k)#)# = P(S,)k. The
index i is nonpositive and equals ITI + 2 - n, reflecting the fact that s-1 shifts
tree degree ITI + 1 by 1 - n. Thus i = 0 corresponds to binary trees in Rtreen
(n - 1 vertices). The dg vector space D(P)(T) is the colimit of tensor products
of D(P)(a(v)), one for each vertex v of T and we use jv to denote cochain degree
of the element associated to vertex v. The factors D(P)(In(v)) are a colimit over
labeled trees with card(In(v)) leaves such that there is a tree Sv E Rtree(In(v))
assigned to each vertex of T, that is, purely on a tree level, the vertices of T are
labeled by trees S,,. The relation between the number of internal edges of S and
the degree j, is jv = -(IS, I + 2 - a(v)).

In order to describe the differential

Sl : D(D(P))zJ,k -, D(D(p))i+l,j,k

it is useful to construct a `big tree' S by grafting each tree S, into T at the corre-
sponding vertex v. There is a morphism of trees r : S -> T such that S = 7r-1(v)
and 7r contracts each subtree S, onto the corresponding vertex v in T. The vertices
of the big tree S are partitioned into the sets Vert(S,) indexed by the vertices of T,
thus the vertices of T can be identified with subsets which constitute the partition.
As an example, consider Figure 3 where the same big tree S (a binary tree with
three vertices) is associated to four trees. Each of the trees Ta corresponds to a
partition of the vertices of S into subsets consisting of the vertices of a subtree.
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T2 T2 T3

®(e# A f#)

FIGURE 3. One small piece of the complex D(D(P)) with differ-
ential S1 in the case of a binary tree S with three vertices. The
tree T1 is a corolla with the vertex labeled by a binary tree. The
trees T2 and T2 are trees with one binary and one tertiary vertex
and the tertiary vertex is labeled by a binary tree. The tree T3 is
a binary tree. The labels are the encircled subtrees collapsed to
vertices.

Coming back to the equation above, we can re-express the last line:

colim (® (colimP(S S)k ° ®Det(S.)# I I ®Det(T)

= colim (®P(In(w))k° 0 Det(Sv)# 10 Det(T)

colim P(S)k ®( ® Det(Sv)# I ®Det(T)
L \vE Vert(T),

colim P(S)k ® ® det(SS)#
L vE

The new indexing category for the colimit is the category of isomorphisms of objects

(3.15) L={7r:S- T I TJ

The indexing set for the unordered tensor product in the second row is

M = {(v, w) I v E Vert(T), Sv = 7r-1(v), w E Vert(Sv), E k,,,w = k}.

The substitution of ® det(Sv)# in the last line is a consequence of the following
isomorphisms (compare the definition of a `coefficient system' for modular operads
in Section 5.3):

Det(T) ® ® det(SS) = Det(S) Det(Sv).
vE Vert(T) vE Vert(T)

By duality we get

® Det(SS)# ® Det(T) = ® det(Sv)#
v E Vert (T) v c Vert (T)
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The new indexing ISI + 2 - n = -j in the last three lines is explained by the
following sequence of equations:

-j = -jv = (ISvI + 2 - a(v))

E Vert(T) vE Vert(T)

(I Vert(Sv)I + 1- a(v)) = Vert(S)I + I Vert(T)I - a(v)
vE Vert(T) vE Vert(T)

IVert(S)I+IVert(T)I -(ITI+n)IVert(S)I+1-n=SI+2-n,

that is, -j =SI + 2 - n.
The tree differential b1 is dual to pseudo-operad composition in D(P),

of : P(T) ® P(T') - -> P(T oti T'),

in which T oi T' is the tree given by grafting T' to T along the leaf labeled i; see
Definition 1.37. Applying the differential at a vertex v of T consists of replacing v
of T by an edge e, and expressing Sv as the grafting of two trees along the edge ev.
This edge ev can be identified with one of the internal edges of Sv. The operation
does not change the big tree S and does not affect the labels from the operad P; it
merely repartitions the vertices of S - see Figure 3.

From this description it becomes clear that the entire b1 complex can be de-
composed into a direct sum over subcomplexes D(D(P))s indexed by (isomorphism
classes of) `big trees' S. For a given S the subcomplex is itself a colimit over the
category of isomorphisms of objects it : S T where Sv = 7r-1(v) as v runs over
the vertices of T,

D(D(P))sti,n-2-Isl,k) := colimP(S)k ® ® det(7r-1(v))#,
N vE Vet(T)

for N the category of isomorphisms of objects {(T, 7r) 17r : S -> T, TI +2-n = i}.
The trees T which appear in this subcomplex arise from all possible images of
S under a tree-morphism. Figure 3 shows a typical example. For any subset of
internal edges J C edge(S), there is a tree-morphism it : S -* Ti = S/J, with
ITil =SI - IJI = i + n - 2. In terms of the subsets J we have

D(D(P))si,n-2-Isl,k)

where

Q vE Vert(Tj)

P(S)k®(e#A...ne

® P(S)k ® ® det(7r-1(v))#

R

Q = {J C edge(S), ISI -IJI = i + n - 2} and
R = {J = {ei...... 6ilil } C edge(S), JJI = ISI - i - n + 2}.

Observe that the colimits in the above formulas were replaced by direct sums, be-
cause subsets J c edge(S) index representatives of isomorphism classes of elements
of the category L in (3.15), by J H (S -> S/J). The term e# A ... A e 1 is the
wedge product of all the internal edges in all the subtrees S and Si decreases JI
by one.

For the corolla S with n leaves and no internal edges, ITI = JSJ = 0, i = 2 - n
and j = n - 2. Since there are no internal edges in S, both Si and S2 (corresponding
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to operad composition in P, coming from dualizing the first application of D) are
zero. Thus for each n > 0,

(D(D(P))(n)(2-"' -2,*) b) - (p(n)*

If we prove that for any tree S other than a corolla the corresponding subcom-
plex (D(D(P))s,8) is acyclic, then, since the total differential on D(D(P))s can
be expressed as the differential of a double complex,

dD(D(P)) =EMI + (-1)iJD(P),
the acyclicity follows from a standard argument in the theory of double complexes
(see for example [Mac63a, 11.6]).

Then the cohomology is concentrated in the complementary subcomplex given
by the direct sum over corollae S and the quasi-isomorphism referred to in the
statement of Theorem 3.24 is just projection on that subcomplex.

To prove 61 acyclicity for S1 > 0, we will show that in this case the subcomplex
(D(D(P))s,5) is isomorphic to the tensor product of P(S) with the augmented
chain complex of an (JSJ - 1)-simplex.

For each tree S with internal edges eIsi}, define Ti := S/{e, Ij E J},

A(S) ._ A(k{e# I 1 < i < SJ}),

and

s : D(D(P))s ---> P(S) ® A(S),
as a sum fs = es,j, where forJ = {ii,... , all },

P(S) ® ( ® det(S,)#) P(S) ® (e# A ... A e#).
vE Vert(Ti)

It is clear from the discussion above that

Si : P(S) ® ® det(Sy)# P(S) ® ® det(S,)#
vE Vert(Ti) i_k<IJI vE Vert(TJ)Jk-J-e k k

is a sum of terms each one given by deleting one edge from the set J. It composes
with s as follows

sa61= E eij ors,
1<i<ISI

where the operation j contracts ei with e#. The chain complex (A{e#}, d
(T.eij)) is clearly isomorphic to the augmented simplicial chain complex of the
(ISI - 1)-simplex, which is acyclic.

3.2. Quadratic operads

In this section we work with operads P such that P(1) = k The definition of
a quadratic operad is based on a fairly straightforward analogy with the definition
of a quadratic algebra as the quotient of a free associative algebra by an ideal of
quadratic relations. We have already defined free operads so it remains only to
define ideals in an operad. First we introduce the concept of a module over an
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operad (see [Mar96c]) and then that of an ideal. We illustrate the fundamental
examples using Young tableaus.

DEFINITION 3.26. By a left module over an operad P we mean a E-module
M = ,>1 together with maps

At,_: ® M(m1 +.+ml)
1 <i<l

for any 1 > 1, m1, ... , ml > 1, satisfying the operadic form of the standard axioms
for a left module over an algebra.

Similarly, a right module over an operad P is a E-module M = {M(n)J,>1
together with maps

Plan, : M(l) ®P(m1)®... ®P(ml) -> M(m1 + ... + m1)

for any 1 > 1, m1, ... , mt > 1, satisfying the corresponding operadic form of the
identities for a right module.

The terms `left module' or `right module' obviously reflect the position in which
M appears relative to the analogs A,,. and pl,, of operad composition morphisms
7t,., but since the factor M appears both on the right and on the left of P for a1,,,,,,
there is a certain asymmetry.

We can also combine the maps appearing in these definitions using the -
product introduced in Section 1,1: For example, a right P-module structure is
given by a morphism R

satisfying the standard identity between the composite maps

(3.16)

P P - P P the -product
of E-modules and am,-p,p is the associativity constraint for the -product. The
unit axiom can be expressed by saying that the composition

(3.17) PM
is the identity or, in `coordinates,'

Pt;1, ,1(m®1®... ®1) = m,

for each l > 1, m E M(l) and the unit 1 E P(1). The analogous description of a
left P-module uses the following definition.

DEFINITION 3.27. Given three E-modules A, B, C, define their relative -
product AD (B, C) to be the sub-E-module of the -product of A with the E-
module B ® C consisting of terms with just one ® factor from C. The component
of amity m is

® A(g)®E,_, (C(m1)®B(M2)®... ®B(-,,))
ml+ +m,=m

where Eq_1 acts by permuting the factors of B(m2)®. . . ®B(mq).
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The associativity constraint for the -product of E-modules defines an asso-
ciativity constraint for the relative -product,

(3.18) aA,B,(c,D) : (C,D).

Using the relative 0-product, we can define a left P-module structure on a
E-module M as a morphism

,\:PD(P,M)->M,
satisfying identities analogous to (3.16) and (3.17).

DEFINITION 3.28. A P-module M is a E-module with right and left 'P-module
structures which are compatible in the obvious sense.

Equivalently, left and right P-modules can be described in terms of the left and
right of operations:

o

OP
z

= oq : P(n) ®M(m) --* M(m + n - 1) and
= of : M(n) ®P(m) M(n + m - 1).

The operad P itself is a P-module. If -y : P - Q is an operad map, then
ry induces a P-module structure on Q. The definition of an ideal in an operad is
derived from the definition of a P-module in the standard way.

DEFINITION 3.29. An ideal in an operad P is a sub-E-module which is also a
P-submodule.

The forgetful functor U : Modp - E-Mod from the category of P-modules to
the category of E-modules has a left adjoint P(-) : E-Mod --* Modp and P(B) is
called the free P-module on the E-module B. It is defined by

P(B) := P13

which in `coordinates' means

(3.19) P(B)(n) - ®P(q)®(B(r)®E,.(P(sl)®... ®P(Sr))),

I

where 1 is the unit E-module defined in (1.63) and the direct sum is over the index
set

I:={(q,r,sl.... ,s1) 1 1<q<n, 1<r<n, q+si+...+sr=n+1}.
The structure maps are defined by applying the associativity constraint to

regroup terms followed by operad composition in P. Our assumption P(1) = k is
important here. Without this assumption, the free P-module would be the quotient
of (3.19) by relations for the unit.

DEFINITION 3.30. Let P be an operad and R C P a sub-E-module of P. The
operadic ideal generated by R is the image in P(R) under the P-module morphism
P(R) --> P induced by the inclusion R ti P of E-modules.

Any operad P can be represented as a quotient 91(E)/(R), where E and R are
E-modules and (R) is the operadic ideal generated by R in W(E); we write

(3.20) P -- (E; R) := q,(E)/(R).
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DEFINITION 3.31. A E-module E such that E(n) = 0 if n # 2 is called a
quadratic E-module. An operad is called a quadratic operad if it is a quotient of
the free operad on a quadratic E-module modulo an ideal generated by a subspace
R C T(E)(3) of defining relations.

REMARK 3.32. Identities such as a = a a. or a = -a a for a basis element
a E E(2) and a E E2 are not considered as defining relations, but rather as a
description of E(2) as a sum of copies of the trivial representation of E2 and the
sign representation. These identities in turn determine the decomposition of the
space R as a representation of E3, as explained below. We want to point out that
the free operad generated by a quadratic E-module E has the special feature that
the nonzero E(T) appearing in the definition of T(E) (Definition 1.77) are indexed
by binary trees.

In a similar way we could define operads of type (k, 2k -1) which are generated
by a E-module E satisfying E(n) = 0 for n k and have defining relations R C
'Y(E)(2k-1). In this case the free operad l'(E) would be described by trees having
all vertices with arity k.

EXAMPLE 3.33. The commutative associative operad Com is generated by the
E-module

Eco-(n)
k µ if n = 2 and
0 ifn54 2,

where k µ is the trivial representation of E2. The ideal of relations is generated
by:

Room = Span

1 2 3 2 3 1 1 3 2 2 3 1

which is the E3-invariant subspace of

`I'(Eco..,)(3) = Span
µ

(i, j, k) E {(1, 2, 3), (1, 3, 2), (2, 3, 1)}
µ

i j k

We could also say that Rco,,,, is the subspace generated over E3 by the 'associativity'

1 2 3 1 2 3

which is perhaps the most natural way to introduce this operad. We could also give
a more formal definition such as ql(µ)/(µ 01 A - i 02 h)
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In terms of the representation theory of the symmetric groups, Ec,- has Young
diagram m and T(Ecom)(3) is the corresponding induced representation of E3.
It is three-dimensional and decomposes as the sum of the one-dimensional trivial
representation isomorphic to Com(3) and the two-dimensional irreducible represen-
tation given by the relations Rcom. Expressed in Young diagrams-

`I'(Ecom)(3) - I'( )(3) Com(3) ®Rco .

EXAMPLE 3.34. The Lie operad Lie is generated by the k-E-module

ifn=2
EGtie (n) = 0 if n 2,

where k ,C3 is the signum representation of E2. The ideal of relations is generated
by the Jacobi identity:

RLxe := Span

1 2 3 2 3 1 3 1

In this case the generator Ecie is the signum representation of E2 with Young
diagram B . The corresponding induced representation of E3 is again three-
dimensional, but this time it decomposes into the sum of the one-dimensional
signum representation given by the subspace of relations and the complementary
two-dimensional irreducible representation isomorphic to Lie(3):

1I'(EGxe)(3) - 1I'( - Rc.. ® Lie(3).

Another definition of Lie(n) is given in Definition 1.28.

EXAMPLE 3.35. For the associative operad Ass, E(2) is the regular represen-
tation of E2 with basis {a, a T}. Then 1Y(EA,,)(3) is the direct sum of two copies
of the regular representation

1Y(EAq ,s)(3) = Span{(a 01 a) ® (i, j, k), (0102 a) ® (i,j, k)}.

The defining relations are

RAss := Span{(a ®1 a - a 02 a) 0 (i, j, k)}.

For the notation ®1 and 02 see Figure 13 in Appendix 1.9.1.

In the next definition we introduce a duality which is central to the concept of
Koszul operads.

DEFINITION 3.36. Let E be a E-module. Then the dual E-module E# _
{E#(n)j,>1 is defined by E#(n) := Homk(E(n), k). The En-representation on
E(n) determines a dual representation on E#(n) by

(A U, a) :_ (A, a U-1), for A E E#(n), U E En and a E E(n).



142 3 ALGEBRA

The Czech dual is the E-module E" = {E"(n)}n>1 with E' (n) := E* (n) ® sgnn.
This is equivalent to defining E" (n) as the dual space with En-representation

(3.21) (A 'a, a) sgnn(a)(A, a'a 1)

There is a very important construction in the theory of operads called the
quadratic dual operad, defined as a quotient of the free operad W(E") by relations
`orthogonal' to the relations defining the original operad P. Moreover the quadratic
dual operad is naturally a quotient of D(P).

The full definition is given below. In order to describe these relations, we need
to extend the pairing between E(n) and E"(n) to a pairing between W(E)(n) and
T(E")(n). Recall (Definition 1.77) that W(E)(n) and'Y(E")(n) are the colimits

W(E)(n) = colim E(T), W(E")(n) = colim E"(T)
T E Tree, T E Treen

over labeled n-trees, where E(T) = E(T,f) and E"(T) = E"(T,e) were defined in
Definition 1.80.

The first condition defining the extension is that E(T, B) and E" (T', P') are
orthogonal, E(T, P) 1 E" (T', f'), when (T, P) (T', e') (not isomorphic as labeled
trees).

If (T, t) = (T', .2'), we order vertices (v1, ... , vp), fix a labeling ( i1 , , in) and
represent elements of E(T, P) and E' (T, f) as products a1® ®cep and Al® .. ®Ap
respectively. Then we define

((Al ®... ®Ap) ®(21,-, in), (a1 ®... ®ap) ®(il,-, in)) ((Al, al) ... (Ap, ap),

where the outer parentheses represent the dual pairing and the sign is

e = (_1)a1('\2+ -+ap)+a2('\3+ +ap)+ -+Qy-1apsgnn(i1,... ,in).

The above data are enough to define a pairing between colimits; compare Re-
mark 3.8. For example, the pairing between %F (E")(3) and IF (E) (3) is defined by

(3.22) ((A ®1 A') ® (i, j, k), (a ®1 a') ® (Z', j', k'))
(_1)a "sgn3(2,j, k)(A, a)(A', a'), if (i,J, k) = (2',.7', k'),
(-1)a asgn3(i,j,k)(A,a)(A',a' r), if (j, i, k) = (i',J',k'),

1 0, otherwise.

In this example we use the product ®1 defined in Figure 13 of Appendix 1.9.1.

DEFINITION 3.37. The quadratic dual of a quadratic operad P = (E; R) is
P' :_ (E"; R'), where R' C 'Y(E")(3) is the annihilator with respect to pair-
ing (3.22) of the relations R C W(E)(3) defining P.

It is an instructive exercise to show that (-)' is an involution, (P')' =' P.

EXAMPLE 3.38. The quadratic dual of the commutative operad is generated
by

ECvom = I
= EGie

V



3 2 QUADRATIC OPERADS 143

The space of defining relations for Com' is the annihilator in T(Erj,)(3) (rel-
ative to the pairing (3.22)) of the defining relations for the commutative operad.
Since the annihilator is a subrepresentation of complementary dimension, it is the
one-dimensional subrepresentation given by Rrie:

RC
_om' -R1Com = Rcte.

Therefore Lie is the quadratic dual of Com and conversely:

Com' = Lie, Lie' = Com.

The duality between commutative coalgebras and Lie algebras, observed inde-
pendently by J. Moore and D. Quillen in the late 1960's, can be considered as the
prehistory of quadratic duality in operad theory. The general theory was developed
in [GK94].

In describing the associative operad, we use a basis for'Y(E)(3) involving both
terms with ®1 and 02. In this case we need to use the identities (1.61) to reduce
to terms of type 01 and apply equations (3.22). For example, the pairing between
two expressions involving 02 is given by:

((A ®2 A') ® (i,7, k), (a 02 a) 0 (i', j', k'))
(3.23) _ ((A . T 01 A') ® (j, k, i), (a . T 01 a') 0 (j', k', i'))

_ -((A ®1 A') 0 (j, k, i), (a ®i a') ® (j', k', i'))

The minus sign appears because of the identity

(A . T, a T) = sgn(T)(A, a) = -(A, a)

in the definition of the Czech dual.

In the associative operad, EA,,,, (2) is the regular representation of E2 and so is
EAss(2). We denote the basis of EASe(2) by {A, A T}. From the definition of the
pairing in equation (3.23), it is clear that

RLass =Span( (A ®1 - 02 A) ®(i, f, k)}

and thus

Ass' = Ass.

THEOREM 3.39. For a quadratic operad P, there is a natural transformation
of functors

9P:D(P)--*P',

inducing an isomorphism

H°(D(P)(n), 6) = P'(n), for each n > 2.

Note that the `0' in H° refers to the 'tree-degree' not the total degree and that
D(P) is negatively graded.
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PROOF. By definition

D(P)(n)0 = colim s-1(P#(T) ® det(T))
binary T E Rtree,

colim 5-1(TP#(T)) by Lemma 3.12
binary T E Rtree

- colim (s-1 T P*) (T) by Proposition 3.20
binary T E Rtreen

- colim -P v (T).
binary T E Rtree,

The last isomorphism comes from the fact that the trees are binary and

(s-1 TP#) (2) J. (TP#)(2) ® sgn2 - P#(2) ® sgn2 = P"(2).

Thus D(P)°(n) = W(P'(2))(n). The morphism O-p is defined by composing with
the projection onto P'(n) :

Op : D(P)°(n) `I'(PV (2))(n) _ (`P(Pv(2))(n)/(Ps)(n)) = P '(n),

and requiring that OJD(y)(n,)<o = 0.

Finally we show that b(D(P)(n)-1) = Ker(Op), proving that there is an iso-
morphism:

Op : H°(D(P)(n),b) = D(P)(n)°/b(D(P)(n)-1) -=-+ P'(n).

To simplify the exposition, represent D(P)(n)-1 as the direct sum over isomor-
phism classes of `almost binary' rooted trees with one distinguished vertex having
three incoming edges and all other vertices binary. For any such tree, denote the
distinguished vertex by VT. The differential S acts nontrivially only on the coeffi-
cient from P#(3) at VT. The image 5(P#(T) 0 Det(T)) is contained in the direct
sum of three terms labeled by the new binary trees created by grafting one of the
following subtrees at the vertex VT:

1 2 3 2 3 1 3 1 2

There is an exact sequence for the defining relations Ry of a quadratic operad P:

(3.24) 0 --f Ry ® -P (Ti) °-* P(3) -+ 0.
i=1,2,3

The middle term is 9'(P(2))(3), i is the inclusion and o contracts the unique
internal edge of the tree T,. Dualizing, we get the exact sequence

(3.25) 0 E-- R# P#(Ti) _ P#(3) , 0.
i=1,2,3

Therefore 5(P#(3)) = Ker(i#) = R. For each tree T in the indexing set of
D(P)(n)-1, tensor the sequence (3.25) with the tensor product of P#(2) over the
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binary vertices of T. Take the sum of all these sequences inside the complex D(P) (n)
to get

b(D(P)(n)-1) = cp-'(RP ) = Ker(Op).

3.3. Koszul operads

In this section we define and describe Koszul operads. The characteristic prop-
erty, which makes this class of operads particularly well suited to the study of ho-
motopy algebras, is that the dual cobar complex D(P) together with the map Op
in Theorem 3.39 provides a minimal model for P' in the sense of Definition 3.124.

DEFINITION 3.40. A quadratic operad P is called a Koszul operad if the map
Op : D(P) --* P' of Theorem 3.39 is a quasi-isomorphism.

That is, for each n > 2, the complexes D(P)(n)* are exact everywhere except
in degree 0; therefore,

H*(D(P)(n), b) = H°(D(P)(n), b) - P'(n).

The Koszul property for an operad can be described in terms of the Koszul
complex, which is based on an analogy with the theory of quadratic algebras. The
concept of a Koszul algebra was introduced by Priddy [Pri7O]. In the case of a
Koszul quadratic algebra, the Koszul complex is defined as the tensor product of the
quadratic dual algebra and the vector space dual to the original algebra. For exam-
ple, in the case of the symmetric algebra, where the quadratic dual algebra equals
the exterior algebra, the Koszul complex is the tensor product of the symmetric
and exterior algebras, and as a complex is isomorphic to the de Rham complex of
a vector space with polynomial coefficients (as opposed to smooth functions).

DEFINITION 3.41. Let P be a quadratic operad. The Koszul complex

K(P') = ® K(P')(n)P
n>2, p>1

of a quadratic operad P has as component in degree p and arity n:

K(P')(n)P := P'(p) ®Ep (sgn®®P#[p,n]).

The differential bK : K(P')(n)P -> K(P')(n)P+1 is the composition (deleting sub-
scripts involving the symmetric group action in the tensor products for ease in
reading):

P' (p) ®(sgnp ®P# [p, n]) P' (p) ®(sgnp ®(P# [p, p + 1] ®P# [p + 1, n]) )

P' (p) ®(P [p, p + 1] ®sgnp+l) ®(P# [p + 1, n])

- (P'(p)®P'[p,p+l])®(sgnp+1 ®P#[p+1,n])
,P'(p+1)®(sgnp+l®P#[p+1,n]).

The first arrow is Ip'(p) ® (Ilsgnp ®0), where

a:P#[p,n]-'P#[p,p+1]®P#[P+1,n]
is the component with r = p + 1 of the dual to operadic multiplication

A : P# [p, n] -' (DP*- [p, r] ®P# [r, n]
p<r<n
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The isomorphism between the second and the third terms is explained in Lemma 3.42
below and the last arrow is composition in the quadratic dual operad P'.

Observe that K(P')(n)l = P#(n) and K(P')(n)" = P'(n)®sgn.n. We defer the
proof that SK = 0 as well as the proof of the next lemma to the end of this section.

LEMMA 3.42 There is a left Er-, right Ep+1-isomorphism

sgn®®P# [p, p + 1] - P '[p, p + 1] ® sgnP+1

The following theorem giving an alternative characterization of the Koszul
property using the Koszul complex is the key to proving that an operad is Koszul
if and only if the operadic homology of free algebras vanishes in all but one degree.
Using the latter result we will prove that the operads Com, Lie and Ass are Koszul.

THEOREM 3.43. A quadratic operad P is Koszul if and only if for all arities
n > 2 the Koszul complexes K(P')(n) are exact, that is, the cohomology is zero in
all degrees.

In the proof of this theorem, which will be given in Section 3.6, we actually use
a dual complex.

DEFINITION 3.44. The dual Koszul complex K(P')# of a quadratic operad P
has as component in degree p and arity n:

(K(PH)#)(n)P := P'(p)# ®Ep (sgnP ® P[p, n]) - P'(p)v ®Ep P[p, n].
The differential is defined by the standard dualization (3.1).

Now we will prove Lemma 3.42 and show that SK is indeed a differential, that
is, bK = 0.

The structure of P# [p, p + 1] was described in Lemma 1.69. If we define V
P#(2) ® P#(1)®P-1 = P#(2) (we are assuming P#(1) = k), then, as a right E2-,
left Ep_1-module,

P#[p,p+ 1] = k[Ep] ®l;p_, (V ®E2 k[Ep+1]) ,

where Ep_1 is identified with the subgroup of Ep leaving 1 fixed and the subgroup
of Ep+1 leaving 1 and 2 fixed. Lemma 3.42 asserts the existence of an isomorphism

sgn® ® (k[Ep] ®Ep_, (V ®E2 k[Ep+1])) -

(k[Ep]®Ep_i [(V ®sgn2) (DF.2 k[Ep+1]]) ®sgnP+1

In the second term, k[E2] acts diagonally on V ® sgn2. The isomorphism is defined
by

cp : Ap 0 U ® [v ® T] ,---> (sgnp(-)sgnp+l (T))o- ® [(v ® A2) ®T] 0 Ap+1,

for a E Ep, T E Ep+1, where Ai is, for i > 1, the generator of the signum represen-
tation sgni. Equivariance with respect to the left Ep-action follows from:

W(W'(np®o-®[U®T])) = (p(Sgnp(w) /gyp®WO'®[v®T])

_ (SgnP(W)Sgnp(W,7)Sgnp+l(T)) wa ® [(v ® A2) ® 7-10 Ap+1

- (sgnp(a)sgnp+1(7-)) wa ® [(v ® A2) ®T] ® Ap+1

W ((sgnp(c)sgnp+l(T)) U ® [(v ® A2) ®T] ® Ap+1l

- W-W((np®o-®[v®T])),
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P(nj) P(n') 'P(-') P(nk) P(n') P(n') P(n'')

FIGURE 4. Situation before dualizing. We have four new terms of
type one, two in position j and two in position k created in either
order. We also have three new terms of type two created in any
cyclic order of nj, nj , n,"'.

for w E EP. Equivariance relative to the right EP+1-action follows from a similar
calculation.

Proof of the fact that this definition is compatible with the tensor product
over k[EP_1] between o- and v ® T and the tensor product over E2 is left to the
reader.

LEMMA 3.45. The Koszul operator bK satisfies the condition for a differential:
SK=O.

PROOF. By Definition 3.41, SK involves the maps

02:_(Il®0)00:P#[p,n],P4 [P,p+1]®P#[p+1,p+21 ®P#[p+2, n].
The term P# [p, p+ 1] ®P# [p+ 1, p+2] is a direct sum of components P# [g] ®P# [f ]

indexed by pairs of surjections [p+2] -fig [p+1] -9r> [p]. It is necessary to distinguish
between two types of terms.

Terms of the first type arise from the dual map to the tensor product of a
pair of disjoint binary compositions P(2) ® P(nj) ® P(n'j + and
P(2) ®P(nk) ®P(nk) -> P(nk+nk). Terms of the second type arise from the dual
map to a sequence of two compositions, where the first composition can involve
any pair from the three terms P(nj), P(nj"), P(n!') and the second composition
involves the remaining term. The situation before dualizing is schematically shown
in Figure 4. Looking at one component of P# [p, n] we get the two types of terms
in the image of O2,
TYPE ONE:

P

P#[p,n] J ®P#(n.)

i=1

®P#(nti)
`a#j,k

with the direct sum in the last row indexed by

}I(jk,n n', n', k< p,n +n"=n n+n"=nk9, k, j , k - 7 j j, k k
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and TYPE Two:

P 2

®P#(ni) '

(P#(Ti)®P#(T2)(DP#(T3))®I®P#(n;)®P#(n;)®P#(n )I®I®P#(nti)),
\J / `z#7

with the direct sums in the last line indexed by

1<j <p nj+nn +n'n =nj}.

The notation involving the binary trees Ti in the first factor of the last term
is the same as in the proof of Theorem 3.39 and just as in that proof this factor is
just W(P#(2))(3). Modulo the tensor product with ® jP#(n,), the component
of type two is dual to the compositions described by

® (P(T1) ® P(T2) ® P(T3))®(P(n)®P(n")®P(n ))

® P(2)®((P(' +nfl)®P(n))®(P(nj'

P(n' + n' + n') = P(nj).

By associativity, the composite arrow above is the same as the composite

® (P(T1) ® P(T2) ®P(T3)) ® (P(n;) ® P(n,") ® P(n''! ))
n tn

P(n + n; +n'') = P(nj).

Using the exact sequence (3.25) from the last part of the proof of Theorem 3.39,
we see that the map dual to the compositions has image Rp 0 (P# (n') ®P# (n,!) ®
P#(nj"')). To calculate SK we need to take the image of RP in ['(P'(2))(3) and
project to the operad P', but RP -> 0 E P'(3), so this part of Sk is zero.

We can represent the component of type one in the image of 02 more precisely
as a sum of terms:

k

0 A
a'

an
a' a"

There are two expressions containing A® p pictured here, one with A E P# (2)
created by the first application of 0 and then p E p#(2) created by the second
application of 0, and the other with µ created first and then A. The isomorphism
defined in Lemma 1.69 introduces opposite signs for the two different orders of creat-
ing the terms; therefore, the two expressions cancel. This completes the proof.
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3.4. A complex relating the two conditions for a Koszul operad

In this section we construct a complex N(P) which we will use to prove the
equivalence of the condition in Theorem 3.43 to the defining property of a Koszul
operad as given in Definition 3.40. The proof, which is given in the next section, is
based on the existence of two spectral sequences for the cohomology of N(P), one
has an E1 term which is isomorphic to the cobar complex C(P) and the other has
an El term isomorphic to the Koszul complex K(P).

The complex N(P) is constructed by analogy to the theory of algebras where
the graded components of the cobar complex are iterated ®-products. The fol-
lowing isomorphism for iterated -products is an extension of the isomorphism in
Proposition 1.65:

(3.26) ®A(rl)0Er1A[rl,r2]0 ...®£rp_1A[rp-1, n]
1<r1<r2< <rp-1<n

For convenience in displaying the formula, we have used a E-module A, al-
though we are actually going to apply the constructions to P#; moreover, in con-
trast to the weak inequalities in (3.26), the complex will be further normalized by
requiring strict inequalities. Define

(3.27) N(P)(n)P

{P(n) , for p = 1, and
®P#(rl)®Er1P#[r1 , r2]®Ez ®Erp-1PP_1,n1, for 2<p<n-

where the summation runs over 1 < r1 < r2 < . < rp_1 < n.
The degree p will be called the -degree or box degree (the number of -

product factors). The -differential SN is defined by extending the map

(3.28) Sr,s,t : p#[r,t] --> P#[r,s] ®E, P#[s,t],

dual to the composition law 7 : PEI P --p P for the operad P,

7r,s,t : P[r, s] ®E, P[s, t] '-> (POP) [r, t] ---> P[r, t].

Then 8N(n)P: N(P)(n)P , N(P)(n)P+1 is defined on the component

N(P)(rl,... , n) := p#[ri] ®£r1 P# 17-1, r2] ®Er2 ... ®Erp-1 P#[rp-1, n]

of the direct sum in (3.27) by

JN(n)PI N('P)(r1, ,n)

where the summation is over I = {(i, si) 1 1 < i < p, ri-1 < si < ri} with r0 = 1
and rp = n.

DEFINITION 3 46. Let N(P) {N(P)(n)}n>1 be the dg E-module

N(P)(n) := ® N(P)(n)P,
1<p<n-1

for n > 2, where N(P)P is defined in (3.27). Set N(P)(1) = 0. Define a second
grading by internal degree

N(P)(n)P :_ (DN(p)p,q
qEZ



150 3 ALGEBRA

induced by the dg structure on the operad P# with internal differential

d# : N(P)(n)p,q -, N(P)(n)P,q+1

The categorical cobar complex is the dg E-module whose arity n component is the
total complex

N(P)(n)* * :_ ® N(P)(n)P,q

p> 1,gEZ

with the differential defined on the component N(P)(n)P,q by

8:_ _, (8N(n)P+ (-1)1'd#).

It is possible to define an operad structure on N(P) using the -product, but
since we will not need it, we leave the details to the interested reader. The condition
CSN(n)p+1 o 8N(n)p = 0 follows from associativity of the operad composition. The
compatibility of bN and d# follows from the assumption that P EdgOp.

At this point it might be helpful to give a table of the various constructions
which have appeared in the last few sections:

(C(P), d) = the operadic bar construction on P,
(D(P), S) = the operadic desuspension of C(P),

(K(P), 8K) = the Koszul complex of P and
(N(P), SN) = the categorical cobar complex on P.

REMARK 3.47. In [GK94], V. Ginzburg and M.M. Kapranov introduce a cat-
egory Cat(P) (actually a PROP (see Section 1.1.2)) associated to an operad P.
The objects are the natural numbers and the 'Hom-sets' are Homcat(p) (n, m) :=
P[m, n]. The categorical cobar complex is a subcomplex of the simplicial cochain
complex of the classifying space of this category. They use this construction and
results from an earlier paper of Beilinson, Ginzburg and Schechtman on Koszul
categories, [BGS88], to compare alternative characterizations of a Koszul operad.
We present here the purely operadic proof given in [SV099].

To understand the structure of N(P) and its relation to the cobar complex
C(P), we consider first the component of [1-degree 2:

(3.29) (P#DP#)(n) D N(P)(n)2 = ® P#(r) or, P#[r,n]
1<r<n

It will be useful to introduce the following equivalence relation on the set
Surj [j, n] of surjections f : [n] -*+ [j];

(3.30) f - g if and only if there exists a E Ej, c o f = g.

Let [f ] stand for the equivalence class of f and Surj [j, n] be the set of equivalence
classes (which can be identified with the set of unordered partitions of n into j
sets). Defining

(3.31) P[[f]] P[g]
9E[f]
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X1 X2

f

[j]

X,

FIGURE 5. Constructing the tree T[f] for f : [n] -+ [j]. There is
no particular significance to the fact that the internal edges of T[f]
appear in this figure as broken lines.

where P[g] was introduced in (1.22), we have

® P#(r) ®E, P#[r n]
1<r<n 1<y<+.

[f]ES, I,-,n]

In order to compare the complex N(P) and the cobar complex we describe a
surjection by a corresponding tree. Define a strict surjection to be a surjection
which is not a bijection, that is card(f-1(i)) > 2 for at least one i. Let t(X) be the
corolla with leaves labeled by X. If {x} is a singleton set, define t({x}) to be the
trivial tree with one edge labeled by x.

DEFINITION 3.48. For a strict surjection f : [n] -++ [j] such that f-1(i) = Xi,
define the tree T[f] corresponding to a surjection f as the tree with j internal edges
given by grafting t(Xi), onto t([j]) along the ith leaf ei,

T[f] = (...(t([7]) oel t(X1)) °e2 ... ) oe. t(X3);

see Figure 5.

Note that the isomorphism class of the unlabeled tree T[f] depends only on the
equivalence class [f], as suggested by the notation. It is also clear that

(3.32) P#(r) Or, P#[[f]] - P#[T[f]]+
see Definition 1.80 and (3.31) for the notation.

This isomorphism together with the isomorphism in (3.29) presents N(P)2 in
terms of a direct sum of P#(T)'s:

(3.33) N(P)(n)2 P#[7'[f
1<"<n

[f] E sun [n+.l

See Figure 6. There is no twisting by det(T[f]) but otherwise the summands are
the same as those in the description (3.8) of C(P). However, the D-degree of all
the summands is 2 and the tree-degree of the summand P#[T[f]] is the number of
vertices in T[f] which, for trees of the type associated to N(P)2, could be as high
as [

2
] + 1. For -degree p > 2, N(P)P is not described as a direct sum indexed by

trees as is C(P). It is necessary to add an additional refinement in the indexing set,
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[7]

f1

[3]

FIGURE 6. The tree representing the particular surjection f :
[7]x[3] which indexes P# (3)®[P#(2)®P# (1)®P#(4)] C P#(3)®
P#[3, 7] C N(P#)(7)2.

separating the vertices of a tree into levels. The trees corresponding to N(P)(n)2
have two levels, the root at level 0 and all other vertices at level 1. This refinement
turns out to be the key to comparing the different forms of the Koszul condition.
The direct sum in (3.27) can be refined into a direct sum indexed by equivalence
classes of what we shall call surjection sequences, defined as follows.

DEFINITION 3.49. A surjection sequence (surse) of length p on the set [n] is a
sequence of p strict surjections (not bijections)

(3.34) [n] . [rp_1] f- ... f'» [rl] [1].

Such a surjection sequence is said to be of type ( r 1 , .(r1, .. , r,- 1, n). We reverse
the order to fit with the order in the tensor product in (3.26) and denote a surjec-
tion sequence by f = (fl, ... , fp). Let SSn be the set of all such sequences and
SS(r1i... , rp_1i n) the subset of surses of type (r1, ... , rp_1, n).

We can describe N(P) as a direct sum over equivalence classes of strict surjec-
tion sequences, where the equivalence relation is defined by the action of the direct
product of symmetric groups Er, x . . . x E, on SS(r1i ... , rp_1, n) given by the
formula:

(3.35) &f = (al, ... , up) (fl, ... , fp) = (fl, a1 o f2 o 92 1, ... , up-1 o fp o ap 1),

where & _ (ai, ... , ap) E Er, x . . . x E.n and f = (fi, ... , fp) E SS(r1, ... , rp_1, n).
The restricted action of Er, x x F,_1 (without the factor E,) defines an equiv-
alence relation on SSP with the orbits as equivalence classes. Let [f] denote the
equivalence class of f and SS,, the set of equivalence classes.

REMARK 3.50. In defining the equivalence relation, we do not use the full
action of Er, x ... x E,, but only of E,., x .. x E,.p_, so that there remains a
residual action of E,, on the set of equivalence classes. A surjection sequence defines
a sequence of nested ordered partitions of [n]. An equivalence class can be identified
with a sequence of nested unordered partitions of [n].

DEFINITION 3.51. For any surjection sequence f E SS(r1,... , n), there are
contravariant functors dg-E-Mod -* dgVec defined by

A'--' A#[f] := A#[f1] ®A#[f2] ® ... ® A#[f [ and

A A[f] A[fl] ®A[f2] ®... ®,q[fp].
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For convenience in notation we define reduced forms A#[f]', respectively A[f]', by
deleting the factors A#[f 1(j)], respectively A[ff-1(j)] for which If,-'(j)l = 1

The next proposition brings in the symmetric group action which does not ap-
pear in the definition of A[f] or A#[f]. We state the proposition only for A#[f]
because that is the case we need, but obviously there is a completely parallel prop-
osition for A[f].

PROPOSITION 3.52. Given a E-module A, define an equivalence relation on

(3.36) ® A# [f]
fESS(r,, n)

by

(3.37) A#[fj D a1 0 a2 ®... ® cap ti a1Q1 0 1a20`2 ®... 0 up_lap E A#[&f]

for all (Q1, ... , 0-p- 1) E E\r, x . . x Erp_,. Then there is an isomorphism

(3.38)
( EES

I/=A#[r1]®E,,A#[r1,r2]®E, 2...®E, ,_,A#[rp-1,n]
fESS(rl, n)

The right action of Era and the left action of Er,_, on A[rti_1i ri] were defined
in equation (1.29) and Definition 1.55.

PROOF. Taking the quotient of A# [r1] ® A[rl, r2] ®. ® A#[rp_1i n] by equiv-
alence (3.37) reduces the tensor products over k to the tensor products ®E,..

Proposition 3.52 allows us to define a functor A#[[f]] for each equivalence class
[f] E SS,

DEFINITION 3.53. For any f E SS(rl, .. , n), the equivalence relation (3.37)
restricts to ®ge[f] A#[gj and defines a functor from dg-E-Mod to dgVec:

A A#[[f]] := ( (9 A#[g])/
9E [f]

Using Proposition 3.52 and Definition 3.53 we can describe N(P) as a direct
sum over equivalence classes of strict surjection sequences:

(3.39) N(P)(n)p = ® P#[[f]].
[f] E SSn

REMARK 3.54. Each A[[f]] is a partially ordered tensor product with the fac-
tors in A[ri, ri+1] forming an unordered tensor product, but if i < j, then all the
factors in A[ri, ri}1] appear before any of the factors in A[rj, rj+1]. This partial
ordering of the factors in A[[f]] is basically equivalent to the creation of a level
structure on the vertices of a tree, as we will explain in the next section.

REMARK 3.55. If we allowed for one of the surjections in the sequence to be a
bijection, we would have factors A# [r, r]. This is like having tensor factors k in the
cobar complex of the dual coalgebra of a finite dimensional k-algebra. Removing
this redundancy leads us to the normalized cochain complex N(A)(n) which is
defined by strict inequalities.
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3.5. Trees with levels

In this section, we generalize Definition 3.48 associating to any equivalence class
[f] E SS,, a tree T[f] with leaves labeled by [n] = {1,... , n} and vertices separated
into p levels. Then N(P)(n)P for p > 2 can be presented as a direct sum of P#[T[f]]:

(3.40) N(P)(n)P = ® P#[T[f]]
[f]ESSn

This isomorphism is a direct consequence of a natural isomorphism of functors

P#[[f]] - P" IT[f] I
given in Proposition 3.57 below.

The direct sum in (3.40) looks very much like the direct sum representation (3.8)
of C(P) (without the twisting by det(T[f])), with the exception that the gradings in
N(P) and C(P) are quite different; N(P) is graded by the length of the surjection
sequence indexing a given summand or, equivalently, the number of levels in the
tree indexing the given summand and C(P) is graded by the number of vertices in
the tree indexing the summand.

In Definition 3.48, a surjection f : [r] , [s] was represented by an s-tuple of
corollae (t(X1),... ,t(X,)) where X3 = f-1(j), 1 < j < s. In the present case, we
do this for each surjection in the surjection sequence f = (fl, . . . , fP) as in (3.34),
representing the surjection fi by the ordered set of corollae (t(X1,1), ... , t(Xi,ri_1))
where

(341) Xi,i := fi 1(j)
for 1 < i < p, 1 < j < ri_1. The vertices of the corollae t(Xi,j) are said to be
at level i. Then we create a composite tree by grafting the corollae at level i to
the leaves of the corollae at level i - 1. The root vertex is considered as being at
level 0 and there are no vertices corresponding to values onto which a surjection is
one-to-one, which means an edge may pass through a level without introducing a
vertex. More precisely, we have the following definition.

DEFINITION 3.56. Given a surjection sequence f = (fl,... , fP) as in (3.34),
let fi := (fl,... , fi), for 1 < i < p. Define inductively an `increasing sequence' of
trees T[f1] C T[f2] C . . with T[ft] containing i + 1 levels of vertices (0, 1, . . . , i) as
follows.

For i = 0, f1 = f1 is an ordinary surjection, so the tree T[fi] := T[f1] was defined
in Definition 3.48. The tree T[fi] is, for i > 1, constructed by grafting to T[f=-1]
along the leaf ej the corolla t(Xi,j) with Xij defined in (3.41), but only for those
1 < j < ri_1 such that card(fi-1(j)) > 1.

We define T[f] := T[fp]. Vertices v of the corolla t(Xi,3) are said to be vertices
of level i. We write Pf(v) := i and call ff : Vert(T[q) - N the level function.

For an example, see Figure 7. The construction is defined for a particular
surjection sequence but as an abstract tree (with labeled leaves), T[f] depends only
on the equivalence class, as suggested by the notation. Two equivalent surjection
sequences differ only by relabeling the elements of the domain and range of the
component surjections which amounts to relabeling the vertices, which is irrelevant
to the description of T[f] as an abstract tree. Such `trees with levels' also appears
in the work of Loday [Lod93] and Ulyanov [U1y99].
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FIGURE 7. An example of the grafting of corollae at two adjacent
levels of a surjection sequence. All vertices are indicated by a .
Note that there are only three vertices created by the grafting at
level 2. There are two edges (appearing as broken line segments)
passing through level 2.

PROPOSITION 3.57. The functors A --4 A#[[f]] and A A#[T[f]] from
dg-E-Mod to dgVec are naturally isomorphic.

PROOF. Any surse f defines an ordering of the vertices of T[f]. First, the ver-
tices {v1,... , vn} are ordered by levels. Then the vertices at a given level are simply
ordered by the values of the surjection defining that level, with the vertex corre-
sponding to fi-1(j) coming before the vertex corresponding to fi-1(j'), whenever
j < j'. Then we have an isomorphism

(3.42) A#[f] = A#[f1] ® A#[f2] ®... ® A#[fn] = ®A#(In(vi))
i=1

where the tensor products are ordered as above. By definition, A#[T[f]] is the
colimit of the ®1 A#(In(vi)) with respect to the permutations of the vertices
and for any particular ordering of the vertices

n

A#[T[f]] = ®A#(In(vi)) - A#[f]
i=1

These isomorphisms combine to give a morphism

® A#[g] - A*[T[f]].
ge[f]

All the equivalence relations on ®ge[f] A#[g] defined by (3.37) are particular cases
of the permutation relations defining the colimit A#[T[f]]. Hence there is an iso-
morphism

(3.43) 0[f] : A#[[f]] A#[T[f]]

and naturality of (3.43) relative to morphisms of dg-E-Mod follows from the natu-
rality of the isomorphism in (3.42).

Separating the vertices of a tree into levels can be described in terms of order

relations among the vertices.
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FIGURE 8. Two surjection sequences with the same tree, but
different level functions. Each one indexes a distinct component
of the image of 5N(P#[T[f]]), where T[f] is the tree with the two
nonroot vertices both at level one.

DEFINITION 3.58. The f-order on the set Vert(T[f]) of the tree T[f] is given by:

v <f v' if and only if 2f(v) < if (v'),

where the level function if : Vert(T[f]) - N was introduced in Definition 3.56.

The ordering relates any two vertices, but it is not a simple ordering since
v <f v' and v' <f v does not imply v = v'.

There is another order on the vertices which does not use a level function. Since
a vertex of a tree T is connected to the root vertex by a unique path, the vertices
along this path are simply ordered with the root as minimal vertex. In this way we
get a partial ordering on the vertices of the tree.

DEFINITION 3.59 The T-ordering on the vertices of a tree T is given by:

v <T v' if and only if v lies on the path from v' to the root.

Order relations can be compared using the concept of refinement.

DEFINITION 3.60. Given two orders <1 and <2 on a set X, we say that <1
refines <2i or equivalently, <1 is a refinement of <2, if x <2 y implies x <1 y for
all x,yEX.

PROPOSITION 3.61. Let T E Tree(n) and f E SSn. If T = T[f], then the f-
order on the vertices of T is a refinement of the T-ordering. The map [f] ---> T[f]

from SSA to n-labeled trees is many-to-one with inverse image of an n-labeled tree
T corresponding bijectively to the refinements of the partial ordering of the vertices
of T into an ordering into p levels.

PROOF. The proof is clear.
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FIGURE 9. The three level tree for the surse
f3 f2'.[5]--"[3]__; [1][7]-

maps to the two level tree for the surse
f3 -f2[7] - [5] f- [1],

collapsing two edges and decreasing the number of edges by two.
Dualizing the corresponding component of the composition 'Y1,3,5 :

P[l, 3]®E3P[3, 5] - P[l, 5] describes one component of the differ-
ential 5N which creates a new edge in the tree.

We emphasize that if N(P) is described by the direct sum of P#[T[fj] as in
equation (3.40), then the -degree (ignoring the internal degree from P#) is not
the number of vertices but rather the number of levels of vertices. Only the minimal
cochain-degree components are isomorphic:

N(P)(n)' = P#(n) = C(P)(n)'.

For the maximal cochain degree, there is a surjection N(P)(n)' 1 --- C(P)(n)n-1

which forgets the separation of vertices into levels:

N(P)(n)n-1 = P#[2] ®E2 P#[2,3] Or, ... or,-, P#[n -1, n]

® P#[T] - C(P)(n)n-1.
TE7 (n)

TI=n-2

The difference in the gradings of C(P) and N(P) makes the differentials quite
different. The tree-differential in the cobar complex C(P) has `matrix components'
8T,T' (3.4), one for each new tree T' created from the tree T by expanding a vertex
into an internal edge. The -differential in the N(P) creates one new level of
vertices and may create many new internal edges or no new internal edges. Figures 8
and 9 show trees and the corresponding surjection sequences indexing components
of N(P)(n)3. Figure 8 shows two surjection sequences and the corresponding trees
with levels which arise from the -differential applied to P#[Tif1], where Tjfj is the
tree with the two nonroot vertices both at level one. The part of the -differential
on P#[T[fj] which lies in these components has not introduced a new edge in the
indexing trees, only a new level. By contrast Figure 9 (read from right to left)
shows a component of the -differential which does introduce a new edge.
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3.6. The spectral sequences relating N(P) and C(P)

The grading of C(P) defines a filtration of N(P) and generates a spectral
sequence which relates the cohomologies of N(P) and C(P). In fact, we will show
that the El-term of the spectral sequence coming from the filtration by the number
of vertices in the corresponding tree (see the next definition) is isomorphic to C(P).

DEFINITION 3.62. The homogeneity h(f) of a surjection sequence f is the num-
ber of vertices in the tree T[f]:

(3.44) h(f) :_ IT[f] I + 1.

The homogeneity of an element a1® ®a9 E P# [f] is the homogeneity off, which
is the same as the number of (3-factors when the term is written in the reduced
form, that is, the homogeneity of a1 ® ® ar is p if a1 ® 0 a, E P#[f]'; see
Definition 3.51.

Alternatively we could define the homogeneity of a single surjection as the
number of values for which f is many-to-one,

h(f) := card({j I card (f 1(j)) > 1}),

and the homogeneity of a surse f = (fl,... , fp) as the sum of the homogeneities of
its components

h(f) :_ h(fi)
DEFINITION 3.63. Let Fs (N(P)(n)) be the subspace of N(P)(n) spanned by

the A[[f]] for h([f]) > s,

Fs (N(P)(n)) :_ ® P#[T[f]].
{[f]ESS uh(f)>s}

These subspaces define a decreasing filtration of N(P)(n) called the homogeneity
filtration.

The filtration is compatible with the differential on N(P)(n). The term

E"' E"'(N(P)) := Fr(Np-g(P))
F P+1 (NP+q (P) )

in the initial stage of the spectral sequence is spanned by reduced trees with exactly
p vertices (filtration degree) and p + q levels (cochain degree). Since the number of
levels is less than or equal to the number of vertices, EP" # 0 only if q < 0, and
the spectral sequence is in the fourth quadrant.

The differential 60 : EP" --+ Eo'q+1 preserves homogeneity, introducing one
new level but no new vertices in T[f].

In order to compute the El term of the spectral sequence, we need to describe
bo in more detail. The differential 5N on N(P) is defined by dualizing the operad
composition P[r, s] ®E P[s, t] , P[r, t] (cf. equation (3.28)). For certain pairs of
surjections, the morphisms P[f] ®P[g] -> P[f og] preserve homogeneity (h(f og) _
h(f) + h(g)). This occurs when the only compositions are of the type P(1) ®
P(m) ---> P(m) or P(m) ® P(1) _, P(m). Such compositions involve only the
structure of P as a E-module, not the full operad structure. In such a composition,
if the elements are expressed in reduced form, without the factors P(1), the only
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operation is a permutation of factors. Define a dual map to composition of this
type

brc P#[f] ® P#[fl] ®P0 [f2].
f=f10f2

h(f)=h(f1)th(f2)

Preserving homogeneity means that [t] -f-» [r] and [t] f2 [s] f 1 [r] corre-
spond to the same r-tuple of trees (as in Figure 8) which implies that the factors
ai E P#(f-1(i)), i E [r] are partitioned into two subsets, but no new elements are
created:

dr,Jal ar)
O

e(U)(a,(,) (D ...® ao(j)) ® (ao(j+1) ®...® ao(r)),

where e(a) is the Koszul sign factor (3.96) coming from the symmetry in dgVec
and the summation is taken over all (j, r - j)-unshuffies a; see (2.5). Therefore the
differential 6o : Eo'9 -+ Eo'q}1 acts on a component P# [[f]] by mapping it to a sum
of components P#[[g]] where the trees T[f] and T[g] are the same but there is one
more level of vertices in T[g]. This can be interpreted as refining the f-ordering of
the vertices of the tree T[f] into the g-ordering.

PROPOSITION 3.64. The following diagram commutes:

0[f]

P#[[f]] =P#[T[f]]

b0,f, 11g

0[g]

P#[[g]] P#[T[g11.

Here 0[f] and ?, [g] are the isomorphisms defined in (3.43) and 80,f,g is the `matrix
component' of 50. In terms of the ordered tensor products ® P#(In(v2)) defined 2n
equation (3.42), the effect of by is a reordering of the tensor factors.

PROOF. Before passing to equivalence classes, for a particular pair of surjection
sequences, the matrix component 60,f,g : P# If] . P# [g] of the differential is just
a reordering of the factors P#(f) 1(i)) of the reduced form It is clear that the
equivalence classes [g] and [f] correspond to the same nested unordered partitions
and

P#[[g]] P#[[f]]
The composite morphism

0[f]6O,f,g : P#[[g]] = P#[[f]]
[fl

' P#[T[f]] = P#(T[g1)
is the same as the isomorphism 0[g]; therefore, the diagram commutes.

Let (N(P), 5N) be the categorical cobar complex with the -differential. In
the spectral sequence relative to the homogeneity filtration, the El' term is a direct
sum

(3.45) Eo'0 - ® P#[[f]]
{[f] I h(f)=p)
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For a tree T with p vertices, define

(3.46) Eo'*[T] ® P#[[f]]
{[f] I T[fi_T}

Then Proposition 3.64 implies that Eo'* (T) is a bo-subcomplex and we have the
decomposition:

(3.47) Eo'` Eo''"[T].
IT I ITS+1=p}

Having determined the coboundary operator So at the first stage of the spectral
sequence, we proceed to calculate the cohomology. The calculation is based on a
new Koszul algebra, which we call the `surjection algebra,' defined as follows.

DEFINITION 3.65. The surjection algebra B is the associative k-algebra with
basis {1} U {bf}, where {b f} is indexed by the set of nondecreasing proper (not bi-
jective) surjections f of the finite sets [n], n > 1, that is the functions {h(,,,,,
from Lemma 1.69. The defining relations for multiplication of basis elements are

0, if f o g is not defined, (case 1)
b f * b9 = 0, if fog is defined, but h(f o g) < h(f) + h(g), (case 2)

bfo9, if fog is defined and h(f o g) = h(f) + h(g). (case 3)

If we use the same definition of homogeneity for the bf as for the f, it is clear
that the surjection algebra is generated as an algebra by elements bf of homogeneity
one. (In terms of Lemma 1.69, f = h(1, ,,i,l Moreover, the defining relations
are quadratic:

- r 0 in cases l or 2 and
bf * b9 -

bf, * b9, in case 3 if f o g = f o g'

and therefore B is graded. The relations in case 3 simply say that all products of
generators representing the same surjection are equal in the surjection algebra B

We claim that B is a Koszul algebra in the classical sense defined by Priddy in
his seminal paper [Pri70]. The main point is that the special form of the relations
insures the existence of a Poincare-Birkhoff-Witt (PBW) basis for B.

PROPOSITION 3.66. The surjection algebra has a PBW basis.

PROOF. Recall the definition of a PBW basis from [Pri70, Section 5.1]. Such
a basis consists of `admissible expressions' which are certain products of the gener-
ators (homogeneity one elements). Assume that a simple order has been defined on
the generators. Then a lexicographic order is defined on the products of generators.
Shorter words come first in the lexicographic ordering, and for two words of the
same length, w = b1 * b2 * * by is smaller than w' = b'1 * b2 * * b' if in the
left-most position where the two words differ bi < bi'. The two conditions required
for the admissible expressions are the following.

(i) If the product of admissible expressions (b1 * . * bp) * (bi * ... * b,) is not itself
an admissible expression, then the combined word is less than all the terms
which appear in its representation as a linear combination of admissible
expressions.

(ii) If b1 * b2 * . . . * by is an admissible expression, then so are all the products
b1 *b2*...*bq andb9+1*b9+2*...*bp forq<p.
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To show that the surjection algebra has a PBW basis, define a simple order
on the (homogeneity one) generators. Then for any surjection g of homogeneity p,
consider the set of all its factorizations into a product b9 = bf1 * . . * bfp of p gener-
ators of homogeneity one and pick as the the admissible expression representing b9
the word b f, * bf2 * * bfp which is maximal in the lexicographic ordering. From
this definition it follows immediately that if the product of admissible expressions
(bf, * ... * bfp * (bf, * ... * bfp) is not itself an admissible expression, then the ad-
missible expression representing this product has a label which is greater. There is
no need to consider linear combinations. This is condition (i) required of a PBW
basis. Condition (ii) is also an obvious consequence of our definition of `admissible
expression' and the definition of lexicographic order.

COROLLARY 3.67. The surjection algebra B is a Koszul algebra. Therefore its
cohomology algebra is isomorphic to the dual Koszul algebra B', which by definition
has generators of corresponding bijectively to the generators bf of B, and defining
relations orthogonal to those of B:

Of * og = -Qfk * Q9"

if the composition f o g = f' o g' is defined and preserves homogeneity.

PROOF. See [Pri70, Theorems 2.5 and 5.31.
In order to complete the calculation of the bo-cohomology as given in Theo-

rem 3.69 below, we describe in more detail the structure of the cochain complex
C(B, k) := Homk(B®P, k) for the (classical) Hochschild cohomology of the surjec-
tion algebra B with coefficients in k. The basis {bf1 ® bf2 ®. . . ® bfp } of BOP splits
into the sum of two complementary subspaces

BOP =UP®Vp,

where

UP = Span{bf1 ® bf2 ® . . . ® bfp domain(fi_1) codomain(fi) for some i}

and

VP = Span{bf1 0 bf2 ® . . . 0 bfp I domain(fi_1) = codomain(fi) for all i}.

Letting CU := annihilator (VP) and CP, := annihilator (UP), we have a vector
space decomposition CP(B, k) = CU ® C. The bar differential & : B®P --, B®(P-1)
is defined by

a(bf1 ®... (9 bfp) _ 1)'bf, ®... 0 bf. * bf,,, ®... ® bfp

therefore, a(UP) C UP_1 and a(VV) C Vq_1. Passing to the duals gives 5CU C CU+1
and 8CV C Cr', which shows that C* (B, k) splits as a complex,

(3.48) C*(B, k) = Ct ® Ci,.

Let {bf } be the dual basis to {bf}, then CV, has a basis

{bf := b" 0 b" ® . . . 0 bo J domain(fi_1) = codomain(fi), 1 < i < p}
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and the differential is given by

bB(b ®bf ®... ®b) = Y(-1)ib# ®... b(b#) ®... ®b#

fiB(b}) = 9 ®bh .

{bf=b9*bh}

There is a further direct sum decomposition

(3.49) Cv = ® CV[T], where C ,[T] := Span{9 I T[f] = T}.
TETree

PROPOSITION 3.68. Given T E Tree(n), let p:= TJ + 1. The cohomologies of
the subcomplexes Cv [T] are as follows:

H6 (CV [T])
0, for l < q < p, and
det(T), for q = p.

PROOF. The direct sum decompositions (3.48) and (3.49) imply

H(B, k) = H(Cp) ®H(Cv) and H(Cv) = ® H(CV[T]).
T E Tree

The Koszul condition for B implies that the cohomology algebra is generated by
H1(B) and therefore the homogeneity of any nonzero cohomology class equals its
cochain degree. The homogeneity of any cochain bf = b* ®b* ® .. ®bfo E CV [T]
for the tree T in the statement of the proposition is p, the number of vertices in
T. Therefore the cohomology H(CV[T]) vanishes in dimensions q < p, proving the
first assertion

Corollary 3.67 implies that the pth cohomology group of CV [T] is spanned by
terms /3f :_ /3 */3f2 *. *i3f, for surjection sequences f such that T[f, = T, subject
to the relations

(3.50) Ofl ... *Of, .0f, . /jfn = -of, * ... * 3f, * (jf, .'jfP

for any two surjection sequences

fp f.f = [n] -" [rp-1] ... [ri+}] [ri] -" [ri-1] ... [r}] f [1] and

f, f;+1 f; fi
V _ [n] ;) [rp-1] ... [ri+}] [r'] [ri-1] ... [rl] - [1],

differing in two adjacent positions, but determining the same tree. See Figure 8.
The definition of T111 implies that to each surjection fi there is a unique associated
vertex of the tree T = T[f]. This vertex has a unique outgoing edge which we will
denote ei. The root edge is el and the internal edges of T are e2i ... , ep. Define a

We claim this is a E(T)-equivariant isomorphism. It is clearly onto, since det(T)
is one-dimensional and the map is a nonzero linear map. We will show that the
domain H(CV[T}) is one-dimensional, carries the sign representation of E(T) and
cp is equivariant. Let of be the f-order of T introduced in Definition 3.58 and define

(3.51) o(T) _ {of I f c SSn, T[f] = T}.

Consider two orderings of and of which are related by transposing the order of
two vertices v, w in adjacent levels, that is, the orders agree except on the vertices
v, w but

v <f w, whereas v > f, w.
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Equation (3.50) then implies that the corresponding elements of and 8f, are equal
up to a change of sign. Since any two orderings are related by a sequence of such
transpositions, the space generated by the 8f is one-dimensional and carries the
signum representation of the subgroup of E,, (acting as permutations of the ver-
tices of T) which stabilizes the set o(T). This subgroup contains E(T) and obviously
the sign factors agree for a permutation acting on the vertices and the same per-
mutation acting on the corresponding edges.

THEOREM 3.69. Given a quadratic operad P andT E Rtree(n), let p = TI+1.

(i) There is a dgVec isomorphism

(3.52) (Eo'`[T], 3o) = (P11 [T] ®Cj[T], l1 ®6a).

(ii) At the next stage of the spectral sequence, the EP,* [T] term is given by:

EP a Hr+9(Eo'*[T]) = 0, for q < 0, and
(3.53) E1' [T] :=

Hr EP ° T #( o [ ])=P [T]0det(T), for q = 0.

Taking the direct sum over T one has:

(3.54) Ep'9 - ®Ep'9[T] _ 0, for q < 0, and®P#

[T] 0 det(T) = C(P)p, for q = 0,

where the direct sum runs over all T E Rtree such that ITI + 1 = p.
(iii) The isomorphisms in (3.54) combine to give a dgVec isomorphism

(3.55) Ei'° = C(P).

PROOF. The isomorphism (3.52) follows from formulas (3.46) and (3.49), Prop-
osition 3.64 and the definition of the surjection algebra. The description of the
E1-term as a graded k-vector space follows immediately from Proposition 3.68.

The differential 51 increases the number of vertices in a tree by one and is dual
to the operad composition law for the operad E. This is precisely the definition of
the differential b on the cobar-dual (tree complex), C(P).

COROLLARY 3.70. If P is a Koszul operad in dgVec, then

H1'(N(P)(n)) _ 0, if p # n - 1 and
P '(n) ®sgn., if p = n - 1.

We now use these results to prove the equivalence of two characterizations of
the Koszul condition for a quadratic operad. For the convenience of the reader, we
restate Theorem 3.43:

THEOREM 3.43. A quadratic operad P is Koszul if and only if for all arities
n > 2 the cohomology of the Koszul complexes K(P')(n) (Definition 3.41) vanishes
in all degrees.

PROOF. The proof is based on another spectral sequence coming from a de-
creasing filtration of the complex N(P), which `pinches' the tail factor P#[rr_1in]
in N(P)(n) by requiring that ra,_1 > s, that is,

® P# (r1) or, Or,y 1 P# [rp_1, n], for p > 1 and s > 1,
Fs(N(P)(n)r) := P#(n), for p = 1 and s=1,

0, for p = l ands > 1,
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where the direct sum for the case p > 1 and s > 1 runs over all 1 < r1 < <
rp_1 < n with s < rp_1.

At arity n and -degree p, the filtration is constant for s < p (since p < rp_1)
and strictly decreasing for p < s < n - 1:

N(P)(n)p = F'p(N(P)) ... Fn 1(N(P)(n)) Fn(N(P)(n)) = 0.
For s = 1,

EI,t(N(P)(n)) = P#(n), for t = 0, and
0 0, fort 0.

For s > 1,

_ s+t
(3.56) Eot(N(P)(n)) =

=N(P)(s)s+t-1

®Es [s n]

The term N(P)(s)5+t-1 reflects the fact that the tail (last term) in N(P)(s)s+t is
held fixed at P[s, n] and the number of remaining -products is reduced by one.
We observed above that the filtration is trivial when the filtration degree is less than
the -degree, which implies that Eo't 0 only if s+t < s, that is, t < 0. Therefore,
the spectral sequence for N(P)(n) is in the fourth quadrant and, furthermore, it is
between the lines s + t = 1 and 8+t-n= 1.

If 6N(n) denotes, for n > 2, the differential on N(P)(n), then restricting JO to
Eo'*(N(P)(n)) gives 5N(s) ®Es It. Therefore

(3.57) E1't(N(P)(n))
Hs+t-1(N(P) (s)) ®Es (P# [s, n])

= P# (n)
0

for2<s<n, s+t>l,
fors=l, t=0 and
otherwise.

To prove the theorem in one direction, assume that the operad P is Koszul.
Then Corollary 3.70 and equation (3.57) imply that the Ei-stage of the spectral
sequence has only one(nonzero row, t = 0:

<
ss

.<
n - 1 and

E1 o(N(P)(n)) - S
j Es (sgns 0 P* [s, n]) fofor 2

r s

This is just the Koszul complex K(P')(n) truncated at the nth term P'(n). The
fact that E1 is supported on a single row t = 0 means that E2 = E. But
the complex N(P)(n) has cohomology only in degree n - 1 and by Corollary 3.70
Hn-1(N(P)(n)) = P'(n)®sgnn. Therefore,

r
Hs(E1'o(N(P)(n))) = E2'o(N(P)(n)) S

Pf(n) ®sgnn, ifs = n- 1,
l 0, ifsn-1.

Thus the augmented complex El'o(N(P)(n)) -> P'(n) ®sgnn is exact. But this is
the full Koszul complex, which proves the theorem in one direction: `Koszul implies
exactness of the Koszul complex.'

To prove the theorem in the other direction, we must prove that if the Koszul
complexes are exact, then the augmented complexes

(3.58) N(P)(n)' N(P)(n)2 - ... -> N(71)(-)'-' - P'(n) 0 sgnn
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are exact. The proof is by induction on n. For n = 2, N(P)(2)' = P#(2) and so
the complex (3.58) expresses the isomorphism P#(2) - P'(2) ® sgn2. For is = 3,
the complex (3.58) is the Koszul complex and so is exact by assumption.

Assuming we have shown that this complex is exact for r < is, we want to
prove that it is exact for n. The calculation in the first part of the proof for indices
r which are strictly less than n shows that

E1'°(N(P)(n)) = P'(r) ®E,. (sgn, 0 P#[r, nl ).

Once again E1 is supported on a single row, so E2 = R. which is, as be-
fore, the Koszul complex truncated by the last term P'(n). By assumption, the
Koszul complexes are exact so En 1'0 = P (n) and therefore the augmented com-
plex N(P)(n)* - P'(n) ® sgnn is exact as required in the definition of a Koszul
operad.

3.7. Coalgebras and coderivations

Let P := {P(n)}n>1 be an operad in the category dgVec of differential graded
vector spaces over a field k of characteristic zero such that each P(n), n > 2, is
of finite type and P(1) = k. Recall that we denoted the graded k-dual of P by
P# = {P#(n)}n>1i where P#(n) = P(n)# = Homk(P, k). All tensor products are
Ok unless otherwise indicated and (Dr. := ®k[E, ]. The coendomorphism operad
CoEndx was introduced in Definition 1.9.

DEFINITION 3.71. A P-coalgebra X is a dg vector space equipped with a dg
operad map A : P --> CoEndx with components

Ax(n) : P(n) --* CoEndx (n) = Homk(X, X®'), n > 1,

or, equivalently, a dg vector space X with a sequence of dg maps

(3.59) Ax (n) : X --> Homk[E.](P(n),X®n) - (P# (n)
®X®n)E , n > 1.

The last isomorphism uses the assumption that P(n) is of finite type. Mor-
phisms of P-coalgebras are defined in the obvious way Since the field k has char-
acteristic zero, given a En-module V EdgVec, there is a projection p : V - VE'
onto the En-invariants in V,

1
P(v) > ,

a(v)
n. aEE

This projection factors through the space of coinvariants VE, and defines an iso-
morphism VE,. = VEn:

P

(3.60)

Therefore, we can also express the coalgebra structure map in (3.59) in the form

(3.61) Xx(n) : X - P#(n) or, X.
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When there is no possibility of confusion, the subscript in AX(n) and Xx(n)
will be deleted.

DEFINITION 3.72. Let P be an operad in dgVec. A P-coalgebra X is called
nilpotent if, for any x E X, A(n)(x) = 0 for all n sufficiently large.

Our attention will focus on the definition of a `standard construction' of the
chain complex for the homology and cohomology of an operad algebra which uses
the cofree nilpotent coalgebra over the quadratic dual operad; see Section 3.2.
This approach reproduces the standard constructions for classical algebras: the bar
construction for associative algebras, the Chevalley-Eilenberg chain complex for Lie
algebras and the Harrison chain complex for commutative associative algebras. It
should come as no surprise that the analogous construction works for algebras over
an arbitrary quadratic Koszul operad.

The quadratic dual operad also provides an approach to the theory of strong
homotopy algebras which were originally defined in terms of coherent sets of multi-
variable maps. The latter approach made manifest the description of a strong
homotopy algebra as an algebra over a suitable differential graded resolution of the
original operad, which in this case coincides with D(P'), the minimal model of P;
see Section 3.10.

We start by introducing cofree nilpotent coalgebras. Given a symmetric mono-
idal category C and an operad P in C, the cofree coalgebra functor is, by definition,
a right adjoint of the obvious forgetful functor from the category of P-coalgebras in
C to the category C. In this section, C can be either dgVec or gVec. The former case
allows for operads with nontrivial differentials and can thus accommodate objects
such as cofree A.-coalgebras. The latter case, C = gVec, is more restrictive, but
still general enough for our purposes, so we choose this framework. Most of our
constructions can be easily modified to C = dgVec.

DEFINITION 3.73. Let P be an operad in gVec. A cofree nilpotent P-coalgebra
functor YT is a right adjoint to the forgetful functor UU from the category of
nilpotent P-coalgebras in gVec to the category gVec, that is, .Py establishes a
bijective correspondence:

Homp_coalg(C,.7`,(X )) <--> Homgvec(UP(C), X)

for any nilpotent P-coalgebra C.

In the standard notation for adjoints, UP -i .T,. Such a functor, if it exists, is
unique up to equivalence. We now construct an example of such a functor.

DEFINITION 3.74. Let P be an operad such that each P(n), n > 2, is of finite
type and X a vector space . Define

SP(X) := ®P#(n) ®E x`°_
® (P(n)# ® X®-)

,

n>1 n>1

with the grading

(3.62) SP' (X)' := P#(n) or, X®".

The graded vector space SP(X) is a P-coalgebra with structure maps:

(3.63) X(n) : SP(X) -> P#(n) or, SP(X)e', n > 1,
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given by

X# ®id
SP(X) SP(X)m = P(m)# ®Em X®m

_P#(n) ®£n1
(P(mi)#) ®Em

mn ®x®mi-1

(3.64) P#(n) ®E
((@

(®(P(mi)# or_, X®m )/ /z-1

(X)m")),

where the summation is over {(ml, ... , m,) I mi > 1, m1 + + Mn = m} and
E,n,, := Em x x Em.. The map X# in the first line is dual to the operadlm
composition.

Xn;mi, m : P(n) Or, (P('+n1) ®... ® P(m, )) -* P(m)
and therefore maps into the space of invariants. The map in the third line is
simply reordering using the symmetry in gVec.

The unit X -* SP (X) and the counit SP (X) -> X of the adjunction are,
respectively, the standard inclusion

X -+k®X =P(1)®X
and projection

7r:Sy(X)-.X®P(1)=X®k=X
THEOREM 3.75. The functor X --, SP(X) is a cofree nilpotent P-coalgebra

functor
.SP(X) = 4(x)-

PROOF. The verification that the P-coalgebra SP(X) is nilpotent follows im-
mediately from the fact that the coalgebra structure map a(n) applied to SP(X)m
partitions the tensor products X®m into n nonempty factors. Such a partition
cannot involve more than m components; therefore,

,\(n)JsP(x)m = 0 if n > m.

The assertion that SP(X) is cofree is equivalent to the fact that for any nilpo-
tent P-coalgebra C and for a degree zero k-linear map ' : C -* X, there exists
exactly one coalgebra homomorphism C -+ SP(X) making the following dia-
gram commutative:

-
C SP(X)

(3.65)

X.

Suppose that zi is such a homomorphism and let bn : C -* SP(X)n be the nth
graded component of zb. Since l is a homomorphism,

(11 or, ' On)Ac(n) = Xs(n)'tb,

for each n > 2. Applying the projection

P#(n) ®E SP(X)®n . H P#(n) ®E (SP(X)') On = P# (n) (2)z, X®n
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to the above equation, we obtain the following commutative diagram-

C SP(X)

xC(n)l !s(n)1®nP# (n) ®C®n P# (n) ®X®n.
It follows directly from this diagram that /,n = (11 ®En ,®n) o )c(n). Since C

is nilpotent, the sum
W

(3.66) ®0®n) o Ac (n).
n>1

is `locally' (that is, when evaluated on a specific element of C) finite. It is easy to
see that this definition of 2/i satisfies the required condition and is uniquely deter-
mined.

Henceforth, we will use the symbol .FP(X) only for the cofree nilpotent P-
coalgebra.

REMARK 3.76. We have to restrict to nilpotent coalgebras in order that the
definition of in (3.66) involves a finite sum. This is why SP(X) is not the free
coalgebra without the nilpotency condition. See [B1o85].

It is worth noting that the construction is dual to the construction of free
algebras, so the linear dual of the free algebra is, under mild finite dimension
assumptions, the cofree nilpotent coalgebra. If we drop the nilpotency assumption,
cofree coalgebras will be much more complicated objects than just 'duals' of free
algebras. See also [B1o85, Fox93].

REMARK 3.77. It is also worth pointing out that since all P(n) are of finite
type, there is a (noncanonical) isomorphism P(n) = P#(n). Moreover, since k
has characteristic zero, the space of E"-coinvariants is isomorphic to the space of
En-invariants, which implies that .TP(X) and T (X) (free nilpotent coalgebra and
free algebra on X) are isomorphic in gVec, though not canonically.

EXAMPLE 3.78. Let X be a graded vector space and Ass = {Ass(n)}n>1 with
Ass(n) = k[En] the operad for associative algebras; see Definition 1.12. Then

.FAss(X)n :_ (k[En] (&
X®n)E

= k[E"] ®k[E,] ®X®n -
X®n,

therefore 1g,3(X) = ®n>1 Ass(X)n is the standard tensor coalgebra, that is,
.Ass (X )n = ®n X, with coproduct component of arity n of a(m) given by the
sum over all ordered partitions of a tensor product into a sequence of m subfactors:

A(m)(x1®...®xn)._ L c-®(x1®...(9 xi,)®...®(Xim-,+1®...®Xn)

1<i < <i,,,-i<n

where e, E k[Em] is the basis element corresponding to the identity of Em.

EXAMPLE 3.79. Let X be a graded vector space and Com = {Com(a)}n>1
with Com(n) = k the operad for commutative algebras; see Definition 1.12. Then

17Co (X)n := 1 ®k[E,, i X®n - Symn(X),
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the nth symmetric tensor product. As a vector space, (X) is the subspace of
symmetric tensors Sym(X) in the tensor coalgebra F' ,, (X) from Example 3.78.
The coalgebra structure on the tensor coalgebra preserves the symmetric tensors
and YC'o. (X) has the structure of a subcoalgebra of SASS (X). Since Com is a qua-
dratic operad with a single generator p E Com(2), the coalgebra structure is gen-
erated by the degree 2 coproduct A : Sym(X) -> Sym(X)®Sym(X) corresponding
to µ, which can also be identified with the coproduct given by identifying Sym(X)
with the universal enveloping algebra U(X, [-, -] = 0) of X considered as a Lie
algebra with zero Lie bracket [Ser65, Chapter IIIJ.

DEFINITION 3.80. A P-coalgebra X is said to be cogenerated by a subspace Y
if there is a k-linear projection p : X -i Y such that the corresponding morphism
of P-coalgebras X -* .TT(Y) is injective as a map of modules.

Under the adjoint relation in Definition 3.73, Ilfr(X) corresponds to the pro-
j ection 7r : Ty (X) -+ X. Therefore, F, (X) is cogenerated by X in the sense of the
previous definition. We call .7, (X) the cofree nilpotent P-coalgebra cogenerated
by X.

DEFINITION 3.81. A coderivataon of a P-coalgebra X is a graded k-linear en-
domorphism D of X such that

n-1

Ax(n)(b) o D = (-1)Ib IDI ( Il®k ®D ®Il®n-k-1 Ax(n)(b)
k-0

in Homk(X, X®'), for all n > 2 and b E P(n).

REMARK 3.82. A standard way of dealing with coderivations (or derivations)
is to extend the field k to the commutative ring k, := k[e]/(E2) of dual numbers
and extend all the previous structures from the category of vector spaces over k to
the category of kE-modules. Then D is a coderivation of the coalgebra X if and
only if IlX + ED is an automorphism of XE := X ® k, as a PE := P 0 kE-coalgebra.
The adjoint relation in Definition 3.73 applied to PE-coalgebras implies the next
proposition which can also be proved directly as was Theorem 3.75.

PROPOSITION 3.83. There is a bijection

(3.67) Coderp.coaig(F,(X)) Homgvec(.T,(X),X).

The bijection maps a coderivation D to 7r o D E Homgveo(.)T,(X),X) and
conversely, a E Homgveo (,TP (X ), X) is sent to the coderivation Da defined by the
formula

n-1

(3.68) Da := L E IlP#(n) ®(7r®a 0 a ®7r®n-7-11 o a(n).
n>1 j=0 /

The sum in (3.68) is infinite but nilpotency implies that it involves only finitely
many terms when applied to an element of .SP(X).

DEFINITION 3.84. Let Coder9(.PP(X)) be the subspace of coderivations of
.SP(X) which increase by p the degree induced by the grading on X The grading
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on T, (X) by the number of X factors (see (3.62)) induces a second grading on
CoderP(F (X)), namely

Coderv(.T`,(X)) Coder','(.Fy(X)),
n>o

where

CoderP'"(.T',(X)) _ {DE Coderp(.F,(X)) I (7roD)(.T,(X)9) = 0, for q n+1}.

LEMMA 3.85. The map w : Coder,"(.p,(X)) --> Hom5(.F,(X)"+1 X), given
by w(D) := xr o D, is an isomorphism for all p, n > 0.

PROOF. The lemma is an immediate consequence of Proposition 3.83.

In the rest of the chapter, the operad P will be assumed to be quadratic. The
following theorem is taken from [FM97].

THEOREM 3.86. Let V be a graded vector space and let X :=L V. Then there
is a natural one-to-one correspondence between P-algebra structures a : P -> Endv
on V and coderivations d E Coder1'1(FP,(X)) of the P'-coalgebra .27,,(X) with
d2 = 0.

The next lemma, which will be used in the proof of Theorem 3.86, is based
on observing that the definition of FP(X) makes sense even when P is only a E-
module. Then of course .p,(X) will not be a coalgebra, but only a graded vector
space so, in this general setting, it makes no sense to talk about coderivations. The
use of desuspension j. V in the lemma is a device for keeping track of degrees.

LEMMA 3.87. Let V be a graded vector space and X := f V. If E is a E-module
in gVec and Ev the Czech dual (Definition 3.36), then for each n > 2, there is an
isomorphism

4bn : Homy(.T'E,(X)",X) = HomEn -"(E(n),Endv(n)).

PROOF. By definition

lHomy (E(n)v#
®£" X®",X)

Homi((E(n)(9 sgnn)(gE X®",X).

Let cp : V®" - sgnn 0 (f V)®" = sgnn 0 X®" be the isomorphism of degree
-n described in Lemma 3.12 and

?r : E(n) ® sgn" ®X®" - (E(n) (D sgnn) ®E X®"

be the projection, then we define the desired isomorphism

4bn : Homy ((E(n) ® sgn.) or, X®", X) ---> Homy' 1-"(E(n), Hom(V®", V))

by

'Dn.(f)(e)(v1(& ... ®vn) :=T J (ir(e®1P(v10 ... ®vn))),

for v1i ... , vn E V and e E E(n).
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PROOF OF THEOREM 3.86. To fix the notation, let P = (E; R) as in Sec-
tion 3.2. Then E'(2) = P'(2) and E"(n) = 0 for n 2. By Lemma 3.85, we
have

Coder1'1(.Fc'(X)) = Hom1p:, (X)2, X) = Hom1(.T s,(X)2,X).

Since 111(E) is free and E is concentrated in arity two,

£ndv) = HomE-Mod(E, £ndv) = HomE2 (E(2), £ndv(2)).

We define a map I of vector spaces by the commutativity of the following diagram,
where OD2 is the isomorphism from Lemma 3.87:

Q

Coder1'1(.)TT,(X)) - Hom,yoP(1Y(E),£ndv)

Hom1 (PE (X)2, X) = HomE2 (E(2),£ndv(2)).

One can verify directly that a E Homop(41(E), Endv) defines an algebra struc-
ture on V, i.e. factors through W(E)/(R), if an only if the coderivation d = 11(a)
satisfies d2 = 0. We will give an explicit proof that d2 = 0 in Section 3.8.

We now consider an application to the homotopy theory of operad algebras. In
Section 3.10 a strongly homotopy P-algebra is defined as an operad algebra over
a minimal model of P. As we will show in Example 3.118, for a quadratic Koszul
operad P, D(P') is just such a minimal model. Proposition 3.88 below describes
these strong homotopy algebras in terms of coderivations. In fact, this description
is equivalent to the classical form of axioms in terms of structure operations, as
explained in Remark 3.89.

PROPOSITION 3.88. Let V be a differential graded vector space, X =1 V and
P a Koszul operad. A coderivation D E Coder' (.PP, (X)) with D2 = 0 is equivalent
to a strongly homotopy P-algebra structure on V.

PROOF. It follows from the above remarks that we need to prove that a D(P')-
algebra structure on V is equivalent to a coderivation D E Coderl (.T , (X)) with
D2 = 0. Since

D(P) = IF(.-'T (P'#)),

such a structure is given by a dg pseudo-operad map from 1If(z-1T (Pl #)) to Endv.
It is crucial here that this map is a differential graded map, but we will initially
consider the map on the operad level. Since 111(x-1 T (P'#)) is free,

(3.69) Hom,po,(1I1(s 1(T P'#)) £ndv) = HorE-M.d(5-1 Tp'# £ndv)

fl HomEn (j -2 P'(n)# ® sgnn, £ndv(n))
n>2

fJ HomEnn(P1(n)",£ndv(n)) = fJ Hom1(7 (X)', X).
n>2 n>2
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The isomorphism in the last line follows from Lemma 3.87 and ((P' (n))')' = P' (n)
On the other hand, by Proposition 3.83,

(3.70) Coderl(.P,,(X)) = 11 Homl(.T', (X)n,X),
n>1

which differs from the last expression in (3.69) only by the term Homl (.PP, (X)1, X)
Hom1(X,X). The discrepancy arises because the equivalences in (3.69) do not

take into account the differential on V. For V E dgVec, the differential defines an
element of Hom1(V,V) = Homl(X,X). Moreover, an element

µ E Homw°p(T(z-1T(P'#)) £ndv)

defines the structure of a differential graded algebra on V if and only if it is a
differential graded map, that is,

(3.71) µdn(p') = dPndvµ.

Equation (3.71) is equivalent to the condition on the infinite sequence

µ = (µ2, ...) E Horn V) = Hom,pop(T (s 1T (P)), £ndv)
n>2

which says that the augmented sequence

(µ1,µ2,...) E jjHom2 n(P'V(n)®EnVon,V) = Coderl(,y'(X))
n>1

with µ1 = dv defines a coderivation DN, E Coderl(.F (X)) with D2 = 0. This
proves the proposition.

REMARK 3.89. The requirement that P is a quadratic Koszul operad which
appears in Proposition 3.88 is necessary to guarantee that the dual dg operad
D(P') is quasi-isomorphic to P and therefore provides a minimal model. When this
proposition is compared with Theorem 3.86, it becomes clear that strong homotopy
algebras are obtained by passing to the differential graded setting with differential
d1 E Coderl'0(FP,(X)) and then adding higher terms to the coderivation d2 E
Coderl'1(F, (X)) (which would describe a strict P-algebra), that is, perturbing
d1 + d2 to D = dl + d2 + d3 + d4 + with di E Coderl'i-1(.TP, (X) ), i > 3.

EXAMPLE 3.90. By Proposition 3.88, a strongly homotopy associative (also
called A.) structure on V is equivalent to a coderivation D E
with D2 = 0. Such a coderivation is given by a sequence of maps mn : V®n -> V
of degree 2 - n, for n > 1, satisfying the sequence of A,-identities given in Exam-
ple 3.132.

Similarly, a strongly homotopy Lie algebra (also called L.- or sh Lie algebra)
structure on V is equivalent to a coderivation D E Coder1(.PCom (j V)) with D2 = 0
given by a sequence of brackets (An)n>1, where the map An : V®n --> V has degree
2 - is and is skew-symmetric. The An are required to satisfy a sequence of L.-
identities given in Example 3.133.

Strongly homotopy associative commutative algebras (also called C.- or bal-
anced A.-algebras) are discussed in Example 3.134.
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3.8. The homology and cohomology of operad algebras

The results of Section 3.7 can be used to define homology or cohomology the-
ories of P-algebras for any quadratic operad. These theories coincide with the
standard theories: Hochschild, Harrison and Chevalley-Eilenberg for P = Ass,
Com and Lie, respectively. Recall that we assume that the characteristic of the
ground field k is zero.

Moreover, the homology (or cohomology) can be used to give a very convenient
characterization of the Koszul property: A quadratic operad P is Koszul if and only
if the homology of the free P-algebra T2(W) vanishes in all degrees other than 1
and equals W in degree 1, for each graded vector space W. The chain complex
CP(V) defining the homology for a P-algebra V is the free operad coalgebra of the
quadratic dual operad FP, (I V).

Since the construction of the chain complex CP (V) involves the quadratic dual
of P, we must assume that P is a quadratic operad, in particular, an operad in
gVec. On the other hand, the P-algebra V may have, in principle, a nontrivial
differential. The differential of the chain complex CP(V) would then consists of
two parts - one induced by the P-algebra multiplication on V and one induced
by the differential of V. We could obtain in this way, for example, the `two-step'
cohomology of dg associative algebras ([Mac63a, X.11]). As we will not need this
generality, we will assume that V is an algebra in gVec, though our constructions
easily generalize to dgVec-algebras. In order to be consistent with our conventions
that the differentials have degree 1, the chain complex CP (V) will be defined in
negative degrees.

In general, we will express everything in terms of differentials of degree 1 al-
though analogous theories can be described for differentials of degree -1, in which
case we will adopt the convention that complexes with upper indices have d of
degree 1 and with lower indices degree -1.

DEFINITION 3.91. Let P be a quadratic operad in Vec, V a P-algebra and
X :=f. V. The P-algebra chain complex of V is defined in P-degree -n by

CPn(V) := (X) ', for n > 1.

The P-differential dP is the coderivation of J;, (X) corresponding to the P-algebra
structure on V as defined in Theorem 3.86.

Since, for P = Ass, the chain complex C,(V) coincides (modulo grading) with
the bar construction B(V) = B(k,V,k) on an associative algebra V, we may also
call the dg P'-coalgebra (CP(V), aP) the bar construction on the P-algebra V. The
complex CC(V) is actually bigraded,

CP.(V) _ (D C. n,p(V).
n> l,p

The internal degree p is induced by the grading of V. Let us note that the complex
CP has an alternative presentation; for n > 1:

CPn(V) _ .F (X)n

Pl (n)# ®E (I V)®n - P'(n)# ®E,, (sgnn® In (V®n))

(In P'(n)# 0 sgnn)E ®V®n I
s-1(PI#)(n) ®£R V®n
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where we used (3.60) and the definition of s-1. Then also the differential dp has
an alternative description. Let B(n) = s-1(P'#)(n), then

dp : CCn(V) = 1 (B(n) or, V®n)
--> (B (n - 1) ®£n-, B[n - 1, n] ®£ V®n)

(3.72)
= (B(n - 1) ®£..-, (1 P) [n - 1, n] ®£ V®n)

- j ((B(n - 1)) ®£,.-, V®n-1) = Cr ntl(V).

The arrow in the second line is the desuspension of the dual to the P'-structure
morphisms :

P' (n - 1) ®£n-, P' [n - 1, n] -> P' (n)

and is easily derived from the isomorphism in Lemma 3.42. This map has degree
0 relative to the P-degree. The isomorphism in the third line comes from the
isomorphism B(2) = s-1(P'#)(2) = 1 P(2). The last arrow is the extension of
the structure morphism P(2) ® V®2 --+ V, but due to the presence of 1 P(2)
instead of P(2), this map has degree 1 relative to the P-degree, as required of the
P-differential.

REMARK 3.92. Since all the morphisms appearing in (3.72) commute with
maps of P-algebras and every P-algebra is the image of a free P-algebra, in order
to prove that d2, = 0, it is sufficient to consider the special case of V := FP(W).
In this case the desired property follows from the fact (proved in Proposition 3.94
below) that dp is equivalent to the dual of the Koszul differential, which was shown
to have square zero in Lemma 3.45. We will need this description in the proof of
Theorem 3.95 which characterizes the Koszul property for an operad P in terms of
the homology of the free P-algebra.

DEFINITION 3.93. Let P be a quadratic operad in Vec and V a P-algebra. The
P-algebra homology (also called the operadic homology) of V with trivial coefficients
is defined as

HH(V) := H-n(CP(V),dp), n > 1.

The next proposition describing C; (.Fp (W)) in terms of the Koszul complexes
introduced in Definition 3.41 leads to a very convenient criterion for deciding if an
operad is Koszul; see Theorem 3.95 below. Our proof avoids the lengthy argument
in the proof of Proposition 4.2.12 in [GK94].

PROPOSITION 3.94. For the free P-algebra V = 97p(W) generated by W, the
complex CC(.Fp(W)) decomposes as a direct sum

C.,(.Fp(W)) = CP{W, m,
m> 1

where the subcomplexes CP{W, m} are isomorphic to the dual Koszul complexes
(K(P')(m))# tensored with W®m:

(K(P')(m)#)n ® W®m,
CPn{W,m} P(1)®W=W,

0,

for2<m,l<n<m,
form=1, n = 1 and
for m = 1, n 1,
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with the differential 6{w,m} := bK ® A. Therefore,

Hi (K(PI)(m)#) ® WO', for all i if m > 1,
Hi(Cp{W, m}) = P(1) ®W = W, form=l, i = 1 and

0, form= 1,ipL1.

PROOF. For n > 1 the term of P-degree -n term decomposes as

CPn(_FP(W)) _15_1(71#)(n) ®E Fp(W)®n

5-1(PI#)(n) ®E ® ® (P(mi) ®E-; W®".\
1<m,, ,m i=1

1"(PI")(n)®En ®(P(m1)®...®P(mn))®E .-nw®(m + +mn

{m,n<m}
m,+ +mn=m

® (PIV(n) ®E P[n,m]) ®E,.. W®"`
{mIn<m}

In ® (K(P1)(m)n)# ®E,,, W®m
{min<m}

where Em,, = Em, x ... x Em,,.
The first congruence follows from the definition of J (W) and the distributivity

of the tensor product over direct sums. The arrow in the next line is the inverse
of the isomorphism e in (3.64). The next to the last congruence can be proved by
a short argument using the isomorphism in Lemma 1.69 describing the structure
of P[n, m]. The last congruence follows from Definition 3.44 of the dual Koszul
complex.

The differential dp : CPn{W, m} -, CP"+1{W, m} fixes the factor W®".
Bringing the differential inside the f.", it acts only on PIV (n) or, P[n, m], and in
the following way,

P I V
(n) ®E,. P[n, m] (P'(n - 1)# Or, P'[n - 1, n]# ® sgn,) Or. P[n, m]- (PI(n

- 1)# ® sgn,-1) ®E P[n, MD

which is the dual of the Koszul differential. The isomorphism in the second line uses
P'(2)# 0 sgn2 = P(2) and Lemma 3.42. This proves the first part of the theorem.
The second part follows immediately.

The next theorem is the main tool for proving that a quadratic operad is Koszul.

THEOREM 3.95. A quadratic operad P is Koszul if and only if for any vector
space W, the P-algebra homology of the free P-algebra Fp(W) generated by W
equals W in degree 1 and vanishes in all other degrees.

PROOF. According to Proposition 3.94, the vanishing condition is equivalent to
the exactness of all the Koszul complexes K(P')(m) for m > 2. By Theorem 3.43,
this is equivalent to the fact that P is a Koszul operad.
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In Example 3.38 we showed that Ass' = Ass and Lie' - Com. In the following
Examples 3.96 and 3.97, we will show that all these operads are Koszul.

EXAMPLE 3.96. Let V be an Ass-algebra, then since Ass(n) = Ass(n) _
k[En], we have

CAss(V) = k[En] ®k[E,.] (I V) In - (L" k[En] ®sgnn) ®k[E.a1 ®V®n - InV®"

Modulo the presence of 1 V instead of V, the differential dAS8 is the same as
the Hochschild homology differential

n-1
dH_ (-1)z-1(Il®a-1 ®µ ®nn_i-1) V®n -Vn-1

och
i=1

for an associative algebra V with multiplication µ and trivial coefficients. It is well
known (see [Wei941) that for the free associative algebra on a vector space V

V,

for n 1 and

for n = 1.

Therefore, by Theorem 3.95, Ass is a Koszul operad.

EXAMPLE 3.97 Let V be a Lie algebra. Since Lie(n) = Com(n) = 1, the
trivial representation of En,

CG e(V) = 1 ®k[En] (I V)®" (J' sgnn) ®k[En] V®n =1n A X.

As expected, djie is the Chevalley-Eilenberg differential, the fact rigorously proved
by Balavoine in his thesis [Ba196j. It is well known (see [Wei94]) that for the free
Lie algebra on a vector space V

{ 0 for n 1 and
Hn E (V), k)

V, for n = 1.

Again by Theorem 3.95 Lie is a Koszul operad. Since an operad P is Koszul
if and only if P' is Koszul, this shows that Com is Koszul as well.

For commutative algebras, the operadic homology is the Harrison homology.
More details about the homology and cohomology of operad algebras can be found
in [Ba198].

REMARK 3.98. There are also other examples of Koszul operads, with two
basic operations such as the operad Poiss for Poisson algebras or the operad e2 for
Gerstenhaber algebras. Their Koszulness follows from the presence of a distributive
law; see [FM97, Mar96b]. The Koszulness of operads for Leibniz and Zinbiel
algebras introduced by Loday [LFCG01] is discussed in [Ba194]. Still more exotic
examples of Koszul operads can be found in [Cha01, ChaOO, CLOO, LFCGO11.

We saw that to prove that a given operad is Koszul is a quite nontrivial task.
In fact, a moment's reflection convinces us that each `generic' sufficiently nontrivial
operad is non-Koszul, but to prove that a concrete operad is non-Koszul is also
very difficult.

Given a gVec-operad P, one may consider its generating function gp E k[[t]]
defined by

t
9v (t) := > dimk (P (n))

n=1
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As proved in [GK94, Theorem 3.3.2], if P is quadratic Koszul, then

(3.73) gp(-gp'(-t)) = t.

By calculating initial terms of generating functions, one can show that (3.73) is
violated by the operad for associative anticommutative algebras, which means that
this operad is not Koszul. Since P is Koszul if and only if P' is, dually, the operad
for `commutative Lie algebras,' that is, algebras with a commutative multiplication
satisfying the Jacobi identity, is also not Koszul.

Algebras over non-Koszul operads would exhibit very strange properties. We
think that this is why they almost never occur in `real life' and all `classical' algebras
are algebras over well-behaved Koszul operads; see also Remark 3.131.

Next we sketch the cohomology theory of a P-algebra V with coefficients in V,
which is the cohomology theory `controlling' deformations of P-algebra structures.

DEFINITION 3.99. Let P be a quadratic operad and V E gVec a P-algebra.
Let X:=f V and, forpEZ, n> 1,

CP"(V;V) := Coder"(..PB(X)),

where Coder"(.PP, (X)) is defined in Definition 3.84. Define the P-algebra cochain
complex of V with coefficients in V by

cp(V;V) :_ (Dcp(V;V),
n>1

where

CC(V;V) :_ ®CP"(V;V).
pEa

Let dp E Coderl'1(9 (X)) be the coderivation corresponding to the P-algebra
structure on V described in Theorem 3.86. Define the coboundary operator on
CP(V;V) as the graded commutator with dp, that is, for D E CP'"(V;V),

(3.74) Sp(D) := dp o D - (-1)PD o dp.

It is easy to verify that Jp maps CP'"(V; V) to C1PP+""+1(V; V) and that SP = 0.

DEFINITION 3.100. Let V be an algebra over a quadratic operad P Define
the P-algebra (also called operadic) cohomology HP'"(V;V) of V with coefficients
in V as

HP,"(V;V) := Hp,"(C; (V; V), 1p).

We call p and n the internal and the P-degrees, respectively.

REMARK 3.101. As in the homology examples above, the cohomology theories
just described agree with the standard definitions. For an associative algebra, one
gets the Hochschild cohomology of the algebra with coefficients in the algebra; for
a Lie algebra, one gets the Chevalley-Eilenberg cohomology and for a commutative
algebra, one gets the Harrison cohomology.
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3.8.1. Derived functors. Let cp : A -i V be a fixed homomorphism of P-
algebras. By definition, derivations D E DerP-Alg(A, V) are linear maps D : A -+ V
satisfying the identity

(3.75) D(csA(n)(p)(al ®... ®an))

e aV(n)(p)(co(al) ®... D(ai) ®,p(ai+1) ®... 0 co(a,)),

where E := (-1)IDI(Ia'I+, +Ia.-jI+IpI) p E P(n) and ai E A for i = 1,... n; see
Definition 1.20 for the notation.

We will show that if P is a quadratic Koszul operad, then the P-algebra
cohomology of V with coefficients in V is equivalent to the derived functor of
DerP_Alg(-, V) in the category of P-algebras over V, that is, P-algebras A with a
homomorphism of P-algebras : A -> V.

We establish this equivalence by showing that if P is a Koszul operad, then
composing the free P-algebra functor with the cofree nilpotent P-coalgebra functor
gives a canonical resolution p : Can(V) -* V in this category,

Can(V) := 97P(T)7P,(IV))

®P(n) ®E" (1<-Ml, ® ®E,.., (I V)®m )
n>1 m i=1

®P(n)®E ®(TP#(m1)® TPi#(mn)1®Em

n>1 {mk,<m}
+ +m =m

® ( Tn P(n) ®E" (sgnn [n, m])) ®Em ( V)®m
{mfn<m}

Tn ® K(P)(m)n OEm (1 V)®m.
{-I-<m}

The resolution degree of the term of bidegree (n, m),
Cann,m(V) := K(P)(m)n Or_ (1 V)®m

is, for n < m, defined to be n - m:

Cank(V) := ® Cann'm(V),
n-m=k

therefore, the complex equals zero in positive degrees. The total differential ac (of
degree 1) is the sum of two terms:

(3.76) 8CI Can^."`(V) := aK + (-1)"-ma.F.

The first summand aK is defined by:

(3.77) cICan".+"(V) Tn}1 SK(P)In ®.,

where SK(P) is the Koszul differential; see Definition 3.41. That definition was
actually for the complex K(P'), whereas here we use the complex K(P) with the
corresponding differential. The subscript K(P) is introduced to make the distinc-
tion clear. The second summand of is the (graded) derivation on FP (T PP, (f, V) )
extending T dP 1, where dP is the differential dP on .P,, (L V) described in Theo-
rem 3.86. Observe that bidegree of aK is (1, 0) and bidegree of of is (0, 1).
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Let 7r : J (L V) --IV be the projection. Define p as the composition

(3.78) P: FP(I ,(1V)) g=v(V) V,

where µV Fp (V) -* V is given by the P-algebra structure on V.

PROPOSITION 3.102. Let V be a P-algebra and (V,0) the differential graded
P-algebra concentrated in resolution degree 0 and with trivial differential, then

(3.79) p : (Can(V), 8c) (V, 0)

is a morphism of differential graded P-algebras. If P is a Koszul operad, then p
is a quasi-isomorphism and (3.79) (or simply Can(V)) will be called the canonical
resolution of V.

PROOF. By definition of /a P-algebra, the following diagram commutes

.FP(-FP(V))
-FP(AV) T-P(V)

µV I

AV

.Pp (V) V,

which shows that µV is a P-algebra morphism (in fact, the commutativity of the
above diagram is equivalent to V being an algebra over the triple Fp(-); see
Definition 1.103). By functoriality -Fp(I7r J) is also a P-algebra morphism and,
therefore, p is a P-algebra morphism.

The definition of p immediately implies that it annihilates all the graded com-
ponents of Cann'm(V) for n < m, that is

p( (DCank(V)) = p(® Can', m(V)) = 0.
k<O n<M

Since (V, 0) is concentrated in resolution degree 0, it is enough to show that

P(ac(Can-1(V))) = 0
in order to prove that p is a dg morphism. We will prove that

P(ac(Can",n+1(V))) = 0

for any n > 1. There is an isomorphism

Can"'"+1(V) = P(n) ((I P"#(2) ®E2 (1 V)®2) ® (1 P'#(1)®1
V)®n-1)

1 P(n) ((P(2) ®E2 V®2) ® V®n-1\

where we use ®E._, to represent the tensor product or, with a single distinguished
term among the factors on the right-hand side, where the distinguished factor
appears as the factor in the first position on the right. With this convention we
can represent a typical element of Cann,n+1 (V) as a linear combination of terms

a Orn-1 (Q ®E2 w1 ®w2) ®v1 ®... ®v"_1

with a E J P(n), ,Q E P(2) and vi, wj E V. Computing the two differentials, we have

aK (a (Q (DE2 w1 ®w2) 0 V1 ®... 0 vn-1)

= 91 ((a 01 13) ®E2 W1 0 w2 0 v1 0 ... 0 vn-1)
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and

a,P(a ®E,.. (Q ®E2 w1 ®w2) ® v1 ®... 0 V-1)

=j2(a®1X5,_ (,a(wl0 w2)0 v1®-
where jl reduces the tensor product to and j2 reduces to
®E,,. Therefore, deleting the subscripts and the morphisms jl and j2 for simplicity,
we have

PPC(a®(,a®w1 ®w2) ®vl
P( c(a®C@®w1®w2)®vl®

®w2) ®w2) ®vl ®... 0 v, _1)
= 0.

The assumption that P is a Koszul operad implies, by Theorem 3.43, that

H* (Can*,- (V), OK) = 0 for m > 2.

A standard double complex argument implies that the only nontrivial cohomology
for the total complex comes from the degree 0 term:

Hk Can V , ac) 0 fork < -1 and
( ( ) ) TP(1)®P#(1)®1V=V fork =0.

so p is a quasi-isomorphism.

THEOREM 3.103. The P-algebra cohomology of a P-algebra V as defined in
Definition 3.99 is the left derived functor of Derp_Alg(-, V)

PROOF. Using the defining properties of a free P-algebra and the cofree nilpo-
tent P'-coalgebra and the definition of the cochain complex for P-algebra cohomol-
ogy, we have the following sequence of congruences and equalities:

DerP-Alg(Can(V),V) = DerP-Alg(J (TAP (1V)),V)
Homgvcc(TYP,(IV),V) =
Coder(J ,(jV)) = Cp(V;V).

We see that indeed DerP-Alg (Can (V), V) = Cp(V;V), as graded vector spaces.
We need to compare the differential by on Cp(V; V) defined in (3.74) with the

differential on DerP-Alg(Can(V),V) defined by composition with aC. Let us de-
scribe the correspondence between elements of DerP-A1g(Can (V),V) and elements
of Cp(V; V) indicated above in more detail.

Each a E Homgvcc(.FP,(.V), I V) = Cp(V;V) determines

Tal E Homgvec(TFF, (1 V), V)

and a derivation

D. E DerP-A1g(FP(T'FP' (I V)), JP (V))

given by the e-linear component of the P-algebra morphism .Fp(T7r . +e Ta f,),
where 7r :.TTY (j V) ->j. V is the projection. Then Da := µv o Da is the derivation
in DerP-Alg(Can(V),V) corresponding to a.
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Using the fact that p o ac = 0, one verifies immediately that, for each D E
DerP_A1g(Can(V), V), D o ac satisfies (3.75) (with p replacing co) which character-
izes derivations over p. Therefore the correspondence D D o ac is a well-defined
differential on DerP-Alg(Can (V), V).

LEMMA 3.104. Given

ca E CP(V;V) = Homgvec(P'#(n+ 1) (1V)®"+1 1V)

let Da be as above. Then Da o ac corresponds, in the above correspondence, to
Sp(a), that is,

Dbv(a)=Daoac
PROOF OF THE LEMMA. The derivation D. is clearly nonzero only on the

components of Fp (T .PP, (IV)) of the type

P(m) Or_-, ((T P'#(n + 1) (i V)®n+1) ®V®'n-1

where we use the isomorphism T P'#(1)® I V = V and once again represent ®E,,,
as ®Em_, with the distinguished factor on the right of the tensor product moved
to the first position On this component, Da is given by the composition

P(m) ®£m
((TP'#(n

+ 1) ®E,,+, (I V)®n+1) ®V®m-1)

Il®iai®Il µv
P(m) or-, (V ® V®"`-1) _' P(m) ®Em V®" V,

where pv is given by the P-algebra structure on V. The derivation Da o ac is
determined by its restriction to T Y' , (j V) and it is easy to see that the only
component on which it doesn't vanish is T P'# (n + 2) ®E,+2 (f V) 0,+2. Using the
definition in equation (3.76), we write D. o ac as a sum

D. o ac=Da ° asc+(-1)n+1Da o8s

and compute each summand separately. First we have

Pro7(126x(P) 1011)
Da o 8x :T P* (n + 2) ®E +2 (j. V)®n}z

T2 P(2) ®sgn2 ®(P'#(n + 1)®P #(1))®£ + (J V)®"+2

P(2) ® (T P'#(n + 1) ®T

P(2) ®(T P'#(n+ 1) V

Il®tal®Il
P(2) ®EZ V®2 - V,

where Proj(-) is the projection on the only component of

P(2) ® sgn2 ®P'# [2, n + 21®(I V) ®n+2

on which Da doesn't vanish. Comparison with formula (3 72) shows that this term
corresponds to dp o a, where l;a E Coder(.PT, (J V)) is the coderivation generated
by a.

Next we calculate Da o of restricted to T P* (n + 2) (I V)®n+2. The
morphism a.- was defined to be the extension of the map Tdp j as a derivation of
.gyp(T.FP,(IV)); therefore, if we restrict to TP'#(n+2) (IV)®n+2, we have
the equalities D. o ay =T a o dp I = T i;a o dp j., so D. o ay corresponds to i;a o dp.
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We conclude that Da o ac corresponds to d2 o Sa + o dp = bp(a)
which finishes the proof of Lemma 3.104 and also the proof of Theorem 3.103.

REMARK 3.105. We have defined homology of a P-algebra with trivial coef-
ficients and cohomology with coefficients in the P-algebra but neither homology
nor cohomology with general coefficients. The definition of cohomology with coef-
ficients in a module over a P-algebra is fairly straightforward (see [FM97]) but for
homology with coefficients one needs a kind of monoidal structure on the category
of modules (homology should be a derived functor of a `tensor product'). This
subtle point is explained and developed in [Ba198].

3.9. The pre-Lie structure on Coder(F..(X))

Part of the renewed interest in the theory of operads has come from the defor-
mation theory of associative algebras, in particular, the deformation quantization
of Poisson algebras. The (formal) deformation theory of an associative algebra V
studies possible extensions of the associative k-algebra structure on V to an asso-
ciative k[[t]]-algebra structure on V [[t]], where k[[t]] and V [[t]] are the formal power
series in t with coefficients in k and V respectively. The basic requirement is that
there be an isomorphism of k-algebras

V [[t]] ®k[[t]] k = V,

where the k[[t]]-module structure on k is given by the augmentation map e : k[[t]] -
k. A k[[t]]-algebra structure on V [[t]] is determined by a multiplication V ®k V -
V[[t]], that is, a series of the form

a®b - a *t b = ab + ta *1 b + t2 a *2 b +

where ab denotes the original (undeformed) multiplication. If we expand the asso-
ciativity condition

(a *t b) *t c = a *t (b *t c)

in powers of t, we require that the formal power series be equal at each order of t.
Modulo t2 we have

(ab)c + t[(a *1 b)c + (ab) *1 c] = a(bc) + t[a *1 (bc) + a(b *1 c)].

This condition on the map a ® b --> a *1 b is precisely the cocycle condition for
a Hochschild cochain. If a ® b - a *1 b satisfies this condition, it is called an
infinitesimal deformation. To construct the full power series expansion of a *t b, we
need to find *2, *3, etc.

A particularly important application is to the situation known as deformation
quantization in which the algebra V = C°°(M) is the algebra of smooth functions
on a Poisson manifold M. This means V = C°°(M) has a Poisson bracket (f , g}
which is skew, satisfies the Jacobi relation of a Lie algebra and relates to the usual
product by If, gh} = { f, g}h + g{ f, h}; see Section 1.1.17. The bracket { f, g} can
be chosen as an infinitesimal deformation for the usual commutative product.

M. Gerstenhaber in 1963, [Ger63], organized the successive obstructions to the
existence of *2, *3, etc., in terms of the Hochschild cochain complex CH*(V,V). A
fundamental role in this theory is played by the differential graded Lie structure
on CH* (V, V), which was originally discovered by Gerstenhaber in [Ger63]. In
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order to define this dg Lie structure, he first defined the oi-operations (part of the
prehistory of operads)

o; : CHm(V,V) ®CH"(V,V) - CH-"-' (V, V).

He then defined the o-product by

a 0 /3 = j:(-1)(i-1)I0Ia of

where 1/31 = n - 1 if /3 E CH"(V V); see also the discussion in Section 2.6. The
nonassociativity of the o-operations is measured by the (graded) pre-Lie identity

(3.80) (ao,Q)oy-ao(,60 (-1)1011-Yl ((a 07)0/3-ao(ryo/3)).

Gerstenhaber showed that the pre-Lie identity is a sufficient condition for the com-
mutator

[a, /3] := a o 13 - (-1)1-1101)3 o a

to satisfy the Jacobi identity.

REMARK 3.106. In his study of the cyclic bar complex, Getzler [Get93] intro-
duced a generalization of the o-operations. Voronov and Gerstenhaber [GV95] used
these operations, which have come to be called braces, to prove that the Hochschild
cochain complex of an associative algebra has the structure of what they called a
homotopy Gerstenhaber algebra.

DEFINITION 3.107. A graded vector space A together with a k-linear product
satisfying the pre-Lie identity (3.80) is called a pre-Lie algebra.

REMARK 3.108. Chapoton and Livernet [CL0O] have given an explicit com-
binatorial description in terms of rooted trees of the operad associated to pre-Lie
algebras and have shown that it is a Koszul operad.

Recall that, if V is a P'-algebra and X =1 V, then Coder(Y' (X)) is the cochain
complex Cy, (V, V) defining the operadic cohomology of V; see Definition 3.99. In
this section we define a pre-Lie product D{D'} on Coder(F,(X)) for any operad
P. This product which we call the 1-brace agrees with Gerstenhaber's o-product
on CH* (V, V) = CAss (V, V) when P = Ass. We also will show that the (graded)
commutator of 1-braces equals the usual (graded) Lie bracket of coderivations. To
simplify the notation, we use the abbreviations

.P :_ J (X) and .P4 := J (X)Q.

DEFINITION 3.109. Given coderivations Di E Coder"," (.P), i = 1,2, the 1-
brace D1{D2} E CoderP'+P2,"1+"2(g7) is the coderivation cogenerated by the linear
map (irD1) o D2 E Homdgvec(.P, X), that is,

(3.81) ir(D1{D2}) := (irD1) o D2.

The fact that Dl{D2} has the asserted bidegree is shown in the course of the
proof of Proposition 3.111. First a definition.

DEFINITION 3.110. The 2-brace of the coderivations D1, D2i D3 is defined as
the difference of iterated 1-braces:

D1{D2iD3} := (D1{D2}){D3} - D1{D2{D3}}.
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PROPOSITION 3.111. The 1-brace satisfies the pre-Lie identity (3.80), that is,
the 2-brace is (graded) symmetric in D2, D3,

(3 82) D1{D2, D3} = (-1)m2m3D1{D3, D2},

where Di E CoderP"" (.P), i = 2, 3 and mi = pi + ni.

PROOF. Representing the value of the cooperad structure map )'(r) :F
P#(r) ®E, P®r in Sweedler notation

A(r)(y) 13(0) ®y(1) ®... y(r),
(0), ,(r)

for ,3(o) E P#(r) and y(,s) E F, formula (3.68) implies

Di(y) = Em,. fi(o) ® 7r(y(1)) ® ... ®7r(Di(y(s))) ®... ®ir(y(r)),

1<e<r

where Em, is the Koszul sign factor

Em: = +1h(s-1)I) i = 1,2,3,

coming from the transposition of Di and the factors Qo, y(1), ... , y(s_1). Since
D1 E Coderl""1(.7), 7r(D1{D2}(y)) is given by the sum

ir(D,{D2}(y)) = (irD,)(D2(y))

YEm2(-Dl) (0(o) ®7r(y(,)) ®...07r(D2(y(s))) ®... +1))),
(o). ,(ni+l)
1<s<ni+l

and the only nonvanishing terms in this sum come from y(,s) E .-+1 and y(t) E 971
for t s, therefore y E .P"1+"2+1

This shows the additivity of one of the bidegrees in the 1-brace. The additivity
of the internal degree is shown similarly. Let us prove (3.82). We have

(3.83) 7r(Dl{D2}){D3}(y)

_EEm3(7rDl{D2})(0(0)0
(y(,))®...®r(D3(y(s)))®...®r(y("1+"2+1)))

(0) .("i+l)
1<s<n1+1

with ,3(0) E P#(n, + n2 + 1) and y(s) E .x`'13+1 On the other hand

(3.84) 7r(Dl{D2{D3}}(y))

= E Em2+m3 (irDi) (f (o) ®lr(y(1)) (D ... 07r(D2 {D3 }) (y(s)) ®...®17(y(n1+1)) )

(0). .(n1+1)
1< n1+1

with )3(o) E P#(nl + 1) and y(s) E .x'12+13+1
In order to complete the calculation we have to expand D1{D2} in (3.83) by

applying ),(n, + n2 + 1) to the tensor product inside the outer parentheses and
in (3.84) expand D2{D3}(y(s)) by applying .(n2 + 1) to y(s). The term (3.83)
involves the following sequence of coalgebra maps (where we include only the com-
ponents which do not necessarily vanish when we calculate the composition with
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7rD1i 7rD2 and 7rD3):

(3.85) P#{n1+n2+n3}®En,+nz +n3+1 X®n1+n2+n3+1

a { n, +nz
I/1/-} P#{n1+n2} ®E,.1+1-y2 ((®EnP#{n3}®Exn3+, X®n3+1`

®X®n,+n2

A{n,}
P#{nlJ®sn

1 ((P#{n2J 2(P# F ln3J®En3+,X /®n3J+11®X/®n21(gX®n1)

P# {n1 }®Fn,-1((P# {n2 }® En2+1X (In2+1)®(P#{n3 }®

where, for a natural number m, here and in (3.86) {m} denotes (m + 1).
The comultiplication .(n1 + 1) partitions the tensor product of n1 + n2 + 1

factors into n1 + 1 subfactors in all possible ways. The only terms which contribute
to (3.83) have one subfactor containing n2+1 of the original factors. The summand
in the next to the last row of (3.85) comes from the terms in which the factor of
length n2 +1 contains the component P# (n3 + 1) ®x, 3+, X ®n3+1 and the summand
in the last row comes from the terms in which it doesn't.

The term (3.84) involves the following sequence of coalgebra maps (where once
again we only include the components which do not necessarily vanish when we
calculate the composition with 7rD1, rrD2 and 7rD3:

(3 86) P#{nl+n2+n3} ®En,+n2+n3+1 X®n1+n2+n3+1

a{n,}
P#{-1} ®En, ((P#{n2+n3} ®£n2+n3+1 X®n2+n3+1) ®X(&n1)

Il®A{n2}
# )®X®n,){n3}®En3 +,X®n3+1)®X®nz{n1}®En1 ((P#{n2}®En2(P#P

The terms in the next to the last row of (3.85) cancel with the terms in the
last row of (3.86) and we are left with

7r(((Dl{D2}){D3} - Dl{D2{D3}})(y))

E1(7rD1) (/3(o)®7r(y(1))®...®7r(D2(y(t)))®...®7r(D3(y(s)))®.'-®7r(y(n,+1)))

+E2(7rD1) ()3(o)®7r(y(1))®...0ir(D3(y(3)))®...07f(D2(y(1)))®...®-(y(n,+1))/

where

and

I = {(0),...,(n1 + 1), 1 < t < s < nl + 1}

J={(0),...,(n1+1), 1<s<t<nl+1}.
The signs are

El = (_1)(10(0)1+bb(1)1+ +I9(=-1)I)m3+(1)3(0)1+19(1)1+ +19(3-1)I)m2

and

E2 = (-1)(1/3(0)1+19(1)1+ '+Iy(.-1)Dm3+(10(0)1+19(1)1+ +I9(,-1)I+m3)m2 = (_1)m2m3E1.

The additional factor (-1)mzm3 in E2 comes from the fact that, since D2 is applied
after D3, D2 is moved past D3(y(,)) which has degree m3 + ly(,g)1, not Iy(s)1. Obvi-
ously, when we compute D1{D3iD2}, we will get a sum which has the same form
but El and E2 will be reversed. Therefore, reversing the order of D2 and D3 in the
2-brace introduces a factor of (-1)m2'3 which is what we wanted to prove.
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PROPOSITION 3.112. The graded Lie structure on Coder(F) induced by the 1-
brace of Definition 3.109 agrees with the Lie structure given by the commutator of
the 1-braces.

PROOF. If D1 and D2 are coderivations, the Lie bracket [D1, D2] is given by

[D1, D2] D1 o D2 - (-1)ID1UID2ID2 o D1.

Composing with the projection it gives

ir([D1, D2]) = 7r(D1 o D2) - (-1)IDhIID21ir(D2 o D1)

= ir(D1) o D2 - (-1)ID11ID2II(D2) o D1
= ir(D1{D2}) - (-1)ID IID21xr(D2{D1}).

Since a coderivation of F is determined uniquely by its composition with it, this
proves the proposition.

3.10. Application: minimal models and homotopy algebras

In this section we study homotopy properties in the category of differential
graded operads which are intimately related to the nature of strong homotopy al-
gebras. The approach presented here, pioneered in [Mar96c], received recently a
new impetus from the work of Kontsevich [KSOO], Tamarkin and Tsygan [TTOO],
Voronov [Vor99a], and others related to the Formality Conjecture (see also Sec-
tion 1.1.19).

We introduce weak equivalence as the relation among differential graded oper-
ads generated by maps that induce isomorphism of cohomology - to be compared
to weak homotopy equivalence in classical homotopy theory [Spa66]. We show
that there is a special class of differential graded operads, called minimal operads
(Definition 3.117), with the property that they are isomorphic if and only if they
are weakly equivalent (Theorem 3.119). We also show that, under some mild as-
sumptions, each differential graded operad has a minimal model (Theorem 3.125),
unique up to an isomorphism and functorial `up to homotopy' (Theorem 3.126).
This is the special cofibrant resolution mentioned in Section 1.1.18. Finally, we
define strong homotopy algebras as algebras over these minimal operads. As an
application of homotopy functoriality of the minimal model, we show that minimal
models of Hopf operads admit a homotopy Hopf operad structure and interpret this
Hopf structure in terms of corresponding algebras.

All algebraic objects in this section are defined over a fixed field k of charac-
teristic zero. By an operad we mean in this section an operad in the category of
differential graded k-vector spaces with P(1) = k or, equivalently, we work with
pseudo-operads with P(1) = 0. This means in particular that all free operads are
generated by E-modules with no elements of arity one.

Though in all applications mentioned in this section we use minimal models
of operads with trivial differential, that is, operads in gVec (but minimal models
themselves have very crucially nontrivial differentials even for these operads), we
decided to present the theory of minimal models in its full generality for operads
in dgVec, since restricting to trivial differentials would not simplify the exposition.

The material presented here was inspired by rational homotopy theory. The
statements and proofs are analogs of the corresponding classical results of rational
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homotopy theory as presented, for example, in [Leh77] or [FHT95]. The situation
with operads is, however, in a sense easier than in rational homotopy theory, because
here we have one more grading by the `arity,' preserved by the differential. This
may, in some cases, simplify inductive arguments. Most of the material of this
section appeared in [Mar96c].

DEFINITION 3.113. A quasi-isomorphism (abbreviated as quism and some-
times also called an elementary equivalence) is a morphism u : S -> Q of operads
that induces an isomorphism of the homology, H(u) : H(S) _-s H(Q).

A weak equivalence is the equivalence relation generated by the elementary

equivalences. Weakly equivalent operads are said to have the same weak homotopy
type.

It is immediate from the definition that operads S and Q are weakly equivalent
if and only if they are connected by a chain

(3.87) S «- Pi -4 P2 <-- ... _, Ps-1 F- P, ---> Q
of elementary equivalences. The concept of minimal operads introduced later in
this section in fact implies that S and Q are weakly equivalent if and only if there
exist (3.87) with s = 1, but we need some auxiliary notions first.

DEFINITION 3.114. Let P be an operad with P(1) = k. Define the decompos-
ables DP = {DP(n)},>1 of the operad P to be the sub-E-module of P consisting
of elements

?'p(p,PI,...,Pk), p E P(k), pi E P(ni), 1 < i < k,

such that at least two of k, n1.... , nk are greater than or equal to 2.

It is immediate to see that DP is an ideal in P. A less formal way to define
the decomposables, mimicking the definition of decomposables of an augmented
algebra, is to recall the ideal P+ defined by

P+(n) P(n), for n > 2, and
0, for n = 0

and then simply to say that DP := (P+)2. One must however interpret this defi-
nition with care, since the -y-operations are not quadratic and (P+)2 has, formally
speaking, no meaning.

The above analogy can be made even more compelling if we introduce aug-
mented operads as operads P equipped with a homomorphism e : P --> 1 (the
augmentation) to the trivial operad 1 = {1(n)},>1 defined by

i(n) k, forn=1, and
0, forn > 1.

Operads with P(1) = k are clearly augmented, with an augmentation defined in
an obvious manner. Decomposables of such an operad are then indeed the `second
power' of the augmentation ideal P+ = Ker(e).

To give an example, recall (Section 1.9) that the free operad r(E) decomposes
as a direct sum indexed by isomorphism classes of trees. The decomposables Dr(E)
then correspond to summands over isomorphism classes of trees with at least two
(internal) vertices. Let us make another useful definition related to decomposables.
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DEFINITION 3.115. Let P be an operad with P(1) = k. The indecomposables
of the operad P are defined to be the E-module QP = with QP(n)
P+(n)/DP(n).

EXAMPLE 3.116. Let us consider the free operad r(E) on a E-module E. Then
E is a sub-E-module of 1'(E)+ and the composition

(3.88) E - F(E) " Qr(E)
is an isomorphism. We will use (3.88) to identify QF(E) with the E-collection of
generators E.

Here is the central definition of this section.

DEFINITION 3.117. A minimal operad is a differential graded operad 971 of
the form 9R = (r(M), 8), where r(M) is the free operad (1.58) on a E-module
M = {M(n)},,,>1 with M(1) = 0, and the differential 8 is minimal in the sense that
the image 8(M) of M consists of decomposable elements of the free operad r(M):
8(M) c DF(M).

EXAMPLE 3.118. Let us consider the dual dg operad D(S) = (D(S), 8D) of
a differential operad S = (S, 8s) recalled in Definition 3.18. The differential OD
consists of two pieces, 8D = 9 + as, where the `internal' part JS is induced by the
dual of 8s.

Recall that D(S) = r(s-1TS#) and that the image of the differential S is in
the part of r(s-'l S#) corresponding to trees with at least one internal edge and
these are decomposable relative to the operad composition in r(s-1 T S#). It is
also clear that Ss (z-'l S#) C s-1 T S# C r(s-1 T s#). We conclude that the dual
operad D(S) is minimal if and only if as = 0, i.e. if S has trivial differential.

The first important statement of this section says:

THEOREM 3.119. Minimal operads are isomorphic if and only if they are weakly
equivalent.

The theorem will follow from a sequence of statements. Some proofs will contain
inductive arguments, for which we need the following notation.

Given a E-module E = {E(n)l,>1, for k > 1 we denote E(<k) the E-module
defined by

E(<k)(n) E(n), for n < k, and
0, for n > k.

Similarly, the E-module E(<k) _ {E(<k)(n)},>1 is defined by

E(<k)(n) := E(n), for n < k, and
f 0, for n > k.

Let 9R = (r(M), 8) be a minimal operad. Let us denote by

(3.89) 9711"1 := (r(M(<n)), 8n)

the differential suboperad of 971 generated by M(<n), with the inclusion i : 9Jt(")
971. We are going to write an exact sequence relating the homologies H(9R) and
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H(9)1(n)). To this end, observe that the minimality of 9R implies that the differential
induced by a on

M(n+l) = 9R(n+l)/9R(n)(n+l)

is trivial. We thus have the short exact sequence

0 (9R(n) (n+l), an) - -> (9)1(n+l), a) (M(n+l), a = 0) --3 0

which induces the long exact sequence

H(i)
(3.90) . . H(9R(n))(n+l) H(9R)(n+l) -' M(n+l)

H(i)

H(9R("))(n+1) ' H(9R)(n+1) ...

with the connecting morphism 1, for any n > 1. We are already able to prove the
following important proposition.

PROPOSITION 3.120. A map : 9R -> 91 between minimal operads is an iso-
morphism if and only if it is a quasi-isomorphism.

PROOF. An isomorphism is plainly a quasi-isomorphism. Let us prove the op-
posite implication, that is, that a quasi-isomorphism 0: 9R -> 91 is an isomorphism.
We prove, by induction, that the restriction 0, : 9R(n) - 91(n), where 9R(n) and
91(n) are defined as in (3.89), is an isomorphism for each n. This will imply, since
0 = lim On, that 0 is an isomorphism, too.

Because H(9R)(2) = M(2) and H(91)(2) = N(2), the map ¢2 : 9)1(2) -, 91(2) is
plainly an isomorphism. Suppose we have already proved that Yin is an isomorphism.
Let us consider the following commutative diagram:

H(0)(n+1) I (n+i) I H(0,.)(n+1) I H(0)(n+1)

H(91(n))(n+l) -H(91)(n+l) N(n+1)-H(9t(n))(n+l)w H(91)(n+l)
with the rows the exact sequences (3.90) and the induced map of generators. The
map H(0) (n+1) is an isomorphism because 0 is a quasi-isomorphism, H(On)(n + 1)
is an isomorphism by the induction assumption, thus we conclude from the Five
Lemma [Spa66, page 185] that (n+l) is an isomorphism as well.

We proved that 0 induces an isomorphism of the generators of 9R(n+1) and
91(n+1) so On+1 is, by Lemma 3.137 of the Appendix, an isomorphism, too. The
induction goes on.

We are now in fact very close to a proof of Theorem 3.119 but, in order to put
the last stone in place, we need to investigate lifting properties of minimal operads.
To this end, we need an appropriate notion of homotopy.

For each operad Q and for each differential graded commutative k-algebra R,
the E-module R®Q = {(R®Q)(n)}n>1 defined by (R(&Q)(n) := R®kQ(n), n > 1,
is also an operad, with the composition maps defined by

?'R®4(a®q', a1®q1,... , at®qt) := aal ... at®7Q(q, ql, , qt),
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for a, a1..... al E R and q, q1, ... , ql E Q. The procedure we have just described
may also be called the extension of scalars. We consider, in particular, the differen-
tial graded commutative algebra R:= k[t, at] = k[t]®kE(at), the tensor product of
the polynomial algebra k[t] on the generator t of degree zero with the exterior alge-
bra E(at) on the generator at of degree -1. There are maps p1 : k[t, at]®Q -f Q,
i = 0, 1, defined as follows.

Each x E (k[t,at]®Q)(n) is a sum of elements of the form p(t)g1 +r(t)atg2i
where p(t), r(t) E k[t], q1i q2 E Q(n). We then define

pi(p(t)g1 + r(t)atg2) := p(i)gs, i = 0,1

(the coefficient p(i) is a scalar, p(i) E k). It is easy to see that the maps pi are

homomorphisms of operads. We define yet another map, f : k[t, at]®Q --* Q, by

f (p(t)g1 + r(t)at q2) (f r(t)dt/ I q2-
1

TheThe map f is a degree +1 map of E-modules. The following definition is the first
step towards a proper notion of homotopy.

DEFINITION 3.121. Two homomorphisms fo, f1 : S - Q of differential graded
operads are elementarily homotopic if there exists a dg homomorphism F : S -
k[t, at]®Q such that f = pi o F, i = 0, 1. The dg homomorphism F is called an
elementary homotopy between fo and f1.

Let us show that elementary homotopy is a symmetric and reflexive relation.
Each operadic homomorphism f : S -> Q is clearly elementarily homotopic to itself,
the elementary homotopy being the map f : S -* k[t, at]®Q given by

(3.91) S(n) y x -- 4 1®f(n)(x) E k[t,at]®Q(n).

Let x : k[t, at] -# k[t, at] be an endomorphism given by

x(t) :_ (1 - t) and x(at) := -at.

If F : S -> k[t,at]®Q is an elementary homotopy between fo and fl, then
(x(D ll Q) (Fis an elementary homotopy between f1 and fo, as can be verified easily.

But it is not true that elementary homotopy is transitive. In fact, one can
prove that it is transitive if the source object is cofibrant in an appropriate sense,
but we will not need this result. In general, one must introduce homotopy as the
equivalence relation generated by elementary homotopy.

DEFINITION 3.122. Operadic morphisms f,g : S -> Q are homotopic if there
exists a sequence {t;i : S -f Q}i.0 of operadic morphisms such that f = o, es = g
and i is elementarily homotopic to ei+1 for each 0 < i < s - 1. The homotopy
between f and g is the corresponding chain of elementary homotopies.

We claim that, if fo, f1 are homotopic in the sense of Definition 3.122, then the
chain maps fo(n) and f1(n) are homotopic as chain maps, for each n > 1. It is
clearly enough to verify this statement for the case when fo and f1 are elementarily
homotopic, with an elementary homotopy F.

Let us define a degree +1 map G : S -> Q by G := f oF. Let us show that
G(n) : S(n) --* Q(n) is a chain homotopy between fo(n) and f1(n).
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The nth component F(n) : S(n) -f k[t,at]®Q(n) of the homotopy F acts on
x C S(n) as

F(n) (x) = Y pi (t) A'(x) + E rj (t) at B7 (x),

for some linear E,-equivariant maps A', Bi : S(n) --* Q(n) and polynomials pi, qj E
k[t]. It is easy to see that F(n) commutes with the differentials if and only if

E pi(t)(A'(asx) - a4A'(x)) = O and

(3.92) Yrj(t)(B3(0s(x))+aQ(Bj(x))) _

Then G(n) (x) _ (fo E rj (t) dt) B3 (x) and

d dtt)A'(x).

(aQG(n)+G(n)as)(x)=f j:r,(t)(B'(as(x))+aQ(B'(x)))dt

= f j pj(t)A'(x)dt = J(ps(1) - pt(0))A'(x) (by (3.92))

_ f1(n)(x) - fo(n)(x).
In particular, if fo, fl are homotopic in the sense of Definition 3.122, then

H(fo) = H(f1). The converse is, of course, not true.
Let us formulate the following important lifting property of minimal operads.

It suggests that minimal operads are cofibrations of a certain closed monoidal struc-
ture on the category of operads. This is indeed true [Hin97], but we will not follow
that direction in this book.

THEOREM 3.123. For each quism 0 : S -> Q and for each morphism f : 971 -*
Q of a minimal operad 971 into Q, there exists a map h : 9971 -> S such that 0 o h
and f are homotopic:

S

0

971Q
where the symbol - means that the diagram commutes up to homotopy only. The
lift h is unique up to homotopy.

The proof is given in the appendix to this section.

DEFINITION 3.124. Let S be a differential graded operad. A minimal model
of S is a minimal operad 931 together with a quasi-isomorphism a : 9971 --* S.

The assumption H(S) (1) = kin the following theorem plays the role of a simple
connectivity assumption in rational homotopy theory. As in rational homotopy
theory, it can be replaced by a kind of nilpotency, but we will not need this generality
in the book.

THEOREM 3.125. Each differential graded operad S = (S, as) such that

H(S)(1) = k
admits a minimal model a : 9971 S.
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PROOF. The proof is taken almost literally from [Mar96c] where we already
translated a proof from [Leh77] to operads. We will construct the minimal model
fit = (r(M), a) and the quasi-isomorphism a : (F(M), a) (S, as) inductively.

Let M(2) := H(S)(2) and let s(2) : M(2) - Z(S)(2) C S(2) be a E2-
equivariant section (see the appendix) of the projection cl : Z(S)(2) - H(S)(2)
(here and later, cl will denote the projection of a cycle onto its homology class).
Define a differential a2 on r(M(2)) and a map a2 : (P(M(2), a2)) -> (S, (9s) by

a2 := 0 and a2IM(2) := s(2).

Let us denote 931(2) := (r(M(2)),(92). It is clear that H(a2)(n) : H(fit(2))(n) -+
H(S)(n) is bijective for n = 1, 2.

Suppose we have already constructed a minimal operad
9R(n-1) _ (r(M(<n)),a"-1)

with a morphism an_1 : fit("-1) - S such that the map

H(an-1)(k) : H(fit("-1))(k) H(S)(k)

is an isomorphism for any k < n - 1. We show there is a E,,,-space M(n), an exten-
sion a, of the differential a"_1 and an extension a, : fit(n) := (r(M(<n)), (9n) -*
(S, as) of the map an-1 such that

H(an)(k) : H(9R("))(k) -> H(S)(k)

is an isomorphism for any k < n. Let

A(n) := H(S)(n)/(Im(H(an-1))(n)),
B(n) := Ker(H(an_1))(n) and B(n) :=T B(n).

Let s(n) : A(n) Z(S)(n) be an equivariant section of the composition

Z(S)(n) --- H(S)(n) P-3
A(n).

Also let r'(n) : H(fit(n-1))(n) -> Z(fit("-1))(n) be an equivariant section of the
projection

Cl: Z(fit(n-1))(n) -, H(fi1(n-1))(n)

and let r(n) : B(n) -, Z(fit(n-1))(n) be the composition

r (")
B(n) -1 , B(n) . H(M(n-1))(n) Z(fit(n-1)(n))

Since, by definition, an_1(r(n)(b)) is, for b c B(n), homologous to zero in H(S),
there exists a linear En-equivariant degree zero map /i(n) : B(n) -* S(n) such that

(3.93) an_1(r(n)(b)) = as ()3 (n) (b)), b e B(n).

Let us define M(n) := A(n)®B(n) and extend the differential an_1 and the map
an_1 by

anIA(n) 0, OnlB(n) := r(n), an IA(,) := s(n) and anlB(") :=,3(n)
Then an is minimal, since

Z(P(M(<n)),a"_1)(n) C P(M(<n))(n) C Dr(M(<n))(n)

and since, by definition,

Im(r(n)) c z(r(M(<n)), a"-1)(n) = z(fit(n 1))(n)
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It is also immediate to see that 8, = 0. Let us show that a : 9Jtlnl S is a chain
map, that is,

(3.94) an(8n(a)) = 9s(an(a)), for a e A(n)

and

(3.95) an(8n(b)) = as(an(b)), for b c B(n).

Since 8,,,(a) = 0, equation (3.94) reduces to 8s(an(a)) = 8s(s(n)(a)) = 0 which is
true, because Im(s(n)) c Z(S)(n). Equation (3.95) is a consequence of

an(8n(b)) = an(r(n)(b)) = an-I(r(n)(b)) = es(Q(n)(b)) = 8s(an(b))

which follows from (3.93).
The map H(an)(n) : H(91I(n))(n) -* H(S)(n) is, by construction, an epimor-

phism. Let us prove that it is a monomorphism.
Let z E Z(9JI(n))(n) and write it in the form z = a + b + w, with a c A(n),

b E B(n) and w E DF(M(<n)). We show 8n(z) = 0 implies b = 0. By definition
8n(a) = 0, therefore

-8n(b) = -r(n)(b) = 8n(w)
Since w is decomposable, we know in fact that 8n(w) = 8n_1(w), therefore 8n(w)
represents a trivial homological class in H(9A(n-I))(n), thus b = 0.

If moreover [z] E Ker(H(an))(n), then a = 0, so z E Z(91l(n-'))(n) and so, in
fact, [z] E Ker(H(an_1))(n). But then [z] E B(n), so z = 8n(T [z]) by the construc-
tion of 8n which implies that z represents a trivial homology class in H(9Jt( )).

We verified that an : 9Jlln1 --j S has the desired properties and the induc-
tion may go on, giving rise to the minimal model 9)1 := lim 9R(n) and a quism
a := lim an.

The following theorem is an easy corollary to Theorem 3.123.

THEOREM 3.126. Let S and Q be differential graded operads with as : 9Jts -*
S and aQ : 9JIQ --> Q their minimal models.

Given a morphism f : S ---* Q, there exists a map f : 9JIs -> 9JCQ such that
f o as is homotopic to aQ o f :

f9JIs - 9JIQ

as 1 f i aQ

S Q.

The minimal model is unique up to isomorphism.

PROOF. The first part of the theorem immediately follows from Theorem 3.123.
To prove the second part, assume we have two minimal models of the same operad
S and apply the first part of the theorem to construct a lift 11 of the identity
map Is : S - S. Since clearly 1s is a homology isomorphism, it is, by Proposi-
tion 3.120, an isomorphism of the two minimal models.
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THEOREM 3 127. Operads S and Q have the same weak homotopy type if and
only if they have isomorphic minimal models.

PROOF. It is clear that two operads whose minimal models are isomorphic have
the same weak homotopy type.

Let us prove the converse, that is, suppose we have a chain (3.87) of elementary
equivalences that connect P and Q and prove that their minimal models 9JJZS and
9RQ are isomorphic. To this end, consider the diagram

9Jls -9R1- 9A2 ... sms_1 s 2
S - P1 PZ r ... .Ps-1 Ps Q

in which the bottom row is the chain (3.87), vertical maps are the minimal models
and the top row consists of homotopy lifts of the maps in the bottom row which
exist, by Theorem 3.126. Since all maps in the top row are quisms, they are in fact
isomorphisms and the theorem is proved.

Theorem 3.119 easily follows from Theorem 3.126 because a minimal operad is
its own minimal model. The above results can be summarized by saying that there
is exactly one (up to an isomorphism) minimal operad inside each weak homotopy
type of operads. Let us introduce our concept of strong homotopy algebras; see
also [Mar00] for a gentle pedagogical introduction to these objects

DEFINITION 3.128. Let S be a differential graded operad. A strongly homotopy
S-algebra, or an sh S-algebra for short, is an algebra over the minimal models
of S.

REMARK 3.129. Observe that we speak about strong homotopy algebras when
no particular algebraic structure is specified, while we have strongly homotopy S-
algebras, strongly homotopy Lie algebras, etc. This terminology is dictated by
historical reasons.

One often denotes strongly homotopy S-algebras as S.-algebras, but there is
one important exception, namely the operad B_ for `Baues' algebras, introduced
in [GJ94], which is not minimal, that is, algebras over this operad are not strong
homotopy algebras in the sense of Definition 3.128 (and, moreover, there is no
corresponding B). Also the operad 9-tc discussed in Section 1.1.19 is not a strong
homotopy algebra in the above sense.

EXAMPLE 3.130. Each graded nondifferential operad P can be considered as a
differential operad with trivial differential. If such an operad is quadratic Koszul in
the sense of Definition 3.40 then, by definition, the canonical map Oy : D(P') -+ P
from the dual operad of the quadratic dual P' of P to P is a quasi-isomorphism.
As we observed in Example 3.118, the operad D(P') is minimal, thus the canonical
map D(P') -+ P is the minimal model of P. By the uniqueness of Theorem 3.126,
each minimal model of P is isomorphic to this one.

REMARK 3.131. Ginzburg and Kapranov defined [GK94] strongly homotopy
P-algebras for nondifferential quadratic Koszul operads precisely as algebras over
D(P'). We see that in this particular case their definition coincides with Defini-
tion 3.128. Most classical strong homotopy algebras, such as A,, C_- and
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G_-algebras discussed in Chapter 1, are of this type. In fact, all `natural' strong
homotopy algebras must be of this type, because all `reasonable' strict algebraic
structures are algebras over quadratic Koszul operads. We think that this reflects
a deeper gnostic principle that strict algebras over operads which are not Koszul
would manifest weird phenomena and thus they would be excluded from the list.

An `unnatural' example which was not of Ginzburg-Kapranov type was, how-
ever, constructed in [Mar96c]. In the realm of colored operads, `strong homo-
topy algebras' typically represent diagrams of strong homotopy algebras and their
strong homotopy (in an appropriate sense) morphisms and examples which are not
of Ginzburg-Kapranov type are abundant; see [Mar00, MarOla].

In the following examples we give axioms of the three classical strong homotopy
algebras with all the gory details.

EXAMPLE 3.132. Strong homotopy versions of associative algebras are A,
algebras (also called strongly homotopy associative algebras or A(oo)-algebras), in-
troduced by J. Stasheff [Sta63b]. An A--algebra A = (V, d, m2, M3.... ) con-
sists of a differential graded vector space V = (V, d) and multilinear operations
m, : V®' -> V of degree is - 2 that satisfy the following infinite set of axioms:

0 = [m2, d] (a, b),

m2 (m2 (a, b) c) - m2 (a, m2 (b, c)) = [m3, d] (a, b, c),

m3(m2(a, b), c, d) - m3(a, M2 (b, c), d) + m3(a, b, m2(c, d))

-m2 (M3 (a, b, c), d) - (-1) lalm2 (a, m3(b, c, d)) = [m4, d] (a, b, c, d),

n-j
F F(-1)Pmi(a1,...,as,mj(as+i,...,as+j),as+j+L,..., an)=[mn,d](a1,..., an),

s=0
aa>2

where [mn,d[ denotes the induced differential in the complex Homk(V®n, V) of
homomorphisms,

[mn, d](ai,..., an) :=E(-1)Iall+

+Ias_11Mn(a,, -, das,-, an) - (-1)ndmn(al,..., an),
1<s<n

f o r a1, ... , an E V. The sign is given by

p:= +s(j+1)+j (Ia1I+...+Ias-1I).

An explicit verification that A.-algebras are indeed algebras over the minimal
model of the operad Ass is given in [Mar96c, Example 4.8]; see also [Mar00,
pages 157-159].

EXAMPLE 3.133. Homotopy versions of Lie algebras are L,-algebras (some-
times also called strongly homotopy Lie algebras or L(oo)-algebras). They were
introduced and systematically studied in [LS93], though they had existed in the
literature, in various disguises, even earlier; see also [LM95].

Let us introduce some terminology. For graded indeterminates v i ,..., vn and
a permutation o, E En define the Koszul sign e(o) = E {-1, +1} by

(3.96) al A ... A an = E(or; ai, ... , an) . a,(i) A ... A avlnl
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which has to be satisfied in the free graded commutative algebra A(a1i... , an). We
will also need the skew-symmetric Koszul sign defined as

(3.97) X(a) = X(a;a,,...,a,):= sgn(a)e(a;a1i...,a,)

An L.-algebra is a differential graded vector space L = (L, d), together with a
set {l1}n>2 of graded antisymmetric operations 1n : LO' -> L of degree n - 2. The
graded antisymmetry means that, f o r a E En and a1, ... , an E L,

ln(al, ... , an) = X(a)ln(aa(1),... , ao(n)).

The bilinear product 12 must be d-invariant and, moreover, the following axiom is
satisfied for any n > 2 and a1, ... , an E L:

->2
= (-1)n[ln, d](al,..., an),

where the summation is taken over all (i, n - i)-unshuffies a E En,

a(1) < ... < a(i), a(i + 1) < ... < or (n),

with n - 1 > i > 1. We write the first two axioms explicitly (though, to save
paper, without signs). The first axiom says that the `bracket' 12 satisfies the Jacobi
identity up to a homotopy:

12(12(a,b),c)+l2(12(b,c),a)+l2(l2(c,a),b) = [l3id](a,b,c).

The second axiom reads

12(13(a,b,c),d)+12(13(a,c,d),b)+12(13(a,b,d),c)+l2(l3(5,c,d),a)+l3(l2(a,b),c,d)

+13 (12(a,c),b,d)+ 13(12(a,d),b,c)+13 (12 (b,c),a,d)+13 (12 (c,d),a,b)

+l3(l2(b,d),a,c) = [d, l4](a, b, c, d).

The last equality is related to a Lie-analog L4 of the associahedron K4, intro-
duced in [MS01] and called the Lze-hedron. It is not a polyhedron, but just a
graph, and the 10 terms in the left-hand side of the above equation correspond to
the vertices (not edges!) of L4. The Lie-hedron is the Peterson graph in Figure 9
of Section I.1.10.

It can again be proved easily that L,-algebras are algebras over the minimal
model of the operad Lie; see [Mar00, pages 159-160].

EXAMPLE 3.134. Strong homotopy versions of commutative associative al-
gebras are Cam-algebras (also called commutative A.-algebras or balanced A.-
algebras), introduced by T. Kadeishvili in [Kad8O]. Let us recall the following
terminology

Let a , ,.. . , an E V®n and 0 < i < n. The shuffle product of a1® ®ai E V®i
and ai+1 ® ... ® an E V®'-1 is defined as

(3.98) Sh(a1 ®... ® ailai+1 ®... ® an) e(a) a,(1) ®... ® a,(n)

where the summation is taken over all (i, n-i)-shuffies, that is, permutations a E En
with

a-1(1) < ... < a-1(i), a-1(i + 1) < ... < a-1(n)
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and e(a) is the Koszul sign (3.96). There is a skew-symmetric version of the shuffle
product defined as

(3.99) hS(al ® ... ® ailai+1 ® ... ®a,) X(a) av-1(1) ®... ® ao-1(n)

where the range of the summation is the same as in (3.98) and X(a) is introduced
in (3.97).

A CC-algebra is then an A,,-algebra as in Example 3.132 with the additional
property that the operations mk, k > 2, are trivial on the skew-symmetric shuffle
products, that is

m.k(hS(al®...0ajjai+1®...®ak))=0
for 1 < i < k. For instance, the only nontrivial skew-symmetric shuffle product of
two elements is hS(ulv) = u®v - (-1)"v0u, therefore

m2(hS(ulv)) = m2(u,v) - (-1)"M2(v,u) = 0,
which means that m2 is graded commutative. Similarly, there are two shuffle prod-
ucts of three elements and we see that

m3(hS(uly0w)) =m3(u, v, w) - (-1)"M3(v, u, w) + (-1)u(v+w)m3(v,
w, u) = 0,

m3(hS(u®vjw)) =m3(u, v, w) - (-1)"wm3(u., w, v) + (-1)w(u+")m3(w, u, v) = 0.

To prove that CC-algebras are indeed algebras over the minimal model of the
corresponding operad is a bit more difficult than in the previous two cases, since
one needs a result of R. Ree [Ree58] that relates Lie elements to shuffles in the
tensor product.

Let us give an application of the technique developed in this section. Given a
differential graded operad S, we introduce the tensor product

S®S = {(S®S)(n)}n2!1

to be the E-module with (SOS) (n) := S(n)®kS(n) and the obvious operadic struc-
ture. The following definition was taken from [GJ94].

DEFINITION 3.135. The operad P is a Hopf operad if there exists an operadic
map A : S -* S®S (the diagonal) which is associative:

(A®n)A = (11®A)A : S->S®S®S.

Algebras over a Hopf operad form a strict monoidal category, with the monoidal
structure induced by the diagonal A as follows.

Let A = (A, aA) and B = (B, aB) be two S-algebras, with structure maps
aA : S £ndA and aB : S -> EndB. Then we define to be the vector space
A®B with the structure map aA®B : S --> £ndA®B given as the composition

o aA®aa
S --> S®S £ndA®£ndB --* End .4®B,

where j : £ndA®£ndB £ndA®B is the homomorphism with components

j(n) : (£ndA®£ndB)(n) -* £ndA®B(n)

defined as the composition

(£ndA®£ndB)(n) = £ndA(n)®£ndB(n) = Hom(A®", A)®Hom(B®", B)

Hom(A(9"®B®", A®B) = Hom((A®B)®" A®B) _ £ndA®B.
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As an immediate application of Theorem 3.123 we get the following proposition.

PROPOSITION 3.136. The minimal model as : 9R -. S of a Hopf operad S
admits a homotopy Hopf operad structure, that is, a diagonal A : 0131 -+ 9R®9R such
that the maps (A®1l)A and (i ®A)A are homotopic as morphisms of operads in
the sense of Definition 3.122.

PROOF. As an immediate consequence of the Kiinneth theorem, we see that
the map as®as : 9131 9)1 --+ S®S is a quasi-isomorphism. The diagonal A :9R -.
MON is then the homotopy lift of A : S --> S®S which exists, by Theorem 3.123.

The homotopy coassociativity of A follows immediately from the uniqueness
up to homotopy of the homotopy lift, since both (A®11)A and (1l®A)A are lifts of
the same map (A®11)A = (11®A)A : S - S®S®S.

The prominent example of a Hopf operad is the operad Ass for associative
algebras, with the diagonal S given by

Ass(n) E) x --> x®x c Ass(n)®Ass(n).

Proposition 3.136 then predicts the existence of a homotopy Hopf structure on the
minimal model of Ass, that is, on the operad A- for A,-algebras. An explicit
example of such a diagonal was constructed by Saneblidze and Umble in [SU00].

3.10.1. Appendix. The following lemma is necessary for the proof of Prop-
osition 3.120.

LEMMA 3.137. Let 0: r(m) --> P(N) be a homomorphism of free operads and
let ¢ : M --> N be the induced map of the generators (under identification (3.88)).
Suppose that M(1) = N(1) = 0. Then 0 is an isomorphism of operads if and only
if is an isomorphism of E-modules.

PROOF. Let us introduce some notation. Given n > 3, let

O<n : F(M(<n)) -. F(N(<n))

and

on : I'(M(<n)) P(N(<n))

be the restrictions. Since M(1) = N(1) = 0, there are canonical decompositions

(3.100) I'(M(<n)) = M(n) ® I'(M(<n))

and

(3.101) I'(N(<n)) = N(n) ® I'(N(<n)).

These decompositions imply that 01M(n) is the sum

(3.102) Y'IM(n) (v) = (v) + 0+(v), for v E M(n),

where is the induced map of generators and 0+(v) E F(N(<n))(n).

Let us prove first that : M .=. N implies that o : 1'(M) -+ I'(N) is also an
isomorphism. Since clearly 02 = F(0(2)), our assumption immediately implies that
02 is an isomorphism.
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Suppose we have already proved that 0n_1 = Y'<n is an isomorphism for some
n > 3 and let us prove 0n is an isomorphism, too. To this end, it is clearly enough
to verify that

(3.103) the restriction 4'IM(n) : M(n) --+ r(N)(n) is a monomorphism

and that

(3.104) N(n) C Im(b)(n).

Condition (3.103) immediately follows from (3.102). To prove (3.104), we in-
voke the induction assumption to see that, for any v E M(n), there exists some
w E I'(M(<n)) such that 0+(v) = O(w) Then each u E N(n) is the image of v -w
with v :=

_1
(u).

Let us prove the opposite implication: 0 is an isomorphism implies ¢ is an
isomorphism. Assuming that 0 is an isomorphism and (j) is an isomorphism for
j < n, we will prove that fi(n) is an isomorphism. Using decompositions (3.100)
and (3.101) we express

0(n) = Pro3N(n) O 0I M(n).

As we already know from the first part of the proof, the induction assumption
implies that q<n : P(M(<n)) --+ r(N(<n)) is an isomorphism. To prove that Vi(n)
is injective, note that again, for any v E M(n), there exists some w E r(M(<n))
such that 0+(v) = ql<n(w) = q(w). Assume v 0 and ¢(v) = 0, then q(v -w) = 0
and, since 0 is an isomorphism, v = w, contradicting the fact that v is indecom-
posable. Thus is a monomorphism. On the other hand, for any indecomposable
0 u E N(n), there exists some v E P(M(< n)) such that 0(v) = u. Then

0(Pro7M(n)(v)) = (v - Projr(M(<n))(v)) = ProjN(n)O(v - Projr(M(<n))(v))

= Pro7N(n)0(v) - ProjN(n)0(Projr(M(<n))(v))
= ProjN(n)c5(v)) = u,

so is onto.

EQUIVARIANT SECTION. Given two E-modules F and G and an epimorphism
it : F --+ G (i.e. a morphism of E-modules such that ir(n) : F(n) -+ G(n) is an
epimorphism for each n > 1), there always exists a map of E-modules s : G -+ F
such that it o s ='1G. Indeed, we must show that there exists, for each n > 1,
a En-equivariant map s(n) : G(n) --+ F(n) such that ir(n) o s(n) = 11G(n). To
construct this map, choose an arbitrary section .1(n) : G(n) -+ F(n) of T(n) and
put, for g E G(n),

1

s(n)(g) :_ \ [s(n)(gcr
oEE., n.

Observe that here the assumption char(k) = 0 is crucial. We will call such s an
equivariant section of it.

PROOF OF THEOREM 3.123. We use the fact that minimal operads are limits
of special types of inclusions which we now introduce. Suppose we are given a
differential graded operad t3 = (B,as), a E-module M and a degree -1 map T :
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M -> B of E-modules (a `generator' for the differential) such that Im(r) C Z(B).
In this situation, we may consider the free product

t3 * P(M) := P(t3 ® M)/,7,

where the operadic ideal ,7 is generated by relations given by the composition in
B. More precisely, j is generated by expressions

'yr(b;bl,...,b.) =-yjs(b;bi,...,b,.), for b,bl,...,bn E B,

where -yr denotes the structure operation in r (BE) M) and yj the structure opera-
tion in B. Let 8,. be the degree -1 derivation of r(t3®M) defined by 8,.(b) := 813 (b)
for b E B and 8T(v) := r(v) for v E M. Since Im(r) C Z(B) by assumption, 8? = 0
and 8,. induces a degree -1 differential on t3 * P(M) which we denote again by 8T.
Let us finally denote

B*TF(M) := (B*F(M),8r).

DEFINITION 3.138. A principal extension is an inclusion of differential graded
operads of the form c : t3 y B *,. F(M).

Observe that 9(n+I) _ 97tl"1 *,.I'(M(n+l)) (the notation of (3.89)) so each
minimal operad is a direct limit of principal extensions. Theorem 3.123 will thus
follow from the following lemma.

LEMMA 3.139. For each quasi-isomorphism : S -* Q, for each principal
extension t Ci y B *,. F(M) and for each couple of maps f : B -> S and g :
B *,. P(M) -+ Q such that 0 o f is homotopic to g o t, there exists an extension f
to h : B *,. P(M) -> S such that ¢ o h is homotopic to g:

B f

I
13*,.F(M)

9

PROOF. Let us show first that we may in fact assume that the diagram in
Lemma 3.139 commutes strictly, that is

(3.105) got=0of.
To be more precise, we show that there exists some g' : B *,. F(M) homotopic
to g, for which g' o t = 0 o f. This will follow from the following claim.

CLAIM. Suppose we are given a principal extension t : B '-+ B *,. P(M) and
maps a : B --> Q and Q : B *,. F(M) - Q such that a is elementarily homotopic to
3o t. Then there exists a map ,Q', elementarily homotopic to ,Q, for which a = ,Q' o t.

To prove the Claim, let F : B -> k[t, 8t]®Q be an elementary homotopy be-
tween Q o t and a, that is, p0 o F =,3o t, pi o F = a. We extend F to an elementary
homotopy H : B *,. F(M) -. k[t, 8t]®Q such that p0oH = Q. The map,3' := pI off
then automatically satisfies Q' o t = a, because ,3' o t = pI o Hot = pI o F = a. The
situation is depicted in the following diagram:
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t

B F k[t, at]®Q
H .. ..

P

1

B *r F(M)

Let K := Ker(po). Since po is a surjective quism, the E-module K is acyclic.
Choose an equivariant section o- : Z(K) - K of the epimorphism a : K --* Z(K).
It is immediate to see, for each v E M, that Far(v) - 1®()3 o t o r(v)) is a cycle in
K. So we can define the extension H on generators from M by

H(1 * v) := 1®(,8(1 * v)) + o o r(v)))

Now p0oH =,3 is verified easily, because the `correction' a(Far(v)-1®(3otoT(v)))
belongs to the kernel K of po, by the definition of a. It is equally easy to verify
that H commutes with the differentials. The Claim is proved.

Let us turn our attention back to the diagram of Lemma 3.139. The homo-
topy commutativity of the lower right triangle means that we are given a sequence
1, ... , Ss_1 of maps such that g o t is elementarily homotopic to S1, t is elemen-
tarily homotopic to ez+1 for 1 < i < s - 1 and S,_1 is elementarily homotopic to
0 o f. Use the Claim (with a = 1 and a = g) to replace g by a homotopic map
g1 such that g1 o t = t`1. Now g1 o t is elementarily homotopic to e2. We may use
the Claim again to replace g1 by some 92i homotopic to 91, such that 92 o t = e2.
Repeating this process s - 1 times we end up with a g' = gs_1i homotopic to the
original g, such that g' o t = 0 o f . So we may indeed assume (3.105).

Before we begin to construct the extension h for Lemma 3.139, we need to
verify that the image Im(f or) consists of boundaries. Indeed, (f o r) (v) E Z(S)
for v E M and the equation

(oaf ar)(v) _ (gotor)(v) =g(ar(v)) =ag(1*v)
shows that (8 o f o r) (v) is a boundary. Since 0 is a quism, (f o r) (v) must be a
boundary as well.

Let -y be an equivariant section of a : S -+ a(S). As the first approximation to
the extension h, consider an extension h : B *T F(M) -* S of f defined by

h(1 * v) := (ry o f o r)(v) for v E M.

It is easy to verify that h commutes with the differentials. Now we must, by adding a
correction term from Z(S), modify h to some h such that Ooh and g are homotopic.

Let g : B -+ k[t, at]®Q be the trivial homotopy of got to itself (compare (3.91))
defined by

g(b) := 1®(g o t)(b) = 1®(o o f)(b) for b E B.

Let us extend g naively to a `homotopy' H : B *r I' (M) k[t, at]®Q between g
and q5 ahby

H(1 * v) :_ (1 - t)g(1 * v) +t(O o h)(1 * v), v E M.

Unfortunately, it is not true in general that this naive H commutes with the differ-
entials. Let us denote by 8 the deviation from this being true,

8(v) = aH(1 * v) - j(7-(v)) = at (0 o h - g)(1 * v).
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Now we invoke (3.105) to verify that (( o h - g)(1 * v)) is a cycle in Q:

3Q(0oh-9)(1*v)=(0oh-9)(T(v))=(0o.f-9ot)(7-(v))=0.

Since 0 is a quism, there exist maps : M -> Z(S) and 77 : M Q of E-modules
such that, for each v E M,

(3.106) (0 o 0)(v) - (0 o h - 9)(1 * v) = (3 o 77)(v), v E M.

Let h be the extension of f defined by

h(1 * v) := h(1 * v) - O(v).

Then define the homotopy H B * . P(M) k[t, 8t]®Q as the extension of
satisfying

H(1 * v) := (1 - t)g(1 * v) + t(O o h)(10v) + at 77(v).

It follows from (3.106) that the map H commutes with the differentials. It is clear
that po o H = g and pl o H = 0 o h, therefore 0 o h is homotopic to g as claimed.

We will not prove the uniqueness part of Theorem 3.123 here. The proof can be
obtained by translating the arguments of [FHT95, Theorem 3.7] into the operadic
language.



CHAPTER 4

Geometry

4.1. Configuration spaces operads and modules

The aim of this section is to provide the reader with a road map of the compli-
cated world of operads and modules over these operads that are constructed from
configurations of geometric objects (disks, cubes, points) in manifolds of various
types.

LITTLE DISKS OPERADS. We have already seen examples of `geometric' operads
in this book. Let us recall at least the little k-cubes operad Ck whose detailed
description we gave in Definition 2.2. The little k-disks operad Dk = {Dk(n)}n>I
is defined quite analogously, except that we use little disks instead of little cubes.
This means that Dk(n) is, for n > 1, the space of all maps

d : U D' -+ Dk
I<s<n

from the disjoint union of n numbered standard k-disks D1, ... , Dn to Dk, where

Dk := {(x1, ... , xk) E Rk I xl + ... + xk < 1},

such that d, when restricted to each disk, is a composition of translation and mul-
tiplication by a positive real number and the images of the interiors of the disks are
disjoint. The symmetric group acts by renumbering the disks. We may interpret
d E Dk(n) as Dk with n numbered, disjoint circular holes, since all information
about d is kept by the shape of its image.

The operadic structure on the E-module Dk = {Dk(n)}n>1 is given exactly
as for little cubes in Section 2.2, so we will not give the definition here. We may
informally visualize the composition yD,, (d; d1 i ... , dn) as the gluing of the ith disk
di into the ith hole of d, for 1 < i < n.

Let us introduce a 'framed' version fDk = {fDk(n)}n>1 of the little disk operad
Dk. As in the unframed case, elements of fDk(n) are maps from the disjoint union
of n standard disks Dk to Dk, but here we admit all conformal linear maps, that
is, maps that are compositions of translation, multiplication by a positive real
number, and a rotation by an element of the orthogonal group 0(n). Now an
element f E fDk (n) cannot be described just as the disk Dk with n numbered holes,
but each hole must also be decorated by a frame that encodes the rotation. The
operadic composition is defined almost exactly as for the operad Dk. If we visualize
the composition as gluing we must, however, rotate each disk before gluing it in.
The operad fDk is called the framed little k-disks operad. Both operads fDk and
Dk are pointed (see Section 2.4), with fDk(0) = Dk(0) consisting of the disk Dk
with no hole in it.

203
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To understand better the relation between the little disks operad and its framed
version, we recall the following definitions introduced in [Mar99a].

DEFINITION 4.1. Let G be a topological group. A G-operad is an operad P =
{P(n)}n>1 such that each P(n) is a left G-space and the composition map -y satisfies

(4.1) g('Y(x;xl,... ,xn)) =-y(9x;xl,... ,xn),
for each x E P(n), xi E P(mi), 1 < i < n, and g E G.

The framed little k-disks operad fDk is an example of an 0(k)-operad, with
the orthogonal group acting by rotating the `big' disk with all its framed holes
inside. As we shall see, fDk is a semidirect product of the orthogonal group 0(k)
with the little disks operad Dk in the sense we introduce below. The terminology
was suggested by P. Salvatore. These semidirect products were studied by Nathalie
Wahl in her PhD thesis [Wah0l]; see also [SWO1].

Suppose we have an (ordinary) operad P such that each P(n) is a left G-space
and such that the composition map satisfies, under the notation of (4.1),

(4.2) g-y(x;x1,... ,xn) =7(9x;9xl,... ,gxn).

DEFINITION 4.2. The semidirect product P A G = {(PxG)(n)}n>_1 is the G-
operad with (PAG)(n) := P(n) x G"n, with the diagonal left action of the group
G, diagonal right action of the symmetric group En and the composition map ryG
defined as

,9n1). (xn,9...... gnn))
O(x;glxl,...,g,x,),g1g1,...,919,1 9n91, 9n9m

for gl,... 9no g ,... ,g ,... ,gl,... g , E G, x E P(n), xi E P(mi), 1 < i <
M.

It is easy to verify that the semidirect product PA G is indeed a G-operad as
in Definition 4.1. There is a natural inclusion tp : P y P A G of operads given by
tp(n)(p) := p x e"n, where e is the unit of G, p E P(n) and n > 1. Observe that
the projection pp : P x G -* P on the first factor is not an operadic morphism.

An example of an operad satisfying (4.2) is the little disk operad Dk with the
0(k)-action given by rotating the `big' disk with all its holes. We leave the proof
of the following statement as an easy exercise to the reader.

PROPOSITION 4.3. There is a natural isomorphism of 0(k)-operads

Dkz 0(k) = fDk

Let Dk denote the interior of the standard disk Dk,

Dk := {(x1.... , xk) E Rk I xl + ... + xk < 1},

and let Con(D",n) be the configuration space of n distinct numbered points in
Dk, with the obvious right E,-action. P. May proved, in [May72, Theorem 4.81,
that the nth piece Ck(n) of the little k-cubes operad has, for each n > 1, the En-
equivariant homotopy type of Con( 0k,n) = Con(WC,n). Let us prove an analogous
statement for the (framed) little k-disks operad.
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PROPOSITION 4.4. For each n > 1, the space fDk(n) is En-equivariantly ho-
motopy equivalent to Con(Dk,n)x0(k)xn0

This homotopy equivalence restricts to an equivariant homotopy equivalence
of the En-subspaces Dk(n) C fVk(n) and Con(D",n) = Con(Dk,n) x {1x"} C
Con(Dk, n)x 0(k) x"

PROOF. For a (framed) little disk d : Dk --+ Rk, denote by c(d) E Dk its center,
c(d) := d(0). Let d, : ToDk -. Tc(d)Dk be the tangent map at zero and interpret
it, using the canonical identifications TODk = Rk and TT(d)Dk = I[Rk, as a map
d, : Rk -. I[Rk. There exists a unique element ph(d) E 0(k) such that, for some
fixed scalar a > 0,

d,(t) = a ph(d)(t), for each t E IIRk.

We call ph(d) the phase of d. Define an equivariant map a : fDk(n) - Con(D", n)x
0(k)xn by

a(dl,...,dn) := (c(d1),... ,c(d,)) x (ph(d1), ,ph(dn)),

for (d1i...,dn) E fDk(n)

To define a homotopy inverse of a, we need a function p : Con(Dk,n) -+ IIR>o
defined as

1dist(ci, cj), 1 < i t j < n,
p(cl, .. , cn) := min 1 - dist(ci, 0), 1 < i < n,

where dist is the standard Euclidean distance in IIRk and (cl, ... , c,,,) E Con(I0 , n).
The meaning of the above definition is that p = p(cl,... , c,) is the largest number
such that the open disks with centers c1..... cn and radii p are mutually disjoint
and all are subsets of Dk.

Next, observe that for each c E Dk and g E 0(k) there exists exactly one
isometry d(c, g) : Dk -+ IIRk such that c(d(c, g)) = c and ph(d(c, g)) = g. The map
b : Con(Dk,n)x0(k)xn - Pk(n) is defined by the formula

b((cl,... , cn) x (91..... 9n)) :_ (pd(c1, 9i), ... , pd(cn, gn)), p = p(ci,... , cn),

for (cl,... , cn) E Con(Dk, n) and (91, ... , gn) E 0(k) xn Let us prove that b is a
homotopy inverse of a.

It is clear that a o b = 11, so it remains to prove that b o a is homotopic to 11.
Observe that (boa) (dl,... , dn) is obtained from (d,.... , d,,) E fDk (n) simply by
rescaling the disks so that they all have radius p(c(di),... , c(dn)). Thus the most
naive interpolation

(4.3) ht:=(1-t)(aob)+tll, 0<t<1,
is indeed a homotopy between b o a and R. It is clear that all constructions above
are in fact En-equivariant, giving rise to an equivariant homotopy equivalence.

The second part of the statement is obtained by restricting to the unframed
subspaces.
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Let us clarify the relation between the little disks and little cubes operads.
There is no obvious operadic morphism between them. To compare them, we must
introduce an intermediate operad, the suboperad tCk of the operad Ck consisting
of `true' k-cubes, i.e. little k-cubes for which, in the notation of Section 2.2, the
difference y, - xi is the same for all 1 < i < n.

Let u : Dk tCk be the map that assigns to each little k-disk the biggest `true'
little k-cube contained in it. Similarly, there is a map v : tCk -* Dk which assigns
to each `true' little k-cube the biggest little k-disk contained in it. Both u and v
are maps of operads and it is clear that v(n) is a En equivariant homotopy inverse
of u(n), for each n > 1.

The inclusion t tCk -f Ck has a left inverse j : Ck tCk which assigns to each
little k-cube the biggest `true' little k-cube contained in it and having the same
center. The map j is, however, not a homomorphism of operads, but, as can be
easily seen, j(n) is a homotopy inverse of t(n), for each n > 1. The situation is
summarized by the following diagram of operad maps:

Dk
t

tCk Ck

u

V

As an easy consequence of the above considerations, we get the following proposi-
tion.

PROPOSITION 4.5. The composition t o u : Dk -? Ck induces an isomorphism
of differential graded operads H.(Dk) and H.(Ck).

We already observed in Section 1.1.17 that the homology operad H.(C2) of
the little squares operad C2 describes Gerstenhaber algebras, i.e. algebras with a
commutative associative multiplication and with a degree 1 Lie bracket [-, -]
which are related by a distributivity law. By Proposition 4.5, the same is also
true for the operad D := D2. The homology of the framed little disks operad fD
describes another important class of algebras, called Batalin-Vilkovisky algebras.

DEFINITION 4.6. A Batalin-Vilkovisky algebra (also called a BV-algebra) is a
Gerstenhaber algebra (V, , [-, -]) together with a degree 1 linear map A : V -> V
such that A2 = 0 and

(4.4) [a, b] = A(ab) - (A(a)b+ (-1)°a0(b)),

for arbitrary a, b, c E V.

Observe that A in the above definition is a differential, but not a derivation
with respect to the commutative product, its deviation from being a derivation
measured by the Lie bracket as expressed by (4.4). The following characterization
of Batalin-Vilkovisky algebras was given in [Get94a].

THEOREM 4.7. Batalin-Vilkovisky algebras are algebras over the operad 13V
H. (fD)

The space fD(1) has the homotopy type of the circle S', so H. (fD (1)) has two
generators, one of degree 0 corresponding to the identity 1 E H.(fD(1)) and one of
degree +1 corresponding to the operation A

RIEMANN SPHERES WITH PUNCTURES. All the above examples live in real
differential geometry. While there is no obvious complex analog of the unframed
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little disks operad Dk, the complex analog of the framed little disks operad fD
fD2 is the following.

Let E be a Riemann sphere, that is, a nonsingular complex projective curve of
genus 0. By a puncture or a parametrized hole we mean a point of E together with
a holomorphic embedding of the standard disk U = {z E C I zJ < 1} to E centered
at the point. Thus a puncture is a point p E E with a holomorphic embedding
u : U -+ E, where U C C is an open neighborhood of U and u(0) = p. We say that
two punctures u1 : U1 --+ E and U2 : U2 - E are disjoint, if

O O

u1(U) n u2(U) = 0,
O

where U := {z E C I zI < 1} is the interior of U.

Let Mo(n) be the moduli space of Riemann spheres E with n + 1 disjoint
punctures ui : Ui --+ E, 0 < i < n, modulo_the action of the complex projective
linear group PGL2(C). The topology of M0(n) is a very subtle thing and we
are not going to discuss this issue here; see [Hua97] for details and compare also
Remark 4.10. The constructions below will be made only `up to topology.'

Renumbering holes defines on each Mo(n) a natural right En-action and the
E-module Mo = {.Mo(n)}n>1 forms an operad under sewing Riemannian spheres
at punctures. We already recalled this operad in Section 1.1.16.

Let us describe this operadic structure using the oi-formalism. Thus, let E
represent an element x E Mo(m) and A represent an element y E M0(n). For
1<i<m,let ui:UU-*Ebe the ithpuncture of Eand let uo:Uo->Abe the
0th puncture of A.

There certainly exists some 0 < r < 1 such that both Uo and Ui contain the
disk U11,.:= {z E C I zJ < 1/r}. Let now E,.:= E - ui(U,) and 0,.:= 0 - uo(U,).
Define finally lx:= (Er U Ar)/

where the relation - is given by

E,. 3 ui(S) ^' uo(1/e) E Ar,
for r < 11 It is immediate to see that E is a well-defined punctured
Riemannian sphere, with n + m - 1 punctures induced in the obvious manner from
those of E and A, and that the class of the punctured surface ° in the moduli space
Mo(m+n - 1) does not depend on the representatives E, L. and on r. We define
x of y to be the class of E. The symmetric group acts by permuting the labels of
little disks. _

Before describing the unit 1 E Mo(1), we introduce the following notation
which will be useful in the sequel. Let CIP1 be the complex projective line with
homogeneous coordinates [z, w], z, w E C, [We180]. Let 0 := [0,1] E CP1 and no :_
[1, 0] E CIP1. Recall that we have two canonical isomorphisms p, : CF1 - no - C
and po : Cl?' - 0 -* C given by

p.([z,w]) := z/w and po([z,w]) := w/z.

Then p;1 lCl?1 (respectively p-1 C CP1) defines a puncture at 0
(respectively at oo). We define 1 C Mo(1) to be the class of (C11,po I,poo1)
Notice that Mo is in fact a pointed operad (see Section 2.4), with * E Mo(0) the
class of (ClP1,po 1).
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PROPOSITION 4.8. There exists a natural map of topological operads j : fD -
Mo.

PROOF. Let us describe, following [KSV95], the construction of the map j. We
start with the observation that elements f E fD(n) can be interpreted as complex
linear maps from the disjoint union of is copies of the standard complex unit disk
U to the same U. Given such an element f, the composition p; o f gives CIP1 with
n embedded holomorphic disks numbered by_{1, ... , n}. In addition, we define the
0th disk to be po 1. This gives a point in Mo(n) and completes the construction
of the map j(n) : fD(n) - Mo(n). It is clear that the map j(n) is well defined
and a moment's reflections shows that it induces an operadic homomorphism.

Let C.(Mo) be the differential graded operad of singular chains on M0. Recall
(Section 1. 1. 16) that the string background induces an action of the operad C.(Mo)
on the BRST complex (f, Q). The following theorem was proved in [KSV95].

THEOREM 4.9. The absolute BRST homology H. (7-[, Q) admits a natural struc-
ture of a Batalin-Vilkovisky algebra.

PROOF. The C.(Mo)-action on the BRST complex (fi, Q) induces a H.(Mo)-
action on its homology H.(7-1,Q). This, composed with the map

H.(j) : H.(fD) - H.(M0),

where j : fD -- Mo is the map of Proposition 4.8, gives the advertised struc-
ture, because algebras over H.(fD) are, by Theorem 4.7, exactly Batalin-Vilkovisky
algebras.

REMARK 4.10 It is a commonly accepted fact that the map j of Proposi-
tion 4.8 is an equivariant homotopy equivalence. We were, however, not able to
find a solid proof in the literature, though discussion with M. Lehm and A. Weber
indicated that this might be true if the topology of Mo is chosen properly.

LITTLE DISKS MODULES. Recall (Definition 3.26) that a topological E-module
N = {N(n)J,>1 is a right module over a topological operad P if we are given
operations

v : N(n) x P(mi) x ... x P(m.n) --> N(ml + +m,,,),

for is > 1, mi > 1, 1 < i < is, satisfying appropriate axioms.
In the rest of this section, which has a bit of a speculative character, we

show how configuration spaces provide natural examples of modules over oper-
ads. Roughly speaking, we show that the E-module of framed configuration spaces
fCon(M) = {fCon(M, n)}0>1 (to be introduced in Definition 4.11) has the equivari-
ant homotopy type of a specific right module over the framed little k-disks operad
fVk, where k is the dimension of M. For parallelizable M we formulate also an
`unframed' version of the above statement.

As in Proposition 4.4, we are going to compare the configuration space of points
in M to a E-module of little disks on M, so our first task will be to understand
what a little disk in M should be.
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The most general choice is that a little disk in M is just a smooth map (not even
necessarily an embedding) d : Dk -> M. As before we denote by c(d) := d(O) E M
the center of d. We say that two little disks dl, d2 are disjoint if dl (Dk)fld2 (Dk) = 0.
It is clear that there is no way to fix the `phase' of the disk unless we assume that
M is parallelizable, so all disks are `framed' from the beginning.

Let us denote by fDM = {fDM(n)}n>1 the E-module of numbered little disks
in M, with the obvious right action of the symmetric group. The E-module fDM =
{fDM(n)}n>1 has a right module structure over the framed little k-disks operad
fDk given as follows.

Let d : Us 1 DS -+ M be an element of fDM(n) and ds : Uj_sl D S --+ Dk
(where Ds and Dk s are identical copies of the standard k-disk) be elements of
fDk(m5), 1<s<n. Thenv(d;dl,...,dn) ECk(ml+ +mn) is the map

' ms
(4.5) v(d;d1i...,dn): LJ HD 8 M

s=1y=1

given by

v(d;dl,...,dn)ID,s :=duds, 1 < j <ms, 1 <s <n,

where we interpret ds as a map ds U 91 Djks --f Ds .
This gives a nice example of a right fVk-module, but if we do not put ap-

propriate restrictions on little disks and their configurations, this example is very
dull. Indeed, if we allow little disks to be all smooth maps and if we do not re-
quire them to be disjoint, then fDM(n) has, for n > 1, the En-homotopy type
of the cartesian product M. To see this, define a(n) : fDM(n) -+ M"n by
a(n)(d1i ... , dn) := (c(dl), ... , c(dn)), for (d1..... dn) E fDM(n). There is also
a map b(n) : M"n -+ fDM(n) defined by b(n)(x1i... , xn) .= (dx , ... , for
(xi ... , xn) E M"n, where dy denotes the constant little disk with Im(di) = {xi},
1 < i < n. It is immediate to see that a(n) and b(n) are E,-equivariant maps,
equivariantly homotopy inverse to each other.

Observe that the E-module {M"n}n>1 is also a right fDk-module, with the
structure given rather trivially by

v((Xi, xn); f1. , fn) :_ (xl, . , x1,... , xn.. . xn),
ml times m times

for (x1, ... , xn) E M"n and f, E fD(n), 1 < i < n. The E-module map
a:= {a(n) : fDM(n) --+ M"n}n>1,

commutes with these modular structures.
A better choice that makes fDM(n) less trivial is to assume that the disks are

disjoint. This means that one must also assume that each little disk is an embedding
of Dk, otherwise the composition (4.5) need not lead to disjoint disks. Under this
choice, we have a map a(n) : fDM(n) Con(M,n) sending each (d1..... dn) E
fDM(n) to (c(d1),... , c(dn)) E Con(M,n). This a(n) is still far from being a
homotopy equivalence, since each little disk could be rotated by an element of
0(k) without changing its center, therefore the preimage a(n)-1(x1i ... , xn) of
each (x1,... , xn) E M"n contains a highly nontrivial space 0(k) "n. This can be
improved by considering framed configuration spaces. They will be very useful later
in this book.
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Let GL(M) denote the principal GL(k)-bundle of linear frames on M. We may
always assume that M is Riemannian, so GL(M) reduces to orthogonal frames
0(M); denote by 7rM : 0(M) -+ M the bundle projection. There is a retraction
rnq : GL(M) -+ 0(M) commuting with the bundle projections.

DEFINITION 4.11. The framed configuration space f Con (M, n) of n distinct
points in M is the space of all (x1, f1; ... ; xn, fn) where (x1..... xn) E Con(M,n)
andfiE7rM(xi),1<i<n.

Observe that the obvious projection p : fCon(M, n) -Con (M,n) is a principal
0(k)x"-bundle, in fact, fCon(M,n) is the pullback of the diagram:

0(M)xn

7rxn
M

inclusion
Con (M, n) Mxn

If the manifold M is parallelizable, then f Con (M, n) is (noncanonically) isomorphic

to Con(M,n) x Oxn(k). For instance, the space Con(Dk,n)x 0(k)x" of Proposi-
tion 4.4 is the framed configuration space fCon(Dk,n) in disguise.

Let us introduce the frame of a little disk d : D' -+ M as follows. Let
{e1i ... , ek} be the canonical basis of the tangent space of Rk at 0,

ei := (0,... , 0, 1, 0,... , 0) (1 at the ith position), 1 < i < k,

and let e (Cl, ... , ek) be the corresponding orthogonal frame at 0 E Rk. Let
d, : ToRk -+ T,.(d)M be the tangent map to d at 0 E Rk. Then d. (c) is an element
of the frame bundle GL(M) and we define the frame of d to be

fr(d) := rM(d=(e)) E 7rM (c(d))

We then define a En-equivariant map a(n) : fDM(n) -+ fCon(M, n) by

a(n)(d1,...,dn):= (c(d1),fr(d1);...;c(dn),Jr(dn)),

for (d1i ... , dn) E fDM(n). A candidate for a homotopy inverse of a(n) can be
constructed as follows. It is clear that the function p1 : Con(M, n) -+ R>0 defined
by

p1(x1i... , xn) := min { Zdist(xi, xj), 1 < i j < n} , (x1, ... , xn) E Con(M, n),

where dist(-, -) is the Riemannian distance in M, is continuous.
Suppose that the manifold M is complete. Then we have, for each point x E M,

the exponential map expx : TxM -+ M from the tangent space TM at x to M.
Let us denote, for r > 0, by B, the open ball in TM centered at 0 with radius
r. The injectivity radius of M at x, denoted i(x), is the supremum of all r > 0
such that expx is an embedding of Br to M. The following theorem can be found
in [BC64, page 241].

THEOREM 4.12. If the manifold M is complete, then the injectivity radius i
M -, (0, oo) is a continuous function.
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Thus, for a complete Riemannian manifold M, we have another continuous
function p2 : Con(M,n) -> R>0 defined by

for(x1i...,xn)ECon(M,n).

We finally put

p := min(p1 i P2) : Con (M, n) -+ R>o.

Let (x1i f 1; ... ; xn, fn) E f Con (M, n). Let us introduce a En-equivariant map b(n)
fCon(M,n) fDM(n) by b(n)(x1i f1; ... ; x,, fn) := (d1,... , d, ), with di : Dk -+
M defined as follows. There exists, for each 1 < i < n, a unique linear isometric
embedding bi : Dk -+TT,M such that the composition

expy

M M
has the property that fr(wi) = fi. Then

(4.6) di(z) := wi(Pz), z e Dk, P = P(x1,... , xn).

We have constructed equivariant maps

a(n) : fDM(n) -* fCon(M,n) and b(n) : fCon(M,n) - fDM(n)

clearly satisfying a(n) o b(n) = ll. Let us see what are our chances to construct a
homotopy between b(n) o a(n) and 11.

To simplify our language, call little disks of the form (4.6) normal. By defini-
tion, each normal disk d is uniquely determined by its center c(d), its frame fr(d)
and the value of p. Each little disk d has its normalization n(d), i.e. the normal
disk n(d) with the same frame and center as d.

The map b(n) o a(n) clearly replaces a little disk d : Dk -> M by its normaliza-
tion, (b(n) o a(n))(d) = n(d). The situation is schematically depicted in Figure 1.
Thus a homotopy from b(n) o a(n) to IL should interpolate between d and its nor-
malization n(d), but if the image of d runs off the set exp,(d)(BP,) as it does in
Figure 1, it is not clear how to construct such an interpolation.

This can be fixed by introducing, for any b > 0, the submodule fD6M =
{fD6M(n)}.n>1 defining fD6M(n) to be the subspace of fDM(n) consisting of all
disks in M whose radius (in the obvious sense) is less than J.

If b is small enough, the images of little disks d from fD6M(n) are subsets
of exp,(d) (BP, ), so we may consider them, using the identification via expC(d) :

T,(d)M -> M, as maps to Rk = TT(d)M. Now it makes sense to form a linear
interpolation

dt := (1 - t)n(d) + td, 0 < t < 1.

There is, however, no reason to expect that the map dt is injective for all t. This can
be achieved by further restricting to those disks in fD6M(n) which are conformal
linear which means, by definition, that they are compositions

exp ,)
Dk t T=(d) M,

with some conformal linear f. Observe that the classical little k-disks operad Dk
consists of conformal linear disks in the sense of the above definition. We may
combine the above observations as:
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M

FIGURE 1. Little disk in M and its normalization. The amoeba is
the image of d, the small disk is the image of n(d) and the big disk
is the image exp,(d) (BP1). The cross x indicates the center c(d).

THEOREM 4.13. Suppose that there is a positive S such that i(x) > S for each
x E M. Then the right En-space fDbM(n) consisting of conformal linear little
disks with radius less than S is En-equivariantly homotopy equivalent to the framed
configuration space fCon(M, n).

Since the injectivity radius i : M -> R>0 is a continuous function (Theo-
rem 4.12), the number S in Theorem 4.13 always exists if M is compact. A mo-
ment's reflection shows, however, that the E-module of conformal linear disks fD6M
will no longer be closed under the right action (4.5) unless M is flat.

PROPOSITION 4.14. Suppose that M is a flat Riemannian manifold and S > 0
as in Theorem 4.13. Then the E-module fD5M is a natural right fD-module.

Though the flatness assumption in the previous proposition is very restrictive,
there are still interesting examples (such as tori) left. Other, more exciting, geo-
metric examples of right modules will be presented in Section 4.4.

4.2. Deligne-Knudsen-Mumford compactification of moduli spaces

In this section we closely follow the exposition given by V. Ginzburg and
M. Kapranov in [GK94]. Let M0,n+1 be the moduli space of (n + 1)-tuples
( x 0 . . . . . xn) of distinct numbered points on the complex projective line CF1 modulo
projective automorphisms, that is, transformations of the form

CF1 E) [S1, e21 '-' [ae1 + bee, ce1 + <2] E CIP1,

where a, b, c, d E C with ad - be 0.

Choose a point oo E CF' so that CF' = C U {oo}. Since projective automor-
phisms act transitively and since those automorphisms that fix oo are exactly those
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that restrict to affine automorphisms of C, letting xo = oo, one gets an isomor-
phism of M0,n+1 with the moduli space of n-tuples of distinct numbered points of
C modulo affine automorphisms.

The moduli space Mo,,,,+1 has, for n > 2, a canonical compactification M(n) D
Mo,"+1 introduced by A. Grothendieck and F.F. Knudsen [De172, Knu83]. The
space M(n) is the moduli space of stable (n + 1)-pointed curves of genus 0:

DEFINITION 4.15. A stable (n+ 1)-pointed curve of genus 0 is an object

(C; xoe ... , xn),

where C is a (possibly reducible) algebraic curve with at most nodal singularities
and x 0 ,..., x, E C are distinct smooth points such that

(i) each component of C is isomorphic to CIED1,
(ii) the graph of intersections of components of C (i.e. the graph whose vertices

correspond to the components of C and edges to the intersection points of
the components) is a tree and

(iii) each component of C has at least three special points, where a special point
means either one of the xi, 0 < i < n, or a singular point of C (the stability).

REMARK 4.16. It can be easily seen that a stable curve (C; xo, . . , xn) ad-
mits no infinitesimal automorphisms that fix marked points x0, ... , x,, therefore
(C; xo, ... , x,) is `stable' in the usual sense. Observe also that M (n) = 0 for
n < 1 (there are no stable curves with less than three marked points) and that
M(2) = the point corresponding to the three-pointed stable curve (CIP1; 00, 1, 0)

The space Mo,n+1 forms an open dense part of M(n) consisting of marked
curves (C; xo, ... , xn) such that C is isomorphic to CIED1.

It follows from the results of [BG92, FM94] that the space M(n) is a smooth
complex projective variety of dimension n - 2. It has the following elementary
construction described, for example, in [BG92, pages 64-65]. Let

Aff :={z az+bI a,bEC, a 0}

be the group of affine transformations of C. The group Aff acts diagonally on C"
preserving the open subset

C;:={(z1,...,z,)GC''I zi zj for1<i<j<n}
of points with pairwise distinct coordinates. As noted above, one has an isomor-
phism

Mo,n+1 - C /Aff
Let us denote by A C C" the principal diagonal, that is, the space

A:={(z,...,z)EC'''I zEC}.
There is an embedding to : Mo,"+1 CP"-2 defined as the composition

M0,n+1 C /Aff C (C' - 0)/Aff = CIP'n-2,
where the isomorphism on the right is induced by

(4.7) C" - A D (z1 i ... , zn) -- [z, - z,,,, z2 - z,,... , zn_1 - zn] E CIPn-2.

The coordinate axes in C" give, under correspondence (4.7), n distinguished
points p1, ... , pn E CIEs"-2. Let us blow up all the points pi, 1 < i < n, then
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FIGURE 2. Three singular curves compactifying M0,4.

blow up the proper transforms (= closures of the preimages of some open parts
(see [Har77, page 165])) of the lines <pi,Pj >, 1 < i < j < n, then blow up the
proper transforms of the planes <Pi, Pi, Pk >, 1 < i < j < k < n, and so on. The
resulting space is isomorphic to M(n).

More formally, we define a tower of smooth varieties Yk, n > k > 3:

(4.8) (CF,_2=YYn_1<-Yn-2F-...<-Y3=)R(n)
by downward induction on k as follows.

For a subset I c [n] := {1, ... , n}, let DI denote the subvariety of C1Pn-2

corresponding, under (4.7), to the subset

{ (z1, ... , Zn) E Cn I zi = zj for i, j E J}.

Observe that, in this notation, Din]-{i} = {Pi}, D[n)-{i,j} _ (Pi,P3), etc. Assume
by induction that the tower

(Cp"-2=YnF-Yn_1 Yn_2

has already been constructed, for some k, n > k > 3, and denote by in : Yk --->

CPn-2 the composition. Let DI be the strict transform of DI in Yk. The following
statement follows from [BG92, Lemma 3.2].

LEMMA 4.17. For each subset I C [n] of cardinality k - 1, DI is a smooth
irreducible subvariety of Yk. The intersection of any number of subvarieties DI
with card(I) = k - 1 is either empty or transverse.

Now, Yk-1 is constructed by blowing up all subvarieties DI with card(I) _
k - 1, in any order. By the transversality property of Lemma 4.17 the result
does not depend on the order. This completes the induction step in the inductive
construction of (4.8).

EXAMPLE 4.18. For n = 3, the image of M0,4 in CF1 under the inclusion 1,3 is
CF1 with three points pl = 00, P2 = 0 and p3 = 1 removed. Tower (4.8) is trivial,
so M(3) = CF' is obtained from M0,4 by adding three points corresponding to
three singular stable 4-curves symbolized in Figure 2.

EXAMPLE 4.19. Let us discuss the case n = 4. The image of the embedding
£4 : M0,5 _ ci2 is the complement of the configuration of six lines (pi, pj), 1 < i <
j < 4 as in Figure 3. The line (pj,pj) corresponds to the degenerate configuration
zk = zl, {i, j, k, l} = {1, 2, 3, 4}. The lines intersect at four triple points pi, 1 <
i < 4, corresponding to the degenerate configurations zj = zk = zi, where again
{i, j, k, l} = {1, 2, 3, 4}.

The tower CF2 - Y3 = .M(4) is given by blowing up the four points pi,
1 < i < 4. The complement of M0,5 in M(4) consists of strict transforms Pig of
the lines (pi,Pj), 1 < i < j < 4, and four exceptional lines Pi, 1 < i < 4, added by
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FIGURE 3. A configuration of six lines in CF2

the blow up. In the rest of this example, i, j, k and 1 will be natural numbers such
that {i, j, k, l} = {1, 2, 3, 4}.

Each Pig is a smooth curve containing three special points - the point P(ij)
(respectively p(ji)) at which Pig transversally meets Pi (respectively P;) and the
point qij = qkI at which 4j transversally intersects PkI. Thus the compactification
.M(4) adds to M0,5 the following types of singular pointed curves.

TYPE I. Curves corresponding to points of Pi but different from P(ij):

TYPE II. Curves corresponding to p(ij):

X0 2i

Xk

TYPE III. Curves corresponding to points of Pig but different from p(ij), p"(ji)
and did :

TYPE IV. Curves corresponding to qij = qkI:
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FIGURE 4. The pseudo-operadic composition of M = {M(n)}n>2.

PSEUDO-OPERAD STRUCTURE. The family of spaces M = {M(n)}n>2 forms
a topological pseudo-operad, with structure operations given as follows. The com-
position map

(4.9) of : JVI(k) x N((l)->.M(k+l - 1)

is, for k, l > 2, 1 < i < k, defined by

(C'; yo,... ,yk) x (C2; xo,... ,xt)'-' (C; yo,...,ya-1,xo,...,xt, ya+1,...,yk)
where C is the curve obtained from the disjoint union C1 U C2 by identifying x0
with yi, introducing a nodal singularity. The composition is illustrated in Figure 4.
The symmetric group acts on ,U(n) by

(C, x0,x,,... ,x,) F---T (C,xo,xa(1),... X(,)), IT E En-

We call M = {M(n)}n>2 the configuration pseudo-operad, since M(n) can be
regarded as a (compactified) configuration space of points on CIP1.

One can associate to a point (C; xo, ... , xn) E : (n) (an isomorphism class of)
a rooted n-tree (see Remark 1.43 for the difference between trees and isomorphism
classes of trees)

T = Tree (C; xo, ... , x.n) E Tree (n)

whose vertices correspond to irreducible components of C. The vertices corre-
sponding to two components C1i C2 are joined by an (internal) edge if and only if
C, fl C2 0. A leaf labelled by i, 1 < i < n, is attached to the vertex corresponding
to the component containing xi. The root is attached to the vertex correspond-
ing to the component containing xo. Property (iii) of stable curves ensures that
Tree(C; xo, ... , xn) is a reduced tree thus, in fact, Tree(C; xo, ... , xn) E Rtree(n).

EXAMPLE 4.20. Trees corresponding to singular curves in Figure 2 are

1 2 3 2 3 1 3 1 2

Trees corresponding to singular curves listed in Example 4.19 are given in Figure 5.

For any reduced n-tree T, let M(T) C M(n) be the subset consisting of stable
curves (C; xo,... , x.n) such that Tree(C; xo,... , x.n) = T. In this way we obtain an
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TYPE I: TYPE II:

i j k l

TYPE III: TYPE IV:

j k l i j k l

FIGURE 5.

algebraic stratification

(4.10) .R(n) = U M(T), n > 2.
TERtree(n)

This stratification has the following properties (see [BG92]):

codim(M(T)) = card(edge(T)),

where edge (T) is the set of internal edges of the tree T, and

M(T) CM(S) if and only if T > S.

Recall that T > S means that S is obtained from T by collapsing one or more
internal edges. In the above display, M(S) denotes the closure of M(S) in M(n).

In particular, 0-dimensional strata are labelled by binary trees. Codimension
1 strata correspond to trees with two vertices. Their closures are precisely the
irreducible components of .R(n) - Mo,n+1, which is a normal crossing divisor In
addition, we have the following result.

PROPOSITION 4.21. For each n _> 3 and T E Rtree(n), there are canonical
direct product decompositions

M(T) MO,a(v)+l
E Vert(T)

and

M(T) = X M(a(v)),
vE Vet(T)

where a(v) = card(In(v)). In particular, the closure of each stratum is smooth.

PROOF. The first equality means that a pointed curve (C; xo,... , xn) E M(T)
is uniquely determined, up to isomorphism, by the projective equivalence classes
of the configurations formed on each component by the marked points xi and the
double points which happen to lie on this component. This is obvious.



218 4 GEOMETRY

FIGURE 6. The tree Ti (k, l). The vertex u has k inputs; the
vertex v has 1 inputs.

The second equality follows from the first one once we note that

M(T) = U M(S).
S>T

For k, 1 > 2 and 1 < i < k, let T;(k, 1) be the tree in Figure 6.

COROLLARY 4.22. The structure maps of of the pseudo-operad

M = {M(n)}n>2

can be identified with the embedding of the closed stratum

M(k) x M(l) = M(TT(k,1)) - M (k + l - 1).

4.3. Compactification of configuration spaces of points in 11'

The aim of this section is to construct a compactification of the moduli space
0

Fk(n) of configurations of n distinct points in the k-dimensional Euclidean plane I[tk
modulo the action of the affine group, described by Getzler and Jones in [GJ94]
and denoted by Fk(n). The authors of [GJ94] also stated that the E-module
Fk := {Fk(n)}n>1 has a natural structure of a topological operad. This was a well-
known fact for k = 1, because, as we will see in Example 4.36, the E-module F1 =
{F1(n)},>1 is nothing but the symmetrization of the non-E operad k = {Kn}n>1
of the associahedra recalled in Section 1.6. The operad F2 plays an important
role in topological closed string field theory. The main results of this section are
Theorem 4.35 and Proposition 4.38.

In this and in the following sections we will often work with objects whose
nature is similar to that of the free pseudo-operad (Definition 1.77) and whose
formal definitions ought to be based on colimits over certain categories of trees.
In applications we have in mind it would be, however, difficult to work with these
formal definitions, so we prefer to define these objects as direct sums indexed by
isomorphism classes of trees, assuming an implicit choice of representatives of these
isomorphism classes; see Remark 1.84.

We are going to present a construction that stresses the operadic nature of the
compactification. Let V be a k-dimensional vector space. In [Mar99a] we observed
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config. a = (¢1, a2): config. b, = (bi, b1, bi): config. b2 = (bz, bz):

al z
1

a2

b1. 1

b3
. 1 b1. 2

config. -y (a; b1, b2):
b2
. 1

b2. 2

FIGURE 7. The construction of y(a; bl, b2) E Con(1R2, 5) from
a E Con(1R2,2), b1 E Con(1R2,3) and b2 E Con(R2,2).

that the E-module

Con(V) = {Con(V,n)}n>1

of configuration spaces possesses a kind of partial operad structure which can be
described as follows. We need to specify, for each a = (a1, ... , a') E Con(V, 1) and
bi c Con(V, mi), the value of the `composition map' y(a; b1i ... , b1) E Con(V, ml +

+ ml). This can be done by putting

'Y(a;bl,... ,b1) :_ ((a',... ,a1)+b1,(a2'... ,a2)+b2,... ,(at,... ,a')+
ml times m2 times m, times

The configuration -y (a; b , , . . , bi) may be viewed as the superposition of the configu-
rations Tai (bl),... ,T,, (bl), where Ta(-) means, just here and now, the translation
by a vector a E V. This process is visualized, for V = 1R2, in Figure 7.

We encourage the reader to verify that all the axioms of an operad are satisfied.
The only drawback is that -y (a; bl, ... , bi) need not necessarily be an element of the
configuration space Con(V, m1+ +ml), because the components of y(¢; b1, ... , b1)

need not be different. Thus the structure map is defined only for some elements of

Con(V,l) x Con(V,ml) x x Con(V,mi).

Such an object may be called a partial operad; see Section 1.1.9.
This partial operad structure motivated us to establish a general theory of par-

tial operads and to show that the compactification is a certain operadic completion
of the partial operad of configuration spaces, making it manifestly an operad. Let
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us point out, however, that our definition of a partial operad indicated above and
made precise in [Mar99a, page 189] differs from other definitions [KM95, Hua971.

We will not repeat the construction of the operadic completion in its full gen-
erality here; we just show what it gives for the special case of the partial operad

o

related to the moduli space of configurations Fk(n) mentioned above, which we
called in [Mar99a] the partial operad of virtual configurations.

In fact, since we need all our constructions to be 'coordinate-free,' we are going
to consider configurations of points in an arbitrary k-dimensional real vector space
with a Euclidean metric. Of course, each such V is isomorphic to Ilk, therefore all
our constructions will also be isomorphic to those made for Il!k. The point is that
the isomorphism is noncanonical, depending on the identification of V with R' .
In other words, we would like to consider constructions of this section as functors
on the category (groupoid) of finite dimensional Euclidean vector spaces and their
linear isometries. This will be useful in Section 4.4.

Let us recall some definitions. As before, let Con(Vn) be the configuration
space of n distinct labeled points in a k-dimensional Euclidean vector space V,
n> 1.

DEFINITION 4.23. Let Aff (V) be the affine group of translations and dilata-
tions of V. The group Aff (V) acts in the obvious manner on Con(V, n). Define
0

Fv(n) to be the quotient space
0

(4.11) Fv(n) := Con(V, n)/Af(V), n > 1.

To keep our notation compatible with the literature [GJ94], we denote, for
o

k > 1, Fk(n) := FRk(n).
o

The moduli spaces of (4.11) form a E-module Fv = {Fv(n)}n>1 with the

symmetric group permuting the labels of the points. As usual, we can extend Fv
0

to a functor on the category of finite sets; for a finite set X, then Fv(X) is the
moduli space of configurations of distinct points labeled by elements of X. It is

o

immediate to see that each rl E Fv(X) has a unique representative {zs E V}SEX
such that

(4.12) 57z'=0 and El zT =1,
sEX sEX

where - is the Euclidean norm of V. Observe that the second equation of (4.12)
does not mean that the points {z'}sEx lie on the unit circle, since {z'}sEx is a set
of points of V, not coordinates of one point.

o

We call {zs E Vk}SEX satisfying (4.12) the normal representative of 77 E Fv(X)
and we call sequences satisfying (4.12) normal.

The above can be rephrased by saying that each sequence w = {w' E V}sEx
has a unique normalization nor(w) which is, by definition, a normal sequence z' =
{z' E V}sEx congruent to di modulo the action of the affine group. The set of all
normal sequences Z= {z' E V}sEx is clearly compact in Vx.

METRIC TREES. In this section, by a metric tree we mean (an isomorphism class
of) a rooted tree T together with a `length' function (or a metric) h : edge(T) - R>0
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FIGURE 8. Suppose that 3(h) = {wl, w2, w3} (solid vertices).
Then Tw, is the subtree with Vert(T,,) = {w1, VI, v2}, T,,,2 is the
subtree with Vert(Twz) = {w2iv3} and Tw3 is the corolla with
vertex w3.

from the set of (internal) edges of T into nonnegative real numbers. See also
Remark 1.43 for the relation betweeen trees and isomorphism classes of trees. So
metric trees are the same as in Definition 2.19 except that we allow their edges
to have an arbitrary nonnegative length. Let us denote by Met(T) the set of all
metrics on a given tree T; we are sure that there is no danger of mistaking it with
the notation used in Section 2.8. Let us also denote by Rmtree(n) the space of all
reduced metric trees in the above sense, that is,

Rmtree(n) := {(T, h) I T E Rtree(n), h c Met(T)}.

So Rmtree(n) has now a slightly different meaning than in Section 2.8.
For any e c edge(T), let ve E Vert(T) be the unique vertex of T such that

e is the output of v. Let rv(T) be the vertex adjacent to the root of T. Given
(T, h) E Rmtree(n), define the `zero set' of h to be the following subset of Vert(T):

(4.13) 3(h) := {ve E Vert(T) I h(e) = 0} U {rv(T)}.

The metric h also determines a decomposition of T into disjoint subtrees
{Tw},,,e3(h) by cutting in two each edge of length zero. More precisely, for each
w E 3(h), T. is defined by

Vert(TT) :_ {v E Vert(T) J v > w and there is no u E 3(h) such that v > u > w},

where < is the partial order <T on Vert(T) introduced in Definition 3.59. The
idea of the construction of T. is illustrated in Figure 8. One may also say that
{Tw}we3(h) is the decomposition of T into the biggest subtrees T. such that the
restriction of h to T. is positive on all (internal) edges of T,,,; w is then the root of
T.

Finally, let Th E Rmtree(n) denote the tree obtained from T by shrinking
internal edges of each subtree Tw, w E 3(h), to a vertex which we denote again by
w. The construction of Th from the metric tree (T, h) of Figure 8 is illustrated in
Figure 9.

THE COMPACTIFICATION. The rest of this section is devoted to a construction
a o

of the compactification of the E-module Fv = {Fv(n)}n>I. There is, unfortunately,
still a rather lengthy and rough road ahead. For any reduced T E Rtree.., consider
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FIGURE 9. Construction of Th from the metric tree (T, h).

FIGURE 10. A path in the tree T.

the space

(4.14)
0

Yv[T] Met(T) x Fv(T).

Informally, elements of Yv [T] are metric trees with vertices colored by the E-module
0

Fv; see Remark 1.71. More formally, elements of Yv[T] are sequences

(4.15) {(t,,, [zv]) 1 v E Vert(T)}, where (t,,, [zv]) E R>o x Fv(In(v)),

where tv := h(ev), the length of the outgoing edge ev of v E Vert(T) if v is not a root,
and t,(T) := 0. By iv we denote the normal representative z"v = {zv E V}eE7l(v)

of an element of Fv(In(v)).
We define, for T E Rtree(n), a map WT : Yv[T] --> V" as follows. For any

1 < i < n there is in T a unique path from the ith input leaf to the root, as in
Figure 10. Using notation (4.15), we put

(4.16) w2() zvs + tv,_1 . 4:-1 + ... + tv2 ... tv,
1

. zvz + tv1 ... tv, 1

and

(4.17) wT(e) (wl(e),... wn( )) E V".

EXAMPLE 4.24. For T = c(n) (the n-corolla), n > 2, the map

Fv(n) - Yv[c(n)] Wen ' Con (V, n)

maps 77 E Fv(n) to its unique normal representative in Con (V, n).

The map WT in fact reflects a partial operad structure on the configuration
space. The `partiality' means that wT(l;) is an element of the configuration space
Con (V, n) only for l; belonging to some subset Uv[T] of Yv [T],

(4.18) Uv [T] :_ {l; E Yv [T] I all wI (e) are distinct, 1 < i < n}.

It is thus appropriate to call the subset Uv[T] the set of composable elements.
We believe that this notation will not be mistaken with the coequalizer in Defini-
tion 1.81.
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FIGURE 11. An Fv-colored tree T E Rtree(4).

Observe that, if t = (h, () E Uv[T] C Met(T) x Fv(T), then 3(h) _ {rv(T)}.
The opposite implication is not true for other trees than corollae, as illustrated in
the following example.

EXAMPLE 4.25. Let V = R1 and consider the tree T in Figure 11. The root

w is colored by [zw,zw] E Fv({e, f}) with zw zw := f. The colors of the
remaining vertices are the same, that is,

e f 1 2 3 4[zw, zw] - [zu+'zu] _ [,Zv,,Zv ]'

This defines an element ( E Fv(T). For two positive parameters s, t E R>o define
hs,t c Met(T) by h,q,t(e) := s, hs,t(f) := t and put s,t := (h0,t,O C Yv[T] with

o

E Fv(T) as above. An easy calculation shows that

CCWT(SS,t) =
1

1(-1 - S, -1 + 8, 1 - t, 1 + t) E R4.

From this we conclude that bs,t E Uv[T] if and only if

(4.19) s,t#0, s-tl 2ands+t¢2.
Thus, for instance, the element 51,1 = (h1,1,() E Yv[T] does not belong to Uv[T]
though 3(h11) = {rv(T)}.

The following lemma, formulated in [Mar99a, page 192], will be useful in our
proofs.

LEMMA 4.26. For any n > 2 and a reduced tree T C Rtree(n), the composition

AT : UV[T] = + Con (V, n) Fv(n)

as a monomorphism.

We make the set Uv [T] a bit bigger, allowing also some (h, () such that
3(h) {rv(T)}, namely those whose restriction to each subtree T., w E 3(h),
is composable. This can be formally done as follows.

o

Any (h,() E Met(T) x Fv(T) =Yv[T] determines, for each w E 3(h), the
restriction

(4.20) rw(S) := (hlTT,(T,) E Yv[T ]'
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FIGURE 12. The subsets Uv [T] and Uv [T] of the first quadrant (0, 00)"2.

Define

(4.21) Uv[T] :_ { E Yv[T] I rw(e) E Uv[Tw] for all w E 3(h)}

and call Uv[T] the extended set of composables.

EXAMPLE 4.27. In the situation of Example 4.25, ,,,t E Uv[T] if and only if

s-tj =,42and s+tzh2;

compare (4.19). It is clear that Yv [T] is in this case isomorphic to the first quadrant
(0, 00)"2. Then

Uv[T] = (0,00)12_ (aUbUc) and

Uv [T] = (0,00)12_ (aUbUc).

See Figure 12.

There are special elements of Yv [T] of the form (0, 0) E Met(T) x Fv (T), where
0 denotes the trivial metric assigning to each edge of T length zero. It is clear that
each such element belongs to Uv[T]. We call such elements primitive. Assigning

0

to each 0 E Fv(T) its related primitive (0,b) defines an inclusion

(4.22) cT : Fv(T) - Uv[T].

The set Uv [T] was defined in such a way that each (h, () E Uv [T] deter-

mines y(e) E FV(Th) by

(4.23) ' (e) X
wE Vert(Th)=3(h)

Observe that
0

7(0,VG) =V) E Fv(T),

for each b E Fv(T). This can be expressed as saying that `y is the identity on
primitives.' The following lemma will be used in the proof of Theorem 4.35.
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LEMMA 4.28. Let S1 = (hi, (1) and S2 = (h2, (2) be elements of Uv[T] such
that 3(h1) = 3(h2). If we denote S := Th,1 = Th21 then

o

7(W = 7(6) (equality of elements of Fv(S))

implies that SI = S2

PROOF. By definition (4.23) of 7, it is enough to verify that [wT (r,,,(e1))] _
[w , (r. (6))] implies that r,,, (e1) = for any w E 3(h1) = 3(h2). This im-
mediately follows from Lemma 4.26 applied to the tree T.

Define the reduced E-module (see Section 1.5 for the terminology) Uv
{Uv(n)}n>2 by

(4.24) Uv(n) u Uv[T] for n > 2.
TERtree(n)

Elements of Uv (n) are called virtual configurations.

DEFINITION 4.29. The compactification Fv(n) is, for n > 2, defined by

(4.25) Fv(n) := Uv(n)/ -

where the relation - is given by

(4.26) Uv(n) D Uv[T] D (0,7(x)) E Uv(Th) C Uv(n),

for T E Rtree(n). We put Fv(1) :_ *. We also denote Fk(n) .= Fak (n), k > 1.

We recommend looking at Example 4.32 and Example 4.33 to get an intuitive
understanding as to why (4.25) indeed defines a compactification.

LEMMA 4.30. The projection Uv(n)
map.

P
Fv(n) is, for any n > 1, an open

PROOF. This is the first of many statements in this section whose `formal'
proof would be, due to the lack of an effective notation, very difficult to give, but
whose validity is `evident.'

By_[Ke157, Theorem 10, page 97], the projection from Uv(n) to the quotient
space Uv(n)/ is open if and only if for each open U C Uv(n) the set

{I;EUv(n)IZ;-uforsome uEU}.
is also open. The openness of this set follows from the fact that the relation - is
defined with the help of the maps 7 introduced in (4.23) which are continuous (this
is clear) and open, which can be seen easily.

PROPOSITION 4.31. The E-module Fv = {Fv(n)}n>1 has a natural structure
7F of a topological operad. The natural map

(4.27) p : f'(Fv) Fv,
0

where 1 (Fv) is the free operad on the E-module Fv (Section 1.9), is an isomorphism
of Set-operads.
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PROOF. The operad structure on Fv is given as follows. For n > 2 define

Yv(n) := U Yv[T].
TERtree(n)

The E-module Yv = {Yv(n)}n>2 is a topological pseudo-operad, with the com-
position defined by grafting as in the proof of Proposition 1.78. It is clear that
the reduced E-module Uv of (4.24) is a sub-pseudo-operad of Yv. Defining rela-
tion (4.26) is obviously compatible with the pseudo-operad structure of Uv, thus the
reduced E-module {Fv(n)}n>2 is a pseudo-operad as well. The operad structure
on the full E-module {Fv(n)}n>1 is then given by formally adjoining the identity
1 E Fv(1) = * to the pseudo-operad {Fv(n)}n>2 as in (1.58).

The map (4.22) induces, for the n-corolla c(n), a En equivariant morphism

0(n) : Fv(n) = Fv(c(n))
=cn>

Uv[c(n)] . Uv(n)
Pro) , Fv(n)

0

By the universal property of the free operad r(Fv), the sequence {¢(n)}n>2 gives
o

rise to the desired continuous operadic map p : I'(Fv) - Fv.
Let us prove that each p(n) is a set isomorphism. This statement is clear for

0

n = 1, since r(Fv)(1) = Fv(1) so assume n > 2. By definition (see (1.52)
and (1.58)),

r(Fv)(n) = U Fv(T)
TERtree(n)

Further, for T E Rtree(n), the restriction p'Fov(T) coincides with the composition

Fv(T) - Uv[T] PTO' Fv(n),

where cT is the map (4.22). In other words, p(n) sends an element of Fv(T) to the
class of the corresponding primitive element. The fact that p(n) is a set isomorphism
then follows from the following statement whose proof is immediate.

CLAIM. Suppose A is a set, P C A a subset and let f : A -> P be a retraction
of sets, i.e. fop = lip. Let X := Al - with the relation - given by

ADa-f(a)FPCA.

Then the composition p : P y A
P-i

* X is an isomorphism of sets.

In our concrete situation, we put A = Uv(n), P C Uv(n) to be the set of
primitive elements and the map f to be induced by ry of (4.23).

Following the notation introduced in [GJ94], we denote the operad FRk =
{FEk(n)}n>1 by Fk = {Fk(n)}n>l. Proposition 4.31 implies that, forgetting the

O

topology, the compactification Fv is the free operad on the E-module Fv. The
role of nonprimitive elements in the quotient (4.25) is to introduce an appropriate

topology or, in other words, to glue together the `strata' {Fv(T)}TERtr.ee(n) forming
the space Fv(n). This means that the set Fv(n) can be decomposed into the disjoint
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FIGURE 13. Normal configuration (zi , zj2, z3) for i very big. The
distance di := Jz; - z; j is very small compared to Izil - z31 or
z3 - z3 1. The + denotes the `center of gravity' of points zil and z?'

union of strata,

(4.28) Fv(n) = U Fv(T)
TERtree(n)

o

The moduli space Fv(n) is a subset of Fv(n) corresponding, in the above decom-
o

position, to the n-corolla c(n) (the `top stratum'). Equivalently, Fv(n) is the set of
equivalence classes of points e = (h, () E U(T) such that

(4.29) 3(h) = rv(T).

EXAMPLE 4.32. Let us give some intuition behind formula (4.25) and ex-

plain why Fv(n) indeed compactifies the space Fv(n). Let us start with the case

dim(V) = 2 and n = 3. Consider a sequence {xi E Fv(3)}i>I and show that it has
a cluster point in F2(3).

Choose the normal representative (zi', z,2, z3) E V3 for each xi c Fv(3), i > 1.
Since the subspace of all normal triples is compact, the sequence (z; , zz , z3) has a
cluster point (c1, c2, c3) in V3, which is again a normal triple. If all CI, c2, c3 are

distinct we are done, because then the class [CI, c2, c3] E Fv(3) is clearly a cluster
point of the sequence {xi}i>1

If the points cI, c2, c3 are not distinct, then exactly two of them coincide; the
case when all three points are the same is excluded by (4.12). Suppose, without the
loss of generality, that cl = c2. This means that, after passing to a subsequence if
necessary, the points z and z? are very close for i big enough. The configuration
looks as shown in Figure 13.

The point (zz , z3 , z3) has several representatives in the `big' space Uv(3). One
such representative is the primitive one E Uv [t(3)] attached to the 3-corolla c(3):

with the vertex w colored by (zz , z3, z3). We will consider another representative
) E Uv[T() ] attached to the tree T()
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w
e,,

v

1 2 3

with the vertex w colored by the normalization of the configuration

2i +z2 3 3
( 2 'Zi)EV

o

representing a point of Fv(In(w)) -- Fv(2), the vertex v colored by the normaliza-
tion of the configuration

(z , z2) E V3

representing a point of Fv(In(v)) -- Fv(2) and the length function hi E Met(T( )

given by

1
21(4.30) hi(e) :=

zl z2
.

3 zi + zi
It then can be verified directly that

CC( ) 1 2 3 tp
'Zi , Zi) - -c(3) (Si )

for each i, therefore, by (4.26), the points and P indeed represent the same

element of the space Fv(3).
Intuitively, we introduced a new vertex v replacing two very close points zz

and z2 by their `center of gravity' 1(zi' + z2) and colored this new vertex by the
`microscopic' configuration (zz, z2 ). The rather complicated form (4.30) of hi (e)
follows from our choice of the normalization. Observe that, for Jz1 - z21 very small,

(4.31) hi(e) - 61zz
I

with di := Izi - z2 .

The representative belongs to the set

Uv[T( )]CYv[T( )]Fv(2)xFv(2)xR>,--S'xS1 >0

This set is not compact, but since the points z.1 and z2 are, for i very big, i>>0,
very close to each other, the third parameter in 11 >o representing the length hi(e)
is, by (4.31), very small, so the sequence() has a cluster point ( ) in Uv[T( ) ].
The class ± of i;( ) in Fv(3) is then clearly a cluster point of the sequence {xi}i>0.

EXAMPLE 4.33. Let us suppose again that dim(V) = 2 and present a similar

discussion for the space Fv(4). So, let {xi}i>1 be a sequence of points in Fv(4) and
let (z , z2 , z, , z4) be the normal representative of xi, i > 1. Let us show again that
the sequence {xi}i>1 has a cluster point in Fv(4). Because the subspace of normal
quadruples is compact, we may assume (after passing to a subsequence if necessary)
that the sequence {(zz , z2, zz , z4)},>1 converges to a point (c1, C2, c3, c4) E V4. We
distinguish four cases.

CASE 1. All points c1, c2, c3, c4 are distinct. Then the class [c1, c2, c3, c4] E
o

Fv(4) is a cluster point of the sequence {xi}i>, and we are done.



4 3 COMPACTIFICATION OF CONFIGURATION SPACES OF POINTS IN IV 229

CASE 2. Exactly two of the points c1, c2, c3, c4 coincide, say cl = c2. We
proceed exactly as for n = 3, that is, we replace the points zi and z, by their
`center of gravity' and introduce a new vertex colored by the normalization of the
`microscopic' configuration (zi , z, ).

CASE 3. Exactly three of the points c1, c2, c3, c4, say cl = c2 = c3, coincide.
This is the most difficult case. We represent the point xi by some E Uv [T(
assigned to the tree T(

1 2 3 4

with the vertex w colored by the normalization (P', p,) of

(zi + zi +'z3
z
4)'

3

the vertex v colored by the normalization (qi , q,, q3) of (zi , z,, z3) and the metric
h2 E Met(T( )) given by

12zz1 -2 - zt312 + 12zz2 - zz1 - z;312 + 12zz3 - zZ1 - zti212
hi(e) :_

z2

21zi + z, + z312

o a
The sequence {(pi,p,) x (gi,q,,g3) x hi(e)};>1 of points of Fv(2) x Fv(3) x JR>o
has a cluster point

(p1, p2) x (q1, q2, q3) x 0 E V2 X V3 x JR>o.

If all q1, q2, q3 are distinct, then the point E Uv[T( ) ], with
o a

[p1,p2] E Fv(In(w)) and( (v) [ql, q2, q3] E Fv(Im(v))

represents a cluster point of the sequence {x;};>1.

Suppose that not all q1, q2, q3 are distinct, say q1 = q2. We introduce yet
another new vertex u replacing the tree T( ) by T(( ) )

1 2 3 4

and define a representative(( E Uv[T(( )) ] by coloring the vertex w by the
normalization of

Zi +.Z,+Z3 4
( 3 ,z ),

the vertex v colored by the normalization of

Zi+Z 3
( 2 zi )
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and the vertex u by the normalization of (z , z ). We leave it as an exercise for the
reader to figure out how the length function hi E Met(T(( ))) must be defined.

The sequence {(()) }i>1 has a cluster point l (( )) because

l (()) E Yv[T(()) ]= Fv(In(w)) x Fv(In(v)) x Fv(In(u)) x R>o x R>0

(Sl)3 x (R>0)2

where the last two `noncompact' parameters, hi(e), hi(f) E IR>o, can be assumed
very small for i»0.

CASE 4. The last remaining case is cl = c2 54 c3 = c4 or a situation obtained
from this one by a reindexing. We introduce the tree T( )( ):

1 2 3 4

and color the vertex w by the normalization of

(Zi
+zit, z3+'z4)
2 ' 2

the vertex u by the normalization of (zz , z?) and the vertex v by the normalization
of (zi3, z'). We again leave it to the reader to figure out how the lengths hi (e) and
hi(f) must be defined to get a representative l )() of xi, i > 1, in

Uv[TOO
0 0 0

Fv(In(w)) X Fv(In(v)) x Fv(In(u)) x R>o x R>0 - ('S1)3 x (R>0)2.

The first three relevant factors of the above space are compact, thus the sequence
{l (__)( )}i>1 has a cluster point l ( )() E Uv[T( )( )] that represents a cluster point
of the sequence {xi}i>1.

0

The existence of a cluster point in Fv(n) of a sequence {xi}i>1 E Fv(n) for an
arbitrary V and n can be proved using exactly the same arguments as in Exam-
ple 4.32 and Example 4.33 by introducing a new vertex for each group of two or
more points which are, for large i, close to each other and replacing these points by
their center of gravity. Intuitively this can be imagined as applying a magnifying
glass to `microscopic' subconfigurations. Observe that we did not need the explicit
formula for the metric hi; we only needed to know that it is small for i»0. We
may thus formulate:

LEMMA 4.34. Let k = dim(V) > 1 and n > 1. Then each sequence {xi}i>1 E-
Fv(n) has a cluster point in Fv(n).

The main result of this section reads as follows.

THEOREM 4.35. Let k = dim(V), n > 1. Then each Fv(n) is a compact smooth
(kn - k -1)-dimensional manifold-with-corners and the topological operad Fv is in
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o

fact an operad in the category of manifolds-with-corners. The moduli space Fv(n)
is an open dense subset of Fv(n).

PROOF. Let us show that each point x E Fv(n) has a neighborhood U. iso-
morphic to a neighborhood of a point in the cube Ikn-k-1, I = [0,1]. Recall that
x has a unique primitive representative

a
(0, b) E (TV A, E Fv(S), S E Rtree(n),

with

V) = X 0,,,, where ib.. E Fv(In(w)).
wE Vert(S)

Let us choose, for each w E Vert(S), neighborhoods U. of 0. in Fv (In(w)). Choose
also a positive number e E 11 >o and define the `canonical neighborhood'

(4.32) UU := ( (h,()EYv[S] ] h(e) < e,eEedge(S), CE XU, C Fv(S)1
wEVert(S)

By a standard continuity argument, the neighborhoods U. and the number e can
be choosen small enough so that U. is a subset of UV[S]. Define the map ux : U, -
Fv(n) as the composition

U. '- Uv[S]
nraJ

' Fv (n).

Suppose that i = (hi, (i) E UU, i = 1, 2, are two distinct points. It is clear that
if ux(e1) = ux(C2), then 3(h1) = 3(h2), so we may apply Lemma 4.28 to conclude
that 1 = C2. This means that the map u. is a monomorphism.

The map u. is clearly continuous. It is also, by Lemma 4.30, an open map. So
u,, is an isomorphism of U. onto its image u,(UJ) C Fv(n)

To simplify the notation, let N. := k a(w) - k - 1, for w E Vert(S). Since
o

Fv(In(w)) is an Nw-dimensional smooth manifold, we may assume that the subset
o

U,,, of Fv(In(w)) is diffeomorphic to an open subset of R-. Then U. will clearly
be diffeomorphic to a neighborhood of the point

(0'... , 0 1 1) E Ikn-k-1, 2,... , 2 ,

where the number of zeroes is equal to the cardinality of the set edge(S)
Choosing the above data for each x E Fv(n), we obtain an atlas

J.1= IU., U. 1. E F,(n)-

To prove that it defines a structure of a smooth manifold-with-corners, one needs
to investigate transition functions and prove that they are smooth. An explicit de-
scription of these functions is very clumsy, but the point is that they are combina-

o

tions of maps WT (4.17), projections proj : Con(V, m) -* Fv(m) and normalizations
o

nor : Fv(m) --* Con(V,m), for a choice of trees T and natural numbers M. From
this it follows that they are smooth as desired.

It is intuitively clear that each two distinct points x and y of Fv(n) admit
mutually disjoint canonical neighborhoods (4.32) U. and Uy which proves that the
manifold Fv(n) is Hausdorff. A rigorous proof of this statement would be, however,
long and clumsy and we omit it.
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Let us prove that Fv(n) is compact. Since the topological space Fv(n) obvi-
ously has a countable basis, it is enough to prove that each sequence {xi}i>1 of
points of Fv(n) has a cluster point. We already know, by Lemma 4.34, that this is

o

true when all xi c Fv(n). Let us consider the general case.

Let (0,bi) E Uv[Si], Oi E Fv(Si), be a primitive representative of xi, Si E
Rtree(n). Since the set Rtree(n) is finite, there exists S E Rtree(n) such that
Si = S for infinitely many i > 0. So we may assume, passing to a subsequence if_ o

necessary, that Si = S for all i. Recall that *j (w) E Fv(In(w)) denotes the of color
of w E Vert(S).

By Lemma 4.34, the sequence {bi(w)}i>1 has a cluster point in Fv(In(w)), for
each w E Vert(S). This clearly implies that the sequence {bi}i>1 has a cluster
point

X ow
wE Vert(S)

in Fv(S) D Fv(S). The operad structure -yF of Fv induces, as usual, the contraction

'ys : Fv(S) - Fv(n)
along the tree S. Then the point x := is a cluster point of the sequence
{xi}i>i.

To prove that Fv (n) is a dense subset of Fv(n), we observe that each canonical
o

neighborhood Ux of a point x E Fv(n) has a nonempty intersection with Fv(n).
Indeed, U. clearly contains some (h, () such that h(e) > 0 for all e E edge(S).

Then 3(h) _ {rv(S)}, thus, by (4.29), [C] E Fv(n).

EXAMPLE 4.36. Let us consider configurations of points on the real line. The
space Con(R, n) is clearly, for each n > 1, a free E"-space,

(4.33) Con(R,n) = Con(R,n) x E",

where

Con(R,n):_{(z...... z") ER"I zl<...<z"}.
Presentation (4 33) induces the factorization

o

Fi(n) - Fl(n) X E",

with

F1(n) := Con(R, n)/Aff (R) = {(z1, ... , z") E R" j 0=z' < ... < z" = 1},
on-2

which is the open (n - 2)-simplex A . There is a corresponding decomposition
of the compactification:

Fi(n) - F1(n) x E".

The space F1(n) is, as a manifold-with-corners, isomorphic to the associahedron
Kn. In fact, the associahedron can be obtained by blowing up some faces of the
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zIf2z
z3 S z3

FIGURE 14. Magnifying glass.

on-2
simplex On-2 or, equivalently, by a truncation of A see [Sta97, Appendix B]
or Section 1.6.

Recall that each K. is a cellular chain complex, with cells indexed by reduced
planar n-trees. This decomposition corresponds to the stratification (4.28) of the
compactification.

The E-module FI = {F1(n)}n>I is a non-E operad, isomorphic to the non-E
operad of the associahedra k = {Kn}n>1.

EXAMPLE 4.37. The operad F2 = {Fi(n)}n>1 was intensively studied as a
candidate for a solution of the Deligne conjecture; see also Section 1.1.19. Getzler

o

and Jones [GJ94] constructed a cell decomposition of F2, induced by the Fox-
o

Neuwirth decomposition of the E-module of open parts F2 = {F2(n)}n>i. This
cell structure was, unfortunately, discovered not to be compatible with the operad
structure, but there still exists, as shown by A. Voronov in [Vor99a], a coarser
filtration compatible with the operad structure and extending the Fox-Neuwirth
decomposition of the open parts.

Since all constructions of this section are clearly functorial, we may formulate
the following proposition

PROPOSITION 4.38. The assignment V - Fv defines a functor from the grou-
poid of finite dimensional Euclidean spaces and their linear isometries to the cate-
gory of operads in the symmetric monoidal category of compact smooth manifolds-
with-corners.

REMARK 4.39. The role of trees for the compactification described in this sec-
tion can also be intuitively explained using the idea of `macroscopic,' respectively

o

`microscopic,' configurations. Elements of the moduli space Fv (n) are macroscopic,
by definition. They can be represented by n distinct points z1, ... , zn of V. They
belong to the open stratum of the compactification Fv(n) indexed, in (4.28), by
the n-corolla c(n) E Rtree(n).

Let us illustrate the idea of microscopic configurations on elements of the stra-
o

turn Fv(T( )'), where Tl ) E Rtree(3) is as in Example 4.32. From the macroscopic
point of view, the first two points z1 and z2 are so close that they almost coincide.
The root vertex of Tl ) is then colored by this `almost macroscopic' configuration.
To distinguish between zI and z2, one must apply a `magnifying glass' as indicated
in Figure 14. The vertex v of T( ) (the unique nonroot vertex (see Example 4.32 for
the notation)) is then colored by this microscopic configuration, which can be made
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`macroscopic' by applying our magnifying glass and it is thus in fact an element of

(in this case) Fv(2)
More complex strata are indexed by more complex trees such as Tll 1 > from

Example 4.33 One must then consider microscopic configurations of points that
themselves are decorated by (higher-order) microscopic configurations, etc.

4.4. Compactification of configurations of points in a manifold

The aim of this section is to modify the approach of Section 4.3 and review a
construction of a compactification Con(M, n) of the configuration space Con(M, n)
of n distinct labeled points in a complete k-dimensional Riemannian manifold M,
originally due to S. Axelrod and I.M. Singer [AS94]. As explained by Proposi-
tion 4.44 and Remark 4.45, the E-module Con(M) = {Con(M,n)},>1 has, for a
general M, no `reasonable' algebraic structure, because there is no canonical iden-
tification of the tangent space T,,M at a point x E M with the `model space' Rk.
Such an identification exists if M is parallelizable; the E-module Con(M) is then a
right module over the operad Fk = {Fk(n)},>1 constructed in Section 4.3 (see also
Theorem 4.46).

More suitable for a nonparallelizable manifold M is the framed configuration
space fCon(M, n) introduced in Definition 4.11. We construct a compactification
fCon(M, n) of this space and show that the -module fCon(M) = {fCon(M, n)}, >1
forms a right module over a framed version f Fk of the operad Fk (Theorem 4.49).

This section is very technical and consists mostly of constructions of the above
mentioned objects though it also contains some material of independent interest,
e.g. the cyclohedra (Example 4.47).

COMPACTIFICATION OF Con (M, n). Let us describe a compactification of the
(unframed) configuration space Con(M, n) of n distinct labeled points in a complete
Riemannian manifold M. The steps of our construction will be analogous to the
steps of the construction of the compactification Fv (n) in Section 4.3.

Instead of the set Rtree(n) of (isomorphism classes of) reduced rooted n-trees,
we use here the set Etree(n) of all (isomorphism classes of) n-trees such that all
vertices except possibly the vertex adjacent to the root are at least binary (the root
vertex may have arity one). In other words, Etree(n) denotes the set of trees with
a special vertex - the root - such that all vertices which are not special are of arity

2.

The reason why we need these extended trees and not Rtree as in Section 4.3
is the following. Strata of the compactification Fv (n) described in the previous
section were indexed by trees T whose root vertices were colored by macroscopic
configurations, while the remaining vertices were colored by microscopic config-
urations. Both macroscopic and microscopic configurations were elements of the

0

moduli space Fv (n) for some n, as explained in Remark 4.39. Since the affine group

Aff (V) acts transitively, Fv(1) = the point, therefore vertices of arity one play no
role and we may in fact assume that T is reduced, T E Rtree.

There is a similar decomposition (4.44) into strata also for the compactifica-
tion Con(M, n) described in this section. These strata are again indexed by trees
T with the root vertices colored by macroscopic configurations and remaining ver-
tices colored by microscopic configurations. While microscopic configurations are,
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o

as before, elements of the moduli spaces FV(n), macroscopic configurations are el-
ements of the configuration spaces Con(M, n) which are nontrivial even for n = 1,
Con(M, 1) = M. Therefore we must consider also trees with root vertices of arity
one (or higher, of course), that is, T E Etree.

Observe that the grafting defines a natural right Rtree-module structure on
£tree, which provides a `philosophical' explanation of the module structures con-
sidered in this section.

Observe that while Rtree(1) = 0, £tree(1) the 1-corolla with one vertex
of arity one. It will be useful to think of a tree T E £tree(n) as obtained by grafting
subtrees Tj E Rtree(ni) to the s-corolla, for s < n and some (not necessarily all)
1 < i < s, as indicated in Figure 15.

Let Met(T) denote, as in Section 4.3, the space of all metrics h edge(T) --+ R>o
on the set of (internal) edges of a tree T. We will also need the following notation.

NOTATION 4.40. For a tree T E Etree(n), let it (T) (inputs of root) denote
the set In(rv(T)) of input edges of the root vertex rv(T) of T. We also denote by
iVert(T) the set

iVert(T) := Vert(T) - {rv(T)}

(the set of internal vertices).
For any vertex v E iVert(T), there exists a unique path in T connecting v and

rv(T); this path contains exactly one element of it (T) which we denote by pa(v)
(path of v). Similarly, for each 1 < z < n there exists a unique edge pa(i) E it (T)
(path of i) such that pa(i) lies on the path from the ith input leaf of T to the root.
Sometimes we will write more explicitly paT(v) and paT(i) instead of pa(v) and
pa(i).

Let us come back to the manifold M. Since we assume M to be Riemannian,
the tangent space TT(M) at each point x E M has an JR-linear positive definite

o

metric, so we may consider the moduli spaces FT. (m) (n) and their compactifications
FT (M) (n), n > 1; see (4.11) and (4.25) for the definitions. We simplify the clumsy
notation FTT(M) (n) by introducing

(4.34) Fx(n) := FT (m) (n), for x E M and n > 1,
o

and similarly, for the open parts, Fx(n) := F s(M)(n). The system {Fx(n)}xEM can
clearly be pasted together to form a smooth fibration

o

f : F(n) -+ M
o

with fiber f, I(x) = Fx(n), x E M. The standard extension trick enables one to
O

consider similar fibrations fs : F(S) -+ M with an arbitrary nonempty finite set S.
For each T E Etree(n), there is a map aT : Con(M, it (T)) -+ MiVe,-e(T) given

by

aT (x) (v) xpa(")

for v E iVert(T) and Y= {xe}e0xr(T) E Con(M,ir(T)). Recall that pa(v) E ir(T)
was introduced in Notation 4.40.
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nl n2 ns

A tree T E £tree(n) decomposed to the s-corolla and trees Ti E £tree(ni), 1 < i < s.
The set it (T) equals {el, ... , e,}. Some of the trees Ti may be absent, as is T2 in
the following tree with s = 3:

FIGURE 15. Examples of trees from £tree(n).

Using the schematic picture Figure 15, aT(Y) can be seen as the function whose
value at v E Vert(T,) is xey, 1 < i < s. Let Con(M)(T) denote the pullback of the
diagram

X F(In(v))
vEiVert(T)

X f j,(v)
vEi Vert(T)

Con(M, 2r (T))
aT

-MiVert(T)

The set Con(M)(T) is the set of all colorings of the tree T such that the root
is colored by an element i = {xe}eE¢r (T) of the configuration space Con(M, it (T))
while the remaining vertices v E iVert(T) (if any) are colored by elements of the

0

space Fxna(v) (In(v)). Let us define, for T E £tree(n),

Z[T] := Met(T) x Con(M)(T);

compare (4.14). Elements of Z[T] are sets

(4.35) 77 = {A, I v E Vert(T)}

with

A, (T) = x = {xe}eEir (T) E Con(M, it (T))
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and, for v E iVert(T),

[zv]) E R>o x F.,.(-) (In(v));

compare (4.15). Observe that A,(T) has no `Met(T)'-coordinate, since the metric
is defined on internal edges of T only.

For each 1 < i < n, there is in the tree T a unique path from the ith input leaf
to the root. Using the notation introduced in Figure 10 of Section 4.3, we define a
map cpi : Z[T] -> M by the formula

(4.36) Wi(r7) expye,
_2t"9-IzVs-z

+...+tvl...t s-1z'Ul),

where exp,,, : Txes (M) -, M is the exponential map at xes whose existence is
guaranteed by the completeness of M.

The idea behind this formula is similar to that of (4.16), that is, cOi(77) is
a combination of xes E M with the image under the exponential map of zus=i
scaled by t, _,, with zv-2 scaled by tvs_Z with zvs I scaled by t,,,
Finally, let cpT : Z[T] -> M' be given as

IOT (77) (cpl(77),... ,(Pn(r7)) E M',

to be compared with the definition (4.17) of the map WT : Yv [T] -+ Vn The subset
W[T] C Z[T] of composable elements (an analog of the set UV[T] of 4.18) is defined
by

(4.37) W[T] {77 E Z[T] I all cpi(77) E M are distinct, 1 < i < n}.

Each 77 = (h, 0) E Z[T] with a metric h c Met(T) determines the `zero set'
3(h) C Vert(T) as in (4.13). Recall that the tree T then decomposes into disjoint
subtrees {Tw}wE3(h), see also Figure 8. For w E 3(h) and 77 as above we have, as
in (4.20), obvious restrictions

(4.38)

where

rw(r7) E { y[TT() [T.], for w E 3(h),)w rv(T)

Yyp°T(w) [Tw] YT IaT(w) (M) [Tw]

with Yv[TI, for a vector space V, introduced in (4.14). The meaning of (4.38) is
the following. The decomposition {Tw}wC3(h) is the decomposition of T into the
biggest subtrees such that the metric h is positive on all (internal) edges of T. As
in Section 4.3 this means that {Tw}wE3(h) is obtained by cutting in two each edge
of length zero.

The tree Tw with w = rv(T) contains the special vertex, T. E Etree, so the
restriction of the `coloring' 77 is an element of Z[TT]. The remaining trees T.
with w rv(T) have no special vertices, so all their vertices v are `colored' by
0

(In(v)) and the restriction of 77 is an element of Yv [T] with V = Tx,.(w) (M).

The extended set W[T] (an analog of the extended set Uv(T] of (4.21)) is the
set of all 77 E Z[T] such that all restrictions rw(77) are composable, that is

(4.39) rw(q) E
U

IT-]o)
[Tw],

fofor w

r w E 3(h) )w rv(T),
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where, in accord with our conventions, we denoted

UIa-'(w)[T.] UT.,., (-) (M) IT. I

with the set UV[Tm] defined, for a vector space V, in (4.18).
As in Section 4.3, there are special primitive elements of the space Z[T] _

Met(T) x Con(M)(T) of the form (0, ¢), where 0 denotes the trivial metric and
0 E Con(M)(T). It is clear that each such element belongs to W[T].

Let Th denote, as in Section 4.3, the tree obtained from T by shrinking each

subtree Tw, w E 3(T), to a vertex which we denote again by w. We would like, as

in (4.23), to assign to each 77 E W[T] some S(77) E Con(M)(Th). The formula

(4.40) 8(i) (= y x X [wTT (rw(]))]
wE iVert (Th )

with

(4.41)

analogous to (4.23) unfortunately does not define an element of Con(M)(T). The

point is that [wrw(rw(77))] E FI,aT(w)(InTh(w)) while it must be an element of
0

FypaTh(w)(IriTh(w)). The following example shows that the points XP'T(w) and

yPaTh(w) are, in general, different.

EXAMPLE 4.41. Let us consider the following tree T E £tree(3):

with it (T) = {e}, In(u) = {r, s} and paT(v) = e. Define a metric h E Met(T)
by h(e) := t > 0 and h(r) = 0. Then 3(h) = {rv(T),v}, T,.,,(T) is the subtree
with vertices rv(T) and u and T is the subtree (2-corolla) with vertex v. The
corresponding tree Th E Etree(3) is obtained by collapsing T,(T) and T to corollae,

Th :

where we used the letters s and r to denote the edges corresponding to the edges
of T with the same name. Clearly it (Th) = {r, s} and paTh (v) = r.

Let us consider 77 E Z[T] (notation of (4.35)) with A. = (t, [Zr, ZS]), where
(zr, zs) is a normal pair of points of TIM, x := xe. For this 77 we clearly have
xP'T(") = X. On the other hand, the element (yr, y8) of (4.41) is given by

yr = expl(tz'') and ys = expx(tzs),
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as follows from (4.36). We conclude that, at least for some if not for all t > 0,

(4.42) xP"T (") = x eXpx (tzr) =
ypaTh (").

So we need to move the factor [wT (rw(77))] in (4.40) from the point XPaT(w)
to yPaTh("'). We use the `parallel transport' 4by,y : TT(M) --> T9(M) defined, for
xEM,aETT(M) and y:= exp,(a), by

4Dx,y() :_ exp.(a + s6), e E T. (M);ds s=o

compare [AS94, (5.80)]. Strictly speaking, the notation d)y,y is not correct because
there might be several a's with y := expx(a), but in our applications the a will
always be as explicit as in (4.42) where a = tzs.

Parallel transport can clearly be used to move all objects functorially depending
on the tangent spaces of M. In particular, parallel transport induces the map

o O

'D ,y : Fr(S) '-i F9(S),

for an arbitrary finite set S. The correct formula for S : W[T] -> Con(M)(Th) is

(4.43) 8(77) := y X X 4D P.r(-) ,a,(-) [wT (rw(T7))].
wEi Vert(Th) y

We then proceed exactly as in Section 4.3, that is, we define

Con(M,n) := W(n)/

where

and the relation - given by

W(n) := U W[T]
TE&-e(n)

W (n) D W [T] E) 77 - (0,5(77)) E W[Th] C W(n),

for T E Etree(n) and n > 1. The following theorem can be proved exactly as was
Theorem 4.35 of Section 4.3.

THEOREM 4.42. The space Con(M, n) is a smooth manifold-with-corners of
dimension kn containing the configuration space Con(M, n) as an open dense subset.
It is compact if and only if M is.

As proved in [Mar99a], the space Con (M, n) coincides with the Axelrod-Singer
compactification of the configuration space [AS94]. As in (4.28), the set Con (M, n)
is the disjoint union of strata,

(4.44) Con(M,n) = U Con(M)(T), n > 1.
T EEtree (n)

EXAMPLE 4.43. It is immediate to see that Con(M,1) = M. In fact, the
decomposition (4.44) consist, for n = 1, of a single strata corresponding to the
1-corolla ,

Con(M)(}) = M.
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So even Con(M,1) is not compact if M is not. Loosely speaking, the `compactifi-
cation' Con (M, n) takes care of points that come close together, not of those that
`diverge to infinity' in M. Therefore a more appropriate name for Con(M, n) would
be a `resolution of diagonals' (following [Gin951) or a `partial compactification.'

Let us try to understand what kind of algebraic structure the E-module

Con(M) = {Con(M, n)},,>1

may possibly have. Observe first that there is a `blowing down' map (terminology
borrowed from algebraic geometry)

(4.45) bld :Con(M,n) MXn, bld(u) = (bldl(u),... , bldn(u)), n > 1.

The most efficient way to define this map is to say that it is an extension of the
inclusion Con(M, n) -+ MXn to the compactification Con(M, n). This extension is
necessarily unique, but its existence must be proved.

In terms of primitive representatives, the blowing down map is given as follows.
First, define bldT : Con(M)(T) Mn by

(4.46) bldT ({xe}eei(T) x X [z]
vEiVert(T) )

where pa(i), 1 < i < n, was introduced in Notation 4.40. Then we put bld(0, ¢) :_
bldT(c).

For each x E M, we have the operad F. := FT (,yf). This collection in fact
forms a `fibration'

f:F-*M, f={f, :F(n)- M},>1
whose fiber over x E M is the operad Fx. For each n > 1 and k 1 . . . . . kn > 1, let
X (n; k 1 , . . . , kn) be the pullback of the diagram

X F(ki)
1<i<n

X fk,
1<i<n

-Con
(M,n)

bId
MXn

Elements of X (n; k1, ... , kn) are arrays (u; v1, ... , vn), where u E Con (M, n) and
vi E Fb1d,(u)(ki), for 1 < i < n. The algebraic structure of the E-module Con(M) _
{Con(M, n)}n>1 is described in the following proposition, which can be proved by
arguments similar to those of Proposition 4.31.

PROPOSITION 4.44. For each n > 1 and k1 i ... , kn > 1, there exists a natural
`composition'

v:X(n;k1,...,kn) -
X(n;k1,...,k,) o (u;vi,...,v,) - v(u;v1i...,vn) E Con(M,k1+...+kn)

satisfying obvious associativity, equivariance and unit axioms analogous to that of
a right module over an operad.
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I

FIGURE 16. A configuration from Con (S', 5).

REMARK 4.45 A proper name for the structure on Con(M) described in Prop-
osition 4.44 would probably be a colored right module over the colored operad F,
with a smooth set of colors M. While in an ordinary module N over an ordinary
operad P, each `input' of u E N is acted on by elements of the same operad P, in
this case the `ith input' of Con(M, n) is acted on by elements of the operad Fbld,(u)
whose `color' bldti(u) E M depends on both i and (smoothly) also on u e Con(M, n).
Of course, all operads Fbld,(u) are isomorphic to Fk but, in general, noncanonically.
One way to obtain a canonical identification is to assume that the manifold M is
parallelizable, as in the following theorem.

THEOREM 4.46. Let M be a complete parallelizable Riemannzan manifold. The
E-module Con(M) = {Con(M, n)}n>1 is then a right Fk-module. The module struc-
ture is functorial up to a choice of the trivialization of the tangent bundle of M.

PROOF. The theorem will follow from a more general Theorem 4.49.

EXAMPLE 4.47. Consider the configuration space of points on the unit circle
S'. Clearly

(4.47) Con(S',n) = Con(S',n) X S1 X En/7Gn,

where Con(S', n) is the space of all n-tuples (xl, ... , x") of points of S1 = {z E
C I Jzl = 1} such that x1 = 1 and

0 < arg(x2) < arg(x3) < . . . < arg(xn) < 2ir;

see Figure 16. In (4.47), the group Z, is embedded in En as the subgroup of cyclic
permutations. Factorization (4.47) induces the decomposition of the compactifica-
tion

Con(S1, n) = W, x S' x E. /Z,

where W,., the compactification of Con(S1, n), is the compact (n - 1)-dimensional
polyhedron introduced by R. Bott and C. Taubes [BT94, page 52491 in connection
with the study of nonperturbative link invariants (but denoted there by Wn_1),
and dubbed, in [Sta97], the cyclohedron. The polyhedron W1 is just the point, W2
is the interval, W3 is the hexagon portrayed in Figure 17 and the three-dimensional
polyhedron W4 is portrayed in Figure 18.

Since S1 is a compact parallelizable manifold of dimension 1, the E-module
Con(S1) :_ {Con(S', n)},>1 is, by Theorem 4.46, a right module over the operad
F1 which was discussed at great length in Example 4.36. This induces an action
of the nonsymmetric operad iC = {K, }n>1 of the associahedra on W = {Wn}n>1
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FIGURE 17. The cyclohedron W3

FIGURE 18. The cyclohedron W4.

This action was studied and very explicitly described in [Mar99d]. It was also
shown in the same paper that the contractibility of the cyclohedra reflects a certain
property of Koszulness for modules over operads.

For a general, nonparallelizable manifold, one needs extra data that would
identify the tangent space TT(M) with irk, for any point x E M. These data
are provided by a framing, that is, one must consider the framed configuration
space fCon(M,n) which we introduced in Definition 4.11. The compactification
fCon(M) = {fCon(M,n)}n>1 is then indeed a right Fk-module. It is, in fact, a
module over a bigger operad fFk which we introduce now.

FRAMED OPERAD fFk. The natural action of the orthogonal group 0(k) on
Rk induces a natural left action on the configuration space Con(Rk, n) which in turn

0

induces a left action on the quotient Fk(n) = Con(IR/,n)/Af. In terms of normal
representatives introduced in Section 4.3, this action is described by

(z'. ,z")'-' (gz1,,gz'`),
where (zl, ... , z") is a normal representative of a point of Fk(n) and g E 0(n).
Observe that the configuration (gzl,... , gzn) is normal, too.

The above action induces a left 0(k)-action on the compactification Fk(n)
satisfying (4.2) and we define

fFk Fkx 0(k),

the semidirect product introduced in Definition 4.2.



4 4 COMPACTIFICATION OF CONFIGURATIONS OF POINTS IN A MANIFOLD 243

We will need for the proof of Theorem 4.49 a more detailed description obtained
by decorating the steps of the construction of Fk(n) by orthogonal frames. We use
the notation introduced in Section 4.3, but we drop the subscript V since V will
always be the space Rk here. Namely, for n > 2 and T E Rtree(n) we introduce

(4.48) fY[T] :=Y[T] x 0(k)x",

with Y[T] defined in (4.14) as Y[T] = Met(T) x F(T). The elements of (4.48) will
be written as

(4.49) eX(91,...,9n), EY[T], (91,...,9n)E 0(k)xn

Observe that the E-module fY = {fY(n)}n>1 with

fY(n) := u fY[T]
TERtree(n)

is an operad. Indeed, we already know from the proof of Proposition 4.31 that the
E-module Y = {Y(n)}n>1 with

Y(n) U Y[T]
TERtree(n)

is an operad. Each Y(n) clearly admits a natural left action of the orthogonal
group 0(k) which satisfies (4.2). The operad structure of fY is then given by the
identification

fY - Yz 0(k).

Let us introduce the extended set of composable elements by

fU[T] := U[T] x 0(k)x",

where the set U[T] = US[T] was defined in (4.21). Then the framed compactifica-
tion f Fk (n) can be defined also as

fFk(n) := fU(n)/

where

f&(n) := H fU[T],
T ERtree (n)

and the equivalence - is given by

(4.50) fU(n) D fU[T] E) x 9- x g E fU[Th] c fU(n),

for T E Rtree(n), C E IT [T] and g E 0(k)x", with ry(e) defined in (4.23).

COMPACTIFICATION OF fCon(M, n). The shortest way to introduce the com-
pactification fCon(M, n) of the framed configuration space fCon(M, n) is to say that
it is the pullback of the diagram
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(4.51)

Con (M, n)

4 GEOMETRY

O(M) Xn

Xn
1

lrN!

bld MXn

where bld : Con(M, n) -+ MXn is the blowing down map (4.45) and 7rjy[ : O(M) -,
M is the orthogonal frame bundle of M. The following proposition follows imme-
diately from Theorem 4.42, since fCon(M, n) is, as the pullback of (4.51), `locally'
the product Con(M,n) x 0(k)xn

PROPOSITION 4.48. The space fCon(M,n) is a smooth manifold-with-corners
of dimension

kn(k - 1) _ kn(k + 1)
dim(Con(M,n)) +ndim(O(k)) = kn+

2 2

containing the framed configuration space fCon(M,n) as an open dense subset. It
is compact if and only if the manifold M is.

In order to prove that the E-module f Con(M) = { fCon(M, n)}n>I is a right fFk-
module, one must understand better the structure of these objects. Let fCon(M)(T)
be the pullback of the diagram

Con(M)(T)
where the blowing down map bldT was defined in (4.46). For T E Etree(n) let

(4.52) fZ[T] := Met(T) x fCon(M)(T);

compare (4.14). An element of f77 E fZ[T] is of the form

(4.53) f?7 = 77x ff with f= (f1, , fn),

where 77 is as in (4.35) and fi is a frame at xya(i) 1 < i < n. Define the composable
elements and the extended set by

fW[T] {77 x f E fW[T] J 17 E W[T]} and

fW[T] {17xfEfW[T](17EW[T]}

with W[T] (respectively W[T]) as in (4.37) (respectively in (4.39)). Finally, each

f77 E fW[T] determines 5f(fi) E fCon(M)(T) by the formula

J071) 5(77) x W),
where 6(77) E Con(M,T) was defined in (4.43) and

,b(f) := (xPar(1) yPaTh(1) (fl), ... ,
4PiPp,(^) yaa7.h(n) (fn)),

where y" has the same meaning as in (4.41). The space

fCon(M,n) := fW(n)/ ^'

with

fW(n) := U fW[T]
TEEtree(n)
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and the relation - given by

(4.54) fW(n) fu'-[T] D f77 - (0,af(fi7)) E fW[Th] C fW(n),

for T E etree(n) and n > 1, then coincides with the pull back of the diagram (4.51).

THEOREM 4.49. Let M be a complete Riemannian manifold. The E-module
fCon(M) _ {fCon(M,n)}n>1 is then a natural right fFk-module.

PROOF. The scheme of the proof is similar to that of Proposition 4.31. For
m, n > 1 define

fZ(n) = U fZ[T]
Tettree(n)

with fZ[T] as in (4.52) and

fY(m) U fY[S]
SERtree(m)

with fY[S] as in (4.48).
The most important step of the proof is to observe that the E-module fZ =

{fZ(n)}n>1 is a right module over the operad fY = {fY(n)}n>1. This module
structure is defined by grafting underlying trees, using the frames to identify tangent
spaces at various points. It is described, in terms of oi-operations, as follows.

Let T E Stree(n), S E Rtree(m) and 1 < i < n. Let 77 x (f1i..., fn) E fZ[T] c
fZ(n) be as in (4.53) and l; x (g1....,g,n) E fY[S] c fY(m) as in (4.49). The
ith frame fi defines an identification of TT,.(i)M and Rk. So it also identifies

E Y[S] with a point fi(l:) E YY,ah)[S] and (g'i...,g-) E O(k)xr with a vector
(fi(gi), , fi(gm)) of frames at xP"(i) E M. This vector can of course be described,
using the natural left action of the orthogonal group on frames, as

(fi(gi), ... , fi(gm)) _ (gi-1(fi), ... ,

We then define

(4.55) [77 x (fl, ... , fn)] of [ x (gl,... , gm)]
:= p x (fi, ... , fi-l, fi (gi ), , fi (gm), fi+i. , fm) E f Z(m + n - 1),

where µ is the coloring of T of S given by 77 on T and e on S.
It is evident that the above action restricts to an action of the extended E-

module fU = {fU(n)}n>1 on the extended E-module fW = {fW(n)}n>1 and that
it commutes with the defining relations (4.54) and (4.50). Therefore it induces the
requisite action of the quotient spaces. This finishes the proof of the theorem.

REMARK 4.50. The unframed operad Fk is a suboperad of fFk; therefore the
E-module fCon(M) = {fCon(M,n)}n>1 is also a right Fk-module, with the action
given by the obvious modification of (4.55):

(4.56) [77 x (f1, ... , fn)] of e

µ x (f1, ... , fi-1, fi, ... , fi, fi+1, ... , fm) E fZ(m + n - 1).
i times
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PROOF OF THEOREM 4.46. If the manifold M is parallelizable, then clearly

(4.57) fCon(M)(n) = Con(M)(n) x 0(k)x',

with the isomorphism depending on the choice of the trivialization of the tangent
bundle of M. The action (4.56) clearly does not affect the second factor of (4.57),
therefore it induces an action on the compactification of the unframed configuration
space.



CHAPTER 5

Generalization of Operads

5.1. Cyclic operads

In Section 1.1.16 we recalled the operad Mo = {Mo(n)}n>1 of Riemann
spheres with parametrized labeled holes. Each Mo (n) was a right E,-space, with
the operadic right E, action permuting labels {1, ... , n} of holes. But each Mo(n)
obviously admits a higher type of symmetry which interchanges labels 10,... , n} of
all holes, including the label of the `output.' A similar example admitting a higher
symmetry is the configuration pseudo-operad M = {M(n)}n>2 of the Deligne-
Knudsen-Mumford compactification of configuration spaces of points on CIP'; see
Section 4.2.

These examples indicate that, for some (pseudo-)operads, there is no clear
distinction between `inputs' and the `output,' so instead of the `oq-formalism' of
Section 1.3 one has to consider operations tioj as in Remark 5.10. Cyclic operads,
introduced by E. Getzler and M.M. Kapranov, formalize this phenomenon. They
are, roughly speaking, operads with an extra symmetry that interchanges the out-
put with one of the inputs. It is helpful to interpret the output of such an operad
as being indexed by 0, as indicated in Figure 1.

The material of this section and of Section 5.2 is taken mostly from [GK95].
Recall that the symmetric group En is the group of automorphisms of the set
11,... , n}. As observed above, operations of arity n in a cyclic operad admit an
action of the group of automorphisms of JO,... , n}. Let us give a name to it.

DEFINITION 5.1. Let En be the group of automorphisms of the set {0, ... , n}.

The group E+ is, of course, isomorphic to the symmetric group E,+,, but the
isomorphism is canonical only up to an identification {0, ... , n} = {1, ... , n + 1}.
We interpret En as the subgroup of En consisting of permutations o E E+ with
u(0) = 0. If T,, E E+ denotes the cycle (0,... , n), that is, the permutation with
T-(0) = 1, Tn(1) = 2, ... ,Tr(n) = 0, then T and En generate E+n.

Let C = (C, O, s, 1) be a strict symmetric monoidal category as in Section 1.1.

DEFINITION 5.2. A cyclic operad in C is an ordinary operad P as in Defini-
tion 1.4 such that the right En-action on P(n) extends, for n > 1, to an action of
Et fulfilling the following three axioms.

(i) If 77 : 1 P(1) is the unit of P, then the following diagram commutes.
T1

P(1) P(1)

1

247



248 5 GENERALIZATION OF OPERADS

123 n 0 1 23 n
FIGURE 1. An n-ary operation p of a cyclic operad. The output
of p is interpreted as the input of P labeled 0.

(ii) For each m, n > 1, of = yp(11;11 O and on = yp(IL;,O(n-1) O 11)
the diagram

01

P(m) O P(n) - P(m + n - 1)

IT- O Tn

P(m) O P(n) 'rm+n-1

SP(m),P(n)

On r

P(n) O P(m) P(m + n - 1)

commutes.
(iii) For each m, n > 1, 2 < i < m, of = yp(1L;17®('-1) O Il O

of-1 = yp(IL; rl®(-2) OIL (D .q0(n-i-1)) the diagram

Oi

P(m) O P(n) P(m+n - 1)

commutes.

Oi-1

P(m) O P(n) P(m+n-1)

gO(n-i) and

Observe that (iii) is not demanded in the original paper [GK95], though, as
observed by P. van der Laan, it should follow from the definition of cyclic operads
in terms of the triple of unrooted trees (Theorem 5.8). We were not able to verify
that (iii) follows from the other axioms of a cyclic operad.

REMARK 5.3. One may rewrite, for some concrete categories, axioms (i), (ii)
and (iii) of Definition 5.2 in terms of elements. When C = dgVec, the axioms read

(i) T1(1) = 1, where 1 E P(1) is the unit and
(ii1) for p E P(m) and q E P(n), the composition maps satisfy

'y(; 1 , . . . , 1,q,1,... , 1)'Tm+n-1
(_1)IPI I a I y(q . T,,; 1,... ,1, p Tm), for i = 1, and

i-1
1 q,1....71), for2<i<m,

1 1-1
where q (respectively q) indicates that q is at the ith (respectively (i-1)th)
position.
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123 n " 12 n

FIGURE 2. A `visualization' of the action of -r,. The element Trn
redraws p c- P(n), represented as an `operation' with n inputs and
one output, so that the first input becomes the output and the
output becomes the last input of p T,,,.

For C the category of topological spaces, the second axiom of course does not
contain the sign factor.

Because our conventions are based on the right action of the symmetric group,
our form of axioms of cyclic operads slightly differs from [GK95] which uses the
left action.

An intuitive feeling for the action of Tr,,, is suggested by Figure 2. In terms of
Figure 1, the action of Try is (up to sign) just the cyclic permutation of the labels
on the inputs of P from (0,1, 2,... , n) to (n, 0, 1,... , n - 1). We denote by Op+ or
simply by Op+ when C is understood the category of cyclic operads in C.

As operads were E-modules with an additional structure, cyclic operads are
cyclic E-modules with an extra structure.

DEFINITION 5.4. A cyclic E-module or a E+-module in a category C is a se-
quence

W = {W(-)}n>1

of objects of C such that each W(n) is a (right) Let E+-Modc or simply
E+-Mod when C is understood denote the category of cyclic E-modules.

REMARK 5.5. There is an obvious forgetful functor U- : E+-Mod --> E-Mod
from the category of cyclic E-modules to the category of E-modules. A cyclic
operad is then a cyclic E-module P such that the E-module U-(P) is an ordinary
operad with an endomorphism rr,,, acting on each U- (P) (n), n > 1, whose structure
maps satisfy (i), (ii) and (iii) of Definition 5.2.

We saw in Theorem 1.105 that an (ordinary) operad is an algebra over the
triple r : E-Mod - E-Mod of rooted trees. We show next that cyclic operads
are algebras over a similar triple based on uprooted trees, the `free cyclic operad'
functor r+ : E+-Mod - E+-Mod.

Let us assume, as in Section 1.7, that C has all small limits and colimits and that
for any object A the endofunctor A 0 - : C -> C preserves colimits. Recall (1.24)
that each E-module E determines the functor E -- E(X) from the category of
finite sets and their bijections to C. Because E,+l = for each is, this functor
can be used to define as similar functor for cyclic E-modules as follows.

Each cyclic E-module W = {W(n)},>1 induces a natural E-module Ew =
{Ew(n)}n>1 with

Ew(n) .- ( W(n - 1), for n > 2 and
l 0 (the initial object of C), for n = 1.
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The action of E, on Ew(n) is given by the identification En_1 = En induced by
the isomorphism

{0,...,n-1}={1,...,n}, iF i+1for0<i<n-1.
We can thus define, for any cyclic E-module W, a functor W -> W((X)) on

the category of nonempty finite sets and their bijections by

(5.1) W((X)) := Ew(X).

For instance, if C is the category of graded vector spaces and X a set with n + 1
elements, then

W((X))= ® Ew(n+1) ® W(n)
(g {1, ,n+1}-+X l (f {0,. ,n}-.X ) En+

compare (1.25).

REMARK 5.6. Double brackets in W((X)) remind us that the nth piece of the
cyclic E-module W = {W(n)}n>1 is applied on a set with n+1 elements, using the
extended En-symmetry. We thus have, for example, noncanonical isomorphisms

W(({0,...,n}))=W(n)
of E+-spaces and

W({0,... ,n}) = W(n+1)
of En+1-spaces.

Recall (Section 1.5) that an (unrooted) tree is a finite contractible graph. We
denoted by Vert(T) the set of vertices of a tree T and, for a vertex v E Vert(T), by
edge(v) the set of edges incident with v. Let Treen denote the category of unrooted
trees with legs (it makes no sense to speak about leaves of an unrooted tree) labeled
by 0,... , is. That is, elements of Tree+ are unrooted trees T with legs labeled by
t : Leg(T) -* 0,... , n}. Of course, each tree T E Tree+ can also be considered as
a rooted tree, with root the leg labeled 0.

For a cyclic E-module W and a labeled unrooted tree (T, t) we have the fol-
lowing cyclic version of the unordered product of Definition 1.70:

W((T,t)) := O W((edge(v))).
Vert(T)

The-main difference between the formula in Definition 1.70 and the above
formula is that instead of the set In(v) of incoming edges of a vertex v of a rooted
tree, here we use the set edge(v) of all edges incident with v (it makes no sense to
speak about incoming edges of a vertex of an unrooted tree). As before, we will
usually omit 2 and write simply W ((T )) instead of W ((T, Q.

If *n is the (n + 1) -star, i.e. the unrooted tree with one vertex and is + 1 legs,
then clearly

(5.2) W((*,)) = W(n), for all n > 1.

Finally (cf. Definition 1.77), let

+(W)(n) := colim W((T)).
T E Iso(Treen)
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The grafting of trees defines a natural map µ,y+ : 'F+`I'+W -> T+W. We also
have an embedding of cyclic E-modules vp+ : W -* T+W given by the canoni-
cal map of W(n) = W((*n)) to the colimit (5.3). For n > 1, the E+-action on
W+(W)(n) is given by renumbering legs of trees of the indexing category Treen
in (5.3). Thus W+ is an endofunctor on the category of cyclic E-modules.

In fact, `I'+ is the `free cyclic pseudo-operad' on W, but we are not going to
study such objects here (see, however, Remark 5.10). As in (1.58), the free cyclic
operad is obtained by adjoining the unit,

F+(W) := 1 U T+(W),

that is, taking the coproduct with the cyclic E-module 1 defined by

11(n)
1, for n = 1, and

f 0, otherwise,

where 1 is the unit and 0 the initial objects of the category C. The E+-action on
1 is trivial.

To show that F+(W) is a cyclic operad we need, by Remark 5.5, to check
that U-F+(W) is an ordinary operad and that the E+-action is compatible with
composition operations. The operad structure on U-F+(W) is induced by the
natural equivalence

u- (r+ (w)) -- r(w).
It is easy to verify that it commutes with the E+-action constructed above.

PROPOSITION 5.7. The functor F+ : E+-Mod -+ Op+, w ti F+(W), from the
category of cyclic E-modules to the category of cyclic operads defines the free cyclic
operad on the cyclic E-module W.

This proposition can be proved exactly as was Proposition 1.92 and we omit
the proof. The following theorem [GK95] is a `cyclic version' of Theorem 1.105.

THEOREM 5.8. The natural transformations µ : F+F+ - F+ and 77 : 11 -+ F+
make the functor F+ : E+-Mod --m E+-Mod into a triple. An algebra over the triple
F+ is the same as a cyclic operad.

The proof is analogous to the proof of Theorem 1.105 and we also omit it.
We saw in Section 1.9 that, for an ordinary operad P, the space P(n) is identified
with P(c(n)), where c(n) is the `n corolla,' i.e. the rooted tree with one vertex and
input legs labeled by 1,... , n. This is expressed by the idea of viewing elements
of P(n) as operations with n inputs and one output and the structure map as the
composition of these operations, as indicated in Figure 1 of Section 1.1.3.

Similarly, for a cyclic operad P, the identification P(n) = P((*,)) of (5.2)
suggests imagining elements of P(n) as `spiders' with n + 1 legs and the structure
map as joining legs of these spiders; see Figure 3.

By drawing up-rooted trees in the plane, we specify what is the output and
what are the inputs of a vertex v and our preferred orientation (say from left to
right) gives an order on the inputs In(v); see also Appendix 1.9.1. For unrooted
trees, there is no distinction between inputs and the output, but our preferred
orientation of the plane (anticlockwise in our case) still defines a cyclic orientation
of the set edge(e).
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FIGURE 3. The composition of p E P(4) with a, b, c, e E P(3) and
d E P(2).

EXAMPLE 5.9. Consider the following picture:

0

1' 1 2

where a, b E P(2). This picture should represent an element of P((T)) E C, where
T E Tree3 is the tree

0

1' 1 2

This is, however, not exactly so, unless we choose labels for the edges of edge(v)
for both vertices of T, for example

0

1- - 2

Denote the corresponding element x(a; b) E P((T)). The composition ip(x(a, b)) is
an element of P((S)) = P(3), where S is the 3-star *3:

0 3

X
1 2

In order to describe the element of P(3) represented by this picture, redraw (5.4) as:
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0

1 2 3

Now replace the `spiders' by `operations' (since a cyclic operad is, after all, an
operad) and invoke the standard convention that the inputs are numbered from the
left to the right:

1 2 3

The `visualized' action of Figure 2 identifies yp(x(a, b)) with [b(a, 1)] T3. The last
expression uses only the structure data of Definition 5.2.

REMARK 5.10. There is another axiomatization of cyclic operads, closer to
the `spider' intuition. Namely, we may say that a cyclic pseudo-operad is a cyclic
E-module P = {P(n)},,,>1 together with operations

ioj : P(m) 0 P(n)->P(m + n - 1), 0 < i < m, 0 < j < n,
which formalize the `joining of spider's legs.' We use the convention with a ioj b
denoting the result of joining the ith leg of a with the jth leg of b, so the structure
operations oq of an ordinary operad correspond to ioo. The operations ion have to
satisfy certain obvious axioms whose written form is very complicated due to the
linear structure of human language. A cyclic operad is then a cyclic pseudo-operad
with a unit, that is, with a morphism 77 : 1 -> P(1) for which the diagrams

603 7 o,
P(1) @P(n) P(n) P(n) 0 P(1) - 71 (n)

17 O 1\ /17 and IL 017\ /17

1 0 P(n) = P(n) P(n) -P(n) 0 1
where e E {0, 1} and 0 < j < n, commute. In terms of `elements,' this means that
there exists an element 1 E P(1) satisfying

C = P3oE 1 = C,

foralleE{0,1},pEP(n)and0<j<n.
REMARK 5.11. We may mimic constructions of Section 1.7 and express the

axioms of cyclic pseudo-operads in terms of arbitrary finite sets. For each pair of
finite sets X and Y and elements x E X and y E Y, let

XxuyY:=X uY-{x,y}.
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123 n 0123 n

FIGURE 4. A visualization of the correspondence f -> B(f ).

Then a cyclic pseudo-operad structure on a cyclic E-module P is determined by
operations

yoy : P((X)) ®P((Y)) , P((Xy U5 Y))

satisfying appropriate axioms.

EXAMPLE 5.12. Let V be a finite dimensional (graded) vector space and B :
V ®V --> k a nondegenerate symmetric bilinear form. The form B induces the
identification

(5.5) Hom(V®n,V) D f'--' B(f) :=B(-,f(-)) E Hom(V®("+I) k)
of Hom(V®n, V) and Hom(V®(n+I),k). This correspondence can be visualized as
shown in Figure 4. The standard right En-action

B(f)Q(v0i...,21n)=e(o)'B(f)(v, -1(o)....,21Q-l(n)), 0-EEa, v0,...,vn,EV
where e(a) is the Koszul sign (3.96), defines, via this identification, a right En-
action on Hom(V®n, V), that is, on the nth piece of the endomorphism operad
£ndv = {£ndv(n)}n>I. In terms of Figure 4 representing B, the action of Tn is
just the cyclic permutation of the inputs, changing the labels under the right-hand
object from the sequence (0, 1, 2, ... , n) to (n, 0, 1, 2, ... , n - 1).

It is easy to show that, with the above action, Endv is a cyclic operad in the
monoidal category of graded vector spaces, called the cyclic endomorphism operad
on the pair V = (V, B). We will call such pairs bilinear spaces.

Cyclic endomorphism operads of Example 5.12 are archetypes of cyclic operads.
Formula (5.5) suggests another way of viewing elements of the nth piece P(n) of
a cyclic operad, as `operations' with n + 1 inputs and no output. The following
picture shows how to represent the element µp (x (a, b)) of Example 5.9 in this way,
which is very close to the intuition of Figure 1:

01 23
Consider now a more general situation of a bilinear form B : A®A -> U with

values in a (graded) vector space U. Suppose we are given a cyclic operad P and a
P-algebra structure a : P --> EndA on A (Definition 1.20). Define, for each n > 0,
a map B(a) = Bn(a) : P(n)®A®(n+I) , U by

(5.6) B(a) (p®ao ® ... ®an) := B(a(p)) (ao,... , an),
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for ao,..., an E A, p E P(n), where

B(a(p))(ao,... , an) = (-1)IaoIIPIB(ao a(p)(a1,... , an))
was introduced in (5.5).

DEFINITION 5.13. A bilinear form B : A®A -> U is invariant (on the P-
algebra A) if and only if the maps Bn(a) of (5.6) are, for each n > 1, invariant
under the diagonal action of En on P(n)®A®(n+1). Equivalently, Bn(a) factors
through the projection P(n)®A®(n}1) +P(n)®£n A®(n 1):

Bn(a)
P(n)®A®("}1) U

P(n)®£n A®(n+1)

Since the map Bn(a) is always En-invariant, it is enough to check whether it
commutes with Tn. Taking, in (5.6), n = 1 and p = 1 E P(1) we learn that an
invariant form is necessary symmetric, B(a, b) = (_1)IaII6IB(b,a), for all a, b E A.
We have the following easy proposition.

PROPOSITION 5.14. Let P be a cyclic operad, a : P --> EndA a P-algebra
structure on a vector space A and B : A®A --> k a nondegenerate symmetric
bilinear form. Let us consider £ndA as a cyclic operad, with the cyclic structure
given by B as in Example 5.12. Then a : P --> EndA is a map of cyclic operads if
and only if B is invariant in the sense of Definition 5.13.

PROOF. Since a is always a map of ordinary operads, it is enough to check
the E+-equivariance. Let us analyze, for n > 1, when the map a = a(n) : P(n) --->
£ndA(n) is E+-equivariant. Under the identifications of Example 5.12, this means
that B(a(p)) a = B(a(p - a)), for p e P(n) and a E En or, in `coordinates,'

1.B (a (p)) (a (ao, . . . , an)) =B(a(p.a))(ao,...,an), n
But this clearly means that B is invariant in the sense of Definition 5.13.

In the situation of Proposition 5.14, we say that A is a cyclic P-algebra. An
example of this structure can be found in Example 5.86.

Recall (Definition 3.31) that an (ordinary) operad P is quadratic if it has a
presentation P = (E;R) = r(E)/(R), where E = P(2) and R C r(E)(3). The
action of E2 on E extends to an action of E2 , via the sign representation sgn
E2 -> {fl} = E2. It can be easily verified that this action induces a cyclic operad
structure on the free operad F(E). In particular, P(E)(3) is a right E_ -module.

DEFINITION 5.15. We say that an operad P is a cyclic quadratic operad if, in
the above presentation, R is a E3 -invariant subspace.

If the condition of the above definition is satisfied, P has an induced cyclic
operad structure. The proof of the following lemma is easy and we leave it as an
exercise for the reader.
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LEMMA 5.16. The quadratic dual P' of a cyclic quadratic operad P is again a
cyclic quadratic operad.

The following theorem was proved in [GK95].

THEOREM 5.17. Each quadratic operad P = (E; R) with dim(E) = 1 is cyclic
quadratic.

PROOF. The representation of E2 on E may be either the trivial representation
Il or the signum representation sgn. This means that algebras over the operad P
have either a commutative or an anticommutative product.

Commutative case. A direct calculation shows that
r(E)(3) I

as a right E3 -module. On restriction to the subgroup E3 C E3 it becomes

r(E)(3)

We see that the decomposition of r(E)(3) into E3-invariant irreducible sub-
spaces is the same as the decomposition into E3-invariant irreducible subspaces.
Therefore each E3-invariant subspace R of r(E)(3) is also E3-invariant and thus
it defines a cyclic quadratic operad.

Anticommutative case. The arguments are similar. We have

r(E)(3)

over E3 and
r(E)(3)

1

as E3-modules. This finishes the proof.

An immediate consequence of Theorem 5.17 is that the operads Com (Exam-
ple 3.33) and Lie (Example 3.34) are cyclic quadratic. A symmetric bilinear form
B : A®A -+ U on a commutative associative algebra A = (A, ) is invariant if

(5.7) B(a, b c) = B(a b, c), for all a, b, c E A,

which is the EZ -invariance of (5.6) for n = 2. This follows from an obvious fact
that, for quadratic operads, the E,+-invariance of (5.6) for n = 1 (which is the
symmetry of B) and n = 2 implies the E+-invariance of (5.6) for an arbitrary n.

The same arguments imply that a symmetric bilinear form B : L®L -- U on a
Lie algebra L = (L, [-, -]) is invariant if and only if

B([u, v], w) = B(u, [v, w]), for u, v, w E U.

Also the operad Ass (Example 3.35) for associative algebras and the operad
Poiss for Poisson algebras are cyclic quadratic. Observe that this fact does not
follow from Theorem 5.17, since now dim(E) = 2,

(5.8) E = the regular representation of E2 = Il®sgn,
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but it can be verified directly, by a similar calculation as in the proof of The-
orem 5.17. Equation (5.8) expresses the elementary but surprising fact that, in
characteristic zero, one bilinear operation is the same as one symmetric and one
antisymmetric operation.

A symmetric bilinear form B A®A -+ U on an associative algebra A = (A, )
is invariant if B(a b, c) = B(a, b c) (formally the same as (5.7)). If A has a unit
1, there is a one-to-one correspondence between such invariant bilinear forms and
traces on A, that is, linear maps T : A --> U such that T (a b) = T (b a), for a, b c- A
The correspondence is given by T(a) = B(1, a), respectively B(a, b) = T(a b).

In [GK95], a complete classification of cyclic quadratic operads with P(2) _
IL ®sgn is given - there are 80 of those. An example of an operad which is quadratic
but not cyclic quadratic is the operad .Ceib for Leibniz algebras; see [GK95] for
the details.

EXAMPLE 5.18. The topological operad IC = {1C(n)}n>1 for Ate-spaces is the
symmetrization of the non-E topological operad K = {K}n>1, where K. is the
nth Stasheff associahedron (see Section 1.6). The vertices of K,,, correspond to
complete parenthesizations of the string 1... n. Such parenthesizations are in bi-
jective correspondence with triangulations of an (n + 1)-gon Pn+1 into triangles
whose vertices are among vertices of Pn}1i while faces of K. correspond to decom-
positions of Pn+1 into polygons; see, for example, [Kap93]. Taking Pn+1 to be a
regular polygon, we obtain an action of 7Gn+1 on Pn+1 by rotation through multi-
ples of the angle 27r/(n + 1), inducing an action on Kn. Now K(n) is the induced

En-space +1 Kn. This interpretation shows that each K(n) admits a natural
right E+-action. This action defines a cyclic operad structure on K.

As indicated above, the polyhedron Kn has a very rich combinatorial structure.
Its faces can be described either in terms of parenthesizations of n nonassociative
symbols, in terms of decompositions of Pn+1 into polygons or in terms of n-trees.
All this shows that the combinatorics of the faces of Kn is similar to that of Catalan
numbers

Pak:=k IkpklJ, p>1, k>2,

defined as the number of p-ary rooted trees with k vertices; see [HP91], [Arn83,
Supplement]. For example, the number of vertices of Kn equals

1 2(n - 1)
tan.-1 = n-1 n-2

For recent results in this direction see also [DROO].

EXAMPLE 5.19. We already indicated at the beginning of this section that the
operad MO of genus zero Riemann surfaces with parametrized punctures is a topo-
logical cyclic operad. This immediately implies that the operad BV = H.(Mo;k)
for Batalin-Vilkovisky algebras is a cyclic operad in the category of graded vector
spaces; see Definition 4.6, Theorem 4.7 and Remark 4.10.

VARIANTS. Like ordinary operads, cyclic operads also have a non-E variant.
We say that a non-E operad P (Definition 1.14) is a non-E cyclic operad, if each
P(n) has a right 7Zn}1-action such that axioms (i), (ii) and (iii) of Definition 5.2,
with Tn interpreted as an element of 7Gn}1, are satisfied. The prominent examples
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of nonsymmetric cyclic operads are the non-E operad Ass for associative algebras
(Remark 1.15), the non-E topological operad K for A,-spaces (Section 1.6) and
the non-E operad Ass. for A.-algebras (Section 1.1.17). Non-E cyclic operads,
as simpler versions of cyclic operads, were studied in [Mar99d].

Recall (Definition 3.15) that the operadic suspension sP of a dg operad P =
JP(n)J,>1 was defined by

(5.9) (sP)(n) := Tn_i sgn®®P(n), n > 1.

If the operad P is cyclic, then the suspension sP has a natural E+-module
structure defined by (5.9) with sgnn replaced by sgnn+l It turns out that the
resulting object is not a cyclic operad, but rather a modified version introduced by
Getzler and Kapranov:

DEFINITION 5.20. An anticyclic operad in C is an ordinary operad P as in
Definition 1.4 such that the right En action on P(n) extends, for n > 1, to an
action of E,+, such that diagram (iii) of Definition 5.2 commutes and diagrams (i)
and (ii) commute up to -1.

REMARK 5.21. We will need to consider, in Section 5.3, slightly more general
cyclic operads P with nontrivial components P(0) and P(-1). Elements of P(0)
represent operations with one output and no inputs, with of : P(m) O P(0)
P(m - 1) for 1 < i < n.

Elements of P(-1) have no inputs and no outputs. Although there are no
oi-operations involving them, these elements still can be in the image of modular
contractions eij of Definition 5.35. We leave as an exercise to write the axioms for
these `extended' cyclic operads.

An example is provided by the operad M0 considered at the beginning of this
section. For this operad, there are naturally defined spaces Mo(0) (moduli space
of Riemann spheres with one parametrized hole) and Qo(-1) (one-point space of
Riemann sphere with no hole).

5.2. Application: cyclic (co)homology

The cyclic cohomology of an associative unital algebra was introduced in 1983
by A. Connes [Con83] as one of the basic tools of his noncommutative geometry.
In the same year, B.L. Tsygan [Tsy83] used cyclic homology for the computation
of homology groups of some Lie algebras; this approach was further developed by
J.-L. Loday and D. Quillen in [LQ84]. See also [Cun00, AK001 for a recent
account.

Let us briefly recall the definitions. For a (graded) unital associative algebra A
over k (which can be now any commutative ring), let Cn(A) := AO(n+I) with the
standard grading

deg(ao ®... ® an) = > deg(ai) + n.
O<i<n

Observe that we use the convention with Cn(A) consisting of products of (n + 1)
elements of A. Let us define degree -1 linear operators b,b' : Cn(A) _* Cn_1(A)
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FIGURE 5. The bicomplex defining the cyclic homology.

by the formulas
n-1

b'(ao,...,an) (-1)z(ao,... ,aiai+I,... an) and
i=0

b(ao,... , an) := b'(ao, ... , a,) + (-1)n(an, ao, ... , an_1),

for ao, ... , a® E A. The complex (C. (A), b') is the standard unnormalized bar
resolution of the algebra A as a left A-module [Mac63a, X(2.6)], hence it is acyclic.
The complex CH. (A; A) := (C. (A), 5) is the complex calculating the Hochschild
homology HH.(A;A) of A with coefficients in itself [Mac63a, X(4.2)],

HH (C. (A), b) := Tor, ®A°' (A, A).

The cyclic group Z,+I = Z/(n + 1)Z acts on Cn(A) by

t(ao,... , an) := -1)n(an, ao, ... > an-1 ,

where t is the generator. Let N := 1 + t + + to e k[Zn+I] be the norm operator
in the group algebra. A crucial fact is that

(5.10) b(1 - t) = (1 - t)b' and b'N = Nb.

Thus it makes sense to define the cyclic homology H; (A) of A as the homology of
the total complex of the bicomplex in Figure 5.

Let us assume from now on that the characteristic of k is zero. Under this
assumption, the acyclicity of rows implies that the cyclic homology can be calculated
as the homology of the complex

C. (A) := CC(A)/(1 - t)

with the differential induced by b (and denoted by the same symbol), H; (A) _
HH(C. (A), b).

The cyclic homology has many miraculous properties. For example, let g[,.(A)
be the Lie algebra of r x r matrices with coefficients in A, with the commutator
bracket. Denote by

21(A) := lim 2(,.(A)

the direct limit of the inclusions glr(A) y gl,.+I(A) given, for r > 1, by

B[r(A) D M i--> ( ' ) E B[r+I(A).
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Then the space of primitive elements of the Chevalley-Eilenberg homology

H: E(yl(A)) := Toru(e1(A))(k k)

of yl(A) is isomorphic to the shifted cyclic homology of A,

Prim H.(gl(A)) = H.-1(A);

see [LQ84, Theorem 6.2]. This should be compared with the isomorphism of the
primitives of the Hochschild homology of the infinite matrix general linear group
GL(A) of A and the rationalized algebraic K-theory of A [Qui70],

Prim H*(GL(A)) -- K*(A)®Q.

This explains why the cyclic cohomology is sometimes also called the additive al-
gebraic K-theory.

Another interesting property is the relation with the de Rham cohomology of a
smooth algebra. Recall that, for a commutative unital k-algebra A, the module of
differentials 121 is the left A-module defined as the quotient of A ® A by the left
A-submodulegenerated by {1®xy-x®y-y®xI x,yEA},

(5.11) 121 := (A®A)/(1®xy - x®y - y®x).

It is characterized by the property that, for any left A-module M,

Derk(A, M) = HomA(521, M),

where Derk(A, M) is the linear space of derivations of the algebra A with values
in M, and HomA(f21, M) is the space of A-linear maps from 121 to M. A direct
verification shows that in fact 121 coincides with the first Hochschild homology
group of the algebra A, QA - HH1(A; A).

The map d : A --> 121 given, in the description of (5.11), by d(a) := 1®a, is
a derivation that corresponds to the identity map in HomA(121,121). It is called
the universal differential and extends to a degree 1 differential (denoted again
by d) on the exterior A-linear algebra f2A :_ AA(s21) on 521. The cohomology
HDR(A) := H*(12A, d) is called the de Rham cohomology of A; see [Bou, 2.10].

The de Rham cohomology is related to the cyclic homology of a smooth algebra
A in the sense of Grothendieck (a prominent example of this type of algebra is the
coordinate ring of a smooth variety) by the formula [LQ84, Theorem 2.9]

HH(A)Qa/dQn 1®HDR2(A)®HnR4(A)®...

which holds for any n > 0. An interested reader may find all this and much more
in the overview [Car].

Technically, the existence of the cyclic homology of an associative algebra is
a consequence of the stunning fact that the action of the cyclic group on C*(A)
behaves well with respect to the differentials, as expressed by (5.10). E. Getzler
and M.M. Kapranov realized that this follows from the cyclicity of the operad Ass
which governs associative algebras. They then defined the cyclic homology for an
arbitrary category of algebras over a cyclic operad. Their definition is based on the
notion of a universal bilinear invariant form.

Recall (Definition 5.13) that, given a P-algebra A, a : P -> EndA, over a cyclic
operad P, a bilinear form B : A®A - U is invariant if and only if, for any n > 1,
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aEEn+1, EAandpEP(n),
(5.12) (-1)IaOIIPIB(ao, a(p)(a1,... , an))

= (-1)I-,(o)IIPIe(a)B(ao(o),a(p)(a,(1),...,ao(n))),

where e(a) = e(a; a 0 , . . . , an) is the Koszul sign (3.96) of the permutation a.

DEFINITION 5.22. Let A be an algebra over a cyclic operad P, a : P ---> EndA.
We say that an invariant bilinear form T : A®A --> A with values in a vector space
A is universal if, for any invariant bilinear form B : A®A --> U, there exist a unique
linear map w : A -+ U such that B = w o T.

The universal bilinear invariant form for P can be constructed as follows. Take
A = A(P, A) to be the coequalizer of the composite maps

®(n+1) Q ®('n+1)
R

P(n)®A --> P(n)®A A®A, n > 1, Or E En}1,

where

Rn(p®ao ® ... 0 an) := (-1)IaoIIPIao®a(p)(a1,..., an)

and En}1 acts diagonally. In other words, A(P, A) is the quotient of the product
A®A modulo the identifications

(- 1)IQ0 IPIao®a(p)(a1,...an) (-1)IQOo IIPIe(a)ao(o)®a(p)(aQ(1),...,ao(,))

required by (5.12). Then we define T : A®A --> A to be the canonical projection.
The universal property of the map T : A®A --* A(P, A) is immediately obvious.
For P = Ass, Com and Lie, the space A(P, A) was introduced by M. Kontse-
vich [Kon93] who denoted it f2o(A).

EXAMPLE 5.23. If P = Ass and A = (A, ) is a unital associative algebra, then
A = A/[A, A] is the abelianization Aab of A and T(a®b) E A is the equivalence
class of a b in Aab.

If P = Com and C = (C, ) is a commutative unital algebra, then A = C and
T : C®C -- C is the multiplication.

If P = Poiss and P = (P, {-, -}, ) is a unital Poisson algebra (this means
that there exists a unit 1 E P for the multiplication such that {1, P} = 0), then
A(Poiss, P) = P/{P, P} is the quotient of P by the span of all Poisson brackets.

For a given cyclic operad P, the correspondence A A(P, A) defines a func-
tor from the category P-dgAlg of differential graded P-algebras to the category
of differential graded vector spaces. The category P-dgAlg is a Quillen model
category [Qui67] and the functor A(P, -) preserves weak equivalences between
cofibrations - a quite nontrivial fact proved in [GK95, Theorem 5.3]. Thus the
following definition, due to E. Getzler and M.M. Kapranov, makes sense.

DEFINITION 5.24. Let A be an algebra over a cyclic operad P. The ith cyclic
homology group HA2(A) of A is the ith left nonabelian derived functor of the functor
A(P, -), HA (A) := Hi (A(P, F,)), where F. is a cofibrant model of the algebra A.

Since the theory of nonabelian derived functors would go far beyond the scope
of the book, we will not discuss the cyclic homology in the sense of this general
definition, but only for algebras over quadratic Koszul operads (Section 3.3), in
which case we define the cyclic cohomology as the cohomology of a very explicit
complex. From now on we assume that k is a field of characteristic zero.
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So, let P = (E; R) be a cyclic quadratic operad in the sense of Definition 5.15.
Then also, by Lemma 5.16, the quadratic dual P' of P is a cyclic quadratic operad,
thus P1 := s(P')#, the operadic suspension (Definition 3.15) of the linear dual
(P')# of the operad P', is an anticyclic cooperad - an obvious object dual to an
anticyclic operad recalled in Definition 5.20; compare also Remark 3.4. As a cyclic
E-module,

(5.13) P1(n) -- sgnn}1® T n-1(P'(n))#, n > 1.

Let kn+1 denote the standard permutation representation of E; (see Defini-
tion 5.1 for the notation), i.e. the vector space of (n + 1)-tuples (ko,...,kn) of
elements of the ground field k, with the left action of E,+L given by

u - (ko,... , kn) = (ko_1(o), ... , k,-,(n))-

Then the n-dimensional representation Vn,1 of En can be described as

Vn,1 = {(ko, ... , kn) E kn+1 I ko + . + kn = 01,

so there is an exact sequence

(5.14) 0 -, Vn,1 --> kn+1 -+ Il _ 0

of E+-modules. Combining these data, for any P-algebra A, there is a natural short
exact sequence of chain complexes

(5.15) 0 ---> CA.(A) ---> CB. (A) -+ CC. (A) --> 0.

The underlying graded vector spaces of these complexes defined as follows:

CA.(A) ®P1(n)®En(Vn,1®A®(n}1)) ,

n>1

CB.(A) ®P1(n)®En(kn}1®A®(n}1)) and
n>1

CC.(A) P1(n)®E+(1(9A®(n+1)) = 7P1(n)®EnA®(n}1),
n>1 n>1

with E,+ acting diagonally on the factors in parentheses on the right. The maps
in (5.15) are induced by (5.14). We are going to define a differential 5 on CB.(A)
which preserves CA.(A) and projects to a differential on CC.(A).

For any quadratic operad P = (E; R), there is a cyclic quadratic twisting
cochain (an operadic analog of twisting cochains for associative algebras introduced
in [GK95, Example 5.7]), i.e. the degree -1 map IF : P1 -P of E-modules given
by

T(2) : P1(2) =T E E = P(2),

and IF (n) = 0, for n 2.

By dualizing the construction in Remark 5.11 we see that structure maps of an
(anti)cyclic cooperad Q written in terns of finite sets give, for each finite set K, a
map

Q((K)) - ® Q((L+))®Q((M+)),
K=LUM
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where L+ := L IJ {M} and M+ := MLI {L}. In particular, the cocomposition of the
anticyclic cooperad P1 gives, for any decomposition L u M = 10,... , n}, a map

P1 (n) -'P1((L+)) ®P1((M+))

which induces a map

(5.16) P1(n)®kn+I®A®(n+1)_,(P1((L+))(gA®L)®(P1((M+))®A(DM)®kn+1

In the above formula, we also moved the factor kn+1 to the right. This will formally
simplify definitions of the maps below. Let us remark that A®L and A®M are
unordered products introduced in (1.31). On the other hand, the twisting cochain
IF induces a map

IF : P1((L+)) P((L+))

(which, by definition, is nonzero only for card(L) = 2). This map, when composed
with the structure map of the P-algebra A,

P((L+))®A®L = P(L)®A®L-*A,

gives a map

P1((L+))®A®L--->A

whose composition with (5.16) gives

Moreover,

P 1(n) ®kn+1®A®(n+1) ---> A®P1((M+)) ®A®M ®kn}1.

A®P1((M+))0,q11M®kn+1 - P1(M)®A®M+®kn}1.

The `summation' E : kL -+ k defined by E(®IELkt) :_ >IEL ki induces the map

kn+1 -- kL®kM
E®u

k®k" - km+.

Composing all these maps, we obtain a map

bM : P1(n)0kn+1®A®(n+1) - P1(M)®A®M+®kM+,

which is in fact nonzero only for card(M) = n - 1. Let us denote by br the sum

(5.17) 1 n+1 n+1
EM 3M

(n)®k ®A®( ) ® P1(M)®A®M+®kM+
card(M)=n-1

The group E,+ acts on both sides of (5.17) and bj is En-equivariant. Thus, it
descends to a map (denoted again by 3I)

(5.18) br : P1(n)®E: (kn+1(DA®(n+I))

---> ( ® P1(M)®A®M+®kM+ J Ery .

card(M)=n-1

On the other hand, every subset M of {0, ... , n} is naturally ordered, thus there is
a specified order M = {1, ... , n} for any M in the summation above, which means
that there are identifications

P1(M)®A®M+®kM+ - P1 (n - 1)®(kn®A11n).
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These identifications induce the projection

zr : ( ® P1(M)®AENr+®kM+) P1(n -
En

card(M)="-1

Composing 7r with the map SI of (5.18), we finally obtain a map SI (I from 'inter-
nal'),

SI : CBn(A) = P1(n)0En (k"+1(9A®(n+I))

,P1 (n - CB"-1(A).

If A = (A, d) is a differential graded algebra, then the differential d of A induces
another differential JA on the complex CB, (A), by the standard formula

SA(p®En ((ko ®... ®kn)®(ao (D ... ®an)))

F 77 p®E,+, ((ko ®... (D kn)®(ao®... ®d(ai)®... ®an)),

0<i<n

where p®£+((ko ® ... ® kn)®(ao ® ... ® a,,)) E CBn(A) and

,,:= (_1)(IQOI+ +la,-,I+IpI).

The following lemma, which is a special case of [GK95, Lemma 5.11] for quadratic
twisting cochains, can be verified directly.

LEMMA 5.25. The endomorphism S := Si + JA is a differential on CB, (A). It
preserves CA,(A) and projects to a differential (denoted again by J) on CC, (A).

We can now define the cyclic homology HA, (A) of A as the homology of the
complex (CA S). The following theorem, which was proved in [GK95], shows that
this definition is consistent with Definition 5.24.

PROPOSITION 5.26. Let A be an algebra over a cyclic operad P. Suppose P
zs cyclic quadratic and Koszul. Then the homology of the complex (CA,(-),S)
calculates the left derived functor of A(P, -).

If we denote the homology of the remaining two complexes in (5.15) by HB,(A)
and HC,(A), respectively, then we have the long exact sequence

(5.19) . -HCn+I(A) - HAn(A) - HBn(A) .-> HCT(A) --> HAn_1(A) -->

EXAMPLE 5.27. Let us identify the complexes of (5.15) for the associative
algebra case, P = Ass. Recall that the operad Ass is self-dual, Ass' = Ass,
and observe that, as a En-module, Ass(n) = IndE }, (11), where IL is the one-

dimensional trivial representation of Z,,1 and Indzrn}1(Il) := 11 ®zn+, k[En] is the
representation induced along Z,+1 -- En" By (5.13) this means that

Ass' (n) = sgnn}1®Tn-I Ind+, (1L) - jn-1 Ind+, (Il).

It follows from the definition of the induced representation that for any left En-
module M

Ind }, (Il)®E+M _- --M/(1 -t),
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where t E 7G,t}1 is the generator. This means that sequence (5.15) becomes, for
P = Ass, the sequence

0 Tn-1 (V,v,1(&A®(n+1))/(1 - t)
---> Tn-1 (k"+1(9A®(n+1))/(1 - t) - f Tn-1 A®(n}1)/(1 - t) --* 0.

The map a : kn+1®A®(n+1)_,A®(n+1) given by

a((ko ®... (D kn)®(ao ®... (9 a,)) := (ko + k1t-1 + ... + knt-n) (ao ®... (& an)

is invariant under the diagonal action of t:

a (t((ko ®... ® kn)®(ao ®... ® an)))

_ ((ko + k1t-1 + ... + knt-n)t-1)(t(ao ®... ®an))

_ (ko + kit-1 +.... + knt-n) (ao ®... (D an)

= a((ko ® . . . E D ®... ®an)),

thus it descends to an isomorphism (kn+l(&A®(n+I))/(1-t) = A®n+1 and converts
the above sequence to

(5.20) 0
Tn-1

(1 - t)A®(n+1) Tn-1 A®(n+') - Tn-1 A®(n+1)/(1 - t) --> 0,

where t is the inclusion and 7r the projection. If one goes through the definition of 8
on the middle term of (5.20), one finds that it may be identified with the differential
b of the shifted Hochschild complex CH. (A, A), thus

(CB.(A),5) = (JC,(A),b).

It is also immediately clear from this that the rightmost term of (5.20) is isomorphic
to the shifted complex C, (A) calculating the cyclic homology of A, CC.(A) _
C,. 1(A), therefore HCn(A) = Hn}1(A). To identify the leftmost term of (5.20),
consider the bicomplex in Figure 5 as an exact sequence of chain complexes

(5.21) (C,(A),b) f(1-t) (C.(A),-b') _' (C.(A),b)
t) (C.(A),-b') _ ... .

Consider also the short exact sequence

(1-t)
(5.22) 0 -> Ker(1 - t) -+ (C.(A), -b') Im(1 - t) ---> 0.

The exactness of (5.21) gives the isomorphisms

Ker(1 - t) -- Im(N) = Coker(1 - t) = C.(A)/(1 - t)

which enables us to identify the sequence (5.22) with

(5.23) 0 --> (C; (A), b) - (C.(A), -b') ---'T CA.(A) -> 0.

PROPOSITION 5.28. If the algebra A is unital, then the complex CA.(A) is
weakly equivalent to C,. (A).

PROOF. The proposition follows from the short exact sequence (5.23) and the
contractibility of the bar complex (C.(A), b').

To summarize, for a unital associative algebra A, both complexes CA. (A) and
CC.(A) calculate the cyclic homology, while CB(A), calculates the Hochschild
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homology. The long exact sequence (5.19) can then be identified with the Connes-
Tsygan periodicity exact sequence

Hn+2(A) S-, Hn(A) -- Hn+1(A, A) ' > Hn'+I(A)

where the boundary map S is an additive analog of the Bott periodicity map. This
sequence can also be interpreted as a consequence of the periodicity of the bicomplex
in Figure 5. More precisely, observe that if we delete the first two columns of this
bicomplex, we obtain an isomorphic complex, while the cohomology of the quotient
is the Hochschild cohomology. These remarks also imply the sequence above.

EXAMPLE 5.29. Consider the Lie algebra case. Since, for any n > 1, Lie' (n) =
Com(n) = It, the one-dimensional trivial representation of E+, we obtain Lie- (n)
Tn-1 sgnn}1, the shifted signum representation of El. By similar methods to those
in Example 5.27 we infer that, for any Lie algebra g,

CBn(9) =
9®T'_1

A" g.

Thus CB. (g) is identified with the shifted Chevalley-Eilenberg chain complex of the
Lie algebra g with coefficients in itself [HS71, Chapter VII], CB. (g) Cn(g,g).
Similarly,

CC. (9) - T n-' An+' 9 = 12 C. (9, k),

the shifted Chevalley-Eilenberg chain complex of g with trivial coefficients. As a
consequence, CA,(g) is the kernel of the map m : C.+1(g,g) - C.+2(9,k) given
by the formula

m(9o(D(91A...Agn)):=go A91A...Agn
The map m was studied by T. Pirashvili in [Pir94]. He denoted

CRn(g) := Ker(m : Cn+1(9, 9) -4 Cn+2(9, k))

and HR. (g) the corresponding homology. The dimension shift is chosen because the
map m is an isomorphism in degree 0, thus, with this degree convention, CR5(g) is
the first nontrivial piece of the complex. We may thus identify CA.(g) = CR.(g).
The associated long exact sequence

... ->HRn-1(9)-.Ha'(9, 9)-.Hn+1 (9, k)->HRn(9) _, .. .

is that of [Pir94, Proposition 1.2].

EXAMPLE 5.30. Let us briefly mention also the case of commutative asso-
ciative algebras. If C is such an algebra, then it can be shown that the complex
(CA. (C), S) calculates the shifted Harrison homology of C with trivial coefficients,

HA. (C) = Harr.+1(C, k)

and that

HC,(C) := Harr.+,(C,C),

the Harrison cohomology of C with coefficients in itself. The exact sequence (5.19)
now takes the form

... - Harrn+2(C, C)-->Harrn+1(C, k)-+HBn(C)-Harr,+l (C, C)-
We refer to the original paper [GK95, Example 6.5] for the details of this example.
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REMARK 5.31. We defined the cyclic homology of A as the homology of the
complex CA. (A). It is not difficult to see that the complex CB, (A) calculates the
operadic homology [Ba198] of the algebra A with coefficients in A.

The interpretation of CC,(A) is more subtle. For a P-algebra A, the bar
construction CC(A) = (CC(A),(9p) is a dg P'-coalgebra (see Definition 3.91 and
recall that we assume P to be Koszul). Our definitions can easily be dualized to
introduce the cyclic homology for (differential) coalgebras. Then HC,(A) is the
cyclic cohomology of the differential P'-coalgebra CC(A). The details can be found
in [GK95, 6.12].

REMARK 5.32. We may consider a unit of an algebra either as an extra struc-
ture or build it into the governing operad. Thus we have, for example, the operad
UAss for associative algebras with unit, which coincides with Ass with the excep-
tion of UAss(0) which is k and, similarly, the operads UCom andUPoiss. There is
a parallel cyclic homology theory for these operads. This theory agrees with the
theory presented here except for the lowest term, thus we will not treat it separately
here. For more details, see [GK95].

5.3. Modular operads

Let us consider again the E+-module Mo = {Mo(n)},>1 of Riemann spheres
with holes. Recall (Section 1.1.16) that Mo(n) denotes the moduli space of objects
(C; fo,... , f, ), where C is a complex manifold biholomorphic to CF' and fi are
biholomorphic maps from the unit disk D2 into C with disjoint images. We saw in
Section 5.1 that the operation M, N MiojN of sewing the ith hole of the surface
M to the jth hole of the surface N, defined on Mo a cyclic operad structure.

In the same manner, we may consider a single surface M E Mo(n), choose
labels i, j, 0 < i j < n, and sew the ith hole of M along the jth hole of the same
surface. The result is a new surface Sij (M), with n - 2 holes and genus 1.

This leads us to consider the system M = {M}9>0,,,,>_1, where M(g,n) de-
notes now the moduli space of genus g Riemann surfaces with n+1 holes. The above
two families of operations act on M. Clearly, for M E M(g,m) and N E M(h,n),

MiojN E M(g+h,m+n- 1)
and

eij (M) E M(g + 1, m - 2).

Observe that it makes sense to consider M(g,n) also for n = 0 and n = -1; see
Remark 5.21.

Modular operads are abstractions of the above structure. Our exposition fol-
lows [GK98]. The following definitions are made for the category of graded vector
spaces, but they can be generalized to an arbitrary monoidal category with finite
limits and colimits.

DEFINITION 5.33. A modular E-module is a sequence £ = {£(g,n)}9>o,n>-i
of graded vector spaces such that each £(g,n) has, for n > 0, a right El-action.
We say that the modular E-module E is stable if

(5.24) £(g, n) = 0 for 2g + n - 1 < 0.
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Let MMod denote the category of stable modular E-modules. For e E £(g, n),
we call the number n the araty and the number g the genus of the element e. We
also sometimes call n + 1 the valence of e E £(g, n).

Stability (5.24) says that £(g, n) is trivial for (g, n) = (0, -1), (1, -1), (0, 0) and
(0,1). We will sometimes stress the stability of E by writing E = {£(g, n)}(g,,,,)E6,
where

8 :={(g,n)I g>0, n>-1 and2g+n-1>0}.

Recall that a genus g Riemann surface with k punctures is called stable if
2(g - 1) + k > 0. Thus the stability property of modular E-modules is analogous.
to the stability of Riemann surfaces, that is, excluded is the torus with no marked
points and the sphere with less than three marked points.

REMARK 5.34. Our notation differs from that of [GK98] where our £(g, n)
would be denoted £((g, n + 1)). Therefore also the form of our stability condi-
tion (5.24) formally differs from the one in [GK98].

Thus a modular E-module is a cyclic E-module (Definition 5.4) with an extra
grading given by the genus. More precisely, each modular E-module £ determines
a cyclic E-module £b = {£b(n)},>_1 by

£b (n) := ® £(g, n).
g>O

As before, the extension functor (5.1) enables us to work with £((g, S)) for an
abitrary finite set S; see also Remark 5.6 where the meaning of double brackets ((-))
is explained. By a- cyclic (pseudo-)operad we mean in this section an `extended'
cyclic (pseudo-)operad in the sense of Remark 5.21.

DEFINITION 5.35. A modular operad is a stable modular E-module

A = {A(g, n)}(g,n)E6

together with a cyclic pseudo-operad structure on the cyclic E-module

(5.25) Ab = {Ab(n)}n>_1,

homogeneous with respect to the grading given by the genus, and a family of 'con-
tractions'

Sij : A((g, S)) -+ A((g + 1, S - {i, j})),

defined for each finite set S and distinct i,j E S. The contractions are equivari-
ant, meaning that for any a E A((g, S)) and any automorphism a of S such that
o-({i, j}) = {i, j},

,(i)a(j)(a) . a:j = Sij(a . a),

where a,j is the restriction ajs_{z,jl We also require that, for any distinct labels
i, j, k, l E S, the contractions lzj and kt mutually commute,

(5.26) Szj 0 eM = CM 0 zj.
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b a d Xh

FIGURE 6. The sputnik.

The contractions must be compatible with the cyclic operad structure {x-y} on Ab
in the sense that, for any two finite sets S, T, for any x E S, y E T, for any distinct
i,j ESUT-{x,y} and anyaEA((g,S)),bEA((h,T)),

(lij(a))xoyb, for i, j E S,
(5.27) Cij(axoyb) = for i,j E T, and

lx9(aiojb), for i E S, j E T.

REMARK 5.36. Observe that the stability condition is build into the definition
of modular operads. Very crucially, modular operads do not have a unit, because
such a unit ought to be an element of the space A(0,1) which is empty, by (5.24).
So a better name would probably be modular pseudo-operads, but we will respect
the terminology introduced in [GK98].

As we will see below, the stability condition is necessary for having control over
the size of the free modular operad functor.

We saw in Theorem 1.105 that ordinary operads were algebras over the triple
of rooted trees while cyclic operads were algebras over the triple of unrooted trees
(Theorem 5.8). We now show that also modular operads are algebras over a certain
triple of graphs. The naive notion of a graph as we have used it up to this point is
not subtle enough; we need to replace it by a more sophisticated notion.

DEFINITION 5.37. A graph r is a finite set Flag(F) (whose elements are called
flags or half-edges) together with an involution u and a partition A.

The vertices Vert(F) of a graph r are the blocks of the partition A. The edges
edge(F) are pairs of flags forming a two-cycle of or relative to the decomposition of
a permutation into disjoint cycles. The legs Leg(F) are the fixed points of c.

We also denote by Leg(v) the flags belonging to the block v or, in common
speech, half-edges adjacent to the vertex v. We say that two flags x, y E Flag(F)
meet if they belong to the same block of the partition A. In plain language, this
means that they share a common vertex.

We may associate to a graph r a finite one-dimensional cell complex IFl, ob-
tained by taking one copy of [0, 21 for each flag and imposing the following equiv-
alence relation: The points 0 E [0, 2] are identified for all flags in a block of the
partition A and the points z E [0, z ] are identified for pairs of flags exchanged by
the involution a. We call IFl the geometric realization of the graph. We will some-
times make no distinction between the graph in the sense of Definition 5.37 and its
geometric realization.

As an example (taken from [GK98]), consider the graph with {a, b, . . , i}
as the set of flags, the involution a = (df)(eg) and the partition {a, b, c, d, e} U
f f, g, h, i}. The geometric realization is then the `sputnik' in Figure 6.
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Intuitively, a morphism f : ro -> rI of graphs is given by a permutation
of vertices, followed by a contraction of some edges of the graph ro, leaving the
legs untouched. Translated into the language of Definition 5.37, this means an
injection f* : Flag(rl) -> Flag(ro) that commutes with the involutions. Moreover,
the involution ao of ro must act freely on the complement of the image of f* in
Flag(ro) (i.e. the legs of the graphs are preserved by the map f) and two flags a
and b in Ti meet either if f * (a) and f * (b) meet in ro or there is a chain of flags

---,(XI, xk) in the complement Flag(ro) - f * (Flag(ri)) of f * in Flag(ro) such that
f * (a) meets xI , a0xi meets xi+I, for 1 < i < k -1, and a xk meets f * (b) (i.e. there
exists a chain of edges in ro from a to b).

A morphism f : ro --> Ti clearly defines a surj ective cellular map I f I : IroI
IrlI of geometric realizations, which is bijective on the legs.

There is a special class of morphisms which are given by contracting a subset of
edges, without permuting the vertices. First of all, for any subset I of edge(r), there
is a unique graph r/I such that Flag(r/I) is obtained from Flag(r) by deleting
the flags constituting the edges in I and combining blocks of the partition that
contain flags connected by a chain in I. Then the inclusion Flag(r/I)'- Flag(r)
is a morphism of graphs, which we denote by 7r1 : r -> r/I. An important special
case is when I consists of a single edge e. We then simplify our notation by writing
r/e instead of r/{e} and 7re instead of ir{e}-

The graph r/I is called the contraction of r along the set of edges I. Any
morphism f : r -> r' of graphs is isomorphic to a morphism of this form. This
means that there exists a subset I C edge(r) and an isomorphism : r/I --> r'
such that the following diagram of graph maps commutes:

r f r'
Let us introduce labeled versions of the above objects. A labeled graph is a

connected graph r together with a map g from Vert(r) to the set {0, 1, 2.... }.
In other places in the book we consider also graphs with labeled edges, like the
metrized graphs of Section 5.5, but we believe that our terminology will cause no
confusion.

The genus g(r) of a labeled graph r is defined by the formula

(5.28) g(r) := b1(r) + E g(v),
vE Vet(r)

where bi (r) := dim H1(Irl) is the first Betti number of the graph ri, i.e. the number
of independent circuits of r. The classical Euler formula says that I Vert(r)l -
edge (r) = 1 - b1(r), therefore

b1(r) =1- IVert(r)I + Iedge(r)

This easily implies the following expression for g(r):

(5.29) g(r) _ E (g(v) - 1) + 1edge(r)1 + 1.
vE Vert(r)
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Let us derive another useful formula involving the genus. Since a flag forms
either a leg or half an edge,

(5.30) F ILeg(v)I = 21edge (r)I + ILeg(r)I
vE vet (r)

Combining this with (5.29) we derive that

(5.31) 2(g(r) - 1) + Leg(r)I = E (2(g(v) - 1) + Leg(v)I ).
vE Vert(r)

Similarly, adding three times equation (5.29) to equation (5.30) gives the equation

(5.32) 3(g(r) - 1) + Leg(r)I = Iedge(r)I + E (3(g(v) - 1) + I Leg(v)I ).
vEVert(r)

To modify the notion of a morphism to the category of labeled graphs, we need
to observe that the preimage f-1(v) of a vertex v E Vert(r1) under a morphism
f : ro -> r1 is the graph consisting of those flags in ro that are connected to a flag
in Leg(v) by a chain of edges in ro contracted by the morphism.

A morphism f : ro --> r1 of labeled graphs is a morphism of the underlying
graphs such that the genus g(v) of a vertex v of r1 is equal to the genus of the
graph f-1(v), for each v E Vert(r1).

DEFINITION 5.38. A graph r is called stable if

2(g(v) - 1) + ILeg(v)I > 0,

at each vertex v E Vert(r).

For a finite set S, let r((g, S)) be the category whose objects are pairs (r, p)
consisting of a stable labeled graph r of genus g and an isomorphism p : Leg(r) --> S
labeling the legs of r by elements of S. If S = {0,. . . , n}, then we will write simply
r(g, n) instead of r((g, s)). Morphisms of r((g, S)) are morphisms of labeled graphs
preserving the labelling of the legs. The category r((g, S)) has a terminal object
*g,s, the `modular corolla' with no edges, one vertex v of genus g and legs labeled
by S. The category of stable graphs r((g, S)) has the property that, for each fixed
g > 0 and a finite set S, there is only a finite number of isomorphism classes of
stable graphs r E r((g, S)) [GK98, Lemma 2.161.

For a modular E-module £ = {£(g,n)}g>o,n,>_1 and a labeled graph r, let
£((r)) be the unordered tensor product

(5.33) £((r)) :_ ® -'((g(v), Leg (v))).
vE Vert (r)

For a category D, let Iso (D) denote the subcategory all of whose morphisms
are isomorphisms. Evidently, the correspondence r H £((r)) defines a functor from
the category Iso (r((g, s))) to the category of vector spaces and their isomorphisms.
We may thus define an endofunctor M on the category Mod of modular E-modules
by the formula

ME ((g, S)) = colim £((r)).
r E Isor((g,S))

This, by definition, means that the space M£((g, S)) is the quotient of the space
®rEr((g,S)) £((r)) modulo the identifications E((ro)) E) x - £((f))(x) E £((r1)), for
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any isomorphism f : ro -> 171; see Example 1.76. Choosing a representative Fry for
any isomorphism class ry in r((g, s)), we obtain a noncanonical identification

(5.34) 1M E((g, s)) = (9 £((F.y))A,lc(r7),
7E{r((9, s))}

where {r((g, S))} denotes the set of isomorphism classes of objects of the cate-
gory r((g, S)) and the subscript Aut(F7) denotes the space of coinvariants. Stabil-
ity (5.24) implies that the summation in the right-hand side of (5.34) is, for each S
and g, finite. Formula (5.34) generalizes (1.52) which does not contain coinvariants
because there are no nontrivial automorphisms of labeled trees.

We will show that the functor M is a triple in the sense of Definition 1.102.
Our arguments here, as everywhere in this section, closely follow [GK98].

Recall that the nerve of a category C is a simplicial category Nerve. (C) whose
category of k-simplices, Nervek(C), is the category of diagrams

l1 f2 fk-1 fk
(fl, ... , fk) =

in C, while the morphisms are morphisms of such diagrams. The face functors

8b : Nervek(C) ---s Nervek-1(C)

are given, for 0 < i < k, by the usual formulas

(f2, , fk), i = 0,
(5.35) fk), 1 < i < k - 1,

(fl, A-1), i = k.

For k = 1 we interpret the above formulas as 80(Fo f Fl) F1 and 81(r0 f

F1) := F0. Similarly, the degeneracy functors ai : Nervek(C) -+ Nervek+l(C) are,
for 0 < j < k, given by

ai(fl,...,fk) (f1,..., fi,Ilr,, fj}1i...,fk)

Finally, let Ise.(C) denote the simplicial category Iso(Nerve.(C)). The following
proposition is due to Getzler and Kapranov [GK98].

PROPOSITION 5.39. For each k > 0, the (k + 1)th iterate of the functor M is
given by

(5.36) (Mk+I£)((g,S))= colim £((Fo))
fro fl

-
,--. fkrk] E rso kr((9, s))

PROOF. We prove the proposition by induction. For k = 0, it is the definition.
Fix an m > 1 and suppose we have proved (5.36) for k < m. Let us prove it for
k=m.

For [Fowlf2, F,n_,irm] E S))) and u E Vert(Fm), let

(5.37) [F0 firi f-... rm_1] E Isom (r ((g (u), Leg (u))))

be defined by Fi =: (f fi+1)-'(u), while the maps f, : F 1 rZ are the
restrictions, 0 < i < m - 1. Then we have, for the colimit over [r,,-L, !n Fm] E
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Isomr((g, s)),

(5.38)

colim (& 8((ro))
uE Vert(r,,,,)

273

Observe now that the correspondence

[r0Lr1 12. ... f-r, - r,n] , rm, X x [r,- ri ... f=; ru-1l
uE Vert(rm)

defines an isomorphism of categories,

Isomr((g, S)) = U X Isorn_.1r((g(u), Leg(u))).
r ersor((g,s)) uE

So, we can rewrite the last expression of (5.38) as

colim

£((r0)) = colim ® Qg(v), Leg (v)))
lvE vert(ro)

colim ® ® £((g(v), Leg(v)))
uE Vert (r,,,,) vE Vert (r()

®rm E rso (r((g, s))) 1uE V rm) 1r---,
colim £ ((ro ))

f_..,1rn.-i E iso k_ir((g(u), Leg(u))) 1

colim

'

® Mm£((g(v), Leg(u))) 1M -}1£((g, s)).
rmEiso(r((g,s))) UEvert(r,,,) J

It might be helpful to compare the construction of Proposition 5.39 with the
iteration of the tensor algebra triple for associative k-algebras, where there is a
`nesting' of tensor algebras: tensor algebra of tensor algebra of tensor algebra ...

An m-simplex [ro-f-,rl fz, rfm=> m_l-Zrm] defines a similar nesting of
tensor products given by the nested chains of subsets of the vertices of r0:

(fm ... fi)-i(u'm) D (fm-1 ... f1)-1(um-1) D ... fl 1(ul) D {u0},

where u.m, E Vert(rm), um-i E fm1(um), ..., u1 E f2 1(u2) and uo E fl 1(ul)
Let us recall (Definition 1.102) that a triple in a category C is an endofunctor

T on C together with natural transformations p : T2 - T and v : 1c T such
that (T, µ, v) is an associative monoid in the category of endofunctors of C.

Define i : 1M12£ -+ ME to be the transformation induced by 81 : Iso 1r((g, s)) -

Isoor((g,S)), which sends [r0 fl r1] to ro. The unit v : E --> ME is defined as
the inclusion of the summand £((*g,s)) = £((g, S)) of ME((g, S)) associated to the
corolla *9,s.

THEOREM 5.40. The transformations p : M2 --> M and v : nrmod --> M defined
above form a triple (M, M, v) in the category of stable modular E-modules.
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PROOF. The natural transformations

Mµ and µM : (M3S)((g, S)) , (M2S)((g, S))

are clearly induced by the functors 81i 82 : Iso 2r((g, s)) -* Iso lr((g, S)), which send
f f2 f2h f

the sequence r0 --'- 1 r2 respectively to r0 r2 and ro -- r1. In the
same manner, the natural transformations µ(µM) and µ(Mµ) are induced respec-
tively by 8182 and 8181. Since 8182 = 8181 as must be in any simplicial category
(in fact, both compositions send r0 fi 1 f2, r2 to r0), µ(µM) = µ(N9[µ) which
proves the associativity of µ. To see that v is a unit, i.e. that µ(vM) = µ(M v) = M,
is immediate.

An algebra over the triple (M, µ, v) is, by Definition 1.103, a stable modular
E-module A = {A(g, n)}(9 .n)ES together with a morphism of modular E-modules

a:M(A)-- A
satisfying

(5.39) aoM(a) = aoLLA and
(5.40) avA = 11.A

The following theorem is a modular version of Theorem 1.105 or Theorem 5.8.

THEOREM 5.41. Modular operads are algebras over the triple (M, µ, v) in the
category of stable modular E-modules.

Before proving the theorem, we formulate a technical proposition. Suppose we
have a map a : MA --> A of modular E-modules satisfying (5.40), but not necessar-
ily (5.39). Each such map defines, for a graph r E r((g, S)), a map ar : A((r)) -
A((g, S)), as the composition of the universal map A((r)) --> MA((g, S)) with a.
We call this map the composition along the graph r. Observe that (5.40) requires
that the composition along the corolla be given by the identification A((*9,s))
A((g, S)).

We may define, for each morphism f : ro - 1 i a morphism a((f )) : A((ro))
A((rl)) as the composition

(5.41) A((ro)) _ ® A((g(u), Leg(u))) A((f 1(v)))
uE Vert(ro) vE Vert (r,)

® ° f-1(v)
® A((g(v), Leg(v))) = A((rl))

vE Vert(r,)

The following statement is a `modular' version of Theorem 1.73.

THEOREM 5.42. Let a : MA --+ A be a map of modular E-modules as above.
Such a map satisfies (5.39), i.e. it is an algebra over the triple (M,µ,v), if and
only if the correspondence r -# A((r)), f '---> a(f) defines, for each g > 0 and a
finite set S, a functor from the category r((g, s)) to the category of graded vector
spaces, that is, if

(5.42) a((f2fl)) = a((f2))a((.fl))

for any diagram r0 14 1 J2 r2 in r((g, s)).
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PROOF. Consider a diagram F0 fl .r1f2 r2. By definition, a((f2))a((fj)) is the
composition

(5.43) .A((ro)) = ® A((g(w),Leg(w))) - ® A((fl 1(v)))
wE Vert(ro) vE Vert(r,)

® A((g(v),Leg(v))) ® A((fa 1(u)))
vE Vert(r,) uE Vert(r2)

A((g(u), Leg(u))) = ,A((r2))
uE Vert(r2)

Our next task is to interpret a((f2))a((fj)) in terms of aoM. For u E Vert(r2),

let [ro-ri] E Isolr((g(u),Leg(u))) be as in (5.37), i.e. r1 := f21(u), ro
(f2fi)-1(u) and flu = the restriction of fl to F. Recall from Proposition 5.39
that, for each u E Vert(r2),

(IM[2A)((g(u),Leg(u))) = colim A((To)).
[To-5 T,] E Iso 1I'((g(u), Leg(u)))

This means that there is a map pu : A((rp)) - (M2A)((g(u),Leg(u))) given by

mapping Ago)) to the component indexed by [rp-f+ri] E Isolr((g(u),Leg(u))).
Let us define [a o 1M[(a)]f; : Ago)) --* A((g(u), Leg(u))) as the composition

A((r0)) -* (M2 A) ((g (u), Leg (u)))
aoNII(a)

A ((g (u), Leg (u)))

A moment's reflection on (5.43) persuades one that

(5.44) a((.f2))a((fl))= ® [aoIII(a)]f'.
uE Vert(ro)

Similarly, a((f2fj)) is, by definition, given by

A((ro)) _ ® A((g(w), Leg(w))) A(((f2f1) 1(u)))
wE Vert(ro) uE Vert(r2)

®u (f2I1)-1(u)

® A((g(u), Leg(u))) = A((r2))
uE Vert(r2)

As above, we see that if we denote by [a o Ft,A] fl the composition

Ago)) -
a,. , (M2A)((g(u),Leg(u)))

aoµA'
A((g(u),Leg(u))),

then

(5.45) 0((f2f1)) _ ® [a o AA]fi .
uE V.rt(r2)

This together with (5.44) implies that if a o M (a) = a o µA, then a((f2fl)) _
a((f2))a((fl)), that is a((-)) is functorial.

Suppose, on the other hand, that a((-)) is functorial. Let

[ro-Lr1[ E Iso1r((g,s))
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(M2A)((g, S)) ; A((ro)) (M[2A)((9, S))

a o M(a) a((f2fl))=a((f2))a((fl)) a o /-IA

A((9, S)) A((*9,s)) A((9, S))

FIGURE 7.

and apply the above considerations to [rof'.rlf2 r21 with fl := f, r2 := *,,s and
f2 : rl -> r2i the contraction. For the unique vertex u E Vert(*y,s), we of course

have [ro f'-->rl] = [ro_rl]. Equations (5.44) and (5.45) imply that the diagram
in Figure 7 is commutative. To finish the proof, observe that (M 2A) ((g, S)) is the

colimit of A((ro)) over all such [ro- rl] E Isolr((g,S)).

PROOF OF THEOREM 5.41. Suppose that a : MA - A is an algebra over
the triple (M, µ, v). By Theorem 5.42, a then defines a functor from the category
r((g, s)) to MMod. Let us explain how a induces the data of Definition 5.35 by
evaluating a on A((T)) for graphs T with one edge e. The composition xoy is
defined using T of the form:

(5.46)

with two distinct vertices u and v and flags x E Leg(u) and y E Leg(v) forming the
edge e, as the composition along T:

xoy := A((gi, Vert(u)))®A((g2, Vert(v))) - A((T))
UY. A((91 + 92, Leg(u) Li Leg(v) - {x, y})),

where gl := g(u) and 92 := (v). Similarly, the contractions t;2j are defined as the
composition along the graph 0:

(5.47)

with one vertex v of genus g and flags i, j E Leg(v) forming the edge e, by

;j .= A((g, Vert(v))) -- A((®)) * A(g + 1, Vert(v) - {i, j}).
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We must prove that the operations defined above satisfy the axioms of Defini-
tion 5.35, i.e. that the compositions (.o,} form an operad structure graded by the
genus and that the contractions {Czj} satisfy (5.26) and (5.27).

Let r E r((g, S)) be a graph with two distinct edges e, e' E edge(r). The
projections Ire and 7re, obviously commute:

Ire'

r r/e'

Ire

I Ire' I

7re

r/e r/{e, e'}
where we of course identify (r/e)/e' = (r/e')/e = r/{ e, e'}. Since a is a functor,
the commutativity of the above diagram implies that

(5.48)

Evaluating (5.48) on graphs such as

(5.49)

where both e and e' have two distinct vertices and they meet in one vertex v, we
prove that Ab with operations {xoy} form a cyclic operad graded by the genus. The
argument is exactly the same as in the proof of [GK95, Theorem 2.2]; the only
difference is that we must also check that the operations xoy are homogeneous with
respect to the genus, but this is obvious. Consider a graph r as in the following
picture:

(5.50)

The evaluation of the left-hand side of equation (5.48) on

a®b E A((g, Leg(u)))®A((h, Leg(v))) = A((r))

for r gives jj(a,,oyb), while the evaluation of the right-hand side gives xy (aiojb),
and we obtain the third case of (5.27). The evaluation of the left-hand side of (5.48)
on the graph

(5.51)

gives ezj(axoyb), while the right-hand side gives which is the first case
of (5.27). The evaluation of (5.48) on the same graph but with the indices u and
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v, x and y interchanged gives the second case of (5.27). Finally, the evaluation
of (5.48) on

(5.52)

gives (5.26). e'

On the other hand, suppose that Ab is a graded (with respect to the genus)
cyclic operad equipped with contraction maps that satisfy (5.26) and (5.27).
We will show how, for each g > 0 and each finite set S, the modular operad
structure defines a functor from the category r((g, S)) to MMod. On objects, we
define the functor to be A((I')) as in (5.33). This definition is clearly functorial on
isomorphisms 0: r0 - I'1.

As the next step we define A((f)) for f a contraction along an edge e of a graph
r, f = Ire : r - r/e. Let T be the minimal subgraph of r containing e and all
half-edges (flags) meeting e.

If the edge e has two distinct ends u and v, then T looks like the graph in (5.46).
We define a((f)) to be the operadic composition xoy on T and the identity outside
T. Formally this means that we realize that

A((r)) = A((gi, u))®A((g2, v))® ® A((g(w),Leg(w))) and
w:Au,v

A((r/e)) = A((91 + 92, Le9(v))) ® ® A((9(w), Le9(w))),
w0u,v

where v is the vertex of r/e created by the contraction of e. Then we define

(5.53) A((ire)) xo,® ]lA((9(w) Leg (w)))
w#u,v

Another possibility is that the edge e forms a loop with one vertex v. The graph
T then looks like the graph in (5.47). Exactly as in (5.53), we define A((f)) to be
the contraction ij on T and the identity outside T.

A general morphism f : r0 - rl of graphs decomposes into a composition

ro - ro/I - F1,
where I is the set of edges contracted by f and o : ro/I -* rl is an isomorphism.
Choosing an ordering {ei, ... , ek} of the edges in I, we obtain a factorization

8I 'e2 ne9 ek(5.54) r0 -- ro/e1 -> ro/{e1,e2} ro/I ---> rl,
where each morphism is a contraction along one edge except the last, which is an
isomorphism. We define

a((f)) := A((0))A((Irek)) ... A((7re1 ))

We must prove that this definition is independent of the ordering of the elements
of I. Of course, it suffices to prove the composition does not change if we interchange
two consecutive edges ei and ei+l. This is evident if ei and ei+1 have no common
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vertex. If they have, then they form a subgraph of r with two edges, which must be
one of the graphs listed in (5.50)-(5.52). But then the maps A((7re,)) and A((7re,+, ))
commute, because the axioms of modular operads were derived exactly to assure
the commutativity over these graphs.

Thus, we have defined a functor r " A((r)), f H a((f )) on the category
r((g, S)), using the operad structure of Ab and the contractions 2j. By Theo-
rem 5.42, this functor is an algebra over the triple (M, µ, v).

EXAMPLE 5.43. Let V = (V, B) be a differential graded vector space with
a graded symmetric inner product B : V®V - k. Recall that graded symmetry
means that, for any homogeneous u, v E V,

B(u,v) = (_1)IuII"IB(v,u).

Let us define, for each genus g > 0 and a finite set S,

Endv((g, S)) := V®s

It follows from definition that, for any graph r E r((g, S)), Endv ((r)) = V®Ftag(r).
Let BOedge(r) : V®F(ag(r) _, V®Le9(r) be the multilinear form which contracts

the factors of V®Ftay(r) corresponding to the flags which are paired up as edges of
F. Then we define ar : Endv((I )) --* Endv((g, S)) to be the map

E®edge(r)
ar : Endv((r)) - V®F(ag(r) V®Leg(r) -- V®s = Endv((g, S)).

It is easy to show that the compositions {arI r c r((g,S))} define on Endv the
structure of a modular operad. The underlying cyclic operad (5.25) coincides with
the cyclic endomorphism operad introduced in Example 5.12.

Strictly speaking, Endv is not a modular operad in the sense of Definition 5.35,
because the modular E-module Endv is not stable, but it will not really matter,
because the only use for these endomorphism operads we have is to define algebras.
If the reader feels this trick is not appropriate, he might define Endv((g, S)) = 0 for
2g+#S-2 <0.

DEFINITION 5.44. A modular algebra over a modular operad A is given by
a graded vector space with a symmetric inner product, V = (V, B), and a map
a : A --> Endv of modular operads.

5.4. The Feynman transform

In this section we prepare the background machinery and introduce the Feyn-
man transform of a modular operad. It is an analog of the cobar complex of
an ordinary operad (Definition 3.9). The Feynman transform was introduced by
E. Getzler and M.M. Kapranov in [GK98] and called so because it is given as a
sum over graphs, as is Feynman's expansion for amplitudes in quantum field theory.
This section contains a lot of technical material, so we provide the reader with a
`road map' first.

The conceptual difference between the operadic cobar complex C(P) of an
ordinary operad and the Feynman transform F(A) of a modular operad is that
while C(P) is again an ordinary operad, F(A) is not a modular operad, but a certain
type of a `twisted' modular operad. To give a precise meaning to this, we need to
introduce `coefficient systems' (Definition 5.45). For such a coefficient system ',t)
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we construct a SD-twisted version MT) of the functor M and prove that it is in fact
a triple (Theorem 5.47). Modular SD-operads (or SD-twisted modular operads) are
then algebras for this triple (Definition 5.55). We will also study formal properties
of coefficient systems and give a couple of examples, the most important being the
dualizing cocycle .ff of Example 5.52 necessary for the Feynman transform which
is eventually defined in Definition 5.58. We close this section with a proposition
stating that the Feynman transform is a homotopy functor (Proposition 5.60).

Suppose we are given, for each g > 0, n > 1, a functor

z : Isor(g,n) -* gVec

from Isor(g,n) to the category gVec of graded vector spaces. For each k > 0,
there is a natural extension of SD to a functor SDk : Isokr(g,n) - gVec given by
the formula

1k.rkl)
0(1'k)0 ® SD(fk 1(vk))®...® ® SD(fl'(vI))

vkE Vert(rk) vIE Vert(rt)

By our standard extension trick we may in fact assume that SDk is defined on
Iso kr((g, s)) for an arbitrary finite set S. We will also assume that

(5.55) 0(*g,s) = k, for any g, S.

Under this assumption, 1([ro f F1]) _ (r,)SD(f I(v)) is natu-
rally isomorphic to SD(r1),

(5.56) zI([rofrl) =SD(r1),

whenever f is an isomorphism.

Let a1 : Iso 1r((g, s)) -> Iso or((g, S)) be as in (5.35) and suppose we are given a

transformation v : 01 -> 0 oa1. This means that to each [ro f rll E Isoor((g, s))
is assigned a natural morphism

of : SD(r1)® ® SD(f-1(v)) -> SD(ro).
vE Vert(r I)

Such v induces, for 1 < i < k, transformations vki : Z k - SDk_1 o a, as follows. For

i = k and r:= [roft.....rk] E Isokr((9, S)), (vkk)r : 5Dk(r) "* (SDk-1 oak)(r)
is the composition

Ok(r) _ o(rk)® ® SD(fk 1(vk))® 11(vk-1))®'..®
®Z(fl 1(vl))

vkE Vert (Fk) vk_1E Vert(rk_I) vie Vert(rl)

v!k®Il
0(rk-1)0 ® SD(fk11(vk-1))®'..® ®S7(fl I(vl))

vk-IE Vert(rk_I) vIE Vert(ri)

(SDk-1 oak)(r)
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For i < k, (vki)r : Dk(r) -> (Ok_1 o ai)(r) is given by
{Ok(r)= 0(fi;i(vi+l))® ® D(fi 1(vi))®...® ® 3T. (f 1(vl))

v,+iE Vert(r,+i) v,E lfert(r,) v1E Vert(r,)

[D(fi+1(vi+1))® ®0(f 1(vi))]®...® ®o(f- 1(vl))
v,+i E Vert(r,+i) v, Ef, 1(v=+i) v1E Vert(rj)

(F )®...® ® ((fi+lfi) l(vl ))
v,+iE Vert(r,+i) viE Vert(rl)

= (3k o Di)(r)-

DEFINITION 5.45. Let 0 : Isor((g,n)) -+ gVec and v : 01 ---> o al be
as above. We call (D, v) a coefficient system, (or a hyperoperad in the original
terminology of [GK98]), if

(i) the diagram

02

V21

V22

v0a2

voal
01 o al - 01 0 ((91a1) = 01 0 (a1a2)

commutes, and
(ii) for each isomorphism f : rl --* ro, the diagram

01([rof rl])
of

0(1'o)

10(f)
D(r1)

where = is the identification of (5.56), commutes.

For a coefficient system 0, define the twisted version MD of the endofunctor
lei[ by

(5.57) (MDS)((g,n)) := colim o(qoqr)), for CC Mod.
r c iso r((g, n))

The following proposition is an innocuous twisted version of Proposition 5.39 and
we leave the proof to the reader.

PROPOSITION 5.46. For each k > 0, the (k + 1)th iterate of the functor MT) is
given by

(5.58) (MD)k+1S((g, S)) = colim E((ro))®2k([ro -fem....
[ro

f fk,rk]
E fso kr((g, s))

Using the description of (5.58), we may define a natural transformation g
M RY][j) by setting µE : (101[Z)2S N][OS to be the colimit of the system of
maps

01 0(92

f Il®"f f
s((ro))®D1([ro r1]) * s((ro))®0(ro), [ro-rl] E Isolr((g,s)).
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Let also v : Ilru+od -* MD be the transformation given by the inclusion of £((g, S))
into the component £((*g,s))®0(*g,S) - £((g, S)) of (M5)£)((g, S)).

THEOREM 5.47. The transformations u : M - M o and v : Ili1od - MD
define on the functor NIX) a structure of a triple.

PROOF. As in the proof of Theorem 5.40 we see that p(pMj))E : M'£ -* NRD£

is the colimit, over [ro-*rl-*r2], of the system of maps

fl f2 n®(I-a2)122
£((ro))®z(ro),

while µ(MD s)E : MD£ is the colimit of

fl f2 11H('Oal)u21
£((ro))®z([ro- rj- r21) £((ro))®o(ro).

Thus the first diagram of Definition 5.45 assures that s(juNRD) = p(NRl)µ). The
unitarity µ(vMD) = p(Mj)v) = MD is an easy consequence of the commutativity
of the second diagram of Definition 5.45.

For two coefficient systems 2 = (0, v) and (E = (C w), define a new coeffi-
cient system D. ®( _ (Z®(E,v®w) by (D®(E)(r) := 0(r)®(F(r), with (v®w)f
p®E)1([ro f r1]) - p®(E)(ro) given as the composition

(D®(F)I([r0 f r11) _ Nr1)®e(r1)® ® 1)(f-1(v))® ® (f 1(v))
vEVert(rl) vEVert(r,)

{z(r1)® ®D(f 0 (f-1(v))}
ve vert (r1) vE Vert(r1)

V'®w'-> 2(ro)®(E(ro) = (0®(E)(F0).

Finally, let = (3, t) be the coefficient system with 3(r) = k for each r E r((g, s))
and t given in the evident way.

LEMMA 5.48. The tensor product ® introduced above defines a monoidal struc-
ture on the set of coefficient systems. The system 1 is the unit for ®.

The proof of the lemma is a direct verification and we leave it to the reader.
Let us say that a graded vector space V is invertible, if there exists another graded
vector space V-1 such that V®V-I - k. Clearly, V is invertible if and only if it is
of the form T'' k for some n E 7L; then V-1 =1 'k. According to [GK98] we call a
coefficient system 0 = (0, v) a cocycle if 0 (r) is invertible for each r E Iso r((g, s))
and the maps u f are isomorphisms for each f : ro --> rl. The inverse of a cocycle
2 is again a cocycle which we denote 0-1.

A special class of cocycles can be constructed as follows. Let C be a modular
E-module such that each graded vector space ((g, n) is invertible. Define, for I' E
Iso r((g, S)),

(5.59) D1(r) I((g,S))® ® 1((g(v),Leg(v))) 1
vE Vert(r)
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For f : Fo - rl, let v[ : s7[(F1)®® EVe,c(r,)D[(f-1(v)) - Z[(ro) be given by
the identification

D[(rl)® ® O1(f-1(v))
vE Vert(r1)

_ [((g, S))®® [((g(v), Leg(v)))-l®{® [((g(v), Leg(v)))®®[((g(w), Leg(-)))-1}
vEVert(r1) vEVert(r1) wEf-1(v)

[((g, S))®® { [((g(v), Leg(v)))-1®[((g(v), Leg(v)))}®® [((g(w),
Leg(w)))-1

vE Vert(r1) wE Vert(ro)

[((g, S))®® [((g(w), Leg(w)))-l = O[(ro).
wE Vert(ro)

Each modular E-module [ E MMod defines an endofunctor

(5.60) 1(-) : MMod -* MMod

by [(£) ((g, S)) [((g, S))®£ ((g, S)).

LEMMA 5.49. The object Of = (s7[, v[) constructed above is a cocycle, called
the coboundary of [. There is a natural isomorphism of triples

(5.61) MD®Z, = to M1) o [-1.

PROOF. The verification that 01 is a cocycle is easy and we leave it to the
reader. The isomorphism (5.61) is given as the colimit, over r E r((g, s)), of the
identifications

D(r)®D[(r)®£((r))

_ z(r)®[((g, S))® ® [((g(v), Leg(v)))-1®£((r))
vE Vert(r)

[((g,S))®{ma(r)®(r1£)((r)) }.

EXAMPLE 5.50. Let s(g,n) :=T 2(9-1)+n+lsgn+, where sgn,+ is the signum
representation of E+. For E E Mod we call s£ = s®£ the modular suspension of
the modular E-module E. The associated cocycle 05 is concentrated in degree zero.
Indeed, we obtain from (5.59) that, for r E r((g, S)),

deg(3s(r)) = 2(g - 1) + ISI - > (2(g(v) - 1) + JLeg(v)t ),
v E Vert(r)

which is zero, by (5.31). Let us remark that the original definition of s in [GK98]
uses desuspension instead of suspension, s(g,n) :=J.2(g-l)+n+lsgn+

n.

For a finite dimensional vector space V of dimension n, let

Det(V) := An(J.V),

the one-dimensional top component of the n-fold exterior power of V concentrated
in degree -n. If S is a finite set, define Det(S) := Det(ks) = AISI (jks). Explicitly
this means that, if card(S) = k,

Det(S) = ® Span (I sf(1) A...A ISf(k))
f {1, ,k}--S £k
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with Ek acting by u(J sf(l) A ... A 1 sf(k)) := sgn(u)(I sf(Q(1)) A .. A 1 sf(Q(k))).

The following lemma is an easy consequence of definitions.

LEMMA 5.51. For any finite set S, there is a natural isomorphism

(5.62) Det(S)2 -j21Slk.

Given a decomposition S = UiEI Si, of a finite set S into a disjoint union, then
there is a natural identification

(5.63) Det(S) Det(Si).
iEl

EXAMPLE 5.52. Let us introduce the cocycle A = (A, f) by

A(r) := Det(edge(r)).

The structure morphism tf :.6 F1)®®vcVert(r,)A(f 1(v)) -+ A(ro) is, for f
r0 -* r1, given by the natural isomorphism

A(F1)® ®A(f 1(v)) = Det(edge(ri))® Det(edge (f-1(v)))
vE Vert(r,) vE Vert(rl)

Det(edge (r1)Li u edge(f-1(v))) Det(edge(ro))=A(edge(ro))
vE Veit(r I)

based on (5.63). We call A the dualizing cocycle. Given a cocycle 0, we denote

(5.64) b := A00-1

and call i the dual of 0. This duality will be crucial in the definition of the
Feynman transform for modular operads.

Let Or(e) be the orientation line of an edge e in r, that is, the determinant
T 2Det({s,t}), where s and t are the pair of flags making up the edge e. The
orientation cocycle T of a graph r is given by

T(r) Det ( ® Or(e) )
eEedge(r)

with the structure morphism tf : T(r1)®®vEVert(rl)(f 1(v)) - T(r0) given,
for f : r0 -> r1, by the identification

(r1)® ®(f 1(v)) = Det( ® Or(e))® ® ( (D Or(e))vev-t(r,) eEedge(rl) vEVert(rl) eEedge(f-1(v))

Det(® { Or(e) I e E edge(d) Li LJ edge(f-1(v)) })
vE Vert (r,)

Det( (DOr(e)) = T(ro)
eEedge(ro)

based on an obvious vector-space variant of (5.63) saying that, for a decomposition
V = ®iEJ Vi of a finite dimensional vector space,

Det(V) = ®Det(Vi).
iEl
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PROPOSITION 5.53. There is a natural isomorphism

where 05 is the coboundary of the suspensions introduced in Example 5.50.

PROOF. For symbols x and y, let J,xni..y be the generator of Det(Span{x, y}).
If s and t are two half-edges forming an edge e E edge (r), then the orientation line
Or(e) is, by definition, spanned by T2 (IsA It), therefore Det(Or(e)) is spanned by
T (IsA It), because the determinant of a one-dimensional space is just its desuspen-
sion. Let us identify T (IsA It) with Te®(J,sn it) E (Det{e})-1®Det({s, t}). This
means that for each e = Is, t} E edge(r), we defined a canonical identification

(5.65) Det(Or(e)) = Det({e})-1®Det({s, t}),

compatible with the action of the automorphism group 7L2 which interchanges s
and t.

Let IFlag(r) denote the set of internal flags of the graph r, that is, the set
of flags that are not the legs of F. Then, multiplying (5.65) over IFlag(r) and
using (5.63), we derive that

(5.66) T(r) = Det(edge (r))-1®Det(IFlag(r)).

On the other hand, Flag(r) = IFlag(r) U Leg(r), thus (5.66) gives

T(F) = Det(edge (r))-1 ®Det(Flag (r))®Det(Leg(r)) 1.

It remains to show that

(5.67) D5(r) = Det(edge (r))-2®Det(Flag (r))®Det(Leg(r))

which, because A(r) = Det(edge(r)), implies the proposition. To prove (5.67),
observe that, for v E Vert(r),

s((g(v), Leg(v))) -T 2(g(v)-1)Det-1 (Leg(v))

Thus

D5(F) -T2(g-1)Det-1(Leg(r))® ® 12(g(v) -1)Det(Leg(v)).
vE Vert(r)

Because J 2(g(v)-1) shifts the degree by an even number, we may move it to the left
and write

Det(Leg(v))).
vEV-t(r)

By (5.29), g- 1 - E,,v,.t(r)(g(v) - 1) = edge(Q, thus

o5(r)_T21edge(r)I(Det-1(Leg(r))® ® Det(Leg(v))).
vE Vert(r)

This gives (5.67), because, by (5.62), Det(edge(r))-2 - T21edge(r)I k.

In Section 5.6 we use the coboundary 0p associated to the stable modu-
lar E-module p with p(g,n) = g16(g-1)-2nk. The following proposition, taken
from [GK98], relates Op to the square of the dualizing cocycle introduced in Ex-
ample 5.52.

PROPOSITION 5.54. There is a natural isomorphism of cocycles .fl2 = 2p.
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PROOF. It follows from (5.59) that, for r c r((g, n)), Zp (r) = 121 k, where

l = 3(g(r) - 1) + n - (3(g(v) - 1) + ILeg(v)l).
vE Vert(P)

Equation (5.32) implies that l = edge (r) I and the result follows from the definition
of A.

Let us recall that, by Theorem 5.41, modular operads are algebras over the
triple M = (109[,µ,v). `Twisted' modular operads are defined in a similar way.

DEFINITION 5.55. Let Z be a coefficient system. A modular 5-operad (also
called a s7-twisted modular operad) is an algebra over the triple Mn = (Mn, µ, v).

Lemma 5.49 implies that, for any modular E-module [, the functor 1: Mod -
Mod induces an equivalence between the category of modular D-operads and the
category of modular 2D®0i-operads as follows. By definition, a 2D-modular operad
structure on A is given by a map a : MoA - A, which in turn induces the map

[a : (Io Ma))A- LA.

But ([ o M1))A = ([ o M5) o [-')[A is, by (5.61), naturally isomorphic to Mn®n
thus (a may be interpreted as a map

[a: Mn®n, [A [A

that defines a D®Z,-modular operad structure on (A.
The above observation can be reformulated intuitively as saying that changing

0 by a coboundary does not change the category of D-modular operads.
Modular 1-operads are just ordinary modular operads, with the corresponding

notion of modular algebras as representations in the modular endomorphisms op-
erad; see Definition 5.44. Modular algebras exist also for `5-modular operads, since
there is the '5-endomorphism' operad, as shown in the following example.

EXAMPLE 5.56. Let V = (V, B) be a chain complex with a graded antisym-
metric nondegenerate bilinear form B : V®V - V of degree -1. Define the
modular E-module Endv by

Endv((g, S)) V®s

for g > 0 and a finite set S. To define, for r E r((g, S)), the `composition map'

ar : Endv((I ))®T(r) -> Endv((g, S))

choose labels se, t, such that e = {sefte} for each edge e E edge(r). Then aP is
the following composition:

Endv((F))® (r)

V®Faag(r)®Det( ®Or(e) =V®Leg(P)® ® (V®{se,te}®Det(0r(e))
eEe/dge(r) 7 eeedge(r`)

V®Leg(P)® ® I Vye®Vte®Span(T (Jse/\ Ite))
eEedge(r) 1\

n(9 ®' B` V®ceg(r)®k®edge (r) = EndTV ((g, S)),
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where Be is the map that sends u®v® T (f seA lte) E Vse®Vte®Span(T (LSen Ite))
to B(u, v) E k.

We must show that the definition of car does not depend on the choice of labels.
If we interchange labels se, to of an edge e, we obtain

(_1)Iul IVI+1(v®u® T(1te^ Jse)) E Vte®Vse®Span(T (Jt5A Ise))

instead of

u®v® T (Is5A Ite) E Vse®Vte®Span(T (ys5A lte)).

The form Be maps (-1)1ul Iv1+1(v®u®T (f,teA Ise)) to (-1)Iul Iv1+1B(v,u), which
is the same as B(u, v), because B is assumed to be graded antisymmetric. Thus
the value of ar does not depend on the choice of labels forming up the edge e. It
is also clear that the degree of Be is zero, thus also deg(aT) = 0.

It is easy to verify that far" I I' E r((g, S))} induces on £ndT the structure of a
T-modular operad. See also the similar Example 5.87.

EXAMPLE 5.57. Let Q be a cyclic pseudo-operad. Define a stable modular
E-module (denoted again Q) by

_ Q(n), for g = 0, n> 2, and
Q(g' n 0, otherwise.

Let 0 et be the coefficient system defined by 2et(r) := Det(Hi(I F ; k)). It is
easily seen that it is in fact a cocycle; see [GK98, 4.13]. Since Det (Hi (111; k)) is
trivial if r is a tree, each cyclic operad can be considered either as an ordinary
modular operad or as an O -modular operad with iD = Oct.

We are ready to define, for each cocycle 0 and O-modular operad A, the
Feynman transform FDA = (F5A,8FD). Ignoring the differential, FT)A equals
MbA#, the free b -modular operad on the linear dual A# of A, where i is the
cocycle introduced in (5.64). The differential 8 = 8F,,, is the sum 8f + 8E, where
81 (the internal part) is induced in the standard way from the differential of A and
8E is defined as follows.

Since A is, by assumption, a s-modular operad, we are given, for each graph
r E r((g, S)), the structure map ar : D(r)®A((r)) --s A((g(r), Leg(r))). This
structure map induces, for each f : ro -s r1i a morphism (a `twisted' analog of the
morphism of (5.41))

a((f)) : i(ro)®A((ro)) ---i 2(r1)®A((r1))

given as the composition

v 1OIL
O(ro)®A((ro)) ' o(r1)® ® O(f-1(v))®A((ro))

vE Vert(r1)

(I1)® ® (0(f-1(v))®A((f 1(v))))
s E Vert (r, )

Il®® 'fif-1(v)
o(F1)® ® A((g(v), Leg(v))) = o(rl)®A((rl)).

vE Vert(r1)
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The above definition makes sense, since 0 is, by assumption, a cocycle, thus the
inverse of of exists. The functoriality of the map a((-)) is obvious. Let us denote

Ore = af(ire)) : o(r)®A((r))-iz(r/e)®A((r/e))
Using the identification D. (r)# = z-1(r), we may write the dual of are as

(ar,e)# : s7(r/e) 1®A((r))#.

There is another natural degree -1 map er,e : Ape) - A(r) given by tensoring
with the basic element f,e of A({e}) = Det({e}) as

Er,e :A(r/e) le®n
Det({e})®S(r/e) - Det({e})®Det(edge (r/e))

Det({e} Li edge(r/e)) - Det(edge(r)) = S(r).

Let us denote the tensor product of er,e with the dual of ar,e by ar,e:

ar,e : b(r/e)®A((r/e))# = A(r/e)®z-1(r/e)0A((r/e))0

.q(r)®D. -1 (r)®A((r))# = b(r)®A((r))

The vector space M bA((g, S)) is the sum

(5.68) M A((g,S))= ® (A(r7)®Z-1(r7)0A((r7))# Aut(r,)
7e{r((9, s))}

over representatives of the isomorphism classes of elements of r((g, S)) (compare
formula (5.34) for MA). For two classes y, 6 E {r((g, S))}, the `matrix element'

a7,5 :.ff(r7)®o-1(r7)®A((r7))# .q(r5)®o-1(r5)®A((r5))#

is defined as the summation of all 8r5,e over all edges e of 175 such that F. - r5/e.
If no such an edge exists, we put a7,b := 0. Of course, a7 5 vanishes if ledge(r7) 0
ledge(r5)1 - 1. The map a7,5 descends to the map (denoted by the same symbol)

(5.69) a7,5:(.(r7)®D-1(r7)®A((r7))#)Aut(r7)

(q(r7)®2-1(r7)®A((r7))#)Aut(rs)

because any automorphism 0 of F. - r5/e clearly lifts to some automorphism
E Aut(r5). The map in (5.69) also obviously does not depend on the choice

of an isomorphism r7 - r5/e, because any two such isomorphisms differ by an
automorphism of r..

Finally, define aE on the component

(*r7w-1(r7)®A((r7))# ) Aut(ry)

of (5.68) as the sum

aE Y_ a7,5.

5e{r((g, s))}

This sum is finite, since, for each r7, there clearly exist only finitely many couples
(6,e), 6 E {r((g,S))}, e E edge(r5), such that r7 = r5/e. Here is the main
definition of this section.
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DEFINITION 5.58. The object FD (A) = (Mb (A#), a) with a := aE + al is
called the Feynman transform of the 0-modular operad A.

THEOREM 5.59. The Feynman transform FV is a modular T-operad in the
category of chain complexes.

PROOF. It is clear that the `matrix element'

(a2). 1(r7)®A((rry))#)Aut(r,)

A ut(r-)

can be written as

(a2)7,.
el

-el O ary,/el,e2 + (9r.,ez 0 al'w/ez,ei )+
e2

where the summation is taken over pairs {ei, e2} of distinct edges of I, such that
r.y = r,/{el, e2}. Thus, in order to prove that aE = 0, it is enough to show that

(5.70) arw,el 0 arm,/el,e2 = 0 are.,/e2,el

which is, by definition, the same as to show that
\J

(5.71) (Erw,el ®(arW,el)#) O (Er./et,ez®(arw/el,e2)#)

(Er-,e2 ®(ar_e2)#) 0 (Erw/e2,el®(ar,,,/ez,el)#).

The functoriality of a((-)) implies that

are,/el,e2 0 arm,/e2,e1 0 arw,e2

thus (5.71) will follow from

(5.72) EF,,el O Erg,/el,e2 = -Er,,e2 O EF,,,/e2,el

By definition, Erw,e, o Erw/el,e2 maps x E St.(r./{el, e2}) to le1® le2®x, which is
an element of

Det({ei})®Det({e2})®Det(edge(r,,,/{el, e2})) = Det(edge(r )) = S(r,,,).

Similarly, Erw,ey 0 ErW/e2,el sends x E . (r,,,/{e1, e2}) to J e2® lel®x, which is an
element of

Det({e2})®Det({el})®Det(edge(r, /{el,e2})) = Det(edge(r,,,)) =. (r4,)

Equation (5.72) now follows from 1e1® 1e2 = - le2® lei. This also explains why
we had to introduce the coefficient system S into the definition of the Feynman
transform.

Since all constructions involved in the definition of aE were made in the category
of graded differential vector spaces, aE and al must commute as degree -1 objects,
i.e. aEal + alaE = 0. Thus

a2 = (aE + al)2 = aE + (aEal + alaE) + al = 0.

The last thing that remains to be proved is that the differential a is com-
patible with the D-operad structure on Mb, that is, the triple multiplication
AA# : (Mb)2A# --> MbA# commutes with the differentials. The proof is quite
straightforward.
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By Proposition 5.46, (Mb)2A#((g, S)) is the colimit

colim b(r1)® ®b(.f-1(v))®A((ro))#)
[ro f .r,] E Iso ir((g, s) vE ve,t(ri)

Because b is a cocycle, for each [rof F1] E Iso1F((g,S)) is the product

b(r1)® ® b(f 1(v))
vE Vert(Fi)

canonically and functorially isomorphic to i(I'o), thus the above colimit can be
written as

(Mb)2 A((g, S))# = colim (b(ro)®A((ro))#)
[rof.rl] E Iso lr((g, s))

The triple product to

MjA((g,S))# = colim (b(ro)®A((ro))#)
[ro] E iso r((g, s))

is then given by `forgetting' the graph r1 in the colimit. The statement is now
almost tautological, because the definition of e on (Mb)2A# does not involve any
data related to the graph r1.

Let us state without proof, which can be found in [GK98], an important ho-
motopy property of the Feynman transform. We call a morphism f : A --s B of
differential D-modular operads a weak homotopy equivalence if

f (g, n) : A(g, n) - B(g, n)
is a homology isomorphism, for each g and n.

PROPOSITION 5.60. The Feynman transform is a homotopy functor. This
means that, given a weak homotopy equivalence f : A -+ 13, the induced map
Fn (f) : Fo (A) -s F5)(13) is also a weak homotopy equivalence. Moreover, there
is a canonical weak homotopy equivalence r : Ft, Fn (A) -s A.

5.5. Application: graph complexes

The aim of this section is to study moduli spaces of graphs and objects they
represent. We then recall the graph complexes of M. Kontsevich which calcu-
late rational homology of these spaces and show that these complexes are in fact
particular cases of the Feynman transform of Section 5.4. We also explain how
the graph complexes are related to Chevalley-Eilenberg cohomology of certain in-
finite dimensional Lie algebras. The exposition is based on the original papers of
M. Kontsevich [Kon94, Kon931 as well as on [GK98] and [Mar99b].

RIBBON GRAPHS AND RIEMANN SURFACES. We first show that ribbon graphs
describe certain moduli spaces of decorated Riemann surfaces. We then introduce
a chain complex calculating rational cohomology of these spaces.

Let us fix a smooth oriented genus g surface F9,s with s distinct numbered
points p1, ... , ps. Let us assume the usual stability condition

2g-2+s>0
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which excludes the cases g = 0 and s < 2 and (g, s) = (1,0). Let us denote
Fy 3 := F9 3 {pl, ... , ps}. Recall that the Teichmiiller space T9, is the space of all
pairs (X, [f]), where [f] is the homotopy class of a homeomorphism f : X -> FF 3

and X is a finite-area complete hyperbolic surface. The homotopy class [f ] is called
the marking of the surface X. Two elements (X, [f]) and (Y, [g]) of Tg,s are taken
to be equivalent if there exists an isometry h : X --* Y such that the diagram

h
X Y

(5.73)

/9
F9,3

is homotopy commutative. The topology of 7g,3 is induced by Fenchel-Nielson
coordinates which identify Tg,s with the space (11 x 1R>o)39-3ts. see [Har88, The-
orem 1.1].

A decoration of a point (X, [f]) of 7g,3 is a choice of a horocycle around each
puncture of X. A horocycle about a puncture is, by definition, a simple closed
geodesic that divides X into two components in such a way that one of these
components is a disc minus the puncture. Let us denote by gas` the space of
equivalence classes of these decorated surfaces and call it the decorated Teichmiiller
space.

There is an obvious fibration cp : gas` -> 7g,3 given by forgetting the decora-
tions. Since a horocycle around a puncture is determined by its length, a decoration
is in fact given b y a choice of positive real numbers (al, ... , a3). This means that
the fibration cp is trivial with fiber

The dimension of
gas°

is easy to determine - there are 6g - 6 + 2s Fenchel-
Nielson coordinates for Tg,3 plus s coordinates for the decorations, so the dimension
must be 6g - 6 + 3s. We see that in fact (see also [Pen87, Theorem 3.1]):

THEOREM 5.61. The decorated Teichmiiller space gas` is hom.eomorphic to the

space 1Rjo
-5+33

There is an equivalent alternative description of Teichmuller space T9,3 in terms
of complex structures. Elements are again pairs (X, [f]), but X is now a Riemann
surface with distinct ordered points (ql, ... , qs) and [ f ] is a homotopy class of a
homeomorphism f : X -> F9,3 (observe that we now use Fg,3 and not F,,, as in the
hyperbolic case) such that f (qi) = pi for each 1 < i < s. The equivalence is defined
as in (5.73) except that h is now a conformal homeomorphism preserving marked
points.

A decoration of a pair (X, [f]) is given, as before, by a choice of positive real
numbers (al, ... , a3). Such a decoration is now equivalent to a choice of a Strebel
differential on X whose definition we briefly recall. A quadratic differential is a
meromorphic section of the second symmetric power KR2 of the canonical bundle
KR, that is, it locally behaves as ((z)(dz)2, with a meromorphic function {.

As proved by K. Strebel in [Str84], for each Riemann surface X with distinct
numbered points q l, ... , q3 and for each choice of positive real numbers a1,... , a3
there exists a unique quadratic differential w on R which is holomorphic outside
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{qi,... , q} and which has a quadratic pole at each distinguished point qj. Moreover
for each sufficiently small simple loop circling around the pole qj one assumes that

aj =

see [MP98, Theorem 4.2] for details. Such a quadratic differential is called a Strebel
differential.

Let MCg,s be the mapping class group, that is, the group of isotopy classes
of orientation-preserving homeomorphisms of Fg,s (which may permute the punc-
tures). The mapping class group acts on Tg,s by

[g](X, [f]) := (X, [gf]), for [g] E MC.,s and (X, [f]) E T9,s.

This action clearly extends over gdsc and the fibration cp is MC9,s-equivariant. The
moduli space 9Ryes := gase/MCg,s is the moduli space of genus g Riemann surfaces
with s distinct unlabeled punctures decorated by positive real numbers.

There is of course also the standard nondecorated version of the above moduli
space, 0g,s := Tg,s/MCg,s, the base of the obvious fibration 7r : Mg,s - 0g,,s,
where M9,s is the moduli space of genus g Riemann surfaces with s distinct labeled
punctures which we will discuss in more detail in Section 5.6. Both fibrations
mentioned above:

R>0 dec
9,s

Mg,s s

0g,s
induce isomorphisms of rational cohomology

(5.74) H` (9 s) = H' (g,s; Q) H` (Mg,s; Q)

We are going to describe a neat combinatorial model for gR9es whose existence
follows from the results of [Har88] and [Pen87] and which is defined in terms of
ribbon graphs. Let us say first what a ribbon graph is.

By a ribbon graph (also called a fat graph) we mean a connected graph r
with fixed cyclic orders on the set edge(v) of half-edges attached to each vertex
v E Vert(r). We assume that all vertices are at least ternary, that is, ledge(v)l > 3
for each v c Vert(F). We also assume that graphs considered in this section have
no legs (i.e. all edges are internal), though this assumption can be relaxed at the
cost of minor technical complications.

One can associate an oriented surface with boundary, Surf (r), to each ribbon
graph r by replacing edges by thin oriented rectangles (ribbons) and gluing them
together at all vertices according to the chosen cyclic order. Let RGrg,s denote
the set of all isomorphism classes of ribbon graphs r such that the surface Surf (r)
has s holes and genus g. See Figure 8 for examples of ribbon graphs. Each graph
r E RGrg,s clearly satisfies

Vert(r)l - edge (F)] = 2 - 2g - s.

A metric on a ribbon graph r is a map l from the set of edges of r to the
set of positive real numbers R>0. We denote by RGry st the set of ribbon graphs
r c RGrg,s with a metric. There is an obvious fibration of RGry st over RGrg,s;
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FIGURE 8. Two examples of ribbon graphs. The cyclic order of
edges at vertices is induced by the anticlockwise orientation of the
plane. The left graph F1 represents the sphere minus three distinct
points, F1 E RGro,3, the right graph F2 the torus minus a point,
r2 E RGr1,1

the fiber yr over a point r E RGry,s is called in [MP98] a rational cell,

R>eddge(r)l

ar
Aut(I

We will also need the cover Qr of or,

(5.75) &1, := R>10 -' 0r.

Intuitively, when a length of an edge of I' tends to zero, the graph degenerates
to a new graph P', which determines a cell ur' on the boundary of ar together
with the gluing map. This gives RGr9 et a structure of an orbifold (also called
a V-manifold), that is, a topological space locally modeled by a Euclidean space
(in this case by Rx69-6+3s) modulo a finite group action; see [MP98, Sat56] for
details.

The following theorem can be proved by either using methods of hyperbolic
geometry as in [Pen87, Theorem 5.5] or using Strebel differentials as in [MP98].

THEOREM 5.62. The space RGr9 st is, as an orbifold, canonically isomorphic
to 9dec

gs

EXAMPLE 5.63. Let us discuss, following [MP98], Teichmiller space Ede,
and the related decorated moduli space 9R] 3 Since there is only one complex
structure on the sphere S2 and the group of holomorphic automorphisms acts simply
transitively on triples of distinct points of S2, the decorated Teichmuller space Toec
is just with coordinates (ao, a1, a.) and an obvious action of the symmetric
group E3. The moduli space qRd 3 is then R 3/E3. Types of the corresponding
metric ribbon graphs are classified by the discrzminant

D := (ao + a1 - aco)(al + a. - ao)(aoo + ao - al) E R.

We distinguish three cases, two regular and one singular.

CASE 1. D > 0. Clearly this happens if and only if all three factors of D are
positive. The corresponding metric ribbon graph graph is
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l(ei) = ao + ai - aoo,

1(e2) = al + a. - ao and

1(e3) = a. + ao - aI,

where 1(-) denotes the length of the corresponding edge.

CASE 2. D < 0. This happens if precisely one factor of D is negative and
two factors are positive. Suppose for instance that ao + ai - a. < 0. Then the
corresponding metric ribbon graph is

l(ei) = ao,

1(e2) = al and

1(e3) = 1(a. - ao - ai).

THE DEGENERATE CASE D = 0. This is the case when precisely one of the
factors of D, say ao + al - a., is zero. The corresponding graph is

l(ei) = ao and
1(e2) = ai.

We conclude that RGro 3t = lib>0/E3 has four open rational three-dimensional
cells, one corresponding to Case 1 and three corresponding to Case 2. They intersect
at three two-dimensional rational cells corresponding to the degenerate case. See
again [MP98] for more details.

We are going to describe an algebraic chain complex that calculates the rational
cohomology of RGrrst. Our exposition follows [Kon94, Kon93] where the details
can be found.

The space RGr9 st is a noncompact but smooth orbifold of virtual dimension
6g-6+2s. It is not oriented, but its orientation sheaf c is easy to describe - its fiber
over the covering cell &r of (5.75) is ns(Hi(Irl;Q)). Poincare duality for orbifold
(co)homology with closed supports ([Bre67, V.9.2], [Sat56]) gives the isomorphism

.(5.76) Hclosed (RGr`net. E) = H* (or,t>6g-6}3s-* g,s
9,sme

The homology H*losed(RGr9st; e) can be computed using a chain complex
RGC;"3 = (RGC9"s, a) arising from the spectral sequence of the stratification given
by rational cells. This chain complex is generated by ribbon graphs 17 E RGrg,s
endowed with an orientation that reflects the orientation induced by the orientation
sheaf E of the corresponding covering cell &F. To describe this orientation in terms
of the graph r itself, observe that, by definition, the e-orientation is given by an
orientation of HI (I r1;Q), while the cell &r has coordinates `indexed' by edges of
the graph r, that is, its orientation is given by an orientation of the vector space
Qedge(r) Thus an orientation of r must be given by the superposition of these two
data. We formulate
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DEFINITION 5.64. An orientation of a graph F is an orientation of the vector
space

Qedge(r) ® H1(IF I; Q).

The orientation described in Definition 5.64 of course differs from what is usu-
ally meant by an orientation of a graph. While it is easy to say what an orientation
of Qedge(r) is - it might be given for example by an order of edges of r - it is
more difficult to work with H1(IF1;Q). Therefore the following proposition which
in fact compares orientations used by Kontsevich [Kon94, Kon93] to those used
by Penkava [Pen96] will be useful.

PROPOSITION 5.65. The orientation in Definition 5.64 is given by ordering the
vertices of r and assigning an orientation to each edge of r. Two orientations are,
of course, assumed to be the same if they differ by an even number of changes.

PROOF. Consider the complex of oriented cells of the cellular complex 1171,
QVert(r) Qor(r) where or(r) is the set of oriented edges of r. It is a part of
the long exact sequence

(5.77) 0 . Q <- Qvert(r) E_ Qor(r) E- H1(irl;Q) - 0.

A moment's reflection convinces us that an orientation of the vector space
Qor(r) is given by an orientation of the edges of F and by an orientation of Qedge(r)

On the other hand, the exact sequence (5.77) implies that an orientation of Q,r(r)
is given by an orientation of H1(Irl; Q) and an orientation of Q Vert(F) The propo-
sition is then a combination of these two pieces of information.

Let us finally introduce the ribbon graph complex RGC;'s = (RGC;'s, 8) so
that the degree k piece RGCk's is the Q-vector space generated by isomorphism
classes of oriented ribbon graphs r E RGry,, with k edges, normalized subject to
the relation

(5.78) r- = -r,
where r- is the graph r taken with the opposite orientation. The differential
8 : RGC9}1 - RGC;'s is defined as follows.

For each generator F E RGr9,s and an edge e joining two distinct vertices of
r, let r/e be the graph obtained by collapsing e to a point. Observe that this new
graph is again an element of RGr9,,, because contracting e does not change the
topology of Surf (r). Suppose that r is oriented in the above sense, with vertices
numbered by 1,... , m, that is, Vert(r) = {vi.... , vm}.

We define the orientation of r/e as follows. We may assume, applying a number
of changes if necessary, that the edge e points from v,,,,_1 towards v.. The set
Vert(F/e) is isomorphic to {v1, ... , v.,,,,_2, ve}, where v, is the vertex created by
collapsing e. See Figure 9.

We assign to ve label m - 1 (thus the vertex with label m disappears). Since
edge (17/e) -- edge(I) - {e}, the orientation of edges of r induces an orientation of
edges of r/e in an obvious manner. Now 8 is given by

(5.79) 8(r) := > 'F/e,
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FIGURE 9. Contracting an edge e of an oriented ribbon graph F.

FIGURE 10. Generators of RGCo,3

C2 :

the summation of oriented graphs F/e over all edges joining two distinct vertices
of F. The loops of the graph F do not contribute to the sum. To prove that a2 = 0
is an easy exercise and we can leave it to the reader. The following proposition
follows from the above remarks.

PROPOSITION 5.66. The complex RGC;" = = (RGC,9", a) calculates the ratio-
nal cohomology of RGrg st

H*(RGr9 t; (Q) = H69-6+3s-*(RGC9'S, aa), 2g - 2 + s > 0.

Proposition 5.66, equation (5.74) and the fact that Mg,s is `rationally' the
classifying space BMC9,S of the mapping class group [Har88, p. 143] imply the
following theorem which summarizes the above calculations.

THEOREM 5.67. There are the following isomorphisms of rational cohomology:

H69-6+3s-* (RGC;'', a) - H* (9J1 ; Q)
H*(gR9,s;Q) = H* (.A4,,,; Q) -- H* (BMC,,,, Q).

Maxim Kontsevich proved [Kon94, Kon93] that each strongly homotopy as-
sociative algebra with a scalar product (a cyclic A.-algebra) determines a class in
the homology of RGC;''; see also [Pen96]. By Theorem 5.67, his construction gives
cohomology classes in the rational cohomology of the moduli space Mg,s itself.

EXAMPLE 5.68. Let us calculate the homology of the complex RGC°'3. As
a vector space, RGC°'3 - SpanQ(A3i B3, C2), with generators given by graphs in
Figure 10, deg(A3) = deg(B3) = 3 and deg(C2) = 2.

Clearly &(A3) = a(B3) = C2 and a(C2) = 0, thus H.(RGCo*'3;a) is one-
dimensional, concentrated in degree 3. Theorem 5.67 gives H*(Mo,3;Q) - Q
concentrated in degree zero which agrees with the fact that M0,3 = the point.

The graph complex RGC;'' also calculates the Chevalley-Eilenberg homology
of a certain infinite dimensional Lie algebra a. defined as follows. Let a, be
the Lie algebra of derivations 9 of the free associative algebra without unit on
pi, , pn, 41, , qn that satisfy the condition

(5.80) piqi - qipi) = 0,

n

=1
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and let a. := lim an be the direct limit. M. Kontsevich proved [Kon93, Theo-
rem 1.1]:

THEOREM 5.69. The Chevalley-Eilenberg homology of a is a primitively gen-
erated Hopf-algebra structure whose primitives Prim H. (a-) are

(5.81) Prim Prim Hk(sp(oo)) ® ® H2g+s-1+k(RGC9°s; Q),
>o

29-2+9>0

k > 1, where the primitive homology of the infinite symplectzc group sp(oo) is well
known:

(5.82) Prim Hk(sp(oo)) _ Q, for k - 3 mod 4, and
0, otherwise.

We are going to sketch the proof. To this end we need, in the first place, an
alternative description of the algebra an. According to M. Kontsevich's interpreta-
tion, an is an algebra of Hamiltonian vector fields on a flat symplectic manifold in
noncommutative geometry. He derived from this observation the following propo-
sition, which we prove directly.

PROPOSITION 5.70. Let V = Vn := SpanQ(p1,... ,pn, 4i, ... , qn). Then, as an
sp(2n)-module

an - ®(V(Dk)Zk= ,

k>2

where the cyclic group Zk acts on VIN by permuting the factors and (-)Zk denotes,
as usual, the space of invariants.

PROOF. Derivations of the free nonunital associative algebra

Fnu(V) - ® V®m
m> 1

on V are uniquely determined by their restriction on the space of generators V.
This clearly implies that the following formula defines a one-to-one correspondence
between derivations 9 E Der(Fnu(V)) and elements p of the space ®k>2 V®k:

Der(F_(V)) z) 0 p pie(gi) -g29(pi) E V.
1<i<n k>2

Let us show that the above correspondence maps an to the invariant subspace
®k>2(V®k)zk, i.e. that 9 E an if and only if the corresponding p is invariant. By
definition, such a 9 belongs to an if and only if

E 0(pi)gi + pi0(gi) - 0(gi)pi - gi0(pi) = 0

1<i<n

which is the same as

(5.83) pi9(gi) - gi9(pi) _ 9(gi)pi - 0(pi)q,.

1<i<n 1<i<n

We may safely assume that 9 is homogeneous, 9(V) c V®-. Let T be the generator
of 7Gk, k = m + 1, then clearly
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TP = L B(gi)pi - 0(pi)gi,
1<i<n

therefore (5.83) says that rp = p, which means that p is 7Lk-invariant.

Let V be as in Proposition 5.70 and N a natural number. We will also need a
description of sp(2n)-invariant elements on V®N. Let w := >1<i<npi ® qi - 4i
pi E V®2 be the symplectic form on the dual V# of V. We will often write w in
`Sweedler's form' (but with indices (1) and (2) written as superscripts)

(5.84) w = w(1) ®w(2)

-ES

where S is a (finite) set of indices.
Suppose that N is even, N = 2K. By a decomposition of {1, ... , N} into

pairs we mean a choice of subsets {il, jl}, {i2, j2}, ... , {iK, jK} of {1.... , N},
it < ii, i2 < j2, ... , iK < 3K, such that {il, jl,... , iK, jK} _ 1_. , N}. For
such a decomposition and indices sl,... , sK E S"K we denote

Wsr),
(Pk = w(2)

for 1 < k < N and, finally,

Wi1,31 W22,32... WiK,JK :=

31,

if k = it and
if k = j,.,

01®...®WNEV®N,

,sK

EXAMPLE 5.71. There are three decompositions of {1, 2, 3, 4} into pairs:

{1,2},{3,4}, {1,3},{2,4} and {1,4},{2,3}.

The corresponding wi1,J1wi2,J2 E V®4 are

w1,2w3,4 = w ®W, w1,3w2,4 = Eij w(1)
0 and

W1,4W2,3 = Fi ®w

Observe that the notation itself already includes some symmetry, for example,
W1,2W3,4 = W3,4W1,2

The following description of the sp(2n)-invariant subspace of V®N follows from
general principles of representation theory [Wey97].

PROPOSITION 5.72. Suppose n is sufficiently large. Then

(V®N)5P(2n) _ j 0, if N is odd, and
SpanQ(wi1,J1wi2,J2 .. Wij,JK)I if N = 2K,

where i1 , j1, ... , iK, jK runs over all decomposition o f {1, ... , N} into pairs.

In the next couple of pages we sketch a PROOF OF THEOREM 5.69. The
Chevalley-Eilenberg complex CE. (a,) of the Lie algebra an can, according to Prop-
osition 5.70, be written as

(5.85) CE. (a,) = ®A* ((V®k)Z,)= ® Ak2 ((V®2)Z2) A ^k3 ((V®3)Z3) n...

k>2 k2,k3, .>O

Observe next that each Lie algebra acts trivially on its homology via the adjoint
representation. This statement is probably well known and can be easily verified
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2

FIGURE 11. Graphs A3, B3 and C3 with edges colored by summa-
tion indices,

directly. In particular, the subalgebra sp(2n) C a, acts trivially on an. Observe
also that the action of sp(2n) on CE,(an) is reductive.

It easily follows from the above observations that the sp(2n)-invariant subcom-
plex C CE. (an) is quasi-isomorphic to CE. (a,). We will calculate
the homology of an using this subcomplex. Observe that elements of CE.(an)SP(2')
can be interpreted as elements of the space

J+(an) :_ ® (V®2) ®k2 A (V®3)®k3 A...

k2,k3, >0
1

enjoying a specific type of symmetry, namely the Z2 X Z3 x -symmetry deter-
mining in (5.85) the subspace CE. (a,) combined with the sp(2n)-symmetry of the
subspace of invariants C CE.(an).

Let us show that, for n sufficiently large, ribbon graphs describe a basis of
CE,(an)SP(2n). To be more precise, let r be a ribbon graph, but this time r need

not be connected and may also have binary vertices. At each vertex of valence m
we imagine a copy of V®m. Let us now perform the `state sum' by contracting
along the edges of r using w's. This state sum will be, by the antisymmetry of w,
an element of JJ (an). Now we must `average' this state sum over 7L,n at each vertex
of valence in. The result is an element wr of CE.(an)Sp(2n). We believe that the
following example will make the construction clear.

EXAMPLE 5.73. Consider graph A3 in Figure 10 and attach to its edges sum-
mation indices i, k, j as shown in Figure 11. There are three edges with indices
i, k, j (in this cyclic order) coming to the vertex labeled 1, so the factor `sitting'
at this vertex is W Similarly, there are three edges leaving the vertex
labeled 2 with indices i, j, k (in this cyclic order), so the factor attached to this
vertex is The resulting `state sum' is A Wil)W;l)W(1) E

V®3 AV®3 C J2(an). So the sp(2n)-invariant element corresponding to A3 is

WA3 :_ {Wi2)Wk2)wj2)}Z3 A E
l^2 ((V®3)Z3))3P(2n)

where {-}z3 denotes the `averaging' over 7L3. Observe that this element has the
requisite symmetry, it does not change sign if the orientation of the underlying
graph changes and it is invariant with respect to cyclic permutations of labels of
edges. Similarly, the invariant element corresponding to graph B3 is

L'13
{W2)wzl)Wj1)}Z3 A {Wkl)Wk2)Wj2)}Z3 E (A2 l(V®3)Z3))sp(2n)

and the element corresponding to C3 is 1

WC2 :_ {WZ2)W21)}Z2 A E (n2 ((V®2)Z2 ))SP(2n)
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By Proposition 5.72, if n is sufficiently large, ribbon graphs form a basis {Wr}
of CE.(a,)sP(2" ). This is in particular true if we pass to the limit and calculate the
homology of a.. So we identify CE,(a_)sP(°°) with the vector space spanned by
all (not necessarily connected) ribbon graphs modulo normalization (5.78). The
Chevalley-Eilenberg differential translates to the differential of the graph com-
plex (5 79).

The multiplication in CE,(a.)''P(°°) is reflected by the disjoint union of graphs,

wr, A wr2 = wr, ur2

so connected graphs form the basis of the primitive subspace Prim CE,(a,,)sP(°°l.
We can decompose Prim CE,(a.)'P(°°) as

(5.86) Prim CE.(a.)sP(°°) = CI ® C2 ® C3,

where

(i) C1 is spanned by `polygons,' i.e. connected graphs all of whose vertices are
binary,

(ii) C2 is spanned by graphs having at least one vertex of valence > 3 and at
least one binary vertex and

(iii) C3 is spanned by graphs with no binary vertices, i.e. C3 is, modulo grading,
exactly the ribbon graph complex defined above.

Let us verify that decomposition (5.86) is compatible with the differentials.
While it is obvious that 8(C1) C C1 and 8(C3) C C3, it is not so clear why
8(C2) C C2.

If F E C2 has more than one binary vertex, then evidently 8(F) E C2. If r
has exactly one binary vertex, then it must contain (after an appropriate number
of changes of labels of vertices and orientations of edges) a subgraph

2 f 3

There are two terms in 8(r) that have no binary vertex and thus might intersect
with C3, one given by contracting e, the second one by contracting f. Since clearly
Pie = -F/f, these two terms cancel out, so all terms of 8(r) have at least one
binary vertex, therefore 8(r) C C2. Similar arguments show that in fact C2 is
acyclic.

Let us turn our attention to C1. It is generated by k-gons Lk, k > 2, with
orientations indicated in Figure 12. The rotation of Lk by exp(27ri/k) clearly, for
k even, reverses the orientation (see the octagon in Figure 12), so Lk = 0 in the
graph complex for k even. The flip around the vertical axis reverses, for k - 1 mod
4, the orientation (see the pentagon in Figure 12), so Lk is a nontrivial generator if
and only if k - 3 mod 4 (the triangle in Figure 12), therefore H.(C1) = H.(sp(oo))
as claimed.

As we have already observed, C3 is the ribbon graph complex, but the gradings
are different. If x E C3, then the Chevalley-Eilenberg degree degCE(x) and the
degree degRGC9,s(x) in the ribbon graph complex are related by

degCE(x) = degRGC9.s (x) + 1 - 2g - s.
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FIGURE 12. The triangle, pentagon and octagon.

Therefore

Prim Hk(a.) = Hk(Prim CE(a.)sP(°°)) = H, (C,) ®Hk(C2) ®Hk(C3)

Hk(sP(oo)) ®0 ® ® H2,+.-1+k(RGC;,3; Q)
29-2+s>O

This finishes the proof.

GRAPHS AND AUTOMORPHISMS OF FREE GROUPS. We are going to consider
another version of the graph complex, this time related to the classifying space of
the group of outer automorphisms of a free group.

Let Gr(n) denote the set of isomorphism classes of connected graphs r (no
ribbon structure assumed) with all vertices at least ternary and Euler characteristic
X(r) = 1 - n. A metric on a graph r E Gr(') is defined exactly as before, that
is, as a map from the set edge(r) of edges to Rio. The set of isomorphism

classes of graphs from Gr(n) with a metric is a smooth orbifold of virtual dimension
3n - 3. Therefore

(5.87) H3°°S3 ,(Gr(n)t; E) = H*(Gr(n)t;Q),

where the orientation sheaf e is defined as in (5.76).

The orientation of r E Gr(n) is given, as in Definition 5.64, by ordering the
vertices of r and assigning an orientation to each edge of F. (Co)homology (5.87)
can be calculated using the chain complex GC(n) = a) generated by all
oriented graphs r E Gr(n) modulo normalization (5.78). We observe the convention
of [Kon94, Kon93] and assign to a generator r E degree I Vert(Q. This
grading differs from the grading of RGC9'3 which was given by the number of edges.
The differential is given by formula (5.79).

The following analog of Theorem 5.67 follows from the above remarks and from
the fact that is the rational classifying space of the group OutFree (n) of outer
automorphisms of the free group on n generators [CV86].

THEOREM 5.74. The complex GC(n) = calculates the rational co-
homology of the classifying space BOutFree(n),

H*(BOutFree(n);Q)
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M. Kontsevich proved for the complex a formula similar to (5.81), with
the algebra a. replaced by cep defined as follows. Let cn be the Lie algebra of
derivations of the polynomial algebra Q[pl,... , pn, qI,... , qn] that preserve the sym-
plectic form EI<i<n dpi A dqi and the augmentation ideal. In fact, cn is the Lie
algebra of Hamiltonian vector fields on the standard symplectic plane preserving
the origin. Finally, define c. = lim c,,,.

THEOREM 5.75. The primitive part Prim H, (cam) of the Chevalley-Eilenberg
cohomology of c can be expressed as

Prim Hk(c.) = Prim Hk(sp(oo)) ®(D
n>2

where Prim Hk(sp(oo)) is described in (5.82).

The proof is similar to that of Theorem 5.69; see [Kon93, Theorem 1.1].

GRAPH COMPLEXES AS FEYNMAN TRANSFORMS. We show that the above
graph complexes are special cases of the Feynman transform which we recalled in
Section 5.4. This fact was first observed in [GK98] and then made more precise
in [Mar99b]. In the rest of this section, k will be an arbitrary field of characteristic
zero.

In Example 5.57 we recalled the cocycle Det given by s7et(r) := Det(Hi (Irl; k))
and argued that each cyclic pseudo-operad Q = {Q(n)}n>2 can be considered as a
Det-modular operad (denoted by the same symbol) with

Q(n), for g = 0, n>2, and
Q(g, n

0, otherwise.

We can thus form, for an arbitrary cyclic (pseudo)-operad Q, its Feynman
transform Fz7etQ = {F2etQ(g, n)}(g,n)Es. We show that the complex

Fz7etQ(g, 0) = (FzxetQ(g, 0), (9F)

coincides, for Q = Ass and Com (but considered as pseudo-operads, that is, with
Com(1) = Ass(1) = 0) with the linear duals of the above mentioned graph com-
plexes of M. Kontsevich.

Let us look more closely at FT)etQ(g, 0). As a graded vector space it is, by
definition, isomorphic to

(5.88) M,®,et-1(Q)(g,0) = I(ry)
yE{r((g, 0))}

® [Det-'(H1(jr. j; k)) ® Det(edge(F. )) ®Q*((r7))1Avt(r,),
'yE{r((g, 0))}

where {r((g, 0))} is the set of isomorphism classes of all stable labeled genus g graphs
with no legs and r.y a representative of a class y c {r((g, 0))}; see Section 5.3 for
the notation.

Because Q(g, n) = 0 if g > 0 or g = 0 and n = 1, the summand indexed
by rry may be nontrivial only if g(v) = 0 and edge(v) > 3 for all vertices v of
F.y. Therefore the summation is in fact indexed by the set Gr(I-g) of isomorphism
classes of genus g graphs with all vertices at least ternary.
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We will use the standard simplification and identify ry with its representative
I' = Pry. By definition, Det-1(H1(1r1; k)) ® Det(edge(r)) is concentrated in degree

b1(r) - I edge (17) Vert (r)

So we may finally rewrite (5.88) as

(5.89) FD (Q(g, 0)k = ®[Det-1(Hl(Irl; k)) O Det(edge(r)) ®Q#((r))]Av.t(r).
rE G_(i-9)

k_i-I V (r)I

CASE Q = Ass. Let us see what happens for Q = Ass in (5.89). We show
first that for each finite set S with at least three elements, the space Ass((S)) is the
k-linear space span of the cyclic orders of the set S. Recall (Example 5.27) that
Ass(n) = k[En], with the right En-action induced by the projection

(5.90) En - Cn \En - En
of En to the left classes of the action of the cyclic group CZ of cyclic permutations
of 10,... , n} on En . From this we see that for each nonzero element

(5.91) p E Ass((S)) _ ® k[En]
f

SE-'((n))

J En

there exists some indexing isomorphism f : S -* ((n)) such that the coordinate
p f E k[En] f of p is of the form a In, where In is the unit of E, and a E k.
By (5.90), all maps f with this property differ by composition with an element of
Cn ; they thus determine the same cyclic order on S.

On the other hand, given a E k and a cyclic order of S represented by an
isomorphism f : S -+ ((n)), the equivalence class of p f := lln E k[E0] f in (5.91)
does not depend on the choice of f and we may put p := a[pf].

Thus Ass((r)) is the linear span of cyclic orders of edges at each vertex of r,
that is, the linear span of all ribbon structures on r and Ass#((r)) is the dual of
this space. The factor Det-1(HI(IFJ;k)) ® Det(edge(r)) in (5.89) then expresses
an orientation in the sense of Definition 5.64. We thus conclude that

(5.92) (FnotAss(g, 0)-k)# = RGC2s+*-11k, k > 0.

CASE Q = Conn. Since Com((S)) = k for each finite set S, the right-hand side
of (5.89) is just the linear dual of the span of oriented (in the sense of Definition 5.64)
graphs with no ribbon structure assumed. Recalling the definition of the graph
complex we conclude that

(5.93) (Fo,tCorn(g, 0)-k)# - G,1+('-kg), k > 0.

It is evident from the definitions that, under the identifications (5.92) and (5.93),
the differentials of the graph complexes are duals to the differentials of the Feynman
transform, at least up to signs. The sign issue is a tiresome but straightforward
exercise which we leave to the reader.

REMARK 5.76. For P = Cie, the Feynman transform F0,tCie(g,0) can be
described by the graph complex whose definition is indicated in [Kon93, §5]. We
may imagine these `Lie graphs' as oriented graphs whose vertices of arity k + 1 are
colored by (k - 1)! `colors' representing a basis of Gie(k).
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5.6. Application: moduli spaces of surfaces of arbitrary genera

As we already mentioned at the beginning of Section 5.3, modular operads were
tailored to describe moduli spaces of surfaces of arbitrary genera. We illustrated this
on the (unstable) modular E-module M = {M(g, n)}9>o,,,,>_1 of Riemann surfaces
with parameterized holes and the obvious modular operad structure induced by
sewing along the holes. This modular operad was studied by E. Getzler in [Get94a,
Get94b] who called algebras for this operad topological conformal field theories
with trivial ghost number anomaly.

The aim of this section is to discuss less straightforward examples related to
Deligne-Knudsen-Mumford moduli spaces M9,,,, of stable genus g Riemann surfaces
with n punctures. We show that these spaces form a modular operad M in the
category of complex projective varieties (Theorem 5.77) and then introduce three
algebraic modular operads Qjrav, varG and Grav related to M. Theorem 5.82 then
says that the Feynman dual of the operad Grav is weakly equivalent to the operad
C,(M) of de Rham currents on M.

DELIGNE-MUMFORD MODULI SPACES. Let us generalize the material of Sec-
tion 4.2 to higher genera. A stable curve with n-marked points (also called punc-
tures), n > 0, is a connected complex projective curve C whose only singularities
are ordinary double points (nodal singularities), together with a `marking' given
by an embedding of the set {x1,. .. , x,,,} in the set of smooth points of C. The
stability means that we assume that there are no infinitesimal automorphisms of C
fixing the marked points and double points. This is the same as to say that each
smooth component of C isomorphic to the complex projective space CIP1 has at
least three special points and that each smooth component isomorphic to the torus
has at least one special point, where by a special point we mean either a double
point or a singular point.

The dual graph r = F(C) of a stable curve C = (C, x,i... , x,) is a labeled
graph whose vertices are the components of C, edges are the nodes and its legs are
the points {xi},<i<n. An edge ev corresponding to a nodal point y joins the vertices
corresponding to the components intersecting at y. The vertex vK corresponding
to a branch K is labeled by the genus of the normalization of K. (See [Har77,
page 23] for the normalization and recall that a curve is normal if and only if it is
nonsingular.)

The construction of F(C) from a curve C is visualized on Figure 13. Let
us denote by M9,,,, the coarse moduli space [Har77, page 347] of curves C =
(C, xl,... , xn) such that the dual graph F(C) has genus g (see (5.28) for the defi-
nition of the genus of a labeled graph).

Observe that the genus of the graph r(C) equals the arithmetic genus of the
curve C, pa(C) = g(F(C)). This follows from the relation between the arithmetic
genus of C and of its normalization [Har77, p. 298]. For example, the curve in
Figure 13 has (arithmetic) genus g(Al)+g(A2)+g(A3)+g(A4)+g(A5)+2, where
g(-) denotes the genus of the normalization of the corresponding component. Thus
M9,,,, is the moduli space of stable curves of arithmetic genus g with n marked
points.

Let us observe that, for a curve C E M0,,, the graph r(C) must necessarily be
a tree and all components of C must be smooth of genus 0, therefore Mo,, coincides
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FIGURE 13. A stable curve and its dual graph. The curve C on
the left has five components, Al, A2, A3, A4 and A5, and three
marked points x0, xI and x2. The dual graph r(C) on the right has
five vertices al, a2, a3, a4 and a5 corresponding to the components
of the curve and three legs labeled by the marked points.

with the moduli space M (n) of genus 0 stable curves with n labeled punctures that
we discussed in Section 4.2. An immediate consequence of the stability is that dual
graphs are stable as labeled graphs in the sense of Definition 5.38.

There is a subset Mg,n inside each Mg,n. consisting of curves C such that the
dual graph r(C) is the corolla with n legs, no edges and one vertex of genus g. By
a result of P. Deligne, F.F. Knudsen and D. Mumford [DM69, KM76, Knu831,
Mg,n is a projective variety obtained by adjoining to Mg,, a divisor Dg, with
normal crossings, though one must interpret this result with care, since Mg,,,, is,
for g > 1, not smooth. We shall discuss this subtlety later in the section.

The symmetric group E, acts on .Mg,,,, by renumbering the marked points.
Therefore, with M(g, n)

is a modular E-module in the category of projective varieties. There are clearly no
stable curves of genus g with n punctures if 2(g - 1) + n < 0, so M is a stable
modular E-module in the sense of Definition 5.33, M = {M(g, n)}(g,n)EE.

Let us define the contraction along a stable graph 17 E I'(g, n)

(5.94) ar : M((I')) = 11 M((g(v), Leg(v))) - M (g, n),
vE Vert(C)

by gluing the marked points of curves from M((g(v), Leg(v))), v E Vert(F), accord-
ing to the graph P. To be more precise, let

fJ C,,, where Cv E M((g(v), Leg(v))),
vE Vert(C)

be an element of M((F)). Let e be an edge of the graph r connecting vertices vI
and v2i e = {yvl , yv2 }, where y,', is a marked point of the component C,,, i = 1, 2,
which is also the name of the corresponding flag of the graph P. The curve ar(C)
is then obtained by the identifications ye, = yv introducing a nodal singularity, for
all e E edge(F). The procedure is the same as that described for the tree level in
Section 4.2. The contraction maps are iterations of operations studied in [Knu83,
page 190] and they are morphisms of projective varieties. The 'associativity' (5.42)
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of the contractions is clear immediately. Summing up the above observations, we
formulate:

THEOREM 5.77. The contraction maps (5.94) define on the modular E-module
of coarse moduli spaces M = {M(g,n)}(g,n)E(5 the structure of a modular operad
in the category of complex projective varieties.

Passing to homology, we obtain a modular operad H,()R) in the category of
graded vector spaces. An algebra over this operad is, by definition, a cohomo-
logical field theory in the sense of M. Kontsevich and Yu. Manin [KM94]; see
also [Get94b].

The contraction maps are closed imbeddings [Knu83] and they describe the
divisor D(g, n) := Dg,n+l as follows. For a stable graph r c r(g, n), denote
Dr := Im(csr). Then the union

(5.95) D(g, n) = U Dr,
r

over all (isomorphism classes of) stable graphs r E r(g, n) with exactly one edge is
a decomposition of D(g, n) into smooth irreducible components. The same union
as (5.95), but taken over graphs r with exactly two edges, gives the locus of double
points of D(g,n), etc. In fact, (5.95) describes a decomposition of D(g,n) into
closed strata; compare (4.10).

Let us turn out attention to open parts Mg,n C Mg n. The modular E-module

M = {M(g, n)}(g,,,)Ers with M(g, n) Mg,n+l

is not a suboperad of M, because the images of the contraction maps (5.94) are
contained in the divisor D(g, n) while D(g, n) n M(g, n) = 0.

The aim of the rest of this section is to show, following again [GK98], that
suitable `chains' on M(g, n) nevertheless form a certain .f-modular operad, where
. is the dualizing cocycle introduced in Example 5.52. By chains we mean elements
of the topological dual

(5.96) E* ()(g, n), log D(g, n))'

of the de Rham complex E`(M(g,n),logD(g,n)) of smooth differential forms on
the variety M(g,n) with logarithmic singularities on the divisor D(g,n). Notice
we used (-)' to distinguish this topological dual from the algebraic one (-)#. The
precise meaning of this complex is explained below. Its homology is, by [HL71,
Theorem 2.3], isomorphic to the Cech homology of A4 (g, n) with real coefficients,

ft. (M (g, n)) = H. (E*(.M (g, n), log D(g, n))'),

so (5.96) indeed consists of a kind of `chains' on M(g, n). Let us start with the
necessary preliminary material.

SINGULARITIES AND RESIDUES. The theory of de Rham forms with logarith-
mic singularities stems from the following result of [HL71]. Let X be a smooth
complex variety of dimension m and U an open (in the complex analytic topology)
subset of X. Let ( and 0 be smooth differential forms with compact support on
U of dimension 2m and 2m - 1, respectively. Let p be an arbitrary holomorphic
function on U. Then the limits
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(5.97) lim J and lim
k1=5

0
5-.0 Iw1>5 cP 5-'0 cP

exist. Let us point out that we do not assume the forms ( and 9 to be holomorphic.
Suppose that D C X is a divisor. Let us denote by £X (log D) the sheaf on

X generated, as a sheaf of algebras, by de Rham forms £X on X and expressions
dcp/cp, where cP is a holomorphic equation for D. A more formal way to introduce
£X (log D) is the following. Let a be the inclusion t.: X - D -+ X and r,*£X_D the
direct image of the sheaf £X_D of de Rham forms on X - D. The sections over an
open set U C X are, by definition, given as

"-£X-D(U) = £*(U - (U n D)).
The restriction

r : £*(U) -> £*(U - (U n D))

is clearly monic and it identifies £X with a subsheaf of t*£X_D. Observe also that
if cP is a holomorphic equation for D in U, then the 1-form dcP/cP can be considered
as an element of E* (U - (U n D) ). We may then define £X (log D) as the subsheaf of
t*£X_D generated as a sheaf of subalgebras by £X and 1-forms dcP/cP, where cP is a
local holomorphic equation for D. Let us define the principal value of a compactly
supported form w E £2,(U, log D) to be the integral

(5.98) pv Ju := lim / w,
U 6--0JIw1>5

where cp is as above a holomorphic equation for D in U. The existence of this limit
again follows from the results of [HL71]; it is more or less the first limit of (5.97).
When D C X is empty, £X (log D) = £X and the principal value is the ordinary
integral over U.

Let us recall that, given an open subset U of a smooth manifold X, the space of
smooth functions C(°°) (U) with the topology given by seminorms of the maxima of
partial derivatives on compact subsets of U is a nuclear Frechet linear topological
space. The category NF of nuclear Frechet spaces is a strict symmetric monoidal
category, with the monoidal structure given by a certain completion ® of the tensor
product ®. A miraculous property of this topology is that, for any two open subsets
UI C XI and U2 C X2, there exists a natural isomorphism

C(°°)(Ul X U2) =+C(°°)(U1)® C(°°)(U2)

of nuclear Frechet spaces; see [Gro55] or a bit easier [Jar8l, page 500]. The above
isomorphism of course induces an isomorphism

(5.99) Z : C ' <x2 -> C(-)® CX°2)xj X1

of sheaves of smooth functions, where the tensor product on the right is an obvious
exterior product induced by the ®-product of NF-spaces.

Let us return back to our case of de Rham forms with logarithmic singularities.
Suppose that X1, X2 are smooth manifolds and D1 C X5, D2 C X2 divisors. Then

(D1 x X1) U (X1 x D2)
is a divisor in X5 x X2 and the isomorphism (5.99) generalizes to

(5.100) Z : £Xl xx2 (log Dl x X1 U X1 x D2) -> £xl (log D1 )®£x2 (log D2).
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Suppose for a moment that D has no crossings, i.e. it that is a disjoint union
of nonsingular components. Let j : D -* X be the inclusion and j.£D the direct
image of the sheaf E. This means, of course, that

(5.101) j.£D(U) = £*(D n U),

for any open subset U C X. A result of [De171] says that there exists a degree -1
map of graded sheaves

Res : £X(logD) -+ j.£D 1

such that for each open U C X the induced map of sections Res : £*(U,logD) -+
£*-1(D n U) satisfies

(5.102) lim 1 wa = I Res(w)a,
6-.0 27r2 1, =6 D

for each 1-form w E £1(U, log D), for each compactly supported form a E £2r"-1-1 (U)
and for each holomorphic equation cp of D in U.

EXAMPLE 5.78. Formula (5.102) is a deep generalization of the residue theo-
rem from complex analysis. If X = C is the complex plane, D = {0} the origin inter-
preted as the divisor given by the equation z = 0 and U an open neighborhood of the
origin, then £1(U, log D) consists of expressions w = w1 + w2 where w1 E £1(U)
w2 E £°(U) are smooth forms. The residue Res : £1(U) j.£°({0}) = C is given
by the classical formula Res(w) w2(0). Equation (5.102) then translates to

(5.103) lim 1, J wa = Res(w)a(0),
6-.° 27rz s6

where S6 is the circle around the origin with diameter 6. Observe that, for meromor-
phic w and holomorphic a, this equation follows from the classical residue theorem.

The situation is more complicated when the divisor D has crossings. It is then
necessary to consider the normalization 7r : D -+ D. The inverse image b2 of the
locus of double points of D is a divisor with normal crossings in D. Let j be as
in (5.101) the inclusion D y X. The residue is then the map

(5.104) Res : £X(logD) -* (jzr).£D 1(logD2)

characterized as follows. For each open U C X and for each 1-form w E £1(U, log D)
its residue Res(w) E (jir)*£D(logD2)(U) = £1-f1(xr-1(U),logD2) satisfies

lim 21 Loa = pv J Res(w)zr*a,
S-o

WW1=6 D

for each compactly supported a E £2,.t-1-1(U).

Let us analyze (5.104) in more detail. The normalization D is the disjoint union

D= [J Di,
1<i<s

where each Di is isomorphic to an irreducible component Di of D. Let vi := 7rlD,

D2 := D2 n Di and DZ := 7r-1(D2) = D2 n D. From the isomorphism

12) (77ri)*£D (logD )
1<i<s
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and the isomorphism

(j7ri)*£*n- (log D2) j*£D.(log Di), 1 < i < s,

induced by Ti : Di 14 Di, it follows that the residue (5.104) is given by an s-tuple
of maps

Res : £(logD) -+ j*£Dy 1(logD2), 1 < i < s.

For sections over X these maps give

(5.105) Resi : £* (X, log D) -> £*-'(Di, log Di2).

EXAMPLE 5.79. Let us illustrate the above material on X := C2 and D
{z1z2 = 01. The divisor D decomposes as D = DI U D2 with D1 = {z1 = 01,
D2 = {z2 = 0}, and the locus of double points is D2 = D1 n D2 = {(0, 0)}.
System (5.105) for this special case is

Resi : £*(C2, log D) -> £*-1(Di, log{0}), i = 1, 2.

Similarly, we have the residues for (Di, {0}):

Res : £1(Di, log{0}) -> E°({0}) = C, i = 1, 2.

The above maps form the diagram

/E'(D1,log{0})ResRes
£2(C2,log(DI U D2)) C

Rest Res
£I(D2i log{0})

We claim the above diagram is anticommutative. This can be verified by a
direct calculation, which we recommend as a nice exercise, or by the following
argument.

The `upper' composition U differs from the lower one L by the exchange z1 * z2

or, formally, U = L o T*, where T : C2 - C2 is the flip T(u®v) := v®u. The
anticommutativity now follows from

T' dzI dz2 dz2 dzl dzl dz2

Z1 z2
z2

zI
z1 z2

OPERADS gray, varG AND Grav. Let us ignore for the moment the unpleasant
fact that Mg,n is not smooth and apply the above machinery to the divisor D(g, n)
in M(g,n).

As in (5.95), the components Dr of the divisor D(g, n) are indexed by stable
modular graphs F with exactly one edge. We also observed that D2(g, n) (the locus
of double points) is the union (5.95) over graphs r E I'(g, n) with exactly two
internal edges, therefore

Dr := D2(g, n) n Dr = U Do,
A<r

where the union runs over all graphs 0, with exactly two edges. The relation 0 < r
means that the graph r is a contraction of A.
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System (5.105) in this case gives, for each F E r(g, n) with exactly one edge,
the residue

Resr : £* (M (g, n), log D(g, n)) - £' 1(M ((r)), log Dr).

Let us denote by varG :_ {varG(g, n)}(y,1)EC the modular E-module in the
monoidal category Chain(NF) of chain complexes of Frechet nuclear spaces with

varG(g, n) :_ £* (M(g, n), log D(g, n));

the meaning of this strange notation will become clear later. We claim that the
isomorphism Z of (5.100) defines, for any r c r(g, n) with exactly one edge, an
isomorphism

Zr : £*(Nt ((I)), log D 2)

Indeed, if the unique edge of r joins two distinct vertices, then r is obtained from
two corollae *1 E r(g1, l), *2 E r(g2, k), 91 +g2 = g, k+l = n- 1, by joining a leg
of *1 with a leg of *2. Then clearly M((r)) = M((*1)) X M((*2)) and

Dr - (M ((*1)) x D*2) U (D*1 X M((*2)))+

therefore

£*()R((r)),logD.) -£`(M((Z1)),logDg1)®£*(M((l2)),log Dg2) =varG((r))

The same argument applies when the edge of r is a loop around a single vertex.
We may now define, for any graph r with exactly one edge, a degree -1 map

(5.106) cr : varG(g, n) --* varG((r))

as the composition

varG(g,n) = £* (M (g, n), log D(g, n))
R-r

£*-1(M((r)), log Dr) Zr, varG((r)).

Before going further, recall that the strong topological dual V -* V' defines
an equivalence of the opposite category NF°P with the category DF of dual Frechet
spaces; see again [Jar8l] or [Gro55]. Thus Grav(g, n) := varG(g, n)' is a stable
modular E-module in the monoidal category Chain(DF) of chain complexes of dual
Frechet spaces. We believe that the meaning of the name varG is clear now - varG
is Grav written from right to left.

Let us recall (Example 5.52) that the dualizing cocycle .l was, for r c r(g, n),
defined by

A(r) = Det(edge(r)),

the top exterior power of Spank(edge(r)) concentrated in degree -,-h(edge(r)). For
any r E r(g, n) with exactly one edge the map (5.106) induces a degree 0 map

(5.107) car : Grav((r))®.Fi(r)-1 -+ Grav(g,n)

by

or(w®Det(e)) := 2iri ci.(w), w E varG((r)),

where e is the unique edge of I. Iterating this map gives Grav a structure of a
S-1-modular operad, since the determinant in the definition of S compensates for
the anticommutativity of the diagram in Example 5.79.
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The homology grav(g, n) of Grav(g, n) forms a modular A-1-operad in the
category of finite dimensional vector spaces such that

9rav(g, n) = H*(M(g, n)).

An `elementary' construction of this structure at the `tree level' (for genus zero)
was given by T. Kimura, J. Stasheff and A.A. Voronov in [KSV95].

We owe the reader an explanation of why we may assume that Mg,n is smooth.
The magic trick is that of an algebraic stack. For our purposes, an algebraic stack is
a groupoid (a small category in which all morphisms are invertible) 4 such that both
the set of objects Ob(q) and the set of morphisms Mor(g) are smooth manifolds.
We also assume that the target and source maps s, t : Mor(G) -> Ob(q) are etale,
which in our case means that they are local diffeomorphisms of smooth manifolds.

The definition of an algebraic stack is in fact more difficult. An intuitive idea
of a stack is that of a scheme whose points admit nontrivial automorphisms. This
is formalized by a certain category F fibered over the category of schemes, together
with an atlas, which is, by definition, a scheme U together with a surjective etale (in
an appropriate sense) map U --* F. From these data one construct a presentation of
the stack, which is a category with objects U and morphisms the fibered products
U X F U. Our groupoid 4 is then the set of complex points of the presentation. We
recommend [Vis89, Appendix] or the original paper [DM69] as an introduction to
stacks.

A coarse moduli space 191 of an algebraic stack 9 is the quotient Ob(g)/Mor(C).
Notice that the coarse moduli space need not be smooth. A result of [DM69, The-
orem 5.2] says that there exists an algebraic stack 97fg,n such that the corresponding
coarse moduli space is Mg .

The main trick is then to replace objects on Mg,n with objects on Ob(9Rg,n)
that are invariant under the `action' of Mor(97tg,n). For instance, a divisor D gives
rise to a divisor in Ob(9Jlg,n) such that s-1(D) = t-1(D). In the same manner, a
sheaf S gives rise to a sheaf S on Mor('J7tg,n) such that s*(S) = t*(S).

EXAMPLE 5.80. An example one has to have in mind is a smooth manifold Y
with an action of a finite group G. These objects define a stack 9 with Ob(q) := Y,
Mor(g) := G x Y and the source and target maps given by

s(g x y) := y, t(g x y) := gy, for g E G, y e Y.

The coarse moduli space 191 is the standard quotient Y/G and Mod(g)-invariant
objects are G-invariant objects on Y. Our trick then reflects the principle that, in
characteristic zero, there is a one-to-one correspondence between objects on Y/G
and G-invariant objects on Y.

As observed in [GK98], all constructions above can be made for Mor(9t9,n)-
invariant objects in Ob(97fg,n). Let us summarize the results into the following
theorem.

THEOREM 5.81. The modular E-module Grav = {Grav(g, n)}(g,,)Ee is a .Ft--
modular operad in the monoidal category Chain(DF) of chain complexes of dual
Frechet spaces.

The S-1-modular operad Grav of Theorem 5.81 is called the gravity operad. We
close this section with a statement describing the Feynman transform of Grav which
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we give without proof. Let us recall that the Feynman transform F2 introduced in
Section 5.4 was a functor from the category of D-modular operads in the monoidal
category of finite dimensional vector spaces to the category of n-modular operads
in the same category, where b = A o 2-1. An obvious modification of FO gives a
functor F"P, the topological Feynman transform, from the category of s-modular
operads in Chain(NF) to the category of s-modular operads in Chain(DF).

Recall that in Section 5.3 we introduced the invertible stable modular E-module
p with p(g, n) = 16(9-1)-2n k and the property that 2p = .f2 (Proposition 5.54).
From the last equation it easily follows that pGrav := p(Grav) (see (5.60) for the
notation) is a. -modular operad in Chain(DF), thus F&P(pGrav) is a modular operad
in Chain(NF).

There is another example of a modular Chain(NF)-operad, namely the operad
C,(M) _ {C,(M)(g,n)}(9,n)E6, where C,(-) denotes the complex of the de Rham
currents (see [Fed69] for an introduction to de Rham currents). The following
theorem was proved in [GK98]:

THEOREM 5.82. The operads F' (pGrav) and C,(M) are weakly equivalent
modular operads in the monoidal category Chain(NF).

In the above theorem, weak equivalence means as usual the existence of a chain
of operadic maps that are homology isomorphisms.

5.7. Application: closed string field theory

In this section we analyze multilinear string products on the BRST complex
of a combined conformal field theory of matter and ghosts. These products give
rise to an object V = (V, B, {ln}g,n>o) consisting of a graded vector space V, a
nondegenerate bilinear form B and a system of multilinear maps In : Von -+ V.
The `tree level' specialization of this structure (see Example 5.86) is the Lw-algebra
constructed in [KSV95]; see also Section 1.1.16.

The object V = (V, B, {ln}9,n>o) is an example of a loop homotopy Lie alge-
bra, introduced in [Mar01b] as a natural generalization of strongly homotopy Lie
algebra. Recall that there are two equivalent descriptions of L--algebras, the first
one by coderivations of cofree nilpotent cocommutative coalgebras (Example 3.90),
the second one by the dual dg operad of the operad Com for commutative algebras
(see Remark 3.131).

A suitable generalization of these two types of description is available also for
loop homotopy algebras. The coderivation type uses higher order coderivations and
it is worked out in detail in [Mar01b]. This section is devoted to the `operadic'
one that describes loop homotopy algebras as algebras over the Feynman transform
of the modular completion of the operad Com. For physical motivations of objects
discussed here, see [Zwi93] and Section 1.1.16.

Let N be the Hilbert space of a combined conformal field theory of matter and
ghosts and let xrei C R be the subspace of elements annihilated by bo := bo - b0
and L. = Lo - Lo (see, for example, [KSV95, Section 4] or Section I.1.16 of this
book). Barton Zwiebach constructed in [Zwi93], for each `genus' g > 0 and for
each n > 0, multilinear `string products'

Ro D [ B 1 , . . . Bn]9 E Nrei.rel
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Here are the basic properties of these products. If gh(-) denotes the ghost number,
then [Zwi93, (4.8)]

n

9h([Bi,..., Bn]9) = 3 - 2n+gh(Bi)
i=1

The string products are graded commutative [Zwi93, (4.4)]:

(5.108) [B1, ... , Bi, Bi+1, ... , Bn]9 = (-1)B,B°+ [B1, ... , Bi+1, Bi, ... , Bn]g.

Here we used the notation
(-l)B,B,+i ._ ( l)9h(Bi)9h(B,+i)

For n = 0 and g > 0, [. ]g E xrel is just a constant and the products are constructed
in such a way that [.]o = 0 [Zwi93, (4.6)]. The linear operation [B]o =: QB is
identified with the BRST differential of the theory. These products satisfy, for all
n, g, the main identity [Zwi93, (4.13)]

(5.109) 0 = a(it, jk) [Bi1, ... , Bi1, [Biv ... , Bik]92]9,

+2
1

[,P, $S, B1, ... , Bn]g-I.

Here the first sum runs over all 91 + 92 = g, k + I = n and all (k, l)-unshuffies
i1 < < it, j1 < . . . < jk of {1, ... , n} (see (2.5) for the terminology). The
sign a(ih jk) is picked up from rearranging the sequence (Q, B1 i ... , Bn) into the
order (Bi ... , Bi1, Q, Bi...... Bik ), where Q is the BRST differential of the theory,
deg(Q) = 1. In the second sum, {4)S} is a basis of Nret and {4)S} C lrel its dual
basis in the sense that

(5.110) (-1)" 'r (iD,., iD S) = 8,r (Kronecker delta),

where (-, -) denotes the bilinear inner product on f [Zwi93, (2.44)]. Let us
remark that, in the original formulation of [Zwi93], {,DS} was a basis of the whole
H, but the sum in (5.109) was restricted to Nrel. The product satisfies [Zwi93,
(2.62)]:

(5.111) (A, B) = (_l)(A+i)(B+1)(B,A)

and, by definition [Zwi93, (2.44)], it is nontrivial only for elements whose ghost
numbers add up to five:

(5.112) if (A, B) # 0, then gh(A) + gh(B) = 5.

The above two conditions in fact imply that (A, B) = (B, A). Moreover, the product
(-, -) is Q-invariant [Zwi93, 2.63]:

(5.113) (QA, B) = (-1)A (A, QB).

Conditions (5.111) and (5.112) together with gh(V) gh(c18) + 1 (mod 2) imply
that the element E 7(®i is symmetric in the sense that

(5.114) (-1)(D-PSvb' =

We use, in the previous formula as well as at many places in the rest of the section,
the Einstein convention of summing over repeated indices.
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Let us prove (5.114). Since the form (-, -) is nondegenerate, to show that two
elements of H02 coincide, it is enough to prove that they are mapped by the maprel

(''r, -) ((Pt, -) : 7lre1®7{rel -+ k
to the same element, for any indices r, t. Thus, to prove the first equation of (5.114),
it is enough to show that

(-1)'' (fir,(bs)(.pt,(SS) = (-1)416((j)r, IV) (()t, C)

But, by (5.110), both sides of the above equation are equal to ((Dr, (bt). This proves
the first equation of (5.114). The second one follows from gh(V) - gh(4) +
1 (mod 2).

The last important property of string products is that the element

(5.115) (bs®[V, B1, ... , Bn-1]9 E 7{®i

is antisymmetric. This property is not explicitly stated in [Zwi93], but it follows
from the fact that the string products are defined with the aid of the multilinear
string functions [Zwi93, (7.72)]

'H
0(n+1)

E) Bo ®... ®B, - {Bp, ... , Bnjg E C.rel

The details can be found in [Mar01b].
Let us rewrite the axioms of string products into a more usual and convenient

formalism so that it becomes manifest that they generalize strongly homotopy Lie
algebras recalled in Example 3.133. Recall that, for a graded vector space U,
the suspension (respectively the desuspension) of U is denoted T U (respectively

U) and defined to be the graded vector space with (T U)P := U._1 (respectively
(I U)P := UP+1)

For a graded vector space U, let its reflection r(U) be the graded vector space
defined by r(U)P := U-P. There is an obvious natural map r : U -+ r(U). Observe
that r2= 11,roT= IorandroI=To r.

Take now V := r(j 7{rel). Define, for each g > 0 and n > 0, multilinear maps
1n9:V®n -+Vby

l9n(v1,... , vn) :=
(-1)(n-1)vi+(n-2)V2+ +v,.-i 1 [T r(vl), , I r(v,- )[9

for v1, ... , vn E V®n. Define also the bilinear form B : V®V -+ C by

(5.116) B(u,v) :_ (Tr(u),Tr(v))
Finally, let hs :_ and hs := r(.L' ), which means that

hs®hs :_ (- 1) 4" r (I (D,) or (I V).

The following definition abstracts the essentials of the above structure as can be
verified by a technical, but absolutely straightforward, calculation.

DEFINITION 5.83. A loop homotopy Lie algebra is a triple V = (V, B, {l,})
consisting of

(i) a 7G-graded vector space V, VV = ®U,
(ii) a graded symmetric nondegenerate bilinear degree +3 form B : V®V -> k

and
(iii) a set {l9}n,9>o of degree n - 2 multilinear graded antisymmetric operations19

: V®n -+ V.n

These data are supposed to satisfy the following two axioms.
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(Al) For any n, g > 0 and v1.... , vn E V, the following `main identity'

(5.117) 0 =
k+l=n+1
91+92=9

k>1

1)lk1(l92(vo(1),-,Va(l)),vo(l+1),-,vv(n))

oEunsh(l,n-l)

1 h,+n 9-1 s1+2(h9,h ,v1,...,vn)
s

holds. In the second sum, {h9} and {h9} are bases of the vector space V

dual to each other in the sense that

(5.118) B(hs,ht) = J,.

(A2) The element

(5.119) (-1)(n+1)hsh9®19(hs,v2i...,vn) E V®V

is symmetric, for all g > 0, n > 0 and V 2 ,- , vn E V.

We are going to show how `abstract' loop homotopy Lie algebras are related to
a certain construction over the operad Corn for commutative algebras. All algebraic
objects in the rest of this section are defined over a field k of characteristic zero.

REMARK 5.84. To give a reasonable meaning to the `basis {h9} of V,' we must
suppose either that V is finite dimensional or at least of finite type or that it has a
suitable topology, as in the case of string products. We will always tacitly assume
that assumptions of this form have been made. In the `main identity' for g = 0 we
put, by definition, In 1 = 0.

Because deg(hs) + deg(hs) = -3, we have that deg(hs) deg(hs) is even. The
graded symmetry of B then implies that, in addition to (5.118), also B(hs, ht) = is
The element h = hs®hs is easily seen to be symmetric, h9®hs = (-1)hsh'hs®hs =
hs®hs.

For n = 0 axiom (5.109) gives

0 = 1.91 (192 (.)) +
1

F (-1)h'lz 1(h9, h9),
91+92=9

while for n, = 1 it gives

(5.120) 0= (lsl(192(v))+lzl(l02(.),v)) - 2
(-1)h,is 1(hs,h9,v),

91+92=9 s

for all v E V. From this moment on, we will assume that to = 0, for all g > 0, that
is, the theory has `no constants.' This assumption is not really necessary, but it
will considerably simplify our exposition.

EXERCISE 5.85. Let us denote 8 := 10. Equation (5.120) implies that 82 = 0
(recall our assumption lp = 0 for g > 0!). Thus 8 is a degree -1 differential on
the space V. The symmetry of h3®a(hs) (axiom (A2) with n = 1 and g = 1)
is equivalent to the 8-invariance of the form B, that is, for u, v E V, B((9u, v) +
(-1)"B(u, av) = 0.
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EXAMPLE 5.86. Let us discuss the `tree level' (g = 0) specialization of the
above structure, when the only nontrivial lx's are In := 1. 0, n > 1. The main
identity (5.117) for g = 0 reduces to

0 = X(o)(-1)l(k-1)lk(I (vo(1), ... , vo(q), vo(t+1), ... , vp(n))
k+l=n+1 vEunsh(l,n-l)

We immediately recognize the above as the defining equation for strongly ho-
motopy Lie algebras; see Example 3.133.

For g = 1, the main identity gives (after forgetting the overall factor 2)n

(5.121) 0 = (-1) hs
1n+2

(hs,hs,v1,...,1Jn).

Axiom (A2) says that the elements

(5.122) (_1)(n+1)hs hs®ln(hs, vi_., vn)

are symmetric. Thus the tree level loop homotopy Lie algebra is a strongly ho-
motopy Lie algebra (V, {ln}) which acquires an additional structure given by a
bilinear form B such that the element h = h,s®hs, uniquely determined by B,
satisfies (5.121).

We see that the `tree level' specialization is a richer structure than just a
strongly homotopy Lie algebra as it is usually understood. A proper name for such
a structure would be a cyclic strongly homotopy Lie algebra; compare [Kon94,
PS95].

OPERADIC INTERPRETATION. We show that loop homotopy algebras (without
`constants' see (Remark 5.84)) are algebras over a certain modular operad, con-
structed from the cyclic operad Com for commutative algebras (Theorem 5.92 and
Theorem 5.93). The constants can be easily incorporated by applying the same
construction to the operad UCom for unital commutative associative algebras.

Let us consider the following harmless `symmetric version' of Example 5.56.

EXAMPLE 5.87. Let W = (W, H) be a graded vector space with a nondegen-
erate degree -1 symmetric bilinear form H. Define the modular E-module £ndw
by

£ndw((9, S)) := W®s

for g > 0 and a finite set S. For F E r((g, S)), the .A-modular `composition map'

a1 : £ndw((r))®A(I') - £ndw((9, s))

is defined as in Example 5.56. This means that we choose labels se, to such that
e = {sef te} for each edge e E edge(F) and define car to be the composition:

(5.123) £ndw((F))®.fl(F) = W®Flag(r)®Det(edge (F))

W®s®® (W®{se,te}®Span(f e))

eE edge(F)

W®s® ® (Wse®Wte®Span(je))
eE edge(r)

10 ®e H, W®s®k®edge(r)
= £ndw (9, S),
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where He is the map that sends u®v®le E Wse ®Wte ®Span(f. e) to H(u,v) E k.
As in Example 5.56, the symmetry of H implies that the definition of ar does not
depend on the choice of labels. It is easy to verify that far,, I F E r((g, S))} induces
on £ndu, the structure of a .>,t-modular operad.

By definition, a loop homotopy Lie algebra is a structure that lives on a graded
vector space V = (V, B) with a nondegenerate degree +3 bilinear symmetric form
B. Then W = (W, H) with W := T' V and the form H defined by H(u,v) :=
B(l2 u, l2 v), u, v E W, provide the data as in Example 5.87 and we may consider
the modular R-operad £ndT2 v.

Let us consider the functor U : MOp _ Op+ from the category of modular
operads to the category of cyclic operads given, for any finite set S, by U(A)((S))
A(O, S). We are going to describe a left adjoint Mod : Op+ -+ MOp to U.

Let r((g, S)) be the subcategory of the category r((g, S)) whose objects are
graphs r E r((g, S)) such that g(v) = 0 for each vertex v E Vert(r). A mor-
phism f : ro -+ r1 E r((g, s)) is a morphism in r((g, s)) if and only if f has a
factorization (5.54) such that each ire, is a contraction along an edge joining two
distinct vertices. Another, equivalent, way to characterize morphisms f : ro -+ r1
of r((g, s)) is that the graph f-1(v) is a tree, for any v E Vert(r1).

For a cyclic operad P and a graph ry E r((g, s)), consider the graded vector
space

P((r)) _ ® P((Leg(v)))
vE Vert(I')

For each f : ro - + r1 E r((g, S)) define a morphism P((f)) : P((ro)) P((r1)) by

P((ro)) _ ® P((Leg(u))) - ® P((f 1(v)))
uE Vert(ro) vE Vert(rl)

® rr-im ® P((Leg(v))) = P((r1)),
vE Vert(rl)

where pf 1(v) is the P-composition along the graph f 1(v). This composition exists
because f -1(v) is a tree, by assumption. The definition of the map P ((f )) is formally
the same as that of A(*) in (1.45), except the graphs r1 and r2 need not be trees.
We have the following analog of Theorem 5.42.

PROPOSITION 5.88. The correspondence r H P((r)), f H p(f), defines, for
each g > 0 and each finite set S, a functor from the category r((g, S)) to the category
of graded vector spaces.

By the above proposition, it makes sense to put, for any P E Op+,

Mod(P)((g, S)) := colim P((r)).
r E r((g, S))

Observe the analogy to the definition of rK in Section 1.11 where the colimit (1.65)
is taken over the compositions that are already defined for a K-collection, whereas
here the colimit is over the operadic `compositions' already defined for a cyclic
operad.
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S

FIGURE 14. The graph T((gs)).

The modular operad structure on the modular E-module Mod(P) can be de-
fined as follows. Consider the category r1((g, S)) whose objects are graph mor-
phisms r o -f r1, where r o E r((g, s)), P1 E r((g, S)), and morphisms are commu-
tative diagrams f

ro r1

uo1
f,

1-I

0 r1

where uo is a morphism in r((g, S)) and u1 is an isomorphism. We may show, as
in the proof of Proposition 5.39, that

M(Mod(P)) = colim P((I'o)).
fro -'. r1 E S))

The functor F1((g, S)) -+ F((g, S)) that sends [ro -f F1] to 0 defines a map
M(Mod(P)) -+ Mod(P) which induces a modular operad structure on Mod(P).

DEFINITION 5.89. The modular operad Mod(P) is called the modular operadic
completion of the cyclic operad P.

PROPOSITION 5.90. The functor Mod : Op+ -+ MOp is a left adjoint to the
forgetful functor U : MOp -+ Opt

Since we will not need the proposition, we omit its proof. There is no easy way
to express Mod(P) in terms of P. The category F((g, S)) has, for g > 0, no terminal
object, though there exists an important distinguished graph T((g,s)) described as
follows.

The graph T((g,s)) has one vertex v of genus 0, the set of legs Leg(T((g,S))) := S,
the set of internal flags IFlag(T((g,s))) :_ {e1, f1i... ,eg, fg} and the involution o
acting on IFlag(T((g,s))) by c(ei) = fi, for 1 < i < g. The geometric realization of
the graph T((9 ,s)) is depicted in Figure 14.

The most important property of the graph T((g,s)) is that

(5.124) for each r E F((g, s)), there exists a map f : r -+ T((g,s)) E r((g, s)),

but the map f need not be unique. In fact, the automorphism group of the graph
T((g,s)) is quite large, namely Aut(T((g,s))) = Eg>a (Z2)Xg, the semidirect product
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of the symmetric group E. and the g-fold cartesian power of 762, with Eg acting on
(762)"9 by permuting the factors. The graph T(g,n) can still, however, be used to
define a map p : P(n + 2g) -> Mod(P)(g, n), for any g > 0 and n > 1, as follows.

The order (0, 1.... , n, el, fl, ... , eg, fg) of Flag (T (g,n)) defines an isomorphism
P(n + 2g) = P((T(g,n))), which then composes with the projection to yield the
canonical map

(5.125) p: P(n+2g) = P((T(g,,)))- colim P((F)) =Mod(P)(g,n).
r E r((g, s))

The map p is always an epimorphism, as easily follows from (5.124), but, in general,
it need not be an isomorphism (the map p cannot distinguish between elements
which differ only by the action of Aut(T(g,f))).

EXAMPLE 5.91. Since Com(n) = k for n > 1, the vector space Com((F)) is
canonically isomorphic to k and, for each map f : F0 -+ F1 E I'((g, S)), the induced
map Com((f)) : Com((Fo)) -> Com((Fi)) is, under this identification, the identity,

Com((f )) : Com((Fo)) = k 2 , k = Com((Fi)).

The map p : Com(n + 2g) -+ Mod(Com)(g, n) of (5.125) is in this case easily seen
to be an isomorphism, therefore

(5.126) Mod(Com) (g, n) = k, for each g > 0, n > 1,

with the trivial action of the symmetric group E+. To determine the modular op-
erad structure, observe that, for each r E F((g, S)), also Mod(Com)((F)) is canoni-
cally isomorphic to k. The structure map is, under this identification, the isomor-
phism

oer : Mod(Com)((F)) = k _" k = Mod(Com)((g, S)).

Let us recall that in Section 5.4 we described the Feynman transform of a modu-
lar operad as an analog of the cobar complex of an ordinary operad. We are going to
describe explicitly the Feynman transform F = F(Mod(Com)) = (F(Mod(Com)), 8F)
of the modular operad Mod(Com). Ignoring the differential, it is, by definition, the
free A-modular operad M a((Mod(Com))#) on the linear dual of the modular E-
module Mod(Com); see (5.57) for the definition of free twisted modular operads
and Example 5.52 for the definition of A.

By (5.126), Mod(Com) (g, n) = k, for all g > 0, n > 1. Let

wn E (Mod(Com))#(g,n)

be the dual of 1 E k = Mod(Com) (g, n). Therefore, as a modular E-module,

(5.127) F(Mod(Com)) = Ms({wn1 g > 0, n > 1}).

Since the action of the symmetric group E,+, on Mod(Com)#(g, n) is trivial, the
vector space Mod(Com)#(g, S) is canonically isomorphic to Mod(Com)#(g,n) for
any finite set S with card (S) = n + 1, thus wn determines the element (denoted
by the same symbol) wn E Mod(Com)# ((g, S)). Therefore each graph r E F((g, S))
determines the canonical element

®wg(°) E ®Flag(v)1-1 Mod(Com)#((g(v), Flag(v))) = Mod(Com)#((F)).
vE Vert(I) vE Vert(r)
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For91,92>0with91+92=g,k,l>1with k+l=n+ land aEunsh(k,l),
let P9k1l'92 (a) E r(g, n) be the graph

a(1) a(2) a(3) a(l) a(l+l) a(l+2) a(l + k)

V1 - v2

with g(v1) = 91 and g(v2) = 92. Let

091i92 (a) E Mod(Co7n)#(1(bk692(a)))

be the canonical element. In a similar manner, let 9 E r(g, n) be the graph

0 1 n

where g(v) = g - 1 and let 09 E Mod(Com)#((W )) be the corresponding canon-
ical element. It is immediate from the definition of the differential aF as given in
Section 5.4 that

(5.128) OF ((Jn) _ 0k1(,92(a)®Te+ y n® Tf,
k+L=,+1, k,L>1

91+92=9, of unsh(k,L)

where e {s9,t9} E edge (,Pk'1i92(a)) and f :_ {sf,tf} E The obvious
symmetry

,Pkl(,92(a) _ D9 91(a ),

where a' is, for a E unsh(k, 1), the `opposite unshuflie,'

a' :_ (a(k+1),... ,a(k+1),a(1),... ,a(k)),
enables one to rewrite (5.128) as

(5.129) aF(Wn) _ 209'(,92 (a)® T e +'g® T f,
k+1=n+1, k,L>1

91+92=9, Eunsho(k,L)

where unsho(k, 1) {a E unsh(k, l)1 a(1) = 1}.
Let us recall the following notation. For ul 0... Our E V®'' and v1® ® v9 E

V®9, let Sh (ul ®... ®u,. w1 ®... ® v9) denote the shuffle product of ul ®. ® uk
with v1 ® ® vi in TV = ®n>0 V®'", i.e. the sum of all shuffles of u1 0 0 u,.
and v1 ® .. 0 v9; see (3.98). A general element x E V®k is of the form

x= Y_ x1® ®,..0x,,,, where x;...... xjk EV,

where the summation runs over an appropriate set of indices. We usually omit the
summation symbol and write simply

x = xzy ®... xik
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Let V = (V, B) be a graded vector space with a nondegenerate degree +3 symmetric
bilinear form and let {h9}, {hs} be the bases of V as in Definition 5.83.

THEOREM 5.92. A A-modular F(Mod(Com)) -algebra structure on the double
suspension T2 V = (T2 V, B) is given by a sequence {ln I g > 0, n > 1}, where
Z 9 = X g ® .. ® x9 E V®n+1 is a degree -2(n + 1) symmetric element of V®n+1
such that, for each n > 1 and g > 0, the following `main equation' is satisfied:

(5.130) 0 (-1)x9k1B(91 92 91®Sh (91 0 ® 91 92 ® x92= xik'x30 )xiox11 ...xik
1 x31

...®3L)
k+L=n}l, k,1>1

91+92=9

1 1 1 1

2B(x9 +i'x9+z)xo ®...®x9

In the above identity for g = 0 we put, by definition, ,9}2 = x o 1®. ®x9 +1 := 0.

PROOF. An F(Mod(Com))-algebra structure on (T2 V, B) is an .t;-modular dif-
ferential operad map

a : (F(Mod(Com)), OF) - (£ndk v, a = 0).

Description (5.127) shows that such a map a is given by its values n := a(w?)
on the generators. Moreover, the map a commutes with the differentials, so the
equation a(aF(wg)) = 0 must be satisfied. This is, by (5.129), the same as

(5.131)
2091(,92(x)®Te+1ig®T.f) =0.

k+L=n+1, k,L>1
91+92=9, E,,Sh0(k,1)

The `main identity' (5.130) is then (5.131) expressed in terms of the structure op-
erations of the endomorphism operad cndk v.

Let us introduce our basic tool which converts the structures of Theorem 5.92
into loop homotopy algebras, the isomorphism , E : V®n+1 -, Hom(V®", V), where
V is a graded vector space of finite type. The nondegenerate bilinear form B
identifies the space V with its dual, V = V#, thus V®n+1 - V#®n®V, while, as
always, V#®n®V = Hom(V®n, V). Thus the existence of E is not a surprise. The
subtle issue is a proper choice of signs, which is provided by the formula

(5.132) E(xo ®... (9 xn) (v1, ... , vn)
1 nxo+(n-1)x1+ +xn-1x B x v B x 1 . B x v

for xo ® ®x,, E V®n+1 and v 1 , . . . , vn E V. The map E is clearly a degree 3n iso-
morphism of V®'+1 and Hom(V®n, V). Observe that E(x0®...®xn)(VI, ... , vn)
0 only if deg(xi) = deg(vi) + 1 (mod 2), 1 < i < n.

THEOREM 5.93. Let us define, for g > 0, n > 1 and v1, ... , vn E V,

ln,(vl, ...,vn) (-1)n(21)+n(v1+ +vn),E(en)(VI,..., vn)
Then {Q9} i-+ {l9} is a one-to-one correspondence between the structures of Theo-
rem 5.92 and of loop homotopy algebras in the sense of Definition 5.83.

The proof of Theorem 5.93, based on the properties of the map E, is mostly a
tedious exercise in getting the signs right. It is given in the following appendix.
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5.7.1. Appendix. The first step in the proof of Theorem 5.93 is the following
lemma, which describes the behavior of E under the symmetric group action.

LEMMA 5.94. Let x0 ® ® xn E V®n}1 and v1 ® ®vn E V®n. Then, for
any or EE E,0,

(5.133) e(a) (xo®x,,(1) ®... ® xo(n))(vi.... , vn)
X(a) =(xo®x1 ® . . . ®xn)(vo-1(1), .. , vo-1(n)),

where e(a) = e(a; X 1 ,- . , xn) is the Koszul sign (3.96) of the permutation a and
x(c) = X(a;vl,...,v.):= sgn(o-)e(a;vl,...,vn) (3.99). Moreover,
(5.134) E(x10xo0x2 ®... 0 xn)(v1i...,vn)

= (-1)x0+x1 hs®B (E(xo(&x1 ®... ®xn) (hs, v2i ... , vn), v1 1 .

PROOF. Let us prove (5.133). Since the symmetric group is generated by
transpositions, it is clearly enough to show that

- xixi+l
1 x00x1 ®... 0 xi+1®xi ®... ®xn v1 i ... , vn

= -(-1)vivt}1E(x0®x1 ®... 0 x,z)(v1, vz+1, vz, , vn), ,

for all 1 < i < n. By (5.132), the left-hand side of the above equation is

xoB(xl, vl) ... B(xi+1, vi)B(xi, vi+1) ... B(xn, vn)
with the sign

( 1)x,x,+l+nxo+ .+(n-i)x,+1+(n-i-1)x,+

while the right-hand side is almost the same:

xoB(xi, vi) ... B(xi, vi+1)B(xi+1, vi) ... B(xn, vn)

with the sign
-(-1)viv,+l+nxo+ +(n-i)xi+(n-i-1)xi+,+.

Modulo signs, the above two expressions are the same, while their signs differ by
(-1) vivi+1+xix,+1+x,+xi+1

which is 1, because vi = xi}1 + 1 (mod 2) and vi+1 = xi + 1 (mod 2), if we assume
the expressions in (5.133) to be nontrivial.

Equation (5.134) can be proved in the same straightforward manner.

COROLLARY 5.95. The map , induces an isomorphism between the space of
symmetric elements x = xio ® . . . ® xi,. E V®n+1 and the space of graded antisym-
metric maps k : V®n -> V with the property that the element

(5.135) (-1)hshs0k(hs,v2,...,v,) E V®2
is graded symmetric for any V2.... , V. E V®n-1.

PROOF. Let k c Hom(V®n, V) correspond to x = xio ® ® xi E V®n+1

k(v1,... , vn) := = (xio ®xi1®xi2 ®... ®xin) (v1I .... vn), for v1, ... , vn E V.

The symmetry of x implies that

xio®xi1 ®... ®xi = e(a)xio®xio
1

®... ® xio
n
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for any u E En. This means that

k(v1 i ... , vn) = E(xio®x,j ®... ® xin)(v1, ... , vn)
= e(Q)E(xio®xio(,) 0... ®xio(n))(vl,-..,vn) (by (5.133))

= X(a) (xio®xi1 ®... 0 X j(vo-1(1), ... , vo-1(n))
= X(a)k(vo-1(1), ... , vo-1(n)),

which is the antisymmetry of k.
To prove the second part of the corollary, observe that the symmetry of x

xo®xi, ® 0 xi in the first two factors,
xi,®xio®xi2 ®... ®xin = (-1)x,ox,lxio®xil®xi2 ®... ®xi,.,

implies that

(xi1®xio®xi2 ®... ®xin) (v1,...,v, )
n= (-1)"0x'1=(xi0®x',®xZZ ®...0Xij(V1 v )

1 xio(v1+1)^ xi ®xi ®xi2 ® . . . ® xin v v

(deg(k)+v1+ +n)(v1+1)

Notice also that

(-1)x,o+x,1 E(xi(,®xi1®xi2 ®... 0 xin.)(hs, v2i ... , v,,)
deg(k)+v2+ s

because xio = deg(k) + hs + v2 + + vn (mod 2) and xi, = hs + 1 (mod 2) when
the two sides are not zero. Thus (5.134) can be written as

(5.136) (-1)(deg(k)+v1+ .+vn)(v1+1)k(v1i ... , vn)

deg(k)+v2+ +vn+1= (-1) hs0B(k(hs,v2,...,vn),v1

The left-hand side of (5.136) can be obviously expressed as

(5.137) (-1)(deg(k)+v1+ - +vn)(v1+1)k(vl, ... , vn)

_ (-1)(deg(k)+v1+ +vn)hsk(hs, V 2 ,--- , vn)B(hs, v1).

Because the form B is nondegenerate, equations (5.136) and (5.137) imply that

(5.138) (-1)(deg(k)+h'+v2+ +v,)h'k(hs, v2i ... , vn)Ohs
aeg(k)+v2+' +vn+1 s

On the other hand, the symmetry of (5.135) means by definition that

(-1)h' hs®k(hs, V2.... ) vn)

= (_1)h'+(deg(k)+h'+v2+ +v.,)h.-1k(hs, v2, ... vn)®hS

which gives, after multiplying by the overall sign factor (-1)deg(k)+v2+ +v

(5.139) (-1)deg(k)+h'+v2+ +vnhs®k(hs, V2,. - - v, )
(deg(k)+h'+v2+ +vn)h' s

We finish the proof by observing that (5.138) is mapped to (5.139) by the endo-
morphism cp : V®V -> VOV defined by cp(u®v) := (-1)"u®v, for u, v E V.
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LEMMA 5.96. For any u0 ® 0 uk E V®k+1 and vo ® 0 vl E V01+1

(5.140) (_1)990+ +99k_1B(uk, v0)'(u0®991 ®... ®uk-10v1 ®... ®vl)

= (-1)1+1(-0+ +9k)=(u0 ®... 0 Ilk) °k = (v0 ®... (9 vl).

PROOF. The proof is a direct verification. The left-hand side of (5.140) equals,
by definition,

(5.141) (-1)"0+ +uk-1+(l+k-1)uo+(l+k-2)991+ +1uk_I+(l-1)vl+

B(uk, -)B(uk, v0)B(vl, -) ... B(vj, -)

while the right-hand side of (5.140) is

+V1-1 uoB(ul _)...

(5.142) (-1)l+l(uo+ +99k)+kuo+(k-1)991+ +99k_1+1vo+(1-1)vo+ +v1_1u0B(u1,-..
B(uk, -)B(uk, vo)B(vl, -) B(vl, -).

A straightforward calculation shows that the signs of (5.141) and (5.142) differ by
(-1)1+1(r+k+vo) which is +1, since uk + vo = 1 (mod 2).

LEMMA 5.97. For any xo ®- 0 xn}2 E V®n+3 and v1..... v, E V,

(5.143) B(xn+1, xn+2) (x0®x1 ®... ®xn)(vl, ... , vn)
= (-1)x"+1 (x0®x1 0 ... ®xn®xn+l®xn+2)(vl, ... , vn, hs, hs).

PROOF. The left-hand side of (5.143) equals

1 nxo+(n-1)x1+ +xn_1x B x v .. B x V n)x X(5.144) (- )0 ( 1, 1) ( n, n) ( n+1, n+2),

while the right-hand side of (5.143) is

(5.145) (-1)x"+i+(n+2)xo+(n+1)x1+ +2xn+xn+lxoB(xl, v1) ...

... B(xn, vn B(xn+1, hs B(xn+2, h').

It is immediate to see that the signs of (5.144) and (5.145) agree. The proof is
finished by observing that B(xn+l, hs)B(xn+2, hs) = B(xn+l, xn+2)

PROOF OF THEOREM 5.93. For n > 1, g > 0 and v1i .., v, E V, let

kn(vl,... , vn) := E(xio ®... 4')(V1, ... , vn).

Since deg(x
TO

® 0 x9) = -2(n + 1) by assumption, deg(k;) = n - 2.
Let us apply the map c : V®n+l -+ Hom(V®n, V) to the main equation (5.130).

We claim that the result is

(5.146) 0 =

k+l=n+1
91+92=9

(-1)1X(Q)kkl (v0(1),...,Va(k_1), k92 (vo.(k),..., vo(n)))
QEunsh(n-1,I)

1 hs 9-1 s+ 2(-1) kn+2(v1,...,vn,hs,h ).
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Indeed, the first term of (5.130) gives

1)'9k1 B(x91 x9') x9i Sh (x91 ®... ® x91 Ix g2 ®... ®292) (Ul,..., vn)ak 70 to it ik-1 71 7!

= (by (5.133))

,X(a)(-1)'9kB(x91 29z)u(x91 ®...®x91 ®x92 ®...®x92)(10 1 ,...,vo n )Zk 70 to ik-1 71 7i ( ) ( )

= (by (5.140))

X(a)(-1)I (xto X?1
®...®x92) (vo(1),...,2o(n))

X(o-) (-1)'
(kkl Ok

k92)(V,(,),.

I ..,va(n) ),

which is the first term of (5.146). For brevity, we did not specify the ranges of
summations which are the same as in (5.146). We also used the obvious identity
x9o + + x9k = 0 (mod 2). The second term of (5.130) gives

- I B(x®+i
x9 + )g(x

o 1 ®... ®x9n 1)(v1.... , vn) (by (5.143))
1 x9-1

-2(-1) *n+lu(xo 1®...(gx9+ )(v1i...,v,,hs,hs)

h , g
2(-1) kn+2(vl, ... , v, h, hs),

since x9 +i = hs + 1 (mod 2). The operations k9 are, by Corollary 5.95, antisym-
metric, so we can rewrite (5.146) as

+l)+ +vscn>)X(o)kkl(ks2(va(1),...>vo(I)),vo(1}1),...,vo(n))

1 (-1) hs+vl+ +v kg-1

(hs,
hs,v1....,2n)2 n+2

where the summation is the same as in (5.146). The substitution

k(vl,...,vn) =(-1)n(vi+ (vl,... I vn)

converts the above equation to

0k+(n+l)(vl+ 91 92= (-1) (k1 (va(1), , va(t)), vo(I+1), va(n))

1 (-1)h,+(n+1)(vl+ ,vl,...,vn)
2 n+2 (hs,h

s

Multiplying by the overall sign (-1)(n+l)(vl+ . +v+.) this can be further simplified
to

(5.147) 0 = (_1)/g (i_s2 (va(1), ... , Va(1)), va(I+1),... ,va(n))

9-12(-1) kn+2(hs,h ,vl,...,vn).

Finally, the substitution

(5.148) ln(vl, , vn) (-1) 2 1 kn(vl, ... , vn)
(_1)n 2 1 +n(vl+ +v,.)k9(v v )n 1> , n
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converts (5.147) to

1)X(o )lk' (ls2 (vo(1), ... , vo4) ), vo(i+1), ... , vo(n) )

(-1) hs+n 1g-1
( h . ,

s ,v1i .vn),+ 2 n+2

which is, quite miraculously, (5.117). It remains to show that the element

(-1)(n+1)h5 hs®l9(hs, V2, ... , vn) E V®V,

where 19 is given by (5.148), is symmetric. In terms of the operations k9, this is
the same as

n+1 hs+-(n +n(hs+v2+ 9 s(5.149) -1)( ) 2 h®0kn(h ,v2,...,vn)
,+n 2l)+n(1+v2+ +v,.) g s-,)h hs®kn(h , v2, ... , vn).

On the other hand, the element
h, s(-1) hs®kgn(h ,vz>...,vn)>

which is symmetric by Corollary 5.95, differs from (5.149) only by an overall sign
factor (- 1) 2 ')+n(1+v2+ +vn) thus (5.72) is symmetric, too.



Epilog

We have tried to provide a reasonably complete survey of operads and their appli-
cations, although with our own viewpoints and emphases. As we were completing
the present text, a search to FIND operad on the arXiv produced a list of 54 arti-
cles and a search for operad ANYWHERE in the listings on MathSciNet produced
abstracts of 203 articles. Of these, 15 were posted to the arXiv in the past year
and 31 have publication dates listed on MathSciNet of 2000 or 2001. Many of these
do appear in the previous chapters (and we will not cite them here again); rather
than add the rest to our bibliography, which would become out of date during the
publication process, we recommend that the reader access those lists directly.

Several of the most recent, however, deserve further attention here; we group

them loosely by topic.

GEOMETRY: Operads are playing an increasing role in geometry, in particular,
symplectic [Xu99, Gin0l] and also algebraic [Kap98, Man99]. Ginzburg [GinOl]
in fact generalizes to a `noncommutative geometry' for an algebra over an arbitrary
cyclic quadratic Koszul operad. Recent results of Salvatore [Sa199, SalOl] on
topology of configuration spaces and their completions use the presence of operadic
structures on these spaces.

HOMOTOPY THEORY: Several papers devoted to homotopy invariant algebraic
structures, homotopy theory of algebras over operads and homotopy theory in the
category of operads appeared recently; see [Smi99, TilOO, HinOl, Smi0l] or
the proceedings [MMW99]. Also some classical topics received new attention;
see [May97, Ber99].

PHYSICS: There continues to be strong interaction between operads and math-
ematical physics, and especially topological field theories and string theory.

In [KVZ97], Kimura, Voronov and Zuckerman study the role of homotopy
Gerstenhaber algebras and Tillmann [Ti199] teases out the operad algebra struc-
ture, particularly the BV-algebra, of TCFTs. Chas and Sullivan [CS99] had a
breakthough development of an appropriate algebra of closed strings by inventing
the algebra of cacti; see also Voronov [VorOl]. This algebraic structure has been
developed further as homotopy theory by R. Cohen and J.D.S. Jones [CJ01].

HIGHER CATEGORY THEORY: The pentagon and hexagons of monoidal category
coherence appeared also in the associahedra and the multiplihedra for A.-spaces
and, of course, also in A00-categories. The higher dimensional cells appear in `higher
category theory,' manifestly, for example, in Gordon, Power and Street [GPS95].
Perhaps the most interesting cross-fertilization occurs in the work of Baez and
Dolan on higher category theory [BD98] using their consideration of opeotopes;
compare also the `globular' approach of Batanin [Bat98a, Bat98b].
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Conversely, operads themselves are examined from a categorical point of view
by Beke [Bek99].

POLYTOPES: Those early `hedra' mentioned above continue to occur in a variety
of contexts as do their progeny.' Devadoss [Dev99] tessellates the moduli space
and produces a mosaic operad. See also [LR01].

ALGEBRAS AND GROUPS: Several generalizations of classical algebras, such
as dialgebras of Loday and his `school' [Lod95, Lod01] and various k-ary alge-
bras [Gne95b, Gne95a] appeared recently; see also [GWOO]. Formal groups and
cogroups over operads are studied in ]Fre98b, Fre98a]. Morita equivalence for
modules over operads is studied by Kapranov and Manin in [KM01].

NONZERO CHARACTERISTIC: In discussing dg operads, we have worked pri-
marily in characteristic 0. For non-E operads, this is unimportant but is cru-
cial for many major operads, e.g the Lie-Com Koszul duality. Historically, in
nonoperadic language, this is reflected in the difference between Harrison and
Andre-Quillen cohomology for commutative algebras. As we saw in Section 11.3.8,
Harrison cohomology can be generalized straightforwardly for algebras over any
Koszul quadratic operad. Andre and Quillen make essential use of simplicial tech-
niques. For algebras over general operads, the simplicial point of view is utilized
in [GH99, Fre97, Fre00].

Our selection of articles mentioned above necessarily depended on our per-
sonal inclinations and taste and certainly forms only a small portion of the rapidly
growing literature on operads. We thus apologize to all whose work we omitted
referencing here.

Bar Ilan, Chapel Hill and Praha, November 28, 2001



Bibliography

[Ada] J F. Adams, Private communication
[Ada56] J F Adams, On the cobar construction, Proc Nat. Acad. Sci USA 42 (1956), 409-412
[AKOO] R. Akbarpour and M. Khalkhali, Hopf algebra equivariant cyclic homology and cyclic

homology of crossed product algebras, Preprint math.KT/0011248, November 2000
[APB97] J A Azcarraga and J C. Perez Bueno, Higher-order simple Lie algebras, Comm Math

Phys. 184 (1997), 669-681.
[Arn83] V I. Arnol'd, Remarks on the perturbation theory for problems of Mathieu type, Russian

Math. Surveys 38 (1983), no 4, 215-233
[AS94] S Axelrod and I M Singer, Chern-Simons perturbation theory II, J Differential Geom

39 (1994), 173-213.
[Ba194] D. Balavoine, Deformations des algebras de Leibniz, C R Acad. Sci Paris Ser. I Math

319 (1994), 783-788
[Ba196] D. Balavoine, Deformations de structure algebraiques et operades, Thesis, Universite

de Montpellier II, June 1996
[Ba198] D Balavoine, Homology and cohomology with coefficients, of an algebra over a quadratic

operad, J Pure Appl Algebra 132 (1998), 221-258
[Bar66] M Barr, Cohomology in tensored categories, Conference on Categorical Algebra

(M Kelly and S Eilenberg, eds.), Springer-Verlag, Berlin, Heidelberg, New York, 1966,
pp 344-354

[Bar71] M.G Barratt, A free group functor for stable homotopy, Algebraic topology (Proc
Sympos Pure Math., Vol XXII, Univ. Wisconsin, Madison, Wis, 1970), Amer Math
Soc., Providence, RI, 1971, pp 31-35.

[Bat98a] M.A Batanin, Computads for finitary monads on globular sets, Higher category theory,
Contemporary Math., vol. 230, Amer Math Soc., Providence, RI, 1998

[Bat98b] M A. Batanin, Homotopy coherent category theory and A--structures in monoidal
categories, J Pure Appl Algebra 123 (1998), no 1-3, 67-103

[Bau8l] H-J Baues, The double bar and cobar constructions, Compositio Math 43 (1981),
331-341

BC64] R L Bishop and R J Crittenden, Geometry of manifolds, Applied Mathematics,
vol XV, Academic Press, New York-London, 1964

BD981 J C Baez and J. Dolan, Higher-dimensional algebra III n-categories and the algebra
of opetopes, Adv in Math 2 (1998), no 135, 145-206

Bec691 J. Beck, On H-spaces and infinite loop spaces, Category Theory, Homology Theory
and their Applications, III (Battelle Institute Conference, Seattle, Wash , 1968, Vol 3),
Springer, Berlin, 1969, pp 139-153

Bek99] T Beke, Operads from the viewpoint of categorical algebra, Higher Homotopy Structures
in Topology and Mathematical Physics (J McCleary, ed ), Contemporary Math, vol
227, Amer Math. Soc, 1999, pp. 29-47

Ber96] C Berger, Operades cellulaires et espaces de lacets iteres, Ann Inst. Fourier (Grenoble)
46 (1996), no 4, 1125-1157

Ber97] C Berger, Combinatorial models for real configuration spaces and Operads
Proceedings of Renaissance Conferences (J L. Loday, J D Stasheff, and A.A Voronov,
eds ), Contemporary Math, vol. 202, Amer Math Soc., 1997

Ber99] C Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space,
Higher Homotopy Structures in Topology and Mathematical Physics (J McCleary, ed.),
Contemporary Math, vol 227, Amer Math Soc, 1999, pp 49-66

329



330 BIBLIOGRAPHY

[BFSVJ C Baltenau, Z. Fiedorowicz, R Schwanzl, and R M Vogt, Iterated monoidal categories,
Preprint

[BG92] A Beilinson and V Ginzburg, Infinitesimal structure of moduli spaces of G-bundles,
Internat Math. Res Notices (1992), 63-74

[BGS88] A. Beilinson, V Ginzburg, and V. Schechtman, Koszul duality, J Geom Phys 5 (1988),
317-350

[BJT97] H -J. Baues, M. Jibladze, and A. Tonks, Cohomology of monoids in monoidal categories,
Operads: Proceedings of Renaissance Conferences (J.L Loday, J.D Stasheff, and A A
Voronov, eds.), Contemporary Math, vol 202, Amer. Math Soc, 1997, pp 137-165

[B1o85] R E. Block, Commutative Hopf algebras, Lie coalgebras, and divided powers, J. Algebra
96 (1985), 275-306

[Bor53] A Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de

grouper de Lie compacts, Ann of Math. 57 (1953), 115-207
[Bot88] R Butt, Morse theory indomitable, Inst. Hautes Etudes Sci Publ Math (1988), no. 68,

99-114 (1989).
[Soul N Bourbaki, Algebre, Chapitre X. Algebre Homologique. Mason, 1980.
[Bou92] A.K. Bousfield, The simplicial homotopy theory of iterated loop spaces, Unpublished,

1992
[BP72] M G Barratt and S. Priddy, On the homology of non-connected monoids and their

associated groups, Comment. Math. Helv. 47 (1972), 1-14
[Bre671 G.E. Bredon, Sheaf theory, McGraw-Hill, New York, 1967
[Bro60] W Browder, Homology operations and loop spaces, Illinois J. Math 4 (1960), no. 3,

347-357
[BT94] R Bott and C. Taubes, On the self-linking of knots, J Math Phys 35 (1994), no. 10,

5247-5287
[BV68] J.M Boardman and R.M Vogt, Homotopy-everything H-spaces, Bull. Amer Math

Soc 74 (1968), no 6, 1117-1122
[BV73] J M Boardman and R.M Vogt, Homotopy invariant algebraic structures on topological

spaces, Springer-Verlag, 1973
[BV81] I.A Batalin and G.S Vilkovisky, Gauge algebra and quantization, Phys Lett. B 102

(1981), 27-31.
[Car] P. Cartier, Homologie cycliques rapport sur des travaux recents de Cannes, Karoubi,

Loday, Quillen..., Seminaire Bourbaki 621, 1983-84
[CF99] A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization

formula, Preprint math. QA/9902090, February 1999
[ChaOO] F. Chapoton, Un theoreme de Cartier-Milnor-Moore-Quillen pour les bigebres dendri-

formes et les algebres braces, Preprint math.QA/0005253, May 2000.
[Cha0l] F. Chapoton, Operades differentielles graduees sur les simplexes et les permutoedres,

Preprint math.QA/0102172, February 2001.
[Che56] C Chevalley, Review of Lois des groupes et analyseurs, Math Reviews, vol. 17, Amer

Math. Soc , 1956.
[CJ01] R L Cohen and J.D.S Jones, A homotopy theoretic realization of string topology,

preprint math.GT/0107187, July 2001.
[CK00] A Connes and D Kreimer, Renormalization in quantum field theory and the Riemann-

Hilbert problem I. The Hopf algebra structure of graphs and the main theorem, Comm
Math. Phys. 210 (2000), no. 1, 249-273

[CL00] F. Chapoton and M Livernet, Pre-Lie algebras and the rooted trees operad, Preprint

math.QA/0002069, February 2000.

[CMT78] F.R Cohen, J.P. May, and L R. Taylor, Splitting of certain spaces CX, Math. Proc.

Cambridge Philos Soc 84 (1978), no 3, 465-496.
[Coh76] F.R. Cohen, The homology of n > 0, The homology of iterated loop

spaces (F.R Cohen, T.J. Lada, and J.P. May, eds ), Lecture Notes in Math., vol 533,
Springer-Verlag, 1976

[Coh88] F.R Cohen, Artin's braid groups, classical homotopy theory, and sundry other curiosi-
ties, Braids, AMS-IMS-SIAM Jt. Summer Res Conf., Santa Cruz, Calif 1986, Contemp
Math., vol. 78, 1988, pp 167-206

[Con83] A Connes, Non commutative differential geometry, Prepublications I H.E.S., March
1983.



BIBLIOGRAPHY 331

[CS99] M Chas and D Sullivan, Stnng topology, preprint math. GT/9911159, November 1999
[Cun00] J Cuntz, Cyclic theory and the bivaraant Chern-Connes character, Preprint SFB 478,

University of Munster, December 2000
[CV86] M Culler and K Vogtmann, Moduli of graphs and automorphisms of free groups, In-

vent Math 84 (1986), 91-119
[DeiOO] P. Deidel, Vanishing cycles and mutation, Preprint math. SG/0007115, July 2000
[De171] P. Deligne, Theorae de Hodge II, Inst Hautes Etudes Sci. Publ Math 40 (1971), 5-58
[Del72] P. Deligne, Resume des premiers exposes de A Grothendieck, Groupes de Monodromie

en Geometrie Algdbrique, vol. 288, Springer-Verlag, Berlin, 1972, pp 1-24
[De193] P. Deligne, A letter to Stasheff, Gerstenhaber, May, Schechtman and Dranfeld, Unpub-

lished, 1993
[Dev99] S L. Devadoss, Tessellations of moduli spaces and the mosaic operad, Homotopy Invari-

ant Algebraic Structures (J P Meyer, J Morava, and W S Wilson, eds ), Contemporary
Math , vol 239, 1999, pp 91-114

[Dev01] S L. Devadoss, A space of cyclohedra, Preprint math. QA/0102166, February 2001
[DL] E Dyer and R.K Lashof, Homology of iterated loop spaces, Unpublished preprint con-

taining material not in the published version of the same title.
[DL59] A Dold and R K Lashof, Principal quasi-fibrations and fibre homotopy equivalence of

bundles., Illinois J Math. 3 (1959), 285-305
[DL62] E Dyer and R K Lashof, Homology of iterated loop spaces, Amer J. Math 84 (1962),

no 1, 35-88
[DM69] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus,

vol. 36, Inst. Hautes Etudes Sci Publ Math., no 75, I.H.E S , 1969
[DMGS75] J. Deligne, P Morgan, P Griffiths, and D. Sullivan, The real homotopy type of Kahler

manifolds, Invent Math 29 (1975), 245-254
[DR00] S L Devadoss and R C Read, Cellular structures determined by polygons and trees,

Preprint math.CO/0008145, August 2000

[Eli00] Y Eliashberg, Introduction to symplectic field theory, Preprint math. SG/0010059, Oc-
tober 2000.

[EM65] S. Eilenberg and J.C Moore, Adjoint functors and triples, Illinois J Math 9 (1965),
381-389.

[EML53] S Eilenberg and S. Mac Lane, On the groups H(sr, n) I, Ann of Math (2) 58 (1953),
55-106.

[ENS01] J.B Etnyre, L L. Ng, and J.M. Sabloff, Invarxants of legendrean knots and coherent
orientations, Preprint math. SG/0101145, January 2001

[Fed69] H. Federer, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg-New York,
1969

[FHT95] Y Felix, S. Halperin, and J-C Thomas, Differential graded algebras in topology,
Handbook of algebraic topology (I.M James, ed ), North-Holland, Amsterdam, 1995,
pp. 829-865.

[FM94] W. Fulton and R MacPherson, A compactification of configuration spaces, Ann of
Math. 139 (1994), 183-225

[FM97] T F Fox and M. Markl, Distributive laws, bialgebras, and cohomology, Operads Pro-
ceedings of Renaissance Conferences (J.L. Loday, J D Stasheff, and A A Voronov, eds.),
Contemporary Math., vol. 202, Amer. Math Soc., 1997, pp 167-205

[Fox93] T.F. Fox, The construction of cofree coalgebras, J Pure Appl Algebra 84 (1993), no 2,
191-198

[Fre97] B. Fresse, Operations de Cartan pour les algebres simpliciales sur une operade, C R
Acad Sci. Paris Sdr I Math. 325 (1997), no 3, 247-252

[Fre98a] B Fresse, Cogroups in algebras over an operad are free algebras, Comment Math Helv.

73 (1998), no 4, 637-676
[Fre98b] B. Fresse, Lie theory of formal groups over an operad, J Algebra 202 (1998), 455-511
[FreOO] B Fresse, On the homotopy of simplicial algebras over an operad, Trans Amer Math

Soc 352 (2000), no 9, 4113-4141
[FS97[ K. Fukaya and P. Seidel, Floer homology, A,-categories and topological field theory,

Geometry and Physics (J Andersen, J Dupont, H. Petersen, and A. Swan, eds.), Lec-
ture Notes in Pure and Applied Mathematics, vol. 184, Marcel-Dekker, 1997, pp 9-32



332 BIBLIOGRAPHY

[Ger63] M Gerstenhaber, The cohomology structure of an associative rang, Ann. of Math 78
(1963), no 2, 267-288.

[Ger64] M Gerstenhaber, On the deformation of rings and algebras, Ann of Math. 79,1 (1964),
59-104

[Get93] E Getzler, Carton homotopy formulas and the Gauss-Manin connection in cyclic ho-
mology, Quantum deformations of algebras and their representations (A Joseph and
S Shnider, eds.), Bar Ilan University, 1993, Israel Mathematical Conference Proceed-
ings, pp. 65-79

[Get94a] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories,
Comm Math. Phys 159 (1994), 265-285.

[Get94b] E. Getzler, Two-dimensional topological gravity and equivaraant cohomology, Comm
Math Phys. 163 (1994), no. 3, 473-489

[GH99] P G Goerss and M.J. Hopkins, Andrd-Quillen (co)-homology for simplicial algebras
over simplicial operads, Homotopy theory in the Swiss Alps, Contemporary Math, vol
265, Amer. Math Soc., Providence, RI, 1999, pp 41-85

[Gin95] V. Ginzburg, Resolution of diagonals and moduli space, The Moduli Space of Curves
(R. Dijkgraaf, C Faber, and G van der Geer, eds.), Progress in Mathematics, vol 129,
Birkhauser, 1995, pp. 231-266

[Gin0l] V Ginzburg, Non-commutative symplectic geometry, quiver varieties, and operads,
Math Res Lett 8 (2001), no 3, 377-400

[GJ94] E Getzler and J D.S Jones, Operads, homotopy algebra, and iterated integrals for
double loop spaces, Preprint hep-th/9403055, March 1994

[GK94] V Ginzburg and M.M. Kapranov, Koszul duality for operads, Duke Math. J 76 (1994),
no. 1, 203-272

[GK95] E Getzler and M M. Kapranov, Cyclic operads and cyclic homology, Geometry, Topol-
ogy and Physics for Raoul Bott (S.-T Yau, ed.), Conf. Proc Lect. Notes. Geom. Topol ,
vol 4, International Press, 1995, pp 167-201.

[GK98] E. Getzler and M M Kapranov, Modular operads, Compositio Math 110 (1998), no. 1,
65-126

[Gne95a] A V. Gnedbaye, Les algebres k-aires et leurs opdrades, C R. Acad. Sci. Paris Ser I
Math. 321 (1995), no 2, 147-152.

[Gne95b] A V Gnedbaye, Sur l'homologie des algebres de Leibniz, opdrades des algebres k-aires,
preprint, Universite Louis Pasteur, France, 1995.

[Gne96] A V. Gnedbaye, Opdrades des algebres (k + 1)-aires, Operads Proceedings of Renais-
sance Conferences (J L Loday, J.D Stasheff, and A.A Voronov, eds ), Contemporary
Math., vol. 202, Amer Math. Soc., 1996, pp 83-114

[GPS95] R Gordon, A.J. Power, and R Street, Coherence for tricategories, Mem Amer Math.
Soc, vol. 558, AMS, 1995

[Gro55] A. Grothendieck, Produits tensoraels et produits topologiques, Mem Amer Math Soc ,
vol 16, AMS, 1955

[Gug82] V K.A.M Gugenheim, On a perturbation theory for the homology of a loop space, J
Pure Appl. Algebra 25 (1982), 197-207

[GV95] M Gerstenhaber and A A Voronov, Higher operations on the Hochschild complex,
Functional Anal Appl. 29 (1995), no. 1, 1-5

[GWOO] A V. Gnedbaye and M Wambst, Jordan triples and operads, J Algebra 231 (2000),
no 2, 744-757

[Hai84] M. Haiman, Constructing the associahedron, Unpublished manuscript, 11 pages, 1984
[Ha183] S. Halperin, Lectures on minimal models, Memoirs Soc. Math. France, Nouv. Ser. 9-10,

vol 261, Soc. Mat France, 1983
[Har77] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol 52, Springer-

Verlag, 1977
[Har88] J Harer, The cohomology of the moduli space of curves, Theory of Moduli, Lect. 3rd

Sess. Cent. Int Mat Estivo, Montecatini Terme, Italy 1985, Lecture Notes in Mathe-
matics, vol 1337, Springer-Verlag, 1988, pp 138-221

[Hin97] V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra 10 (1997), no 25,
3291-3323

[Hinol] V Hinich, Virtual operad algebras and realization of homotopy types, J. Pure Appl.
Algebra 159 (2001), no 2-3, 173-185



BIBLIOGRAPHY 333

[HL71] M. Herrera and D Lieberman, Residues and principal values on complex spaces, Math.
Ann. 194 (1971), 259-294

[HL93] Y -Z Huang and J Lepowsky, Vertex operator algebras and operads, The Gelfand Math-
ematics Seminars, 1990-1992, Birkhauser, Boston, 1993, pp 145-161

[Hop42] H Hopf, Fundamentalgruppe and zweite Bettische Gruppe, Comment Math Helv 14
(1942),257-309

[HP91] P J. Hilton and J Pedersen, Catalan numbers, their generalization, and their uses,
Math Intelligencer 13 (1991), no 2, 64-75.

[HS71] P J Hilton and U. Stammbach, A course in homological algebra, Graduate texts in
Mathematics, vol 4, Springer-Verlag, 1971

[HS87] V A. Hinich and V V. Schechtman, On homotopy limit of homotopy algebras, Lecture
Notes in Mathematics 1289 (1987), 240-264

[HS93] V.A. Hinich and V V Schechtman, Homotopy Lie algebras, Advances in Soviet Mathem
16 (1993), no. 2, 1-28

[Hua94] Y -Z. Huang, Operadic formulation of topological vertex algebras and Gerstenhaber or
Batalin-Vilkovisky algebras, Comm Math. Phys 164 (1994), 145-161

[Hua97] Y. -Z Huang, Two-dimensional conformal geometry and vertex operator algebras,
Birkhauser Boston Inc, Boston, MA, 1997

[HW95] P. Hanlon and M L. Wachs, On Lie k-algebras, Adv in Math. 113 (1995), 206-236
[Jam55] I M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197
[Jar8l] H. Jarchov, Locally convex spaces, Teubner, Stuttgart, 1981.
[Joy81] A. Joyal, Une theorie combinatoire des series formelle, Adv in Math 42 (1981), 1-82.
[KA56] T Kudo and S Araki, Topology of and H-squaring operations, Mem. Fac

Sci. Kyusyu Univ. Ser A. 10 (1956), 85-120
[Kad80] T V Kadeishvili, On the homology theory of fibre spaces, Russian Math Surveys 35

(1980), no. 3, 231-238
[Kad85] T V Kadeishvili, 0 kategorsi differentialnych koalgebr i kategorii A(oo)-algebr, Trudy

Tbiliss Mat. Inst Razmadze Akad. Nauk Gruzin. SSR 77 (1985), 50-70, in Russian
[Kad88] T V Kadeishvili, A(oo)-algebra structure in cohomology and the rational homotopy

type, Preprint 37, Forschungsschwerpunkt Geometrie, Universitat Heidelberg, Mathe-
matisches Institut, 1988

[Kap93] M Kapranov, The permutoassociahedron, Mac Lane's coherence theorem and asymp-
totic zones for the KZ equation, J Pure Appl. Algebra 85 (1993), 119-142

[Kap98] M Kapranov, Operads in algebraic geometry, Doc Math. (1998), 277-286, Extra Vol-
ume ICM

[Ke157] J L Kelley, General topology, D Van Nostrand, 1957
[Ke164] G M. Kelly, On Mac Lane's conditions for coherence of natural associativities, com-

mutativities, etc., J. Algebra 1 (1964), 397-402
[K1y74] A A Klyatchko, Lie elements in the tensor algebra, Siberian Math. J 15 (1974), 914-

920
[KM76] F F. Knudsen and D Mumford, The projectivity of the moduli space of stable curves I

Preliminaries on "det" and "Div", Math Scand 39 (1976), 19-55
[KM93] I. Ktia and J P May, Operads, algebras, and modules, I: Definitions and examples,

Preprint, University of Chicago, 1993.
[KM94] M Kontsevich and Y Mamn, Gromov-Witten classes, quantum cohomology, and enu-

merative geometry, Preprint hep-th/9402147, February 1994
[KM95] I. Ktiz and J P May, Operads, algebras, modules and motives, Astdrisque, vol 233,

Socidtd Mathematique de France, 1995
[KM01] M. Kapranov and Y Manin, Modules and Morita theorem for operads, American Jour-

nal of Mathematics 123 (2001), no 5, 811-838.
[Knu83] F F Knudsen, The projectivity of the moduli space of stable curves, II The stacks

Mg,,,, Math Scand. 52 (1983), 161-199
[Kon93] M Kontsevich, Formal (non) commutative symplectic geometry, The Gel'fand mathe-

matics seminars 1990-1992, Birkhauser, 1993.
[Kon94] M Kontsevich, Feynman diagrams and low-dimensional topology, First European Con-

gress of Mathematics II, Progr Math , vol 120, Birkhauser, Basel, 1994
[Kon97] M Kontsevich, Deformation quantization of Poisson manifolds, I, Preprint

q-alg/9709040, September 1997



334 BIBLIOGRAPHY

[Kon99] M Kontsevich, Operads and motives in deformation quantization, Preprint
math. QA/9904055, April 1999

[KS00] M Kontsevich and Y Soibelman, Deformations of algebras over operads and Deligne's
conjecture, Preprint math. QA/0001151, January 2000

[KSV95] T. Kimura, J.D. Stasheff, and A A Voronov, On operad structures of moduli spaces
and string theory, Comm Math Phys 171 (1995), 1-25

[KVZ97] T Kimura, A A Voronov, and G J Zuckerman, Homotopy Gerstenhaber algebras and
topological field theory, Operads Proceedings of Renaissance Conferences (J D Stash-
eff, J -L Loday and A.A. Voronov, eds.), Contemporary Mathematics, vol 202, 1997,
pp 305-333

[Lad76] T Lada, Strong homotopy algebras over monads, The Homology of Iterated Loop Spaces
(F.R Cohen, T. Lada, and P May, eds ), Lecture Notes in Mathematics, vol 533,
Springer, 1976, pp 399-479.

[Law63] F.W Lawvere, Functorial semantics of algebraic theories, Proc Nat Acad Sci U S.A
50 (1963), 869-872.

[Laz55] M Lazard, Lois des groupes et analyseurs, Ann Sci Ecole Norm Sup , III. Ser 72
(1955), no 3, 299-400.

[Laz59] M Lazard, Lois des groupes et analyseurs, Seminaire Bourbaki, 7e annee 1954/1955,
vol 109, Soc. Math France, 1959, pp 1-15

[Lee85] C. Lee, Some notes on triangulating polytopes, 3. Kolloquium uber Diskrete Geometrie,
Institut fur Mathematik, Universitht Salzburg, 1985, pp. 173-181

[Lee89] C. Lee, The associahedron and triangulation of the n-gon, European J. Combin 10
(1989), 551-560

[Leh77] D. Lehmann, Theorie homotopique des formes differentielles, Asterisque, vol 54, Soc
Math France, 1977.

[LFCGO1] J -L Loday, A. Frabetti, F Chapoton, and F Goichot, Dialgebras and related operads,
Lecture Notes in Mathematics, vol 1763, Springer-Verlag, 2001

[LM95] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm Algebra 23 (1995),
no. 6, 2147-2161.

[Lod93] J -L. Loday, Une version non commutative des algebres de Liebniz, L'Ens. Math. 39
(1993), 269-293

[Lod95] J -L. Loday, Algebres ayant deux operations associatives (digebres), C. R Acad Sci
Paris Ser I Math. 321 (1995), no. 2, 141-146.

[LodOl] J.-L Loday, Dialgebras, preprint math. QA/0102053, February 2001.
[LQ84] J -L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices,

Comment. Math. Helv 59 (1984), 565-591.
[LRO1] J -L. Loday and M. 0 Ronco, Une dualite entre simplexes standards et polytopes de

Stasheff, C R. Acad Sci Paris Ser I Math 333 (2001), no. 2, 81-86
[LS93] T. Lada and J D Stasheff, Introduction to sh Lie algebras for physicists, Internat J

Theoret. Phys. 32 (1993), no 7, 1087-1103.
[Mac63a] S Mac Lane, Homology, Springer-Verlag, 1963.
[Mac63b] S Mac Lane, Natural associativity and commutativity, Rice Univ. Stud 49 (1963),

no 1, 28-46
[Mac65] S Mac Lane, Categorical algebra, Bull. Amer Math Soc 71 (1965), 40-106
[Mac7l] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, 1971
[Ma174] P. Malraison, Homotopy associative categories, Lecture Notes in Math., vol. 428,

Springer-Verlag, 1974, pp. 108-131
[Man99] Y I Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer

Math. Soc. Colloquium Publications, vol. 47, Amer Math. Soc., Providence, RI, 1999
[Man01] M A Mandell, E- algebras and p-adic homotopy theory, Topology 40 (2001), no. 1,

43-94
[Mar92] M Markl, A cohomology theory for A(m)-algebras and applications, J Pure Appl

Algebra 83 (1992), 141-175
[Mar96a] M Markl, Cotangent cohomology of a category and deformations, J Pure Appl Algebra

113 (1996), 195-218
[Mar96b] M Markl, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble) 46 (1996),

no 4, 307-323.
[Mar96c] M Markl, Models for operads, Comm Algebra 24 (1996), no 4, 1471-1500



BIBLIOGRAPHY 335

[Mar99a] M Markl, A compactification of the real configuration space as an operadic completion,
J Algebra 215 (1999), 185-204.

[Mar99b] M Markl, Cyclic operads and homology of graph complexes, Proceedings of the 18th
Winter School "Geometry and physics", Srnf, Czech Republic, January 10-17, 1998,
Supplem ai Rend Circ Matem Palermo, Ser II, vol 59, 1999, pp 161-170

[Mar99c] M Markl, Homotopy algebras are homotopy algebras, Preprint math.AT/9907138, July
1999

[Mar99d] M Markl, Simplex, associahedron, and cyclohedron, Higher Homotopy Structures in
Topology and Mathematical Physics (J. McCleary, ed ), Contemporary Math, vol 227,
Amer Math Soc , 1999, pp 235-265

[Mar00] M Markl, Homotopy algebras via resolutions of operads, Proceedings of the 19th Winter
School "Geometry and physics", Srni, Czech Republic, January 9-15, 1999, Supplem
ai Rend Circ. Matem Palermo, Ser. II, vol 63, 2000, pp 157-164

[Mar01a] M Markl, Ideal perturbation lemma, Comm Algebra 29 (2001), no 11, 5209-5232
[Mar01b] M Markl, Loop homotopy algebras in closed string field theory, Comm Math Phys

221 (2001), 367-384
[Mas58] W.S Massey, Some higher order cohomology operations, Symposium internacional de

topologfa algebraica, 1958, pp. 145-154
[Mas69] W.S Massey, Higher order linking numbers, Conf Algebr Topol., Univ Ill Chicago

Circle, 1969, pp 174-205
[Mas98] W S Massey, Higher order linking numbers, J. Knot Theory Ramifications 7 (1998),

no 3, 393-414
[Mat97] O. Mathieu, Homologies associated with Poisson structures, Deformation theory and

symplectic geometry (Ascona, 1996), Kluwer Acad Publ., Dordrecht, 1997, pp 77-199
[May69] J P May, Matrix Massey products, J. Algebra 12 (1969), 533-568.
[May70] J P. May, A general algebraic approach to Steenrod operations, The Steenrod Algebra

and its Applications (F P Peterson, ed ), Lectures Notes on Mathematics, vol 168,
Springer Verlag, 1970, pp 153-231.

[May72] J P May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, vol 271,
Springer-Verlag, New York, 1972

[May97] J P May, Operadic tensor products and smash products, Operads- Proceedings of Re-
naissance Conferences (J L Loday, J.D Stasheff, and A A. Voronov, eds.), Contempo-
rary Math , vol 202, Amer Math Soc, 1997, pp. 287-303

[May98] J.P May, Brave new worlds in stable homotopy theory, Homotopy theory via algebraic
geometry and group representations (Evanston, IL, 1997), Contemporary Math., vol.
220, Amer Math Soc., Providence, RI, 1998, pp. 193-212

[Mi156] J. Milnor, Construction of universal bundles. II, Ann of Math (2) 63 (1956), 430-436
[Mi166] R.J Milgram, Iterated loop spaces, Ann of Math. 84 (1966), 386-403
[Mi167] R.J Milgram, The bar construction and abelian H-spaces, Illinois J Math 11 (1967),

242-250
[Mi174] R.J. Milgram, Unstable homotopy from the stable point of view, Lecture Notes in Math-

ematics, vol 36, Springer-Verlag, 1974
[MMW99] J.P Meyer, J Morava, and W.S. Wilson (eds ), Homotopy invariant algebraic struc-

tures A conference in honor of J M Boardman, Contemporary Math., vol 239, Amer
Math Soc , Providence, RI, 1999

[Moo7l] J C Moore, Differential homological algebra, Actes Congres Intern Math 1 (1971),
335-339

[MP98] M. Mulase and M Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces,
and algebraic curves defined over Q, Preprint math-ph/9811024, November 1998

[MS99] J E. McClure and J H Smith, A solution of Deligne's conjecture, Preprint
math.QA/9910126, October 1999

[MS01] M. Markl and S Shnider, Coherence constraints for operads, categories and algebras,
Proceedings of the 20th Winter School "Geometry and Physics", Srnf, Czech Republic,
January 15-22, 2000, Supplem ai Rend. Circ Matem. Palermo, Ser II, vol 66, 2001,
pp 29-57.

[MT68] R.E Mosher and M C Tangora, Cohomology operations and applications in homotopy
theory, Harper & Row, New York, Evanston and London, 1968



336 BIBLIOGRAPHY

[MU57] W S Massey and H Uehara, The Jacobi identity for Whitehead products, Princeton
Univ Press, 1957

(NT97] R Nest and B Tsygan, The Fukaya type categories for associative algebras, Defor-
mation theory and symplectic geometry (Ascona, 1996), Math. Phys Stud , vol. 20,
Kluwer Acad Publ., Dordrecht, 1997

[Pen87] R.C Penner, The decorated Teichmiiller space of punctured surfaces, Comm Math
Phys 113 (1987), 299-339

[Pen96] M Penkava, Infinity algebras and the cohomology of graph complexes, Preprint
q-alg/9601018,January 1996.

[Pir94] T. Pirashvili, On Leibniz homology, Ann. Inst. Fourier (Grenoble) 44 (1994), no 2,
401-411.

[Po198] A. Polishchuk, Massey and Fukaya products on elliptic curves, Preprint
math.AG/9803017, March 1998.

[Pri70] S.B Priddy, Koszul resolutions, Trans. Amer Math Soc 152 (1970), 39-60
[Pri71] S B. Priddy, On 0°°S- and the infinite symmetric group, Proceedings of Symposia

in Pure Mathematics, Madison, Wisconsin, 1970 (A Liulevicius, ed.), vol 12, 1971,
pp. 217-220

[PS95] M Penkava and A. Schwarz, A- algebras and the cohomology of moduli spaces, Trans
Amer. Math. Soc 169 (1995), 91-107

[Qui67] D Quillen, Homotopical algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, 1967
[Qui69] D. Quillen, Rational homotopy theory, Ann of Math 90 (1969), 205-295.
[Qui70] D Quillen, Cohomology of groups, Actes Congrbs International Math 2 (1970), 47-51
[Ree58] R Ree, Lie elements and an algebra associated with shuffles, Ann of Math 68 (1958),

210-220

[Ret93] V.S. Retakh, Lie-Massey brackets and n-homotopy multiplicative maps of differential
graded Lie algebras, J. Pure Appl Algebra 89 (1993), 217-229.

[Sa199] P. Salvatore, Configuration spaces with summable labels, preprint math.AT/9907073,
July 1999

[Sal0l] P. Salvatore, Homotopy type of Euclidean configuration spaces, Proceedings of the 20th
Winter School "Geometry and Physics", Srni, Czech Republic, January 15-22, 2000,
Supplem. ai Rend Circ. Matem. Palermo, Ser. II, vol. 66, 2001, pp. 161-164.

[Sat56] I Satake, On a generalization of the notion of manifold, Proc. Nat Acad Sci U S A.
42 (1956), 359-363

[Sch93] M Schwarz, Morse homology, Progress in Mathematics, vol 111, Birkhauser Verlag,
1993

[SE62] N E Steenrod and D B A. Epstein, Cohomology operations, Princeton University Press,
1962

[Seg73] G Segal, Configuration-spaces and iterated loop-spaces, Invent Math. 21 (1973), 213-
221

[Seg74] G Segal, Categories and cohomology theories, Topology 13 (1974), 293-312
[Sem] Seminaire Bourbaki, vol.3, Annees 1954/55-1955/5, Societe Mathematique de France,

Paris
[Ser65] J -P Serre, Lie algebras and Lie groups, Benjamin, 1965
[Smi82] V.A Smirnov, On the cochain complex of topological spaces, Math USSR Sbornik 43

(1982), 133-144
[Smi85] V.A. Smirnov, Homotopy theory of coalgebras, Izv Akad Nauk SSSR, Ser Mat 49

(1985), no. 6, 1302-1321, In Russian.
[Smi92] V A Smirnov, Secondary operations in the homology of the operad E, Izv Ross. Akad.

Nauk, Ser Mat 56 (1992), 449-468.
[Smi94] J R. Smith, Iterating the cobar construction, Mem. Amer Math Soc., vol 109, Amer.

Math. Soc., 1994
[Smi99] V A. Smirnov, A00-smplicial objects and A00-topological groups, Mat Zametki 66

(1999), no 6, 913-919
[Smi0l] V A. Smirnov, Simplicial and operad methods in algebraic topology, Translations of

Mathematical Monographs, vol. 198, Amer. Math. Soc., Providence, RI, 2001.
[Spa66] E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966
[SS84] M. Schlessinger and J D. Stasheff, Deformation theory and rational homotopy type,

Preprint, 1984



BIBLIOGRAPHY 337

[SS85) M Schlessinger and J D Stasheff, The Lie algebra structure of tangent cohomology and
deformation theory, J. Pure Appl Algebra 38 (1985), 313-322

[SS94] S Shnider and S Sternberg, Quantum groups from coalgebras to Drinfel'd algebras
A guided tour, International Press, Cambridge, Mass , 1994, second edition 1997

[Sta61] J D Stasheff, On the homotopy associativity of H-spaces, Dissertation, Princeton Uni-
versity, 1961

[Sta63a] J D Stasheff, Homotopy associativity of H-spaces, I, Trans Amer Math Soc 108
(1963), 275-292.

[Sta63b] J D Stasheff, Homotopy associativity of H-spaces, II, Trans Amer Math Soc 108
(1963), 293-312.

[Sta70] J D Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Math., vol
161, Springer-Verlag, 1970

[Sta83] J D Stasheff, Rational Poincar6 duality spaces, Illinois J Math 27 (1983), 104-109
[Sta95] J D Stasheff, The cycloedra for compactification of configuration spaces of the circle,

Preprint, 1995
[Sta97] J D. Stasheff, From operads to `physically' inspired theories, Operads Proceedings of

Renaissance Conferences (J -L. Loday, J.D Stasheff, and A.A Voronov, eds ), Contem-
porary Math., vol. 202, 1997, pp 53-81

[Str84] K Strebel, Quadratic differentials, Springer-Verlag, Berlin, 1984
[SU00] S Saneblidze and R Umble, A diagonal on the associahedra, Preprint, March 2000
[Sug57a] M Sugawara, On a condition that a space is an h-space, Math J Okayama Univ 6

(1957), 109-129
[Sug57b] M Sugawara, On a condition that a space is group-like, Math J Okayama Univ 7

(1957), 123-149
[Sug6l] M. Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem Coll

Sci Univ. Kyoto, Ser A Math 33 (1960/61), 257-269
[Su177] D Sullivan, Infinitesimal computations in topology, Inst Hautes Etudes Sci Publ

Math 47 (1977), 269-331
[SV92a] D Sahoo and M C Valsakumar, Nambu mechanics and its quantization, Phys. Rev A

46 (1992), 4410-4412
[SV92b] R. Schwanzl and R. Vogt, Homotopy homomorphisms and the hammock localization,

Bol. Soc. Mat Mexicans (2) 37 (1992), no 1 -2 , 431-448.
[SV099] S Shnider and D.H Van Osdol, Operad.s as abstract algebras, and the Koszul property,

J. Pure Appl. Algebra 1-3 (1999), no 143, 381-407
[SW01] P Salvatore and N. Wahl, Framed discs operads and the equivariant recognition prin-

ciple, Preprint math.AT/0106242, July 2001
[Tak94] L Takhtajan, On foundation of the generalized Nambu mechanics, Comm Math Phys

160 (1994), 295-315
[Tam98a] D E Tamarkin, Another proof of M Kontsevich formality theorem, Preprint

math.AA/9803025, March 1998
[Tam98b] D E Tamarkin, Formality of chain operad of small squares, Preprint math. QA/9809164,

September 1998
[Tan83] D Tanre, Homotopie rationnelle Modeles de Chen, Quillen, Sullivan, Lect Notes in

Math., vol. 1025, Springer-Verlag, 1983
Ti1991 U. Tillmann, Vanishing of the Batalin-Vilkovisky algebra structure for TCFTs, Comm.

Math Phys 205 (1999), no. 2, 283-286
Til00] U. Tillmann, Higher genus surface operad detects infinite loop spaces, Math Ann 317

(2000), no. 3, 613-628
Tsy83] B.L Tsygan, Homology of matrix algebras over rings and Hochschild homology, Uspekhi

Mat. Nauk 38 (1983), 217-218, in Russian
TTOO] D E Tamarkin and B. Tsygan, Noncommutative differential calculus, homotopy BV

algebras and formality conjectures, Preprint math. KT/0002116, February 2000
U1y991 A Ulyanov, Polydiagonal compactification of configuration spaces, preprint

math.AG/9904049, April 1999
Vis89] A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent.

Math 97 (1989), 613-670



338 BIBLIOGRAPHY

[Vog] R.M. Vogt, Cofibrant operads and universal Ew operads, Preprint E99-005, 81-89,
available at http //www.mathematik.uni-bielefeld de/sfb343/preprints/index99.html,
submitted to Ann. Inst. Fourier

[Vog98] R.M Vogt, My time as Mike Boardman's student and our work on infinite loop spaces,
Preprint, 1998

[Vor94] A A Voronov, Topological field theories, string backgrounds and homotopy algebras,
Proceedings of the XXIInd International Conference on Differential Geometric Methods
in Theoretical Physics, Ixtapa-Zihuatanejo, Mexico (J Keller and Z Oziewicz, eds.),
Advances in Applied Clifford Algebras, vol 4 (Si), 1994, pp 167-178

[Vor98] A.A Voronov, The Swiss cheese operad of open-closed string field theory, Technical

report, MIT, preprint math/98, 1998.
[Vor99a] A A Voronov, Homotopy Gerstenhaber algebras, Preprint math. QA/9908040, August

1999

[Vor99b] A.A Voronov, The Swiss-cheese operad, Homotopy Invariant Algebraic Structures
(J.P Meyer, J Morava, and W S. Wilson, eds), Contemporary Math, vol 239, 1999,
pp 365-373

[Vor01] A.A. Voronov, Notes on universal algebra, preprint math.QA/0111009, November 2001
[VV98] A. Vinogradov and M. Vinogradov, On multiple generalizations of Lie algebras and

Poisson manifolds, Secondary calculus and cohomological physics, Moscow, August 24-
31, 1997, Contemp Math., vol 219, Amer. Math Soc., Providence, RI, 1998

[Wah0l] N Wahl, Ribbon braid and related operads, Ph.D. thesis, Oxford, 2001
[Wei] C Weibel, e-letter to Stasheff
[Wei94] C Weibel, An introduction to homological algebra, Cambridge Studies in Advanced

Mathematics, vol 38, Cambridge University Press, 1994
[We180] R 0 Wells, Differential analysis on complex manifolds, Graduate Texts in Mathemat-

ics, vol. 65, Springer-Verlag, 1980
[Wey97] H. Weyl, The classical groups Their invariants and representations. Fifteenth printing,

Princeton University Press, 1997
[Whi98] A.N. Whitehead, A treatise on universal algebra, Cambridge, 1898
[WZ94] M Wolf and B Zwiebach, The plumbing of minimal area surfaces, J. Geom. Phys 15

(1994), 23-56
[Xu99] P. Xu, Gerstenhaber algebras and BV-algebas in Poisson geometry, Comm Math.

Phys 200 (1999), no 3, 545-560.
[Zwi93] B Zwiebach, Closed string field theory- Quantum action and the Batalin-Vilkovisky

master equation, Nuclear Phys. B 390 (1993), 33-152



Glossary of notations

a(v) number of inputs (arity) of a vertex v of a rooted tree, 83,
217

Aff group of affine transformations of the complex plane C, 213
Aff (V) group of affine transformations of a vector space V, 220
Ass operad for associative algebras, 20, 44, 168
Ass non-E operad for associative algebras, 14, 45
Asses operad for A.-algebras, 20
Ass. non-E operad for A_-algebras, 13, 26, 106
B(P) bar construction on an operad P, 20
Brace operad for brace algebras, 31
BV operad for Batalin-Vilkovisky algebras, 206, 257
BY classifying space of an A.-space Y, 11
Bk operad for k-braid algebras, 27
B- Baues operad, 30
CH, (A; A) Hochschild chains of A with coefficients in itself, 259
CH*(A; A) Hochschild cochains of A with coefficients in itself, 29, 104
Croon operad for commutative associative monoids, 111
CoEndX coendomorphism operad, 43
Col category of collections, 85
Co1K category of K-collections, 85
Corn operad for commutative associative algebras, 20, 44, 168
Comma operad for C.-algebras, 20
Con (Rk, n) configuration space of n distinct labeled points in Rk, 26, 100
Con (M, n) configuration space of n distinct labeled points in a manifold

M, 234
Con(M,n) compactification of the configuration space Con(M,n), 234,

239
Con(V,n) configuration space of n distinct labeled points in a vector

space V, 220
Cl little intervals operad, 95
C2 little squares operad, 95
Ck little k-cubes operad, 12, 94, 203
C(P) cobar complex of an operad P, 20, 121, 125
CIP' complex projective line, 207
C *(V) P-algebra chain complex with trivial coefficients, 173
CP(V;V) P-algebra cochain complex with coefficients in itself, 177

339



340 GLOSSARY OF NOTATIONS

b dual of a cocycle s'J, 284
det(S) determinant of a finite set S, 124
Det(S) Determinant of a finite set S, 283
det(T) determinant of a tree T, 124
Det(T) Determinant of a tree T, 128
Det(V) Determinant of a vector space V, 283
dgVec category of differential graded vector spaces, 38, 121
dg0p category of differential graded operads, 133
dgWOp category of differential graded pseudo-operads, 126
Dk, Bk standard unit k-dimensional disk (ball), 204
Dk little k-disks operad, 12, 203
D(P) dual dg operad of an operad P, 20, 121, 127
DP E-module of decomposables of an operad P, 187
e2 operad for Gerstenhaber algebras, 30, 176
Edg(T) set of all edges of a tree T minus the root edge, 51, 128
Edge(T) set of all edges of a tree T including the root edge, 51
edge(T) set of internal edges of a tree T, 51, 217, 123
edge (F) set of edges of a graph r, 269
edge(v) set of edges incident with a vertex v, 250
Endx endomorphism operad, 6, 43, 254
SS Eilenberg-Zilber operad, 105
Etree(n) set of of isomorphism classes of n-trees with a special vertex,

234
E# linear dual of a E-module, 141
Ev Czech dual of a E-module E, 142
f Con (M, n) framed configuration space of n distinct labeled points in a

manifold M, 210, 234
fCon(M, n) compactification of the space f Con (M, n), 234
fDk framed little k-disks operad, 13, 203
Fo (A) Feynman transform of a 0-modular operad A, 287
Flag(F) set of flags (half-edges) of a graph F, 269
.F2 (-) free P-algebra functor, 47
.F,(-) cofree nilpotent P-coalgebra functor, 166

Fv(n) moduli space Fv(n) Con (V, n) lAff (V), 220
o

Fv(n) compactification of the moduli space Fv(n), 225
o o

Fv E-module {Fv(n)},,,>I, 220
Fv operad {Fv(n)},,,>1, 225
o o

Fk(n) simplified notation for the space FRk (n), 220
Fk(n) simplified notation for the space Fk(n), 27, 225
o o

Fk simplified notation for the space FRk, 220
Fk simplified notation for the operad FRk, 27, 226
G minimal model of the operad e2, 30
GC(n) graph complex, 301
G, set of connected graphs with Euler characteristic 1 - n, 301



GLOSSARY OF NOTATIONS 341

Grmet
(n)

Grav

gVec
g(P)
'H =(R,Q)
Harr. (A, M)

HH*(A;A)
HH. (A; A)

xrel = (Nrel, Q)
hS(-I-)
H. (A)

HDR (A)
HP(V; V)

IFlag(F)
In(v)
Iso (D)
ix
K(P')
K(P')#
Kn
Leaf(T)

Leg (P)

Leg(v)

Leib
Li

LI
Lie
Lie.
L(T)
Mo,n
M (n)
Mg,n

M(g, 4 -Mg,n+1

M

Mo (n)

Mo
M (g, n)

M

set of graphs E 'G Gr(n) with a metric, 301
gravity operad, 311
category of graded vector spaces, 38
genus of a labeled graph r, 270
BRST complex, 24, 208
Harrison homology of A with coefficients in M, 266
McClure-Smith operad, 30, 31
Hochschild cohomology of A with coefficients in itself, 29
Hochschild homology of A with coefficients in itself, 259
relative BRST complex, 26
skew-symmetric shuffle product, 197
cyclic homology of an associative algebra A, 259
de Rham cohomology of an algebra A, 260
operadic cohomology of a P-algebra V with coefficients in
itself, 177
set of internal flags of a graph r, 285
set of incoming edges of a vertex v of a rooted tree, 51
category of isomorphisms of a category D, 72, 271
James' reduced product, 97
Koszul complex of an operad P, 121, 145
dual Koszul complex of an operad P, 146
Stasheff's associahedron, 9, 56
set of leaves of a tree T, 51
set of legs (half-edges) of a graph r, 269
set of legs (half-edges) adjacent to a vertex v, 269
operad for Leibniz algebras, 257
linear isometries operad, 106, 107
category of real inner-product spaces, 107
operad for Lie algebras, 20, 50
operad for L--algebras, 18
number of leaves of a tree T, 128
moduli space of n distinct labeled points in CIP1, 212
compactification of the moduli space Mo,n+1, 213, 305
moduli space of genus g Riemann surfaces with n distinct
labeled points, 292, 305
compactification of the moduli space Mg,n+1, 304
configuration pseudo-operad {M(n)J,>2, 25, 216;
modular operad {M(g, n)}(g,n)E,, 306
moduli space of Riemann spheres with n + 1 labeled para-
metrized holes, 23, 207, 267
operad {Mo(n)}n>1, 23, 207, 247
moduli space of genus g Riemann surfaces with n + 1 labeled
parametrized holes, 267, 304_
unstable modular operad {M(g, n)}g>0,n>_1i 267



342 GLOSSARY OF NOTATIONS

09's moduli space of genus g surfaces with s distinct unlabeled
points, 292

Tty s moduli space of genus g surfaces with s distinct unlabeled
decorated points, 292

M(-) triple for modular operads, 271
M1) (-) triple for n-twisted modular operads, 281
MC9,s mapping class group of a genus g surface with s distinct la-

beled points, 292
Met(T) space of metrics on a tree T, 109, 221, 235
MMod category of stable modular E-modules, 268
Modk category of k-modules, 38
Mod(P) modular completion of an operad P, 317
Mode category of P-modules, 139
Mon operad for associative topological monoids, 28, 99
Mon non-E operad for associative topological monoids, 112
Mon(C) category of C-monoids, 40
MX rectification of a WP-space X, 116
N(n) moduli space of Riemann spheres with n+1 marked decorated

points, 25
N(n) compactification of the space N(n), 25

Al operad {N(n)}n>1, 23, 25
Nerve. (C) nerve of a category C, 272

N(P) categorial cobar complex of an operad P, 121, 149
Op category of operads, 42
Ord (X) set of orderings of X, 62
P = (E; R) presentation of an operad P, 139
P1 quadratic dual of a quadratic operad P, 21
P+ pseudo-operad associated to an operad P, 110;

augmentation ideal of an augmented operad P, 187
P1 operad (sP')#, 262
P>4G semidirect product of an operad P with a group G, 204
P(-) free P-module functor, 139
PB-.W colored operad for homomorphisms of P-spaces, 115
Pn permutahedron, 97
Poiss operad for Poisson algebras, 176, 256, 261
QP E-module of indecomposables of an operad P, 188
R Smith operad, 105
RGr9,s set of ribbon graphs r such that surf (P) has s holes and

genus g, 292
RGrg st set of ribbon graphs r E RGr9,s with a metric, 292
RGC;'s ribbon graph complex, 295
Rmtree (n) space of isomorphism classes of reduced rooted metric n-trees,

109, 221
Rmtree pseudo-operad of reduced rooted metric trees, 110
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Rmtree(n) space of isomorphism classes of reduced rooted metric planar
n-trees, 112

Rmtree non-E pseudo-operad of reduced rooted planar metric trees,
112

Rtree(n) set of isomorphism classes of reduced rooted n-trees, 55
Rtree pseudo-operad of reduced rooted trees, 55
Rtree(n) set of isomorphism classes of reduced planar rooted n-trees,

55
Rtree non-E operad of reduced planar rooted trees, 55, 109
Rtree category of reduced rooted n-trees, 87, 124
rv(T) vertex attached to the root of a rooted tree T, 221, 235
sA operadic suspension of a E-module A, 127, 258
s-IA operadic desuspension of a E-module A, 127
Be modular suspension of a modular E-module S, 283
Set category of sets, 38
Set f category of finite sets, 40
Set f-Mod category of Setf-modules, 40
sgn, signum representation of the symmetric group En, 264
Sh(- I -) shuffle product, 196
SSA set of surjection sequences, 152
Surj [j, n] set of surjections f : [n] - [j], 150
Surj f category of surjections of finite sets, 60
Surf (P) surface associated to a ribbon graph r, 292
T9,5 Teichmiiller space of genus g surfaces with s distinct labeled

points, 291
gas` decorated Teichmiiller space of genus g surfaces with s dis-

tinct labeled points, 291

T[f1 tree corresponding to a surjection f, 151
Tree(n) set of isomorphism classes of rooted n-trees, 8
Tree operad of rooted trees, 8, 54
Tree(n) set of isomorphism classes of planar rooted n-trees, 8
Tree non-E operad of planar rooted trees, 8, 54
Tree(X) set of isomorphism classes of X-labeled trees, 53
Tree category of labeled rooted trees, 52
Tree,,, category of labeled rooted n-trees, 52
Treex category of X-labeled rooted trees, 52
Trees category of unrooted trees with legs labeled by {0, ... , n}, 250

UAss operad for associative algebras with unit, 267
UCom operad for commutative associative algebras with unit, 267,

316
unsh(-, . . , -) set of unshuffles, 99
UPoiss operad for Poisson algebras with unit, 267
Vec category of vector spaces, 38
Vert(T) set of (internal) vertices of a tree T, 51, 250
Vert(T) set of all (including external) vertices of a tree T, 51



344 GLOSSARY OF NOTATIONS

Vert(r) set of vertices of a graph r, 269
V# = (V#, d#) linear dual of a dg complex, 121
W(P) W-construction on an operad P, 28, 111
W(P) non-E W-construction on a non-E operad P, 111,
WW cyclohedron, 241
3(h) zero set of a metric h E Met(T), 221
4,, cyclic group 7G/n7G

*n n-star, 250
*9,n modular n-corolla of genus g, 271.
c(n) n-corolla, 251
1 trivial operad, 42, 187
[n] set {1, ... , n}, 40
ri geometric realization of a graph r, 269
Tj number of internal edges of a tree T, 123
A determinant operad, 128

box product on E-Mod, 68
K box product on C01K, 86
oi composition (Gerstenhaber) product, 6
r(C) dual graph of a stable curve C, 304
r((g, s)) category of stable S-labeled graphs of genus g, 271
r+(-) free cyclic operad functor, 251
r(-) free operad functor, 82
rK(-) free K-operad functor, 88
IF (-) free pseudo-operad functor, 81
IY+(-) free cyclic pseudo-operad functor, 251
A(P, -) universal bilinear form, 261
S2A module of differentials of an algebra A, 260
S2kX k-fold loop space of a topological space X, 93
lDR(M) dg algebra of de Rham forms, 29
'POP category of pseudo-operads, 67
E-Mod category of E-modules, 40
E+-Mod category of cyclic E-modules, 249
En permutation group of { 1, ... , n}, 40
En permutation group of 10,... , n}, 264
E symmetric groupoid, 40
t u suspension of a graded vector space U, 314
j u desuspension of a graded vector space U, 314
r(U) reflection of a graded vector space U, 314
T. cycle (0, ... , n) E En +, 247

E(C) Koszul sign, 195
X(o) skew-symmetric Koszul sign, 196



Index

(n + 1)-star, 250
1-brace, 183
2-brace, 183
A(oo)-algebra, 195
A--category, 14
Aoc-algebra, 13, 172, 195
A_-map, 113
A--space, 10
B00-algebra, 30
Coo-algebra, 19, 172, 196
Eoo-operad, 12
G-operad, 204

104
K-collection, 85
K-operad, 86
Lo,-algebra, 17, 195
P-functor, 97
T-algebra, 88
V-manifold, 293
W-construction, 111
WP-homomorphism, 116
X-labeled tree, 52
0-degree, 149
O-differential, 149
-product, 68
K-product, 86

r-space, 101
E-module, 40
E+-module, 249
O-algebra, 7
O-space, 7
P-algebra, 46
P-algebra chain complex, 173
P-algebra cochain complex, 177
P-algebra cohomology, 177
P-algebra homology, 174

P-coalgebra, 165
P-degree, 177
P-differential, 173
P-homomorphism, 112
b-complex, 125
1-twisted modular operad, 286
L(oo)-algebra, 172, 195

k-braid algebra, 27

k-fold loop space, 93
n-Lie algebra, 19
n-labeled tree, 52
n-tree, 52
f-order, 156

®-product of operads, 118
PACT, 5
PROP, 5

action of PROP, 5
additive algebraic K-theory, 260
algebra over a triple, 88
algebra over a PROP, 5
algebra over operad, 7
algebraic stack, 311
algebraic theory, 7
analyseur, 4
analyseur incomplet, 4
antibracket, 25
anticyclic cooperad, 262
anticyclic operad, 258
antifield, 25
antighost, 25
antighost operator, 24
approximation, 94
arity, 50, 268
associahedron, 9
associativity constraint, 37
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associator, 37
atlas, 311
augmented operad, 187

balanced Ao,-algebra, 19, 172, 196

bar construction on a P-algebra, 173

bar construction on an operad, 20
Batalin-Vilkovisky algebra, 206
bicolored operad, 85, 115

bilinear space, 254
block permutation, 40
blowing down map, 240
brace, 183
braided monoidal category, 38
Browder operation, 103
Brownian bridge, 18
BRST cohomology, 24
BRST complex, 23, 24
BV-algebra, 206

canonical element, 319
canonical resolution, 179
categorical cobar complex, 150
category with multiplication, 37
center of a little disk, 205
CFT, 23
Chevalley-Eilenberg homology, 260
closed string field theory, 25
coarse moduli space, 311
cobar bicomplex of an operad, 124
cobar complex of an operad, 20, 125
coboundary, 283
cocycle, 282
coderivation of a P-coalgebra, 169
coefficient system, 281
coendomorphism operad, 43
cofibrant model, 28
cofree nilpotent P-coalgebra, 166

coherence, 37
cohomological field theory, 306
collection, 85
color of a vertex, 72
colored operad, 85
commutative A_-algebra, 172, 196
comp algebra, 6
complete algebraic system, 3
composition along a graph, 274
composition product, 105
configuration pseudo-operad, 216
conformal field theory, 22, 24
Connes-Tsygan exact sequence, 266
corolla, 10, 50
CSFT, 23
cup product, 102, 105
cyclic P-algebra, 255
cyclic E-module, 249
cyclic A--algebra, 22
cyclic endomorphism operad, 254
cyclic homology of a P-algebra, 261

INDEX

cyclic homology of an assoc algebra, 259
cyclic operad, 247
cyclic pseudo-operad, 253

cyclic quadratic operad, 255
cyclohedron, 241

Czech dual of a 2-module, 142

decomposables, 187
decomposition into pairs, 298
decorated Teichmuller space, 291
decoration, 291
defining relations of an operad, 140
Deligne's conjecture, 30
desuspension, 314
determinant operad, 128
de Rham cohomology, 260
diagonal, 197
differential graded E-module, 121
differential graded operad, 122
discriminant, 293
dual E-module, 141
dual complex, 121
dual dg operad, 20, 127
dual graph of a curve, 304
dual Koszul complex, 146
dual numbers, 169
dual of a cocycle, 284
dualizing cocycle, 284
Dyer-Lashof operations, 103

edge, 51, 269
Eilenberg-Zilber operad, 105
elementary contraction, 51
elementary equivalence, 187
elementary homotopy, 190
elementary morphism, 51
endomorphism operad, 6, 43
endomorphism PROP, 5
equivariant section, 199
extended cyclic operad, 258
extension of scalars, 190
external edge, 50
external vertex, 50

family of functions, 4
fat graph, 292
Feynman transform, 289
field, 18, 23
finitary algebraic theory, 101
Floer homology, 15
formal algebra, 29, 106
formal manifold, 29
formal operad, 30
frame, 203, 210
framed configuration space, 210
framed little k-disks operad, 13, 203
free P-algebra, 47
free P-module, 139
free K-operad, 88



free cyclic operad, 251

free operad, 82

free product, 200
free pseudo-operad, 81
fully-labeled tree, 52
fundamental identity, 20

G-algebra, 105

generating function of an operad, 176
genus, 268
genus of a labeled graph, 270
geometric realization, 269
Gerstenhaber algebra, 25, 27, 105, 206
Gerstenhaber bracket, 25
ghost, 25
ghost number, 24
graded Jacobi identity, 104
grafting of trees, 54
graph, 269

gravity operad, 311

group law, 4

H-map, 112
H-space, 112

Harrison homology, 266
height of a vertex, 51
Hochschild homology, 176, 259
homogeneity filtration, 158
homogeneity of a surse, 158
homotopy, 190
homotopy invariant algebraic structure, 115
Hopf operad, 197
horocycle, 291

hyperoperad, 281

ideal in an operad, 139
indecomposables, 188
infinite loop space, 12, 93
infinitesimal deformation, 182
injectivity radius, 210
internal degree, 121, 124, 128, 149, 173, 177
internal differential, 125, 150
internal edge, 50
internal vertex, 50
invariant bilinear form, 255
invariant equations of condition, 3
invertible graded vector space, 282
iterated loop space, 93

Jacobian, 20

James' reduced product, 97

Koszul complex, 145
Koszul operad, 21, 145
Koszul sign, 195
Kudo-Araki operations, 103

labeled graph, 270

leaf, 50
leaf relabeling action, 52

INDEX

leaf vertex, 50
leaf-labeled tree, 52
left module over an operad, 138
leg, 50, 269
length function, 109
level function, 154
Lie-hedron, 17, 196
linear isometries operad, 106, 107
little k-cube, 94
little k-cubes operad, 12, 94
little k-disks operad, 12, 203
little disk, 209
little intervals operad, 95
little squares operad, 95
loop homotopy Lie algebra, 312, 314

M-construction, 116
macroscopic configuration, 233
main identity, 313, 315
marking, 291, 304
Massey product, 106
May model, 101
metric, 109, 292, 301
metric tree, 109, 220
microscopic configuration, 233
Milgram model, 101
minimal model, 28, 191
minimal operad, 28, 188
modular D-operad, 286
modular E-module, 267
modular corolla, 271
modular operad, 22, 268
modular operadic completion, 318
modular suspension, 283
module of differentials, 260
module over an operad, 139
monad, 88
monoid, 39
monoidal category, 37
morphism of P-algebras, 47
morphism of graphs, 270
Morse homology, 15
Morse theory, 15
multilinear string functions, 314
multiplihedra, 113

nerve of a category, 272
nilpotent coalgebra, 166
non-E operad, 6, 45
non-E pseudo-operad, 46
non-E cyclic operad, 257
normal disk, 211
normal representative, 220
normal sequence, 220
normalization of a configuration, 220
normalization of a disk, 211

operad, 6, 41, 64, 69
operad of metric trees, 109
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operad of type (k, 2k - 1), 140
operad of virtual configurations, 220
operadic cohomology, 177
operadic desuspension, 127
operadic homology, 174
operadic suspension, 127
operators in standard form, 3
orbifold, 293
orientation cocycle, 284
orientation of a graph, 295

parallel transport, 239
parametrized hole, 207
partial algebra, 14
partial operad, 14, 219
permutahedron, 97
phase of a little disk, 205
phase parameter, 25
planar imbedding , 52
planar order, 83
planar tree, 52
pointed operad, 100
Poisson algebra, 27
pre-Lie algebra, 183
pre-Lie identity, 183
preoperad, 100
primitive element, 224
principal extension, 200
principal value, 307
pseudo-cooperad, 122
pseudo-operad, 45
puncture, 207

quadratic E-module., 140
quadratic differential, 291
quadratic dual, 21
quadratic dual of an operad, 142
quadratic operad, 140
quasi-isomorphism, 187
quism, 187

rational cell, 293
recognition principle, 9, 93
reduced suspension, 125
reduced tree, 50
reflection of a graded vector space, 314

relative -product, 138
resolution degree, 178
ribbon graph complex, 295
ribbon graph, 292
right module over an operad, 138
root, 50
root vertex, 50

rooted tree, 50

Schur functor, 47
semidirect product of an operad and group,

204

sewing, 24

INDEX

sh S-algebra, 194

shuffle product, 196, 320
skew-symmetric Koszul sign, 196
space of reduced metric trees, 109
special vertex, 234
species, 67
spine, 8
stability condition, 22
stable curve of arbitrary genus, 304
stable curve of genus 0, 213
stable graph, 271
stable labeled graph, 22
stable modular E-module, 267
Steenrod squares, 102
Strebel differential, 291
strict monoidal category, 37
strict surjection, 151
string background, 23
string field theory, 23
string product, 312
string theory, 23
string vertices, 26
strongly homotopy P-map, 116
strongly homotopy P-space, 115
strongly homotopy S-algebra, 194
strongly homotopy associative algebra, 172,

195

strongly homotopy Lie algebra, 172, 195
strongly homotopy multiplicative map, 113
strongly homotopy P-algebra, 28
subcategory of isomorphisms, 72
surjection algebra, 160
surjection sequence (surse), 152
suspension, 314
symmetric groupoid, 40
symmetric monoidal category, 37
symmetrization of a non-E operad, 45

T-ordering, 156
TCFT, 23
Teichmuller space, 291
topological A--category, 15
topological conformal field theory, 304
topological Fey"nman transform, 312
topological field theory, 22
trace, 257
tree corresponding to a surjection, 151

tree degree, 124, 128

tree differential, 124
tree level, 23
tree operad, 8
triple, 88
trivial tree, 50
twisting cochain, 262
two-sided bar construction, 96

unit object, 37
universal bilinear form, 261
universal differential, 260



unordered (D-product, 64

unrooted tree, 250

unshuffle, 99

valence, 268
vertex, 51, 269
Virasoro algebra, 24
virtual configuration, 225

weak equivalence, 187
weak homotopy type, 187
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