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222 The quantum Fourier transform and its applications

to successive powers of two. The final state of the first register is easily seen to be:
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We omit the second register from this description, since it stays in the state |u) throughout
the computation.
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Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of 1/+/2 have been omitted, on
the right.
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Figure 5.3. Schematic of the overall phase estimation procedure. The top ¢ qubits (the ‘/” denotes a bundle of
wires, as usual) are the first register, and the bottom qubits are the second register, numbering as many as required
to perform U. |u) is an eigenstate of U with eigenvalue >™*?. The output of the measurement is an
approximation to ¢ accurate to t — {log (2 + %ﬂ bits, with probability of success at least 1 — €.
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Figure 6.1. Schematic circuit for the quantum search algorithm. The oracle may employ work qubits for its
implementation, but the analysis of the quantum search algorithm involves only the n qubit register.
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Figure 6.2. Circuit for the Grover iteration, G.
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Figure 6.3. The action of a single Grover iteration, G the state vector is rotated by 6 towards the superposition
|3) of all solutions to the search problem. Initially, it is inclined at angle 6/2 from |cv), a state orthogonal to |3).
An oracle operation O reflects the state about the state |«), then the operation 2|)(1)| — I reflects it about [t)).
In the figure |«) and |3) are lengthened slightly to reduce clutter (all states should be unit vectors). After repeated
Grover iterations, the state vector gets close to |/3), at which point an observation in the computational basis
outputs a solution to the search problem with high probability. The remarkable efficiency of the algorithm occurs
because 6 behaves like Q(y/M/N), so only O(y/ N/M) applications of (i are required to rotate the state vector
close to |/3).




