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Abstract. We discuss our method of constructing orthogonal polynomials (orthonormal polynomial
expansion method - OPEM) for fitting experimental data. The method is in use to approximate a set
of data when both the dependent and independent variables are measured with errors. We review
its main principles and analyze the orthonormal and "usual" coefficients in the expansions of the
approximating function. The method is applied to the variations of the wetting angle of a water drop
in the process of its evaporation in the air. The wetting properties of liquids are at present of high
interest for research, due to applications and still unsolved topics in the theory of wetting.
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INTRODUCTION

In the paper a new application of our orthonormal polynomial expansion method-
OPEM[1] to wetting angle variations of a water drop is proposed. Our method is a gen-
eralization of Forsythe [2] three-term recurrence equation for constructing orthonormal
polynomials. Some special characteristics of the approximations and two types of coef-
ficients in the expansions for approximating curves are demonstrated for this purpose.

Here we discuss the kinetics of the contact angle [3] of water drop of deionized water
placed on a non wetting substrate (hostaphan).

PHYSICAL DATA

In the course of evaporation of the drop, as the drop’s contact angle changes, we measure
the frequency of appearance of such angles within prescribed angle intervals. One can
say that in this way the "state spectrum" with respect to the contact (wetting) angle is
obtained of the corresponding thermodynamically open system. For this purpose one
measures at regular time intervals (here every 5 minutes) the values for several drops (to
enable drawing statistical conclusions). One determines the variations of contact angle
by microscope observations using the optical method of Antonov [4].

One measures the width a of a light refraction pattern in the form of a dark ring
produced around the drop (Figure 1) by light beams 1 passing near the boundary of
the drop 2 which is situated on the non wetting folio 3 and kept at a constant room
temperature. The folio is situated on a glass plate 4 having a refraction index n and
thickness d. The width a is measured by microscope observations. The laws of geometric
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FIGURE 1. Experimental setup of contact angle wetting

optics give tan of θ as a function of a by the formula

tanθ = n/[(N2Δ−n2])12 −Δ]1/2;δ = 1+d2(a−δ )2, (1)

where N is the water refraction index and the δ dimension denoted on Figure 1 is usually
neglected in the above formula since δ << a. In this way one obtains a set of discrete
values { fi}- the frequencies of occurrence of {θi} . On the graphs-(Figure 2) we give f
versus θ with the corresponding errors on both variables. On the Figure 2 two curves of
deionized water are given. The first curve (with squares) corresponds to the treated by γ-
rays water sample . The second one (with circles) corresponds to the non treated water
sample. The source of γ rays is Co-60 (65 krad/h). The period of treatment is 2 minutes.

MATHEMATICAL APPROACH

Here one defines the total variance at i− th point (θi, fi) in the form

S2
i = σ fi

2 +(
∂ fi

∂θi
)2σθi

2, (2)

where σ fi and σθi are the errors in both variables, i = 1,2, . . .M and M is the number of
measured pairs {θi, fi}. In the formula (2) the Bevington’s [5] proposal to combine both
variable uncertainties and assign them to dependent variable is used.

The generalized OPEM

We develop some points of our algorithm [6]. The principal relation for one-dimensional

generation of orthonormal polynomials {P(0)
i , i = 1,2, . . .} and their derivatives

1161

Downloaded 17 Feb 2010 to 195.96.232.150. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



FIGURE 2. Measured probability of contact angle - deionized treated (squares) f 1 and non treated
(circles) f 2 water data

{P(m)
i ,m = 1,2, . . .}, in OPEM is:

P(m)
i+1 (θ) = γi+1[(θ −μi+1)P

(m)
i (θ)− (1−δi0)νiP

(m)
i−1 (θ)+mP(m−1)

i (θ)]. (3)

Here the normalization coefficient γi and the recurrence coefficients μi,νi are given

as scalar products of the polynomials in the given data. One can generate P(m)
i (θ)

recursively. The polynomials satisfy the following orthogonality relations

M

∑
i=1

wiP
(0)
k (θi)P

(0)
l (θi) = δkl

over the discrete point set {θi, i = 1,2, . . .}, where wi = 1/(σ2
fi) are the corresponding

weights. The approximation function f appr and its m-th derivative f (m)appr are con-
structed as follows:

f (m)appr(θ) =
L

∑
k=0

akP(m)
k (θ) =

L

∑
k=0

ckθ k. (4)

The coefficient matrix in the least square method becomes an identity matrix and due to
orthogonality conditions ak are easily computed by

ak =
M

∑
i=1

fiwiP
(m)
k (θi). (5)
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The knowledge of ak enables to calculate ck by the help of the coefficients μi,νi from
formula (3). We remark that all the calculations for the sake of uniformity are carried
out for θ in [-1,1] , i.e. after the input data θi in the interval [θ1,θM],θ1 ≤ θi ≤ θM
are transformed to the unit interval [−1,1]. The inherited errors in usual coefficients
are given by the inherited errors in orthogonal coefficients (see equation (6) in [7] for
details).

It is worth noting the following advantages of OPEM: a) It avoids recomputing the
polynomial coefficients of the current highest degree polynomial using unchanged the
coefficients of the lower-order polynomials b) it avoids the procedure of inversion of
the coefficient matrix to obtain the solution and this shortens the computing time. For
appropriate classes of examples this diminishes the number of iterations required to
reach a prescribed numerical precision. Two criteria are used here to select the optimum
series length in equation (4).

First criterion

(i) Here one neglects the errors in θ variable, the graph of the fitting curve lies inside
the "usual" error corridor [ f −σ , f +σ ].

(ii) After calculating the derivatives at any point θi using equations (3) and (4) the
fitting curve has to lie inside the total error corridor [ f −S, f +S].

Second criterion

We extend the above algorithm to include S2
i in OPEM in two stages:

(i). i.e. the following χ2 is minimized

χ2 =
M

∑
i=1

wi[ f appr(θi)− f (θi)]2/(M−L−1),

where the weights are wi = 1/σ2
fi .

(ii): The next approximation is calculated with the weight function wi = 1/S2
i .

The results of calculations in (i) gives the first approximation. The procedure is
iterative and the result of the consequent k-th iteration, k > 1, is called below the k-
th approximation. The preference is given to the first criterion and when it is satisfied,
the search for the minimal chi-squared stops. Based on the above features the algorithm
selects the optimal solution for a given set {θ , f}.

APPROXIMATION DETAILS AND RESULTS

Treated water data

1. The approximation of 15 given point data of treated water with errors in both
variables was carried out with different degrees of polynomials. The optimal degree
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TABLE 1. OPEM approximation of contact water drop angle - experi-
mental and approximating values

No. θ f σθ σ f f appr,9
ak f appr,9

ck f appr,13
ak

1 7.5 0.1 0.6 0.001 0.01165 0.01381 0.1046
2 12.5 0.8 0.6 0.200 0.79651 0.78957 0.8137
3 17.5 1.2 0.6 0.250 1.21521 1.23927 1.1931
4 22.5 2.3 0.6 0.350 2.16775 2.08592 2.3082
5 27.5 3.6 0.6 0.400 3.80385 3.86199 3.5592
6 32.5 4.1 0.6 0.500 3.97455 4.04787 4.1987
7 37.5 2.5 0.6 0.300 2.42583 2.34459 2.4305
8 42.5 2.0 0.6 0.300 2.19333 2.16459 2.0902
9 47.5 6.6 0.6 0.800 6.01824 6.79850 5.8362

10 52.5 15.3 0.6 1.400 15.71836 14.51524 16.9840
11 57.5 27.8 0.6 4.000 19.41744 18.08124 24.8242
12 62.5 8.1 0.6 1.600 12.15988 12.22944 8.7655
13 67.5 4.5 0.6 0.800 2.92818 3.92818 4.3741
14 72.5 9.0 0.6 1.100 9.91328 9.81663 9.1634
15 77.5 10.1 0.6 1.600 9.23731 9.23587 9.1049

was chosen between 1 to 12 to be 9 with χ2 = 1.42 at k = 3-rd approximation (if k=1
then χ2 = 1.59, if k = 2 then χ2 = 1.43). The given points on new Figure 3 are chosen
in legend as f 1 (open squares). The approximating curve with orthogonal polynomials
is denoted as E (full squares). The approximating curve with usual coefficients is not
distinguishable from E on the Figure 3.

Note 1. It is important to notice, that the evaluated of our algorithm point numbers 11
and 12 are out of the given "usual" and total corridors of dependent variables. For the
11-th point in orthonormal expansion the σ f is 4., S = 4. (the first derivative is zero) and
the calculated function is f appr = 19.41. For the 12-th point the σ f is 1.6, S = 1.94 and
calculated function is f appr = 12.15 (see Table 1). The preference is given to second
criterion- minimum of χ2.

2. A different approximation is carried out with L = 13-th degree, chosen by the
algorithm between 2 to 14 with χ2 = 0.94 at k = 3-rd approximation (if k = 1 then
χ2 = 1.20, if k = 2 then χ2 = 0.95). The approximating curve F is given by rhombuses.

We present in the next Table 1 the comparative values of the given experimental data
{ fi,θi} (with their errors σ fi and σθi) and three approximating curves at L = 9-th degree

in orthogonal f appr,9
a and usual f appr,9

c expansions and the approximating curve f appr,13
a

in orthogonal expansion at L = 13-th degree. The curves, constructed by 9-th degrees
are very close till 3-rd numbers after decimal point, but the last one by 13-th degree is
more close to the given points.

CONCLUSION

The approximation results with OPEM for contact angle variation show a good accuracy
for obtained optimal polynomials with 3-rd iteration step by the orthogonal and usual
coefficients.
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FIGURE 3. OPEM approximation by 9-th degree E (full squares) and 13-th degree F (rhombuses)
polynomials of measured contact angle probability of treated water f 1 (open squares).
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