
Mathematical description of additional low
temperature specific heat components for two

fluoropolymers, PTFE and PCTFE
Nina B. Bogdanova∗ and Bonka M. Terziyska†

∗INRNE, Tzarigradsko chausee 72, 1784 Sofia,Bulgaria
†ISSP, Tzarigradsko chausee 72, 1784 Sofia,Bulgaria

Abstract. Our orthonormal polynomial expansion method (OPEM) is used here for describing the
additional low temperature specific heat components of Polytetrafluoroethylen (PTFE) and Poly-
chlorotrifluoroethylene (PCTFE). The temperature dependencies of the excess specific heat for the
both semi-crystalline polymers are described mathematically up to 7-8 K in the present work. The
peculiarity established earlier in Cp/T 3 vs. T of the PTFE and PCTFE manifested by a maximum
appearing around 5 K for both fluoroplasts is hardly to be explained with the Debye model. This
hump analyzed in our previous work was related to the additional low-frequency vibration modes
(soft modes), localized together with lattice vibrations (sound waves) as it is postulated in the Soft
Potential Model (SPM). The estimated excess specific heat data and approximating curves deter-
mined by the usual polynomial coefficients obtained by orthonormal ones in our OPEM approach,
are presented too.
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INTRODUCTION
The unique combination of physical, mechanical and electrical low-temperature proper-
ties of carbochain fluoropolymers, PTFE and PCTFE makes them very important ma-
terials to meet all requirements in new technical applications: in space, chemical engi-
neering, electrical industry, electronics and cryogenics. The technology of preparation
of these polymeric materials also needs knowledge of their thermodynamic characteris-
tics. The unusual thermal properties concerning the low-temperature specific features of
the heat capacities of the PTFE and PCTFE were considered in earlier papers [1, 2, 3].
The estimated excess specific heat [3] over Debye contribution below 10 K of these
fluoroplasts was discussed in the frame of the recently developed Soft-Potential Model
(SPM) which postulates an appearance of the proportional to T 5 specific heat contribu-
tion generated by the soft modes and connected with some kind of the material disorder.

The investigated there temperature dependencies of the function CSM(exc)
p /T 5 was pro-

posed in the temperature range (2.5÷ 7) K for PCTFE, as well as in two subintervals
(0.4÷2) K and (2.5÷8) K for PTFE.

The present study is devoted to the mathematical description of the evaluated [3]

additional (excess) low-temperature component CSM(exc)
p of the specific heat of these

semi-crystalline polymers applying our Orthonormal Polynomial Expansion Method
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(OPEM) [4]. The new type of weighting functions in the OPEM approximation involves
the experimental errors in every point of the studied thermal characteristic. The inves-

tigated here temperature dependence of the function CSM(exc)
p is described in the low-

temperature ranges (2.5÷ 7) K and/or (2.5÷ 8) K respectively for the two non-polar
plastics PCTFE and PTFE. Numerical results of the deviations between the evaluated

CSM(exc)
p data and their approximating values are given in the figures. The usual polyno-

mial coefficients are calculated by orthonormal ones in our OPEM approach.

ADDITIONAL LOW-TEMPERATURE HEAT CAPACITY DATA

The previous work [3] clarifies several points concerning the heat capacity peculiarities
found in the temperature dependencies of the scaled specific heat Cp/T 3 of the PTFE
and PCTFE - a maximum appearing at Tmax = 4 or 5 K correspondingly for PCTFE
and PTFE (see the inset in the Figure 1). Analyzing the microscopic origin of the
peak established in the low-temperature dependence of the scaled specific heat Cp/T 3

of the investigated polymers one can postulate the observed peculiarity as glass like
behavior. This acceptance means that above 1 K these features in studied polymers also
originate from the low-frequency vibrational (soft) modes. In accordance with the Soft
Potential Model (SPM) [5, 6] the observed maximum (Cp/T 3)max in glasses is related
to the softening of the lattice vibrations leading to an increase over Debye behavior
of the density of states g(ν) of the harmonic oscillators with rising of their energy.
Following the SPM, supposing a coexistence of acoustic phonons with quasi-localized
low-frequency (soft) modes in glasses, successfully applied by us to some chalcogenide
glasses [7, 8], the low-temperature (T < 10 K) specific heat data for these fluoroplasts,
were described [2, 3] by an equation

Cp = CT LS
p +(CD

p )acou +CSM(exc)
p . (1)

The Cp components are:

i) CT LS
p =CT LST - a linear contribution, described by double-well potentials, conditioned

by the thermal excitations of the tunneling state (TLS); for PTFE it was established [9]
to predominate at T ≤ 0.2 K.
ii) (CD

p )acou = (CD)acouT 3- a cubic Debye contribution, determined by the lattice vibra-
tions (sound waves), evaluated in details in work [2].

iii) CSM(exc)
p - an excess specific heat (a soft mode) contribution of the quasi-harmonic

excitations, described by single-well potentials.
Here, CT LS was estimated by the Cp experimental data of Nittke et al [9], the true elastic
coefficient (CD)acou was calculated [2] by the macroscopic parameters of the investi-

gated materials and the average sound velocity vs, and CSM(exc)
p component was evalu-

ated [2] by a difference between the measured specific heat Cp [1] and the sum (CT LS
p +

(CD
p )acou). The average sound velocity vs was estimated [2] for PTFE (PCTFE) by the

measurements of transversely and longitudinally polarized 10 (5) MHz ordinary sound
waves available between 4.2 and 140 (180) K. The vs for both polymers changes its
value about 0.3 % below 10 K. This fact allows us to accept constant Debye coefficient
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FIGURE 1. Temperature dependencies of the measured specific heat Cmeas
p and the specific heat com-

ponents defined in Eq. 1. Insets: temperature dependencies of the evaluated excess specific heat CSM(exc)
p

of the PTFE and PCTFE and the scaled specific heat Cp/T 3 vs.T of the PTFE and PCTFE.

CD of the the Debye specific heat contribution by acoustic measurements. Note that the
quantities CD up to 10 K and CT LS are independent of the temperature.

The abbreviations of Two Level State, Debye and Soft Modes (excess) specific heat
are marked with T LS, D, and SM(exc), respectively. In the wider low-temperature
range the temperature dependencies of the measured specific heat and the specific heat

components defined in Eq. 1 as well as the evaluated excess specific heat CSM(exc)
p are

presented, respectively in Figure 1 and in the inset of Figure 1. As it can be seen in the
right inset of Figure 1, the SM delocalized at T=8 K for PTFE and at T=7 K for PCTFE.

MATHEMATICAL ALGORITHM

The mathematical algorithm of the OPEM is developed for applications in cryogenic
thermometry in papers [4, 10]. Some important features of OPEM concerning cryogenic
thermometry at the approximation of thermometric characteristics of different type
low- temperature sensors are protected by a patent for an invention [11]. Our OPEM
is a generalization of Forsythe [12] three-term relation for constructing orthogonal
polynomials over a discrete point set with arbitrary weights in the term of the least square
method. The one-dimensional recurrence for the generation of orthonormal polynomials

{Ψ(0)
k , k = 1,2, . . .} and their derivatives {Ψ(m)

k ,m = 0,1,2, . . .}, in OPEM is:

Ψ(m)
k+1(q) = γk+1[(q−αk+1)Ψ

(m)
k (q)− (1−δk0)βkΨ

(m)
k−1(q)+mΨ(m−1)

k (q)] (2)
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OPEM is a development of the Forsythe approach for receiving derivatives and integrals

with a fourth term in the Eq. (2). The polynomials {Ψ(0)
k } satisfy the orthogonality

relations over the point set {qi, i = 1,2, . . .M} with weights wi = 1/σ2
i , depending on

errors σi in each point. The approximating values f appr of the investigated function

and its m-th derivative f (m)appr {m = 0,1, ..} are calculated by orthonormal and usual
expansions:

f (m)appr(q) =
N

∑
k=0

akΨ
(m)
k (q) =

N

∑
k=0

bkqk. (3)

The optimal degree N of the approximating polynomials in Eq.(3) is selected by the
algorithm, combining the following two criteria. First, the fitting curve should lie in the
error corridor of the dependent variable (q j, f exp

j ±σ j, j = 1, ...M).

( f appr
j − f exp

j )2w j ≤ 1. (4)

Second, the minimum of normalized χ2 should be reached:

M

∑
j=1

w j( f appr
j − f exp

j )2/(M−N −1) → min. (5)

When the first criterion is satisfied, the search of the minimum χ2 stops. The develop-
ment of the algorithm in the biophysics with the total variance for involving the errors in
both variables was published in a paper [13]. The last versions with obtaining of usual
bk coefficients from orthogonal ones ak in Eq. (3) are developed in our works, [10, 13].

FITTING RESULTS

The temperature dependence of the CSM(exc) function is described by orthonormal poly-
nomials in the temperature ranges 2.5÷ 8 [K], for PTFE, and 2.5÷ 7 [K] for PCTFE,

using the new type of weights, WCSM(exc)
.

By definition the weighting function WCSM(exc)
is 1/σ2, where σ2 is a variance of the

thermal characteristic CSM(exc) versus temperature T . In our investigation this variance
is accepted to be, correspondingly square of the absolute heat capacity resolution (acr)

ΔCSM(exc)
acr , determined by the experimental specific heat accuracy, equal to 5 %, as fol-

lows: (ΔCSM(exc)
acr )i = 0.05(CSM(exc))i [mJ/gK] for the PTFE and PCTFE given intervals.

Here the weights, WCSM(exc)
are expressed by the relations:

(WCSM(exc)
)i = 1/(ΔCSM(exc)

acr )2
i = 400/(CSM(exc))2

i [mJ/gK]−2 (6)

for the approximating intervals of PTFE and PCTFE.
The deviations between calculated and approximating values of the excess specific

heat are estimated in each point by the expression: (ΔCSM(exc))i = (CSM(exc))calc
i −

(CSM(exc))appr
i . The temperature behavior of the calculated differences, the overall char-

acteristics: the root mean square deviations RMSC and the mean absolute deviations
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FIGURE 2. Temperature dependencies of ΔCSM(exc), (ΔCSM(exc))acr, the overall characteristics

MADCSM(exc)
and RMSCSM(exc)

of the PTFE for the approximating temperature range.

TABLE 1. Usual coefficients {bk} for OPEM approximation of Cexcess
p [mJ/gK] vs. T

PTFE

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

-3859. 9028. -9317. 5584. -2152. 557.8 -98.43 11.68 -.8930 .03973 -.0007

PCTFE

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

.1824 -.6679 .9978 -.7691 .3205 -.0680 .0056 - - - -

MADC respectively for PTFE and PCTFE excess specific heat approximations, are
shown in Figs.2 and 3. The RMS and MAD deviations are defined in our previous

papers [4, 10]. Following the cited criteria in Eqs.(4,5) the deviations (ΔCSM(exc))i are
in the error corridor (see Figs.2,3). As a result of our mathematical description, the poly-

nomial optimal degree N for the CSM(exc) vs. T approximation of the CSM(exc)
p function

for PTFE within 2.5÷ 8 K is N = 10 while the one for PCTFE within 2.5÷ 7 K is N
= 6. Calculation of usual coefficients {bk} from orthonormal ones {ak} using extended

OPEM and applied for CSM(exc)
p /T 5 vs. T approximation, is developed and discussed in

our paper [3]. Here, the calculated usual coefficients {bk} of the CSM(exc)
p polynomial

description are presented in Table 1.
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FIGURE 3. Temperature dependencies of Δ(CSM(exc)), (ΔCSM(exc))acr, the overall characteristics

MADCSM(exc)
and RMSCSM(exc)

of the PTCFE for the approximating temperature range.

In conclusion, the additional low-temperature contributions to the specific heat of the
PTFE and PCTFE, related to the low-frequency vibrational modes (soft modes), local-
ized together with lattice vibrations (sound waves) as it is postulated in the SPM, are
examined mathematically. Our OPEM is used for describing the excess low-temperature
heat capacity components of the both semi-crystalline polymers. The approximation pa-
rameters of the studied thermal characteristic were determined by the usual polynomial
coefficients, obtained from orthonormal ones in our OPEM approach, satisfying the first
criterion (Eq.(4)) for the fitting curve to remain in the error corridor.

REFERENCES

1. B. Terziyska, H. Madge and V.Lovtchinov, Journal of Thermal Analysis 20, 33 (1981).
2. B. Terziyska, and H. Madge, Some Special Feature of Low-Temperature Specific Heat of PTFE

and PCTFE analyzed within the SPM model, to be published.
3. N.B. Bogdanova, and B.M. Terziyska, arXiv:0811.1683v1 [physics.comp-ph] 11 Nov 2008.
4. N. Bogdanova, and B. Terzijska, Commun. JINR, Dubna, E11–97-396 (1997).
5. V.G. Karpov, M.I.Klinger and F.N. Ignat’ev., Zh. Exper. Teor. Fiz 84, 2, 760-775 (1983).
6. D.A. Parshin, Phys. Rev. B 49, (14), 9400-9418 (1994).
7. B. Terziyska, H.Misiorek, E.Vateva, A.Jezovski, D.Arsova, Solid State Commun. 134, 349 (2005).
8. B. Terziyska, A.Czopnik, E.Vateva, D.Arsova, R.Czopnik, Phil. Mag. Letters 85, 145 (2005).
9. A. Nittke, P.Esquinazi, H.C.Semmelhack, A.L.Burin, A.Z.Patashinskii, Eur. Phys. J. B8, 19 (1999).
10. N. Bogdanova, and B. Terzijska, Rev. Sci. Instrum. 68, (10) 3766 (2005).
11. B. Terziyska, and N. Bogdanova, A Patent for an Invention, Bulgaria, No.62582/29.03.2000.
12. G. Forsythe, Generation and Use of Orthogonal Polynomials, J.Soc. Ind. Appl. Math. 5, 74 (1957).
13. N.Bogdanova, and S. Todorov, Int. J. Modern Physics C 12, 1 (2001).

1238

Downloaded 17 Feb 2010 to 195.96.232.150. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp




