New approximating results for data with errors in both variables
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Abstract

We introduce new data from mineral water probe /Lenovo Bulgaria/,
measured with errors in both variables. We apply our Orthonormal
Polynomial Expansion Method (OPEM), based on Forsythe recurrence
formula to describe the data in the new error corridor. The development
of OPEM gives the approximating curves and their derivatives in optimal
orthonormal and usual expansions including the errors in both variables
with special criteria.

AnHOTanus

Mbl paccmarpuBaeM HOBBIE JIAHHBIE I IPOObI MUHEPAJILHOM BOJIbL
u3 ucrounuka B Jlenoso (Bosrapust), n3amepentsie ¢ omubkamu mo o6enm
nepeMeHHbIM. [[Jis1 onucanust JaHHBIX B HOBOM KOPHIOPE OIIUOOK IIpHMe-
HAETCAd Halll METO/I Pa3J/I02KEHUA 110 OPTOI'OHAJIbHBIM IIOJIMHOMAaM, OCHOBaH-
HBII HA pekyppenTHOI dopmyne Popcaiita. IIpeacrasneno masmbHeiinee
Pa3BUTHUE HAIIEro YUCJIEHHOIO0 MeTOOa, CBA3aHHOE C UCIIOJIb30BaHUEM KPH-
Teprusd OONTUMAJIBHOIO OPTOTOHAJIBHOIO PAa3J/I0YKEHUS W OLEHKON Ha 3TOH
OCHOBE Pa3JI0KeHUs OOBITHOTO.

PACS: 02.30.-Mv; 02.60.-Ed ;02.60.-x;

1 Introduction

The water spectra method applies a drop taken from a water probe to measure the
water’s state spectrum. In the special experiment the drop is placed on a hostaphan
folio- Fig. 1. During the whole process of evaporation of the drop, one measures at
equal time intervals the drop contact angle with the folio. On independent axis one has
the values of the contact angles within fixed angular intervals and on dependent axis
the frequency of measurements of these angles. ¢(9) is the distribution of the number
of measurements of contact angle 6 during the drop evaporation. One can change the
function ¢(0) of the angle 0 to the function of energy variable F(E) using the following
Antonov transformation [1, 2]:

B(0) = (1 + cos0)/I(1 + cos fo), F(E) = b(0)/1/1 — (1 + bE)2,

where b = I(1 + cos(6o))/v. Here I = 5,03.10'® m™2 is the density of water molecules
in the surface layer, v is the surface tension, €y - the initial contact angle. The so
obtained graph after measurements by method in [1] is referred to as energy spectrum
F(E) of the probe. The domain of F(F) contains the values of the Hydrogen bond
energy.

The method of water spectra is sensitive to treatment by physical fields as e.g.y-
ray treatment of water filtration [1, 2] and to environmental changes of the ecosystem
on and mechanical treatment and aeration on different water probes [3, 4]. In the
present paper we approximate another natural water data taken from a water spring
in Bulgaria near the village Lenovo. On Figure 2 we present new detailed information

on both variables of water probe.
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Fig. 1: Experimental setup Fig. 2: Given data (B) with errors

2 Main problem definition

e To find the best approximation curve of measured water data on Fig.2 taking
into account the errors in both variables;

e To extend our Orthonormal Polynomial Expansion Method (OPEM), according
some criteria, to evaluate orthonormal description of given data. To find the best
approximating curve with usual polynomials, received by orthonormal, according
some criteria.

3 Numerical method—OPEM “total variance”

Let the {E;, F;,i = 1,...,M} are arbitrary pairs of monitoring data E and F,
introduced in section 2. They are given with experimental errors in both variables-
o(F;) and o(E;). Consider the total uncertainty (total variance) S*(E, F) [5, 6, 7],

associated with (E, F')
OF;
2 2 i\2 2
;=0 (F; — E;), 1
52 = 0(F) + (5)°0* () 1)
according the ideas of Bevington (1977)[5], where his proposal is to combine the errors
in both variables and assign them to dependent variable. One defines the errors corridor

C(E, F), which is the set of all intervals

3.1 Orthonormal expansion criteria

The first criterion to be satisfied, is that the fitting curve should pass within the errors
corridor C'(E, F). In the cases of errors only in F, (i.e. o(E) = 0,0(F) # (0)) the
errors corridor C(FE, F') reduces to the known set of intervals

[F—o(F), F+o(F), 3)
for any F. The second criterion is, that the fitting curve F®PP*(E;) satisfies the
expression M
¥ = 3wl FP (B — F(E)/(M = L), w; = 1/5%. (4)

i=1



should be minimal (L-number of polynomials). The preference is given to the first
criterion. When it is satisfied, the search of the minimal chi- squared stops. Some
details of the calculation procedure are given in Forsythe’s paper [7] and in our works
[8, 9, 10].

Our procedure gives results for approximating function by two expansions : of
orthogonal coefficients {a;} with optimal degree L, and usual ones {c¢;} with optimal
degree L.:

Lg L.
Fperm) (g — Z a:P™ () = Z GE'. (5)
1=0 =0

The orthogonal coefficients are evaluated by the given values F;, weights and orthogonal
polynomials:

M
a; = ZkakPi(m)(Ek)~ (6)
k=1

Our recurrence relation for generating orthonormal polynomials and their derivatives
(m =1,2...)( or their integrals with m=-1,-2,-3,...) are carried out by:

P(E) = 51 [E — pir)) PL(E) — (1= 8i0)vi PT)(E) + mP™ VE)],  (7)

where y; and v; are recurrence coefficients, and ~; is a normalizing coefficient, defined
by scalar products of given data. One can generate P;"(E) recursively. The polynomials
satisfy the following orthogonality relations:

M
S wi PO(B) PO (E) = b1
=1

over the discrete point set {F;,i = 1,2,...,M}. All the calculations for the sake of
uniformity are carried out for E in [-1,1], i.e. after the input interval is transformed
to the unit interval. We remark some advantages of OPEM: It uses unchanged the
coefficients of the lower-order polynomials; it avoids the procedure of inversion of the
coefficient matrix to obtain the solution. All these features shorten the computing time
and assure the optimal solution by the criteria (2) and (4).

3.2 Usual expansion criteria

The inherited errors in usual coefficients are given by the inherited errors in orthogonal
coefficients:

Aci = (Y (")) Aa, (8)
Aas = [ PH(Eyw(F — FPP)*Y2. 9)
k=1

(k)

i

where coefficients ¢
basis

are defined by the expansion of polynomials in ordinary polynomial

k
Po=Y VB k=0,..L (10)
1=0

and explicitly constructed by recurrence relation in [12].
The procedure is iterative because of the evaluation of derivatives on every iteration
step. We note that in every iteration step the algorithm find the best approximation



Table 1: OPEM approximations results for every step approximation

K 1 2 3 4 5 6 7 8 9
L(2 = 10) 7 6 6 6 6 5 6 5 6
%1071 561 424 399 379 3.77 681 3.75 6.65 3.63

maz|(Fo — Fe)| 14.96 3.48 6.75 4.80 4.63 0.03 6.16 0.08 9.33

using given before criteria. Having the optimal degree L, we continue with finding the
optimal L. . We are asking for the minimal value of the maximal distance between
functions, evaluated by orthonormal and usual expansions through all iterations.

max |(F2PT — F20PY k= 1,..., M (11)

4 Approximation results

The main important results with approximation degrees 2 - 10 for iterations 1+ 9 are
presented in Table 1 for characteristics: number of iterations, number of polynomials,
x?, and max |(F, — F¢.)|. We see from the Table, that for iterations 2 + 5 with optimal
number L, = 6 the results are good for both expansions and for 8- th iteration with
optimal number L. = 8 the usual expansion is also good. We present on figures the
three curves — given(B), approximated by orthogonal polynomials (C) and received
from it by usual polynomials (D) at different iteration steps. Below the figures 3 and
4 show the orthogonal (C) and usual (D) approximations for 4-rd (L = 6) and 8-th
(L = 5) iterations.
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Fig. 3: Orthogonal approximation (C) Fig. 4: Orthogonal approximation (C)

and usual one (D) L = 6,k =4 and usual one (D) L = 5,k* =8

The Table 2 presents the approximation at 5 — th degree in 8 — th iteration of
M = 18 given values of following characteristics: energy E , distribution F' , og
and op(g), and from 5 — th column — the approximating values with orthonormal
coefficients F2PP™5 approximating values with usual coefficients F2PP™5  differences
A(F,, F.) = (F2PPr5 — F2PPr:5) total variance S(5) (equation (1). The Table 2 shows
good coincidence between two descriptions. For comparison we can see the previous
results for OPEM applications in [10, 11, 12].



Table 2: OPEM approximation of contact water energy data

No. Elev) F(E) og op FIPPTS RAPPLS A (F, F) S
i 0.13905  2.820 0.025 0.72 2.421 2503 8.160-02  2.2072
2 0.1392  3.627 0.025 1.43 2.721 2.799  7.796-02  2.9469
3 0.1388  2.822 0.025 1.43 3.192 3.266  7.420-02  2.2173
4 0.1367  3.227 0.025 1.08 4.408 4.484  7.614-02  1.8114
5 0.1335  4.035 0.025 1.08 4.272 4353 8.125-02  1.3297
6 0.1309  4.035 0.025 1.08 3.467 3.549  8.161-02  1.3126
7 0.1287  3.632 0.025 1.43 2.840 2.905  6.474-02  2.6050
8 0.1265  3.200 0.025 0.72 2.534 2.583  4.910-02  0.9395

9 0.1235 2.422  0.025 0.72 2.861 2.932 7.089-02 0.5500
10 0.1210 2.017 0.025 1.43 3.821 3.889 6.886-02 3.4402
11 0.1188 4.840 0.025 1.08 5.091 5.137 4.575-02 5.1487
12 0.1157 8.470 0.025 1.43 7.259 7.291 3.272-02 8.2753
13 0.1127  10.887 0.025 1.43 9.290 9.334 4.365-02 5.3774
14 0.1097 12.095 0.025 2.15 10.647 10.700 5.320-02 4.6238
15 0.1069 9.677 0.025 1.08 10.750 10.793 4.292-02 6.4789
16 0.1041 6.452  0.025 1.08 9.243 9.276 3.293-02  15.8508
17 0.1012 5.242  0.025 0.72 5.569 5.601 3.178-02 6.0766
18 0.0975 4.030 0.025 1.08 -2.384 -2.347 3.714-02  86.5354

Conclusions

e We have developed new version of OPEM algorithm (7) and Fortran77 package
to include errors in both variables defined new “total variance” (1) according (2)
and (4), and taking into account the inherited errors (8),( 9) in coefficients.

e The results show that the orthonormal and usual expansions values (5) are
close to given ones in the whole interval. The optimal approximations of contact
(wetting) energy show good accuracy and stability. We received suitable
descriptions of the energy variations useful for further investigations with typical
formes of approximated curves for different water probes.
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