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APPLICATION OF POLYNOMIAL APPROXIMATION METHOD TO DROP
WATER EVAPORATION

Nina B. Bogdanova 1 and Stefan T. Todorov 2

In the paper our method for construction of orthonormal polynomials - orthonormal polynomial ex-
pansion method [OPEM] [1] is applied to water contact angle variations. Some special features of the
method are developed for this purpose. The total variance method is demonstrated to include the
errors in both dependent and independent variables. Two polynomial expansions are presented for
approximating function: orthonormal and ”usual” ones.
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1. Introduction. The phenomena related to liquid-solid contact are at present intensively
investigated. This is not only because of the various applications, but due to some unsolved
problems in the theory of contact between different phases [2]. Here we discuss the kinetics of
evaporation of water drop of deionized water. In the course of evaporation of the drop, as the
drop’s contact angle changes, we measure the frequency of appearance of such angles within
prescribed angle intervals.

2. Physical data. The experimental data consist of the collection of measured contact
angles θ of an evaporating water drop. We register the frequencies f of occurrence of these
contact angles contained in a prescribed set of adjusted angle intervals. One can name these
frequencies of contact angles as the ”state spectrum” of the evaporating drop. The measure-
ment is performed at equidistant time intervals (5 minutes). We use data from several drops
measured simultaneously to have a statistical ensemble for calculating mean values and stan-
dard deviations. The measurement of the contact (wetting) angle is carried out by an optical
microscope method due to Antonov [4]. In more details,(Figure 1) a light refraction pattern in
the form of a dark ring occurs when a light beam 1 crosses the drop 2, placed on a non wetting
folio 3(hostaphan), near its boundary. Under the folio there is a glass plate 4 with a thickness d
and a refraction index n. One measures the width a of the dark ring thus produced. According
to the laws of geometric optics one can calculate the tangens of contact angle as a function of
the above cited parameters as follows: here N is the water refraction index and the segment
denoted by δ on Figure 1 can be neglected since δ << a. We give below a graphs on which the
frequencies f are shown versus the collection of measured contact angles. We present one type
of such curves that corresponds to the water treated by the gamma rays of a source of Co-60
(65 krad/h) for a time of 2 minutes (Figure 2-circles).

tan θ = n/[(N2∆− n2])12 −∆]1/2; δ = 1 + d2(a− δ)2,

3. Mathematical algorithm. Define by {θi, fi} arbitrary pairs of monitoring data θ = θi

and f = fi, i = 1, ...M , introduced in section 2. We have also the experimental errors in both
variables-σfi

and σθi
. Consider the square of total uncertainty (total variance) S(θ, f) [5, 6],

associated with (θ, f)

S2
i = σfi

2 + (
∂fi

∂θi

)2σθi

2, (1)

according the ideas of Bevington (1977)[5], where his proposal is to combine the errors in both
variables and assign them to dependent variable. One defines the errors corridor C(θ, f), which
is the set of all intervals

[f(θ)− S(θ, f), f(θ) + S(θ, f)], (2)
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Figure 1: Experimental setup

associated which each pair (θ, f). The first criterion to be satisfied is, that the fitting curve
should pass within the errors corridor C(θ, f). In the cases of errors only in f , (i.e. σ(θ) =
0, σ(f) 6= (0)) the errors corridor C(θ, f) reduces to the set of intervals

[f − σ(f), f + σ(f)], (3)

for any f . The second criterion for the fitting curve fappr(θ) is, that the expression

χ2 =
M∑

i=1

wi[f
appr(θi)− f(θi)]

2/S2(θi, fi) (4)

should be minimal. Some details of our calculation procedure are presented in our paper [8].
Our procedure gives results for approximating function by two expansions : of orthogonal

coefficients {ai} and usual ones {ci} with optimal degree L:

f (m)(θ) =
L∑

k=0

akP
(m)
k (θ) =

L∑

k=0

ckθ
k. (5)

The orthogonal coefficients are evaluated by the given values fk, weights and orthogonal poly-
nomials:

ai =
M∑

k=1

fkwkP
(m)
k (θk). (6)

Our recurrence relation for generating orthonormal polynomials and their derivatives (m =
1, 2...) are carried out by:

P
(m)
i+1 (θ) = γi+1[(θ − µi+1)P

(m)
i (θ)− (1− δi0)νiP

(m)
i−1 (θ) + mP

(m−1)
i (θ)], (7)

where µi and νi are recurrence coefficients, and γi is a normalizing coefficient, defined by
scalar products of given data. One can generate Pm

i (θ) recursively. The polynomials satisfy

the following orthogonality relations:
∑M

i=1 wiP
(0)
k (θi)P

(0)
l (θi) = δk,l over the discrete point set

{θi, i = 1, 2, . . .}, where wi = 1/S2(θi, fi) are the corresponding weights. The inherited errors
in usual coefficients are given by the inherited errors in orthogonal coefficients:

∆ci = (
L∑

k=1

(ck
i )

2)1/2∆ai, (8)
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Figure 2: OPEM approximation by 11-th degree orthonormal polynomials (trian-
gles) of deionized treated water data(circles)

where coefficients ci are defined explicitly in [7] and

∆ai = (
M∑

k=1

P 2
i (θk)wk(fk − fappr

k )2)1/2. (9)

All the calculations for the sake of uniformity are carried out for θ in[-1,1], i.e. after the input
interval is transformed to the unit interval. We remark some advantages of OPEM: It uses
unchanged the coefficients of the lower-order polynomials; it avoids the procedure of inversion
of the coefficient matrix to obtain the solution. The preference is given to the first criterion and
when it is satisfied, the search for the minimal chi-squared stops. All these features shorten the
computing time and assure the optimal solution( by the criteria(2),and (4)). The procedure is
iterative because of the evaluation of derivatives on every iteration step and the result of the
consequent kit-th iteration is called below the kit-the approximation. The similar algorithm is
given as ”effective variance method” from Jones [8] and the solution is discussed in the other
papers, [9] Lybanon.

4. Approximation results.
4.1 Treated deionized water data. The numerical experiment is carried out for M=15

points data of water, treated by γ rays and containing measurement errors in both variables.
We approximated them with the polynomial curve of optimal degree L=11, chosen between 2
to 14 with chi-squared= 0.64011. The iteration step is kit=4. If kit = 1, chi-squared is 0.82612,
if kit = 2, chi-squared is 0.64942, if kit = 3, chi-squared is 0.64014. On the next Figure 2 we
present the given data (circles) with their errors and the approximated data by orthonormal
polynomials (triangles). Here two types of data are enough close.

In the Table 1 the given and approximated data by orthonormal and usual expansions
with 10-th degree of polynomials are presented. In the last column the deviation ∆(fap

a −
fap

c ) = fappr,10
a − fappr,10

c is given. In the most points the two approximations are close till 3-rd
meaningful digit.
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Table 1. OPEM approximation of contact water angle data
No. θ f σθ σf fappr,10

a fappr,10
c ∆(fap

a − fap
c )

1 7.5 0.01 0.6 0.001 1.15489 1.15349 0.01400
2 12.5 1.30 0.6 0.25 0.76497 0.76102 0.00395
3 17.5 2.90 0.6 0.30 3.13892 3.12845 0.01047
4 22.5 3.90 0.6 0.30 3.22969 3.20843 0.02126
5 27.5 4.70 0.6 0.38 5.84499 5.80593 0.03906
6 32.5 6.80 0.6 0.45 6.36952 6.29145 0.07807
7 37.5 5.10 0.6 0.40 4.79228 4.68782 0.10447
8 42.5 5.50 0.6 0.48 6.33505 6.16855 0.16650
9 47.5 11.20 0.6 0.90 12.03489 11.88760 0.14729

10 52.5 19.70 0.6 2.10 15.21490 15.19192 0.02298
11 57.5 15.60 0.6 2.70 10.17058 9.77367 0.39692
12 62.5 1.80 0.6 0.70 2.89065 2.57517 0.31548
13 67.5 7.10 0.6 0.75 5.50987 6.65696 -1.14709
14 72.5 11.10 0.6 1.40 11.74320 12.53682 -0.79362
15 77.5 5.10 0.6 0.66 5.06331 6.50434 -1.44104

In conclusion, the approximating results with optimal degrees of OPEM orthonormal poly-
nomials for contact (wetting) angle found by orthogonal and usual coefficients show good accu-
racy, demonstrated from Figure 2 and Table 1. The approximating curves are chosen at 4− th
approximation step to satisfy the proposed criteria. The results show that the orthonormal
and usual expansions are close to given one in the whole interval. We have received good
descriptions of the angle variations useful for further investigations.

References

[1] Bogdanova N.// J. Comp. Appl. Mathem. 1986. 14. 345.

[2] Bonn D., Ross D. Wetting transitions // Rep. Progr. Phys. 2001. 64.1085.

[3] Forsythe G.// J. Soc. Ind. Appl. Mathem. 1957. 5. 74.

[4] Antonov A.// Comptes Rendus de l’Academie bulgare de Science.1984. 37. 1199.

[5] Bevington P. R. Data Reduction and Error Analysis for the Physical Sciences: McGrow-
Hill, New York, 1969.

[6] Jones G. Preprint TRI-PP-92-31, A 1992.

[7] Bogdanova N. Commun. JINR. Dubna. E11-98-3, 1998.

[8] Bogdanova N., Todorov St. // IJMPC. 2001. 12, No.1. pp.117-127.

[9] Lybanon M.// Am. J. Physics. 1984. 52. 276.

4


