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Can we classify all possible 2D QFTs which flow into a given IR CFT?
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Plan of Talk

1. New Approach [LeClair & CA (2022)]
o Classify UV CFTs connected to an IR CFT
« But only UV CFTs can be identified

2. ldentifying QFTs [Bajnok & CA (2024)]
« Focus on the unitary minimal CFTs M,
« Find and identify all QFTs which flow into this

3. Concluding remarks
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PART 1. RG flows from IR to UV



Conventional Approach (top down)
e UV CFT+a relevant field — IR CFT+ irrelevant fields

e Only a special relevant field maintains the integrability
e Common in CMP since physics at low T is important to find non-trivial
(Wilson-Fisher) fixed points
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Conventional Approach (top down)
e UV CFT+a relevant field — IR CFT+ irrelevant fields

e Only a special relevant field maintains the integrability

e Common in CMP since physics at low T is important to find non-trivial
(Wilson-Fisher) fixed points

 (Ex) Zamolodchikov Flows originally based on conjectured TBA

Mp+1+)\¢173—>Mp+)\,¢3,1, ,D:3,4,-"

0 1 p—3 p—2
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e Many more RG flows have been conjectured

* have been guessed based on conjectured TBA or NLIE
o Lagrangians / exact S-matrices are missing
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New approach (bottom up) [CA, A.LeClair (2022)]

« IR CFT++ irrelevant fields —— UV CFT+a relevant field

« Natural since S-matrices are defined in the IR (infinite
volume)

« Common in HEP where UV complete theory is being
searched (GUT, SUSY, Superstring, ...)

« Use TT as a ladder
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T T deformations

« Very active developments [Tateo,Zamolodchikov,. . . |

« Energy-momentum tensor T,

- All higher conserved charges = { [T T]s }
[TT]S — s+1T5+1 - @sflésfla &szJrl - 82(9571

o Preserve integrability

« Exact results possible for even non-integrable theories
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Space of 2D IQFTs [Smirnov-Zamolodchikov (2017)]

« Expands the integrable space in infinite dimensions

o If the mother theory is integrable, new integrable QFTs

New IQFTs = an IQFT + ) [T T

s=1

« Exact S-matrices are given by additional CDD factors

S((g) _ H e2ia5/\/l2s sinh(sf) 50(9)

s=1
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Swampland (Hagedorn singularity) to cross for UV

- Burgers Equation (s = 1) [CFT 4 ay[T T]4]

2C()

8aE + E@RE =0 — Ceﬁ'(R) =
1+ 1_|_27TC¥1C0

3R?
with square root singularity at R. = 4/ —2W|§1|C°

- Singularity occurs also for each [T T]s with s > 1

« We show that the singularities can be avoided if we
fine-tune all o
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S-matrices of CFTs from a massless limit
e Consider “massive” integrable deformation of a CFT e.g.

G ® Gy
Gr+41

[G]k = + A cl>least rel

e Integrable with exact S-matrix Sy [Bernard, LeClair, CA (1990)]
o Take A = 07 or M — 0 limit

e rescale the rapidity

M—0&60=+A+0 with finite Me" = p

e R and L particles appear depending on +
(R):E=P="1e  (1):E=-P="te

« S-matrices between RR, LL are the same SRR(9) = StL() = So(6)
e S-matrices between RL, LR are trivial since 015 — £o0
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S-matrices for deformed CFTs by TT's

« CDD factors become trivial in RR, LL sectors

o0
H eQiastsSinh(SQ) 51 as M =0

s=1

« CDD factors become non-trivial in RL, LR sectors

00 o0 ~

. 25 o H 2s ,+s6 N
I | eZIasM smh(sQ) N | | eilOésM e = ScDD(e)
s=1 s=1

« Summary

SRR(9) = SLL() = So, SRL(H) = SLR(—0) = Scoo(h)
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How to restrict Scpp?

 Find all possible Scpp for a given Sy which satisfy
e UV completeness

e No Hagedorn singularities
e coif in the UV limit is finite, rational

e Crossing-Unitarity
SCDD(H)SCDD(Q + i7r) =1

from which S¢pp are arbitrary products of only two factors

S(l) — _tanh <9 — 5 I.7T) 7 5(2) o sinh @ — isinﬁ

cbb 2 4 CBD ™ sinh @ + isin 3

e All s are fixed exactly in terms of 3's
e We can work with UV limit of TBA, namely, “plateaux equations”
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 S-matrices for [G]; have been known [Zamolodchikov,. . .|
e A CFT can have different S-matrices depending on the choice of
the integrable relevant field perturbations
(ex) Ising CFT by G = su(2), Eg
» Plateaux equations
= [T+ T+ )
b=1 b=1
where exponents are integrals of logarithmic derivatives of
S-matrices S3° and S22, (ka» = %, 1 or sum of them)
e Co In terms of some dilog identities
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Results: UV CFTs which can flow into Ising CFT M3

e From the Plateaux equations, we find only

7 21 3 15 31
Ceff = 779 Ars A0 A A
100 22" 27 2° 2
o “L" is the Zamolodchikov flow My — M3 ([su(2)]2 — [su(2)]1)
21

“55" is the coset flow [Eg]> — [Eg]1
u§n

is the massless SShG model which flows from super-Liouville theory
(later) [Kim, Rim, Zamolodchikov,CA (2002)]

o New: “3L" is supposed to be a flow from Eg WZW with level 2
2 PP
&

e New: (?”

« We analyzed other group G = su(3), su(4) etc to classify all
possible UV CFTs based on central charges

e But central charges are not enough to identify the QFTs
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PART 2. Identifying UV complete QFTs
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RSOS (non-diagonal) scattering theory
o Consider k = p — 2 with G = su(2)
./le + >\¢173, A<0

e Particle spectrum: massive kinks

~,=—1, with |a—b|==

N —
NS

a w b = Ki(6), a,b=0,

e S-matrix of kinks 51[%05(9): non-diagonal [Bernard, LeClair (1990)]

Kab(01)Kbc(02)  —  Kad(02)Kac(01)
T —0

Sy(0)32 = U(6) () |(xE5)Esion () 0 4sinh (70

16 /29
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Massless S-matrices [Fendley, Saleur, Zamolodchikov ('93)]
e Massless limit A — 0~

Sp(0) = S,5(0) = S,(0)

p

« YBE and Crossing-Unitarity relations determine

ipT
SFL(9) — SLR(~6) o S, (9 _ 7)

for the S-matrices of the IR theory M, + N &3

e Derived the conjectured TBA (partially) shown before

R P2
ca(0) = M—(5a0€9 + 0apne’) — Z labip  log[1 + e™*](6)
2 b=0
0 1 p—3 p—2
&—O— e O—e
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TBA for [T T]s deformed minimal CFT M,
o [T T]s deformations

Mp + )\I ¢371 + ZOés [TT]S

s>1

e Introduce CDD factors to RL, LR sectors
SF(0) = Scop - SFH(0)

 Being diagonal, Scpp introduces additional kernels between R & L

SIORRE

18 /29
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UV complete theories
» Plateaux equations

Xn = (1+Xn—1)1/2(1+xn+1)1/27 n= 17 7p_37
Xo = (1 + X1)1/2(1 + Xp_2)k, Xp_2 = (1 + Xp_3)1/2(1 + Xg)k

« UV complete only with k = % which means

o_ :
S(Cl,%D = —tanh (—2 5 _ %) —  PRL=

1
cosh(0 — p)

« We also notice that only real § (p > 3) becomes UV complete and

p—1
o =3——
Ceff p+1
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For p = 3, massless Super sinh-Gordon model

¢ sinh-Gordon model with N =1 super [Kim, Rim, Zamolodchikov, CA
(2002)]

£= Kin. — LUGW"(6) + 21 W ()P, W(6) = —psinh(bo)

e Supersymmetry is spontaneous broken

V(9) o [W(9)]? = cosh?(bg) > 0

* massless Goldstino fermion is only spectrum in the IR limit (Ising model)
e TBA is given by

R
RO = R0 o x log[1 + e*EL],

2
1 1 1—b?
RL
0) = -
#7(0) cosh(0 — ia) + cosh( + ia)’ Ry

20/29
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Parafermionic shG model

PshG model

Losn = Lor + 30 — n (1r e + mylTe ) +

e YpisaZy PFwithA=1—31 (k=p—1)
Fractional SUSY

e 1 =0 gives Parafermionic LFT [Baseilhac, Fateev (1998)]
e 77 =1 massive phase
e 1 = —1 massless phase where FSUSY is spontaneously broken

e These types of QFTs compute ¢, from momentum quantization
using Reflection amplitudes
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Reflection amplitudes of LFTs

« Primary fields €2*? and e2(®=%)¢ identified upto constant

e25HP)0 = R(p)eA(3-P). = §+IP, Q= b+i

=0,

« This amplitude has been computed in the PLFT
[Baseilhac, Fateev (1998)]
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« the perturbation introduces another wall
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Momentum quantization condition

« the perturbation introduces another wall

0" (p) =7+ 4Qp|n — = Gp" R(p)=e""0

n=odd

« Scaling function can be obtained from

3k
o= N _24p? £ O(R
Coff k + 2 p-+O(R)

3 302 3725, or25?  3(2n283+nts3)

R
=5 — — — e (x=5=
k+2 2Q21n2x  4@3Im3x  32Q%In% x 64Q5 In5 x + ( 27r)




Reflection amplitude vs. massless TBA

» Need to solve numerically with high precision

3k calk
ca(r) =175+ Zz ﬁ +0(r)

« Two match very well at self-dual coupling b = \/LE

| [ @ [ o | a [ o |
k=2 | 7.402199 | 42.7620 | 185.218 | 714.563
7.402203 | 42.7628 | 185.282 | 717.247
k=3 | 11.10332 | 77.8573 | 409.598 | 1924.84
11.10330 | 77.8543 | 409.425 | 1919.36
k=4 | 14.8045 119.428 | 722.797 | 3898.75
14.8044 | 119.4197 | 722.475 | 3892.55
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What if 5 # 0 for generic p > 37

« Numerical solutions of the massless TBA show “Roaming” [p = 4,

B = 107]
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Roaming TBAs with 5> 1

SO EE



Roaming TBAs with 5> 1

SLOEBLE:

e Each plateaux corresponds to
M1 = ZeMy = Zi My — ZieMokga
where
su(2)x ® su(2),

7 -
M= ) ere
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Roaming TBAs with 5> 1

SIOEREN

e Each plateaux corresponds to
M1 = ZeMy = Zi My — ZieMokga
where
su(2)x ® su(2),

7 -
M= ) ere

* Reproduce PF staircase TBA conjectured by [Dorey, Ravanini (1993)]
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Concluding Remarks

e We have found exact massless S-matrices from which we have
derived TBA for new RG flows

» We have found that there is only one new RG flow to M, for p > 3
if the CFT is in RSOS (can not exclude existence of other basis)

« and we have identified those as PF sinh-Gordon (8 = 0) and PF
Roaming (8 > 1) models

e Can we find exact S-matrices in this way for all conjectured TBA
and NLIE?

« Can we generalize this approach to other irrelevant deformations
than TT's?

« Connection with non-invertible symmetries
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Thank you for attention!
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