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In Kotousov talk introduced were a wide class of ODEs
but the integrable structure remains mostly unknown
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® Scaling limit XXZ and connection to Schrddinger equation of 3D anharmonic
oscillator/qKdV

® Scaling limit of inhomogenous XXZ

* Definition of the scaling limit
* Free fermion point

* Main conjecture

e Concluding remarks and possible future directions
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Paradigm example: Homogeneous XXZ %—spin chain

Hamiltonian of length N

N -1
a+gq
Hxxz = — Z (U Omi1 + OOy + 5 Jrzryo'zm+1> :

m=1

quasi-periodic BCs
X sy __+2iwk X sy z _ z
ONtm T10N , =€ (O’m:|:10'm), ONam = Om s

energy spectrum described by solutions of the Bethe Ansatz equations:

N/2-5% N/2-5% _
<1+q+1CJ> " _ _e2imk 257 H G—aqt?¢ E—— Z 2(g—q)
1+q71¢ Y = GG tata?

tt
19,2
4
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Critical behavior

For g being unimodular, i.e. g = €7, the Hamiltonian possesses gapless excitations.

1D critical spin chains: low energy spectrum organizes into conformal towers [Cardy ’86]

27TVF C - —
E=N (_7 A+A+L L)
et (g FATAFLAL) 4

A, A conformal dimensions, L,L > 0 levels, ¢ central charge.

XXZ: Scaling limit is governed by compact boson R = \/27_1, i.e. [Luther-Peschel ’75;
Kadanoff-Brown ’79; Alcaraz-Barber-Batchelor ’88]

_1, A== (2 R( +k)2 A-—p= L (2 21 R( —|—k)2
T ST T\ R T ST T\ R OTTTVW ’
H= EB Fp® Fp (Fp — Fock space)

w,SZeZ




Integrable structure

Uy > 2P € FpFp

Low energy Bethe
state in spin chain

Integrability: 1 (1)) eigenvector of commuting operators acting in Fp (Fp)
= (qKdV see Kotousov's talk)
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Integrable structure

Uy > 2P € FpFp

Low energy Bethe
state in spin chain

Integrability: 1 (1)) eigenvector of commuting operators acting in Fp (Fp)
= (qKdV see Kotousov's talk)

Exploring integrable structures by scaling limit of spin chains!




How does this work in practice?

Consider the example of the ground state!
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The ground state (5% = 0)

N/2-52
<1 + q+1 CJ> N _ 217rk 25Z H G — q+2 C
1+q71¢ G-q2¢’

For small enough twist parameter k the root configuration of the ground state can be proven to
be real [Yang-Yang ’66]:

0<G<@<...<(nj2 -

In the 3-plane (¢ = ¢=2%) we can depict the ground state configuration as
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N = 100 ; (8)

e e
S - -1 W

-2 m ~ p(B) =

1
2(m—~) cosh <%>

Roots at edges develop scaling behaviour:

. 2(1-2
s ~ limy o N2277) ¢

= ol 2(1-2) -1
5~ limpy oo N2 G o

(G —22 s y({s)) © B({5)}




ODE for vacuum

Remarkably, the scaled edge roots

(N/No)2A=7) ¢; .

sj= lim
N— oo

coincides with the eigenvalues E; of the Schrédinger equation of the anharmonic oscillator

( d2 e +1)

2a o
—@‘F + X —E)\U—O

x2

if one sets

1 Tk No — ﬁr(%+27r12'y)
2 v N 2r(1+ﬁ) ‘
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The spectral determinant

The observation that

s = Ej
can be reformulated as
dim A (VM) PP E) = Dy(E)  (2>2)
where
4-s, o
AL(Q) = H1 (1 - Ci) , D, (E) = H1 <1 _ :)
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The spectral determinant

slim Ay (N/No) 07 E) = D, (E) (= >2)

where

o1 (8) e (- £)

Il The LHS is the eigenvalue of the generating function of the gKdV integrable structure !!!

it
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Scaling limit of the Q operator

introduce the lattice Q operator

then

. ~2(1-2) £\ _ 4 (QFT) : 2 x
A§|Lnoqu+((/\//N0) E) =A@y with  Eoc ) (z>2)

APD) =z 1Ty

27
o2imBPH <73exp <)\/ dx (e+2iﬁ¢> q% E+ o280 q—% g_))]
0

(defined in Kotousov talk)

it
[
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What about the inhomogenous case’




Multiparameteric generalisation

The XXZ %—spin chain is related to the homogeneous six-vertex model, a 2D classical statistical
system [Baxter ’71]. The latter admits an integrable multiparameteric generalisation. The
BAE read
N 1 N/2-52
ny+qtt __42irk 257
1, — ¢ q H
AT i=1

Gi—q¢
G —q72¢
The complex parameters {m}’J\’:l are called inhomogeneities. We take N divisible by r € N and
we have the periodicity condition

(j=12..58-5%)

Nd+r =T
Then one can introduce local Hamiltonian H
® r =1 = standard XXZ
® r =2 [(Ikhelf)-Jacobsen-Saleur ’05(’06,’11); Frahm-Seel ’14;
Bazhanov-Kotousov-Koval-Lukyanov ’19°21°21]
e H includes interaction up to r 4+ 1 adjacents spins. Iy
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Starting point: Z, invariant case

extra Z, symmetry by setting
ne= (1) er 1) (C=1,...,r)
system critical when g = €!7 but the critical behaviour described differently in each sector
§A<v< %(A+1).

useful parameterization of v

™

™
=—A
" r +n—|—r
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The Z, invariant case: Bethe roots

The ground state Bethe roots arrange a simple pattern

arg(C)zg(Q(a—l)—A) a=1,...,r

(l@o ©-0-0600040880 0O ° C\‘ym(ﬁ) = g
° © 9000000080 0O ° Sm(B) = +%
° © 0000000000 0 O ° Sm(B) = 7%




The Z, invariant case: Bethe roots

The ground state Bethe roots arrange a simple pattern

arg(¢) = — (2(a— 1) - A)

(@o ©-0-0600040080 0O ° C\‘gm(ﬁ) = g
° © 9000000080 0O ° Sm(B) = +%
° © © 000000000 0 © ° Sm(B) = 7%

Reduction for |§J§a)]’ to XXZ

with q»—>e'ivL+rr, N~ N/r
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Immediated consequences

The limits

N—oo
m—fixed

r(n+r)
E@ — fim <N> el

exist and are non-vanishing.

The numbers E,(,,a) are then expressed in terms of the spectrum of an ODE deducted from the
reduction to XXZ.




The vacuum ODE for Z, invariant case

XXZ:

( d? +£(€+1)

2a _
- T —E)\IJ—O,

1
a=n, €+§:(n—|—1)k.

il imr
J{ q — entl +— entr

Z, invariant case:

a2 e+1)

a:ﬁ, {4+
r




Away from the Z, invariant case

Away from Z, invariant case

me# (—1) €T

The Bethe roots align on certain loci on the complex plane, yielding no scaling behaviour of the

roots e.g. at the free fermionic point for r = 3, n; = —

Sm(5)) = 5

—e ¥ pz=1and § = -

Sm(Bj) = 5
-2
Sm(fj) = —%

1

10
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Away from the Z, invariant case

Away from Z, invariant case

ne # (— 1)r (26-1) t=1,...,r)
The Bethe roots align on certain loci on the complex plane, yielding no scaling behaviour of the
roots, e.g. at the free fermionic point for r =3, 1y = —€'%, 1)y = —e ¥, 3 =1 and § = Z - %
m(Bj) =3
. ., cos?(§
N _ ’ y ~ B — %arccosh ( —1_2“()5()5))
Sm(6) = 5 S
_2 -1 1 2
Sm(5) = %
J 6 /--\ .
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Assign a dependence of the system size N to the inhomogeneities such that

lim n(N) = (—1)" e 1) (t=1,...,r)
N—oo




Assign a dependence of the system size N to the inhomogeneities such that

Jim () = (—1)re’r (1) (t=1,...,r)
. 4 —0-© —© 4 %m(ﬁl) = g
\'\"-—-w'/'/ __________ Im(j) =&




Assign a dependence of the system size N to the inhomogeneities such that

lim ne(N) = (—1)"e'r 1) (t=1,....r)
N—oo

------------------------------------------------------------------------------ Sm(Bj) = §
-2 -1 1 2
---------------------------------------------------------------------------- Im(g)) = %




Assign a dependence of the system size N to the inhomogeneities such that

lim n(N) = (—1)" e 1) (t=1,...,r)
N—oo




Assign a dependence of the system size N to the inhomogeneities such that

lim n(N) = (—1)" e 1) (t=1,...,r)
N—oo

D — e (B =
-2 -1 1 2
"""" \ %m(ﬂj) = _%




Arrange the scaling procedure with
nZ(N) N (_1)r eiTﬂ (2¢-1)
such that the following conditions are met

2n
1. limpy_eo (%)f("“)g({f) exists

2. The limiting value is different from the Z, invariant case and described by a deformed ODE

[—aﬁ 4 p2 ey _ (C1)AET e — 5U(y)] b =0

1
(v = 2log(x) + 72 log(5) and ¥ = x 3 W) p= 13k

We call this 'softly breaking’ the Z, symmetry.
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The free fermion point: A =

For the ground state at the free fermion point we have the Bethe ansatz equations
N T14+ic?
_Iog(Hw —2m—1+42k (m=1,2,...,N/(2r))

mr =11— iCr(rf)/W

To perform the scaling limit, we write ¢ into the form
1

T\t
= E
<= ()

and keep E fixed as N — oo to obtain

A

S (- DFaga (B4 = 2m — 1+ 2k

k=0
where the following are also kept fixed

1 2N\ 1
_ —2k—1 _
02k+1—2k+1< > r;w (k=0,...,(r—1)/2) o
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Introducing new ODE

(a)

Now: come up with a ODE with 'eigenvalues'* Ep,’ obeying
A
Z azk 1( E(a))2k+1 =2m—1+42k

k=0

Start from the harmonic oscillator in disguise (confluent hypergeometrical equation)

[—8}% +p? + e —rA(E)e”] =0

*By eigenvalues we mean that the ODE possesses a normalizable solution for E = E,(na).
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The asymptotic behaviour for y — oo is given by

pr1 F(1+2) 3 {1

w0 = @0fH L0 (17 0, oo {2ev 1412 |

where

r;+2)

— r

D = 21—
TGN

The function v, vanishes at large y only if D, =0, i.e. we have pole of the I' function in the
denominator = spectrum is defined by the equation

2
ANE)=2m—1+P
;

Hence, we simply must set in the ODE
A

= > (D o (B

k=0
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r—1

The general case for A= ==

away for the free fermion point, we propose the ODE

A-1
[_ 8}% + p2 + e(nJrr)y _ (_1)A E' e — Z )11 E2+1 e(%,n; (2j+1))y:| V=0
Jj=0




r—1

The general case for A= ==

away for the free fermion point, we propose the ODE

A-1
[_ 8}% + p2 + e(nJrr)y _ (_1)A E' e — Z )11 E2+1 e(%,n; (2j+1))y:| V=0
Jj=0

if jy1=0 = Z, invariant case




r—1

The general case for A= ==

away for the free fermion point, we propose the ODE

A-1
[_ 8}% + p2 + e(nJrr)y _ (_1)A E' e — Z )11 E2+1 e(%,n; (2j+1))y:| V=0
Jj=0

if jy1=0 = Z, invariant case
if n=r and we set ¢j41 = (—1)j ragit1 =  Z,-softly broken free fermions
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r—1

The general case for A = =~

away for the free fermion point, we propose the ODE

A-1
[_ 8}% + p2 + e(nJrr)y _ (_1)A E' e — Z )11 E2+1 e(%,n; (2j+1))y:| V=0
Jj=0

if jy1=0 = Z, invariant case

if n=r and we set ¢j41 = (—1y ragit1 =  Z,-softly broken free fermions

in general connection of c's and a's is rather cumbersome. For example for r = 5 we have
n—>5
20n

= C(go) a; + ((Cl(l))2 — 5C(§0)) ag, = Cl(l) as,

)I'(l - (2j+1)(n—r))

T (=
C(J) — (_1)1 r 2n _2rn — )
, T3+ 4)r( - S5
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The numerical validation: sum rules

slim Ay ((N/(No) ™7 E) = Dy(E),  (n>1)

expand both sites for small E to get

2sn
. N - r(n+r) (N)
l VR hs = ’
I\SI—I>r<T>10 ( rNo ) JS

log(D.(E ZJ E° and  log(AL(¢))=—>_ M.

where
N/2

Zg




The numerical validation: sum rules

2sn
. N\ T 1 =N/2
Js = slimy_oo <W) 1 SN2 (s

J's from perturbation theory of ODE 1 ZN/2 —s from Bethe ansatz
S

m=15Sm
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Example: r =3, A=1, th)

(

N
rNp

__2n
) r(n+r) th)

1000 1500 2000

= ap1 fi(h, g)

mlh(1-2 I(g+2h
fl(hag) = sia(ﬂg‘)g) r(1(§g+2)h)
n+r)%60—2
PL= 7%2(1),@)
1 _

— = _ _n=r
80 = 3 2r(n+r)
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General conjecture

For given r and A=0,1,...,r—1

™ s

=—A
i r +n+r

(n>0)

and fixed
1/ N\*1 &
s = ¢ <rl\lo> v ;(W) .
we can adjust the ds such that the scaling limit is governed by the ODE
- 33 + p?4elm Y _(1)AE" e — Z c.j E" e((Au—rj) )y W =0
(Mvj)eEr,A

with a polynomial relation between {as} and {c,}. v




General conjecture

The set E, 4 is given by

Er70 = {(,U,,_j) :
E'r,A = {(,Uaf) :
E",r—l = {(,U,,_j) :

w=112...,r—1 &j:O}, for A=0
J<p<z4(+1) & j>0} for A=1,2,...,r—2,
p=j+1 & j=0,1,...,r—2} for ~ A=r—1(GAGM).

the exponents ds; must be found case by case!

A=1r—1and rodd A= % and r even A= 7 — 1, 5 we have classified the ds and present
explicit relation between ¢'s and a's

also how to organise the scaling limit to reach ODE:

— R+ p? el (—1)AE" e — ¢, EV (G

n+

o)y =0
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Summary and conclusion

e \We described how to organise scaling limit of inhomogeneous XXZ spin chain to obtain
the ODE

[— 02+ p? et — (—1YAET Y — N g EF o{(au=r) "r”W)Y] b =0.
(#J)eEr,A

® This means the ODE is involved in an ODE/IQFT correspondence for a new
multiparametric integrable structure in CFT!!

® Despite that we do not have a field theory construction of the IQFT, the scaling limit of
the lattice system provides a definition of the field theory Q operator which generates the
integrals of motion.
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Future directions

® Study the CFT /integrable structure of the critical inhomogeneous XXZ spin chain
(including excited states)

= uncovering the field theories governing the critical behaviours of inhomogenous
six-vertex model? [Lukyanov]|

® Higher spin generalizations? [Kotousov, Frahm|

e Different underlying symmetry algebras such as Agz) [Jacobsen, Retore]

= Higher rank such as D [Nepomechie, Retore]




Thank youl




