Exact overlaps for boundary states

Tamas Gombor

Based on: arXív:2110.07960 arXív:2311.04870 and recent unpublished work

EÖTVÖS LORÁND **UNIVERSITY**

Contents

Motivation lacksquare

					•		•														•					•				•							•	•	
•	1		Ċ		4	- 0				•	•		•	•	•	•	•		•	•		•		•	•	•	•	٠	•	•	•	•	•	•			•	•	•
•		_	$\boldsymbol{\mathcal{O}}$	V.	V		V	V			1			•	0	•	*		٠	٠	*	•	•		٠	•	•		•		•			•		•			
•	•	•							•	•	٠	٠	•	•	٠	•	•	•	٠	٠	•	•	•	•	• 1	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	٠
•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	+	•	•
	•	٠						•		•			•	*	0	÷		•	0	•	٠	•	٠	•		•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•
					•		٠		•	•	٠	•	٠	٠	•	•	٠	•	•				٠		٠	•	•		•	•		•	•	•	0				
•	• •		•	M	otiv	vat	tío	n	•	•	•		•	٠	0	٠	٠	٠	0	۰		٠	٠	•	۰			٠			0	0	٠		.0	۰		•	
	•	۰		. 0	.0.	٠							٠	٠	0	۰	۰	٠	0	۰	٠	٠	٠	•	0	•	0	•	٠	•	•	0	۰	•		٠	•		•
•	•	•	•	$\sum_{i=1}^{n}$	1010			~t	+141		i+		- hat	-00	fo			$\left(\begin{array}{c} \\ \\ \end{array} \right)$	•	,				•	•	•	•	•	•	•	•	•	•	•	•	•	•		
٠					Cr	urf			CVV	0 2			CMC	.65	0	r		لح	5	200		n u		5	•	÷.,	•	٠	•	•	•	•		•	٠	•			•
•	•		•		٠		٠		•	٠		•	٠	•	•	٠		•	•	•	•	•	•	•	•	•	•	•		•		•			•		•		
•	•	•		Οv	ler/	lat	S	ot	tw	0.5	ite	2 51	tat	es	10	rg	jl(N)) S'	pu	r c	ha	IN	Ś	•	•	•	•	•	•	٠	•	•			•	+		
•			۰	0	0	•			•			ł		•	0	•	•	•	0	•	•	•	٠	•	٠	•	•	•	•	•		•	•	•	0		•	•	•
•	•			Ov	ler/	laf	s i	of	M	atr	íx	pr	od	ис	ts	sta	tes	f	or	gl	(N) S	pí	n (chi	aiv	IS	•	•	•	•	•	•	•		•	•		•
•	•			•	•	•				•	•	•	•			•	•		•		•		•	•			•	•		•	•	•	•	•	.*.		•	•	•
•			٠	•						•	· .		•	٠	0	٠	٠	٠	0	٠	٠	٠	•	٠	•	٠				•	٠	•			•			•	
	0.	•	. •										•		•	•	•		•		•		•	•	•	•	•	•		•		•	•	•			•	•	•
										•	•													•	•		•		•	•		•	•					•	•
	•																										•	•					•					2	2

why boundary state overlaps?	•	1		i	ot		·	10	t		Ó	Ņ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
why boundary state overlaps?	•	•	•	•	•	•			•	•		•	•	•	•	•	•	•	•	•	bc)UI	лd	ar	y s	sta	te	5	•	•	•	•	•	•	•	•	•
Gethe state → Bethe state		•			N	ıy	60	uv	rdi	ari	y s	sta	te	0V	erl	ap	s?		•			•			•	•	-	4	- J	ī	-	•	•		•	•	•
	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		-)E	≤et	he	st	at	e	•	•
1 1	•		•	•	0	•	•	•			0	•	•	0	•	0	0	•	۰	•	۰	٠	•	•	•	0	•	0	•	•	•	•	•	•	•	•	•
1 1	•		٠	۰	٠		•	•	0	0	+			٠	0	۰		٠		•	•	•	0	۰	•	•		٠	•	•	•	0	•	•		•	•
1 1	•	•			•	•		•	•			•		•	•	•	٠	•		÷	•	•	+		•	•	*	•	•	•	•	•	•	1	•	•	•
1 1		•				٠			•	•	٠	•	•	٠	•	•	٠	•	٠	•	•	•	•	0	•		•		•	•	•					•	
· ·	٠	•	•	•		•	•		•	•			•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
· ·	•	•		٠	•	0	٠	•		•	•	٠	•	•	٠	•	•	•	٠	•	•	•	۰	•	•	•	•	•	•	•	•		•	•	•		
	•	•	٠	٠	•		•	*	•		٠	•		٠	*	٠	•	•	•	٠	•	•	*	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•
	•	•	•	•	•				٠		•	•	٠	*	•		٠	•	•		•	•		٠				•	•	•	•	•	•	•			
· · · · · · · · · · · · · · · · · · ·	•	0		۰	•	.0			0			•	0	٠	0	۰	۰	٠	٠	•	•	٠	0	0	•	۰		•	•	•	•		•	•	•	•	•
	. 0	•	•	. •	•		•			•	٠	. •		٠	•	•	۰	٠	٠	•	•	•	•	۰	•	•	•	•	•	•	•		•	•	•	•	
	•	0		0		. •	•	•		0	•	•	. 0	•	•	0	٥	٠	۰	•	•	•	۰	0	•	•	•	0	•	•	•		•	•	•	•	•

Motivation Why boundary state overlaps?

In statistical physics

Motivation Why boundary state overlaps? In statistical physics

two site states of gl(2) spin chains

•	Ţ	S	e.	f		Ń	i	ti),	Ň	Ś	•					
•		•			•	•		•	•		•	•	•	7		7	1	1
•	•	•	6-	ve	rte	XI	nc	ode	l	٠			4	+		+	+	
•	•	•	•		•	•	•	•	•	•	•	•	÷				+	+
•		1		•		•		•	•	•	•	•	÷	+	+	+	+	+
•	•	٠	•	٠		•	•	•	•	•	•	•	÷	+	+	+	+	+
•		•	•		•	•	•	•		٠			÷	+		+	+	+
•			•	•		•			•	÷,			•	┟	*	*	┟	*
•			•			•						•		0	-0,	Ð	- Q 2	
•		•		•	•		•	•	•	•	•	•	•	•	•	•		•
•	•					•	•	•	•	•		٠	0	0.	۰	٠	•	•
•			•				•						÷					
•	•		•	•		•	•	•	•	•	•			•	•	•		
•	•	•		•	•	•	•	•		•	•	•		•		•	•	4
•			•		•	•	•				•	•		٠	٠	٠		•
•	•	•								•	•		٠	•	٠	٠		
			•		•								0	0	0	÷,	•	

. <u>(III (III</u> . ·Us **0**, -0, . 5

mannen 6-vertex model u-O O, · 5

Definitions 6-vertex model u-O 0,-0, 6 .

	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
//	·///	<u>.</u>	<i></i>		•		•		•	•			•		•	•	•	•
\wedge		$\left(\right)$		•	÷	•	•	0	•	•	•	•	•	۰.	٠	•	•	•
		╀	╀	≯ U	La	• 1	•			•	•		•				•	
		+	+	∢ (l_	•				•				•				
		+	+	> :		•	_	£,	_ (E	ū				•			
			⊥	→ .	•			3 I •	•	•								
				→U		•		•				•	• ;			•		•
		X																
•••		9 . .	-0,															
				č				Ĩ	Ĩ		Ĩ			Ĩ				
	•	•	•	•	•	•		•	•		•	•		•		•	•	•
	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•
	•	•	•		٠	.*	•	•	•	•	٠	•	*	*	•	•	•	•
	•	•	•		•	•	•	*	•	•	•	•	•		•	•		•
	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠		•	٠	•	•	•	0.1	٠	•	•	•	•	•	•	•	•	
	•	•		٠	•	•	•		•	•	•	•	•	•	•	•	•	•
		•								•				•	•			

Definitions 6-vertex model u-0 0,-0, 0,-0, .

	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
//	·///	<u>.</u>	<i></i>		•		•		•	•			•		•	•	•	•
\wedge		$\left(\right)$		•	÷	•	•	0	•	•	•	•	•	۰.	٠	•	•	•
		╀	╀	≯ U	La	• 1	•			•	•		•				•	
		+	+	∢ (l_	•				•				•				
		+	+	> :		•	_	£,	_ (E	ū							
			⊥	→ .	•			3 I •	•	•								
				→U		•		•				•	• ;			•		•
		X																
•••		9 . .	-0,															
				č				Ĩ	Ĩ		Ĩ			Ĩ				
	•	•	•	•	•	•		•	•		•	•		•		•	•	•
	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•
	•	•	•		٠	.*	•	•	•	•	٠	•	*	*	•	•	•	•
	•	*	•		•	•	•	*	•	•	•	•	•		•	•		•
	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠		•	٠	•	•	•	0.1	٠	•	•	•	•	•	•	•	•	
	•	•		٠	•	•	•		•	•	•	•	•	•	•	•	•	•
		•								•				•	•			

millin and and 6-vertex model $= \mathcal{I}_{3,r}(\bar{\Theta})$ 'u-0 $\prod_{k=1}^{T} T_{k,2}$ 10) lū?= 0,-0, $\Theta_2 - \Theta_2 \cdots \Theta_r - \Theta_r$ 10 > = + + +5

Definition millinin allander 6-vertex model $= \mathcal{I}_{3,r}(\bar{\Theta},\bar{u})$ $\lfloor \frac{1}{2}, a (u - \Theta)$ $|\bar{u}\rangle = \pi T_{1,2}(u_j)|0\rangle$ $\Theta_1 - \Theta_1 \Theta_2 - \Theta_2 \cdots \Theta_1 - \Theta_1$ 10>= ト ト ト ト ト イ · Tii (u $\chi = \chi \chi \chi \chi \chi \chi \chi$ $= \langle \mathcal{A}(\mathfrak{D}) | \mathfrak{D} : \ldots \mathfrak{D} \langle \mathcal{A}(\mathfrak{D}_{\mathfrak{q}}) |$ $= \sum Y_{a,b}(\theta) \langle a | \otimes \langle b |$ < 4(0) = • O 5

Definition mannen 6-vertex model $= \mathcal{I}_{\mathfrak{Z},r}(\overline{\Theta},\overline{u}) = \langle \mathcal{X} | \overline{u} \rangle$ $L_{i,a}^{i,b}(u \cdot \Theta) =$ $|\overline{u}\rangle = \prod_{i=1}^{r} \overline{T}_{A,2}(u_i)|0\rangle$ $\Theta_1 - \Theta_1 \Theta_2 - \Theta_2 \cdots \Theta_1 - \Theta_1$ 10>= ト ト ト ト ト イ · Tii (u $\langle \Psi \rangle = \frac{1}{2} \frac{1}$ $= \langle \mathcal{A}(\mathfrak{D}) | \mathfrak{D} : \ldots \mathfrak{D} \langle \mathcal{A}(\mathfrak{D}_{\mathfrak{q}}) |$ $= \sum Y_{a,b}(a) \leq a \otimes \leq b$ < 4(0) = 1 5

Definitions manica 6-vertex model $= \mathcal{I}_{\mathfrak{Z},r}(\overline{\Theta},\overline{u}) = \langle \mathcal{X} | \overline{u} \rangle$ $\lfloor \frac{s}{s}, \frac{b}{u}(u - \Theta) =$ $|\overline{u}\rangle = \prod_{j=1}^{r} \overline{T}_{\lambda_{j}2}(u_j)|0\rangle$ $\Theta_1 - \Theta_1 \Theta_2 - \Theta_2 \cdots \Theta_1 - \Theta_1$ 10>= イ イ イ ト ト イ · T. (u) $\chi = \chi \chi \chi \chi \chi \chi \chi$ $= \langle \Upsilon(\mathfrak{D}_{1}) | \mathfrak{D} : \ldots \mathfrak{D} \langle \Upsilon(\mathfrak{D}_{1}) |$ $= \sum Y_{a,b}(0) \langle a | \otimes \langle b |$ $\langle \Psi(\Theta) | = \zeta$ • O $K_{ij}(u) = \bigwedge_{ij}$ 5

 $= \mathcal{I}_{3,r}(\bar{\Theta},\bar{u}) = \langle Y | \bar{u} \rangle$ $|\overline{u}\rangle = \prod_{i=1}^{r} \overline{T}_{\lambda_i 2}(u_i) |0\rangle$ 10>= イ イ イ ト ト イ イ $\chi = \chi \chi \chi = \chi \chi \chi \chi$ $= \langle \Upsilon(\mathfrak{O}_{1}) | \mathfrak{O} : \ldots \mathfrak{O} \langle \Upsilon(\mathfrak{O}_{1}) |$ $\langle \Psi(e) | = \bigcap_{a,b} = \sum_{a,b} \Psi_{a,b}(e) \langle a | \otimes \langle b |$

Properties of the KT-relation $K_{0}(z)(4|T_{0}(z)) = (4|T_{0}(-z)K_{0}(z))$

Properties of the KT-relation $K_{0}(z)(4|T_{0}(z)) = (4|T_{0}(-z)K_{0}(z))$

Compatibility with the RTT-relation $R_{12}(u-v) T_{1}(w) T_{2}(v) = T_{2}(v) T_{1}(w) R_{12}(u-v)$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	• .	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•				•
•	•	•	•	ò	•	•	•	•	•			•	•	•		•	•
					•			•									•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•	•		•				•	•						
•	•	•	•	•	0.	•	•		.0			0	•	•			

Properties of the KT-relation $K_{o}(z)(+|T_{o}(z)) = (+|T_{o}(-z)K_{o}(z))$ $\langle \Psi | T_{1}(z_{1}) T_{2}(z_{2}) = R \langle \Psi | T_{2}(z_{2}) T_{1}(z_{1}) R = ... = (...) \langle \Psi | T_{1}(z_{1}) T_{2}(z_{2}) (...)$

Compatibility with the RTT-relation $R_{12}(u-v) T_{1}(v) T_{2}(v) = T_{2}(v) T_{1}(v) R_{12}(u-v)$

				•			٠					٠	*	٠	•	٠	•			*	٠	•		•	٠		٠		•	•		•	•	•	٠	•	•	•	•
	•	٠	•		٠			•	•	٠	•	•		•	•	0		0	0	0	•	0		•		•	0	٠	•	•			•		•		•		
	•					•		•	•	•		•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	•		•	•	•	•	•	•	•	•	•		•
	•								•	•	. •			•		÷	•	•	•	•		•			•	•		•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•		•	•	•	•		•		•	•	•		•		•			•		•	•	•	•		•	•	•	÷	•	•	•	•	•	•	•
•	•					•		٠		•	•	•		٠		•	•	•	•	•	•		•				•	•	•	•	•	÷	•	•		•	•	•	
	•	•	•	•		•			•		•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•		•		•			•	•	•	•	٠	٠	•	•	•	•	٠	٠	٠	•	•	•	•	•	•		• 1	•	•	•	•	•	•	•	•	•	
			•		•	•				•	•	٠		•	•		•		÷			•			•	•	•		•	•	•	•	•		•	•	•	•	•
																																						6	

Properties of the KT-relation $K_{o}(z)(4|T_{o}(z)) = (4|T_{o}(-z)K_{o}(z))$

 $\langle +|T_1(z_1)T_2(z_2) = R \langle +|T_2(z_2)T_1(z_1)R = .$ $(+|T_{1}(z_{1})|T_{2}(z_{2})=K_{1}(+|T_{1}(-z_{1})|T_{2}(-z_{2})K_{1}=.$

Compatibility with the RTT-relation $R_2(u-s)T_1(w)T_2(s) = T_2(s)T_1(w)R_{12}(u-s)$

$=(\ldots)(+)_{x}(\cdot z_{1})_{z}(\cdot z_{2})(\ldots)$	•	•	•	•	•	•	•
$-\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	•	•	•	•	•	*	•
$=(,X_{4}) [J_{1}(\cdot Z_{1}) T_{2}(\cdot Z_{2})()$							

Properties of the KT-relation $K_{0}(z)(4|T_{0}(z)) = (4|T_{0}(-z)K_{0}(z))$ Compatibility with the RTT-relation $R_{12}(u-v) T_{1}(v) T_{2}(v) = T_{2}(v) T_{1}(v) R_{12}(u-v)$ $\langle +|T_{1}(z_{1})T_{2}(z_{2}) = R' \langle +|T_{2}(z_{2})T_{1}(z_{1})R = ... = (...) \langle +|T_{1}(z_{1})T_{2}(z_{2})(...)$ $(+|T_{1}(z_{1})T_{2}(z_{2})=K_{1}'(+|T_{1}(-z_{1})T_{2}(z_{2})K_{1}=...=(...)X+|T_{1}(-z_{1})T_{2}(-z_{2})(...)$ \implies reflection equation $R_n(u \cdot \sigma)K_1(-u)R_n(u + \sigma)K_2(-\sigma)=K_2(-\sigma)R_n(u + \sigma)K_1(-u)R_n(u - \sigma)$

Properties of the KT-relation $K_{0}(z)(4|T_{0}(z)) = (4|T_{0}(-z)K_{0}(z))$ Compatibility with the RTT-relation $R_{12}(u-v) T_{1}(w) T_{2}(v) = T_{2}(v) T_{1}(w) R_{12}(u-v)$ $\langle \Psi | T_{1}(z_{1})T_{2}(z_{2}) = R \langle \Psi | T_{2}(z_{2})T_{1}(z_{1})R = ... = (...) \langle \Psi | T_{1}(z_{1})T_{2}(z_{2})(...)$ $(+|T_{1}(z_{1})T_{2}(z_{2})=K_{1}'(+|T_{1}(-z_{1})T_{2}(z_{2})K_{1}=...=(...)X+|T_{1}(-z_{1})T_{2}(-z_{2})(...)$ \Rightarrow reflection equation $R_n(u \cdot \sigma)K_1(-u)R_n(u + \sigma)K_2(-\sigma)=K_2(-\sigma)R_n(u + \sigma)K_1(-u)R_n(u - \sigma)$ KT for 3=1 higher rep K-matrix

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2,1}(z)(\Psi|T_{1,2}(z) + K_{2,2}(z)(\Psi|T_{2,2}(z)) = (+|T_{2,1}(-z)K_{4,2}(z) + (+|T_{2,1}(-z)K_{2,2}(z))$

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2,1}(z)(\psi|T_{1,2}(z)) + K_{2,2}(z)(\psi|T_{2,2}(z)) = (\psi|T_{2,1}(-z)K_{4,2}(z)) + (\psi|T_{2,1}(-z)K_{2,2}(z))$ Assuming Kinto we can express 41 The with 2+1722 or 2+1721

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2,1}(z)(\psi|T_{1,2}(z)) + K_{2,2}(z)(\psi|T_{2,2}(z)) = (\psi|T_{2,1}(-z)K_{4,2}(z)) + (\psi|T_{2,1}(-z)K_{2,2}(z))$ Assuming Kinto we can express 41 The with 2+1722 or 4+1721

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2,1}(z)(\psi|T_{1,2}(z) + K_{2,2}(z)(\psi|T_{2,2}(z) = \chi + |T_{2,1}(-z)K_{4,2}(z) + \langle \psi|T_{2,1}(-z)K_{2,2}(z)$ Assuming Kinto we can express 41 The with 2+1722 or 2+1721 ら(む)= イトレック off-shell overlap

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2_{1}}(z)(\psi|T_{12}(z) + K_{2_{2}}(z)(\psi|T_{2_{12}}(z) = \chi + |T_{2_{1}}(-z)K_{4_{2}}(z) + (\psi|T_{2_{12}}(-z)K_{2_{12}}(z))$ off-shell overlap $S(u) = \lambda + |u\rangle$

Assuming $K_{2,1} \neq 0$ we can express $4 + 1 T_{1,2}$ with $2 + 1 T_{2,2}$ or $4 + 1 T_{2,1}$ Creation diagonal annihilation $|\overline{u}\rangle = \frac{m}{|\overline{u}|} T_{12}(u_j)|D\rangle$

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2,1}(z)(Y|T_{1,2}(z) + K_{2,2}(z)(Y|T_{2,2}(z) = (Y|T_{2,1}(-z)K_{4,2}(z) + (Y|T_{2,1}(-z)K_{2,2}(z))$ Assuming Kinto we can express 41 The with 2+1722 or 2+1721 $|\overline{u}\rangle = \frac{n}{|\overline{u}|} T_{12}(u_j)|0\rangle$ $T_{i}:(u) |0\rangle = \lambda_i(u) |0\rangle$ off-shell overlap $S(u) = \lambda + |u\rangle$

2(uj)	(D)	7		1	ii	(N)			Λίζ			
	•	•	•	•	•	•	•	•			•		
•	•	•	•	•	•			•	•		•	•	
•	٠	٠	•	٠	•	•	٠	•	•	•	•		

calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2,1}(z)(\Psi|T_{1,2}(z) + K_{2,2}(z)(\Psi|T_{2,2}(z) = (+|T_{2,1}(-z)K_{4,2}(z) + (+|T_{2,1}(-z)K_{2,2}(z))$ Assuming Kinto we can express 41 The with 2+1722 or 2+1721 $|\overline{u}\rangle = \frac{m}{\sqrt{2}} T_{1/2}(u_j)|D\rangle$ $T_{i}:(u) |0\rangle = \lambda_i(u) |0\rangle$ off-shell overlap $S(\overline{u}) = \lambda + |\overline{u}\rangle$ $S_{A}(iz, u) = \langle + | T_{u2}(z) | u \rangle =$

2(uj)	(D)	7		1	ii	(N)			Λίζ			
	•	•	•	•	•	•	•	•			•		
•	•	•	•	•	•			•	•		•	•	
•	٠	٠	•	٠	•	•	٠	•	•	•	•		

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2_{1}}(z)(\psi|T_{12}(z) + K_{2_{2}}(z)(\psi|T_{2_{12}}(z) = (\psi|T_{2_{1}}(-z)K_{4_{2}}(z) + (\psi|T_{2_{12}}(-z)K_{2_{2}}(z))$ Assuming $K_{2,1} \neq 0$ we can express $441T_{2,2}$ with $2+1T_{2,2}$ or $2+1T_{2,1}$ Creation diagonal annihilation $|u\rangle = \frac{n}{|v|} T_{12}(u_j)|0\rangle \qquad T_{i_j}(u_j)|0\rangle = \lambda_j(u_j)|0\rangle$ off-shell overlap $S(\overline{u}) = \lambda + |\overline{u}\rangle$ $S_{A}(iz, \overline{u}) = \langle \psi | T_{u2}(z) | \overline{u} \rangle = \frac{K_{22}(z)}{K_{21}(z)} [\psi | T_{22}(-z) | \overline{u} \rangle - \langle \psi | T_{21}(z) | \overline{u} \rangle] + \frac{K_{12}(z)}{K_{21}(z)} \langle \psi | T_{21}(-z) | \overline{u} \rangle$

Calculation of the Off-shell overlap (2,2) component of the KT-relation $K_{2_{1}}(z)(\psi|T_{12}(z) + K_{2_{2}}(z)(\psi|T_{2_{12}}(z) = (\psi|T_{2_{1}}(-z)K_{4_{2}}(z) + (\psi|T_{2_{12}}(-z)K_{2_{2}}(z))$ Assuming $K_{2,1} \neq 0$ we can express $441T_{2,2}$ with $2+1T_{2,2}$ or $2+1T_{2,1}$ Creation diagonal annihilation $|u\rangle = \frac{n}{|v|} T_{12}(u_j)|0\rangle \qquad T_{i_j}(u_j)|0\rangle = \lambda_j(u_j)|0\rangle$ off-shell overlap $S(\overline{u}) = \lambda + |\overline{u}\rangle$ $S_{A}(iz, \overline{u}) = \langle \psi | T_{u2}(z) | \overline{u} \rangle = \frac{K_{22}(z)}{K_{21}(z)} [\psi | T_{22}(-z) | \overline{u} \rangle - \langle \psi | T_{21}(z) | \overline{u} \rangle] + \frac{K_{12}(z)}{K_{21}(z)} \langle \psi | T_{21}(-z) | \overline{u} \rangle$ $S_{\lambda}(\{z,\overline{u}\}) = \sum(\dots) S_{\lambda}(\overline{w})$ 家こ {ミーころしん

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{I}} W(\bar{u}_{I}(\bar{u}_{I})\lambda_{I}(\bar{u}_{I})\lambda_{2}(\bar{u}_{I}))$ 8

I	•	•	•	•	•	•	•	•	•	•	•	•	ス	ra(<u>ā</u>)	= . v	T ječ	л Т
	۰	•	•	•		•												•
	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
	•	•	٠			•	•				•	•	•		•	•		•
		•	•	÷		•	•		•	•	•			•			•	•
	•	•	•	•	٠	•	•	٠	•	•	•	•	•		•	•	•	•
	•	•	•		•	•	•	•	•	•	• 1							•
	•						•	•				•						
	•					•	•	•	•	•	•	•	•		•	•		•
		•	•		•	•	•		•	•	•			•	•	•		
	•	•	•	•		•	•	•		•	•	•	•	•				•
	•	•	•	•	0	•		0	•	•		•	•		•	•		
							•								•			

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{I}} W(\bar{u}_{I} | \bar{u}_{I}) \lambda_{I}(\bar{u}_{I}) \lambda_{2}(\bar{u}_{I})$ 2) $W(\bar{u}_I | \bar{u}_I) = f(\bar{u}_I, \bar{u}_I) Z(\bar{u}_I) Z(\bar{u}_I)$

Γ	•	•	•	•	•	•	•	•	•	•	•	•	へ,	و(ت ع	ī)=	r vj	۲ من	へ
	Ì	•	•	•	•	•	•			•			•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•		• 1	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	0	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	۰	•		•	•	•	•	•	•	•	•	•		•	•
	0	0	•	0	0		•	•	•	•	•	•		•	•	0	•	•
	•							•				•						
				•		•	•	•	•		•	•	•					•
	•	•	•	•	•			•								•	•	•
	•		•	•	•	•								•				
		•		•	•	•	•	•			•					•	•	•

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{\bar{u}}\bar{v}\bar{u}_{\bar{u}}} W(\bar{u}_{\bar{u}}(\bar{u}_{\bar{u}})\lambda_{\mu}(\bar{u}_{\bar{u}})\lambda_{\mu}(\bar{u}_{\bar{u}}))$ 2) $W(\bar{u}_I | \bar{u}_I) = f(\bar{u}_I, \bar{u}_I) Z(\bar{u}_I) Z(\bar{u}_I)$ 3) recursion for the HCs Z, Z

Γ	•	•	•	•	•	•	•	•	•	•	•	•	へ,	و ^{(ز}	ī)=	i ^v	۲ من	へ
T	Ì	•	•	•	•	•	•			•			•	•	•	•	•	•
	•	•	•	•	•	•	٠	•	•		• 1	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	0	•	•	•	•	•	•	٠	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	۰	•		•	•	•	•	•	•	•	•	•		•	•
	0	0	•	0	0		•	•	•	•	•	•		•	•		•	•
	•							•				•			•	•		
						•			•			•						
	•			•				•								•	•	•
	•		•	•	•	•								•			•	
		•		•	•	•	•	•			•					•		•

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{I}} W(\bar{u}_{I}(\bar{u}_{I})\lambda_{I}(\bar{u}_{I})\lambda_{2}(\bar{u}_{I}))$ 2) $W(\bar{u}_I | \bar{u}_I) = f(\bar{u}_I, \bar{u}_I) Z(\bar{u}_I) Z(\bar{u}_I)$ 3) recursion for the HCs Z,Z These can be derived from

•	•	•	0		•	•		•	0	•		•	0	•	ļ	i =i	١٢٢	ען זענ	ב	•	•	•	•	•		•	•	•	•	•	ン	re (بتر):	- - -	T	え	k (u;)
•	•	•	2	.) \	X/(ū	rlv	ίπ))=	t(<u>u</u> I	.,7	i _r))Z	;(ū	J.	Z	<u>r</u> J	E)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	• •
•	•	•		s) I	rec	ur	síc	on	fo	rt	he	++(Cs		Z (1 Z	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
•	•	•	1 0 1		•		•	•	•	•	•	•	•	•	•	۰	•	۰	•	۰	•	•	•	•	•	•	•	•	•		•		•	•	•		•	• •
	•	•	-	The	ese	CO	in	be	de	eriv	vec	h k	rov	N	•	•	0	•	0	•	0	•	•	•	•	•	•	•	0	0	•	•	.0	•	0	0	•	• •
•	•	•	•	•	•	•	•						•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
٠	•	•		•	•	•				٠		٠	•	•	•	۰	•	•	9	•	٠	•	•	•	•	•	•	•			•		٠	•	•	•	•	• •
	•	•	•	•	•	•			•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	• •
		•			•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•		•	•		
				0								0	0		0	0	0	0			0																	8

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{\bar{u}}\bar{v}\bar{u}_{\bar{u}}} W(\bar{u}_{\bar{u}} | \bar{u}_{\bar{u}}) \lambda_{i}(\bar{u}_{\bar{u}}) \lambda_{i}(\bar{u}_{\bar{u}})$ 2) $W(\bar{u}_I | \bar{u}_I) = f(\bar{u}_I, \bar{u}_I) Z(\bar{u}_I) Z(\bar{u}_I)$ 3) recursion for the HCs Z,Z These can be derived from 1) KT-relation 8

נ	•	•	•	•	•	•	•	•	•	•	•	く	re(<u>`</u> ū`)	= ' v	T :63	х т	•
-)	۰		•	•	•	•			•	•		•		•				
	۰	•	•	•	• .		•	•				•		۰				
•	•			•	•	•	•	•	٠	•	•	•			٠			
		•			•			•		•	•		•			•	۰	
•			•		•	•	•	•	•	•	•		•			•		
•	•		•		•	•	•			•				.0.7			0	
-		. /																

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{I}} W(\bar{u}_{I}(\bar{u}_{I})\lambda_{I}(\bar{u}_{I})\lambda_{2}(\bar{u}_{I}))$ 2) $W(\bar{u}_{I}|\bar{u}_{I}) = f(\bar{u}_{I},\bar{u}_{I})Z(\bar{u})Z(\bar{u}_{I})Z(\bar{u})Z(\bar{u})Z(\bar{u}_{I})Z(\bar{u})Z(\bar{u})Z(\bar{u})Z(\bar{u})Z($ 3) recursion for the HCs Z,Z These can be derived from 1) K 2) re

	•	•	•	•	•	•	•	•	•	•	•	ス	ra(<u>ā</u>)	= ' v	Т ; 63	え
_)	•	•	•	•		•			•	•	•	•	•	•	•		
	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
۰	•	•		•	•	•	•	•	•	٠	•	•	•	٠	•	•	•
•	٠	٠	٠	٠	•	٠	•	•	•	•	٠		•		٠	٠	٠
•	٠	•	•	٠	•	٠	•	•	•	•	•	•				٠	
•	٠	٠	٠	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•
,T-1	rel	atí	on	•	•	•	•	•	•		•	•	•	•		•	•
си	rre	enc	cee	equ	лa	tío	n		•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•		•	•	•	•	•	•	0	0	•

Properties of the off-shell overlaps 1) sum formula $S_{\overline{\lambda}}(\overline{u}) = \sum_{\overline{u} = \overline{u}_{\overline{u}} \vee \overline{u}_{\overline{u}}} \mathcal{W}(\overline{u}_{\overline{u}} \setminus \overline{u}_{\overline{u}}) \lambda_{\mu}(\overline{u}_{\overline{u}}) \lambda_{\mu}(\overline{u}_{\overline{u}})$ 2) $W(\bar{u}_I | \bar{u}_I) = f(\bar{u}_I, \bar{u}_I) Z(\bar{u}_I) Z(\bar{u}_I)$ 3) recursion for the HCs Z,Z These can be derived from 1) K 2) re 3) a

Π					0		•			0	•		ン,	e (i	ī):	= T vi	ر مي	く
	`	•	٠	•	•	•	•			•	•	*	•	•	•			•
E		•	٠	0	•	• :	•	0	٠		.0.1	•	•	•	•	•		•
	•	•	*		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	0	•	•	•	•	•	•		0		•	•	•	•	•	•
	•	•	۰	•	•	•	•	•	•	٠	•	•	•		•		•	•
	•	•	•	•	•	•	•	•	•	•	• 1	•	•	•	•		•	•
٦.	r	ela	atic	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•
20	eur	re	nc	e e	qu	lat	íoi	N	•	•	•	•	•	•	•	•	•	•
	•		C		•••	•				•	•					•		
Ct	tlo	N.	tor	m	uli	a	•	•		•	•	•	•	•	•	•	•	•
	•	•	0	•	•	•	•	•	٠		•	•	•	•	•	•		•
		÷					•					•						

Properties of the off-shell overlaps 1) sum formula $S_{\overline{\lambda}}(\overline{u}) = \sum_{\overline{u} = \overline{u}_{\overline{u}} \vee \overline{u}_{\overline{u}}} \mathcal{W}(\overline{u}_{\overline{u}} \setminus \overline{u}_{\overline{u}}) \lambda_{\mu}(\overline{u}_{\overline{u}}) \lambda_{\mu}(\overline{u}_{\overline{u}})$ 2) $W(\bar{u}_I | \bar{u}_I) = f(\bar{u}_I, \bar{u}_I) Z(\bar{u}_I) Z(\bar{u}_I)$ 3) recursion for the HCs Z,Z These can be derived from 1) K 2) re 3) a

Γ				0								ろ	ral	<u>ā)</u>	=	R _	2
•	•	0		•	•	•			•				0	•	Ľ	jer	6
L)	•	۰	•	•	•	•	•	•	•		•	•	•	•	•	•	•
0	٠	0	÷	۰	+ .	•		٠		٠	•	•		٠	•		0
	•	•	÷	•	•	•		•	•	•	•	•	٠	•		•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
•	•	٠	•	•	•	•	٠	•	•	•	•	•	•			•	•
.T -	rel	atí	on	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
eci	irre	enc	ce e	equ	ra	tío	n	•	•	•	•	•	•	•	•	٠	•
•		•		•	•	•		•	•		•	•	•	•	•		•
cti	on	fo	rM	.ul	.a	0			•	•	•	•	•		•	•	•
0-1	pro	du	ct ·	foi	m	м	a			•	•				•		

Properties of the off-shell overlaps 1) sum formula $S_{\bar{\lambda}}(\bar{u}) = \sum_{\bar{u}=\bar{u}_{I} \vee \bar{u}_{I}} \mathcal{W}(\bar{u}_{I} \cdot \bar{u}_{I}) \lambda_{I}(\bar{u}_{I}) \lambda_{2}(\bar{u}_{I})$ 2) $W(\bar{u}_{I}|\bar{u}_{I}) = f(\bar{u}_{I},\bar{u}_{I})Z(\bar{u}_{I})Z(\bar{u}_{I})$ 3) recursion for the HCs Z, Z These can be derived from 1) KT-relation 2) recurrence equation $|\{z,\bar{u}\}\rangle = T_{A,2}(z)|\bar{u}\rangle$ $T_{ij}(z)|z_{z}=\sum_{i}(...)|z_{z}>$ 3) action formula 4) co-product formula $|\bar{u}\rangle = \sum (...) |\bar{u}_{I}\rangle \otimes |\bar{u}_{I}\rangle^{2}$

•	۰	•	0	•	•	•	•	•	•	•	ろ	· • (<u>[</u> ū]		T	2	
					•			•						Ľ	jeŭ	Ĩ.	
					•												

 $\langle \Psi | T_{A,2} \rightarrow \langle \Psi | T_{2,2} \& \langle \Psi | T_{2,4} \rangle$

On-shell limit transfer matrix twist matrix $T(u) = \sum_{i=1}^{2} T_{i,j} G_{j,i}$ $G \in GL(2)$

•	Ċ	· Ç	Ż		- 5	51	1	el	l	•	li	·	Ň		t	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	t	rai	ns.	fer 2	·W	iat	rí)	x	•	•	•	tw	rist	t n	rat	trí,	X	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	(1	r)=	Zi=	- - -	L iiż	G	jii	•	•	•		ב. פ	: G	sĽ((2)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	•	٠		•	•	•	•	•		•		•	•	•	٠	٠	•	•	•	•											•
	•	٠		•	•	•		•		. 0	•		۰	۰	۰	۰	٠	•	•	٠	٠	٠	•	0.		•	٠		•		0	•	•	•	•	
•		•		•			•	•		•			•	٠	٠	•	•	•	•	•			•	•	•	•	•				٠	•	•	•	•	•
•		•	•	•	•	•	•	•			•	•	•	•	•	•	•			•	•	÷		•	•	*	•	•	•	•	•	•		•	•	٠
	•				•		•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	0	•		•			•	•		•		•	
. 0	۰	•			0		٠	٠	0	. 0	•	٠	0	0	0	۰	۰	٠	٠	۰	۰	٠	٠	0	0	۰	•	0.	0	0	0	٠	•		•	•
۰	٠		•	•	0	•		•	0	0	. •	•	•	0	0	•	٠	•	•	•	•	•	•	0	۰	٠		0		0	.0	•			•	•
•		•	•	•	٠	•	٠	٠		٠	•		*	*	•	•	•		•	٠		*	٠	•	*	•	•	٠	•	•	٠	*	•	•	•	•
•	•		•	•	•	•	•	•	.*	•	•	•	*	•		•	•	•	•	•	•		•		*			•	*	•	•		•	•		
•	۰	•	•	•	•				•			•	۰	۰	۰	٠	٠	•	•	•	٠	٠	•	•	۰	•	•	•	•	•		•	•	•	•	•
	•	٠		•						. 0		•	۰	۰	۰	٠	٠	٠	٠	٠	٠	٠	٠	0	•	•	•			•		•	•	•	•	
	*	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	*	•	•	•	•	•
																																	•			•

On-shell limit transfer matrix twist matrix $T(u) = \sum_{i=1}^{2} T_{ij} G_{ji}$ $G \in GL(2)$

•	Ċ	, Ç	Ż	Ļ-	- 5	5)		e	Ul		lí		Ú		t	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	t	rai	٨S	fer	- W	ıat	rí)	x		•	•	tu	ńs	tn	лa	trí,	X	•	•	•	•	•	•	• "	•	•	•	•	•	•	•	•	•	•	
	•	•	T (1	r)=	222		L i, j	G	sj.i		•	•	(26	÷ G	sĽ((2)	•			•	•		•	•	\rightarrow		(4)	7	(u)=	<4	۲۱	Υ((- J	-)
	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		•	•	
٠	•		•		•	•	•			•	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	
•	•	٠	•		•	•	•		•	•			•	•	٠	•	•		٠	•	•		•	•	•	•	•	٠	•	•	•	٠	•	•	•	•
٠	•			•	•	•	•	•	•			•	•	٠	•	•	•	•	•	•	•	•	•	•	•		•		•	•		•		•	•	•
•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	
	•	•	•		•	•	•	•	•			•	٠	٠	۰	٠	•	•	۰	۰	۰	•	٠	*	٠	٠	•	•	•	٠	•	•			•	•
•	•		0	•	•	•	•		•	•		•	•	۰	0	0	0	•	0	0	•	•	•	۰	•	0	•	•			.0	0		•	•	•
•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•			•	•	•	•	•	•	•	•	•	•	•		•	•	*			•	•	•		•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
			0								0																				0	0	0			
																																	•			

On-shell limit transfer matrix twist matrix $T(u) = \sum_{i=1}^{2} T_{ij} G_{j,i}$ $G \in GL(2)$

•		0	V	L-		51	1	e	Ll		lí		Ú		t	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	t	rai T(v	ns 1)=	fer Z		cat Fij	crí; G	X Sj.i	•	•	•	tn (ís a e	tn G	na sL(trí (2)	X	•	•	•	•	•	•	0 " 0 1	•	· ·	(+)	r Y	(u)=	۲. ا	۲I /	Č ((- u	-)
	•		0	•			•				•	•	0	•	•	•	0	0	•	•	•	iŞ	ſť.		[K	, G]=	0	•	•	•	•	•	•	•	•
٠		•	•	•	0.	0		. 0		•			۰	۰	0	۰	۰	۰	٥	0	0	۰	0	•	٠	0	•	•	•	•	0	0.	•	• -		
•	•	•		•	•			•	•	•			•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	•
۰	•		•		٠			٠			•	•	*		٠	٠	•			•	•	•		٠	•		•		•	•		•		•	•	•
•	•				۰			•	•	•	•	•	٠	٠	•	٠	٠	۰	•	۰	•	•	0	•	•	•	•	•	•	•	0				•	
•	٠				0	. 0	۰	.0	•		0	۰	۰	0	0	۰	۰	٥	0	0	0	0	0	.0	•	0	0	0	•		.0	0	.0	•	0	•
•	•	•	٠	•	0	0	0	0	•	٠		•	۰	۰	0	•	۰	•	0	0	•	0	0	۰	•	•	۰	•	•	•	.0	0		•	0	•
•	•	•	•	•		0	•	•	•	•	0	•		•	•	•	•		•	0	•	0	•	•	•	•		•	•	•	•	•	•	•	0	•
•																•				•	•	•	•					•								
													•			•				•				•												
					•	•	•				•				•					ě	•	•										•	•		•	
						0													0														•		•	

On-shell limit transfer matrix twist matrix $\Upsilon(u) = \sum_{i=1}^{n} T_{ij} G_{j,i}$ GeGL(2) on-shell Bethe states $T(z)|u\rangle = f(z|u)|u\rangle$

•))	Ż	L-	- 5	5)	1	e	Ll		Lí		Ņ	i	た	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	t ~	rai Th	۸S (۱)=	fer Z		rat Fij	cri; G	x sj.i	•		•	tn (ís Je	tn EG	na sL(trí (2)	X	•	•	•	•	•	•	•	•	•• • •	(4)	· Y	(u))=	<u>ر</u> ب	۰ ۲۱	۲ ((- u	-)
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	iſ	ł		[K	, G]=	Ð	•	•	•	•	•	•	•	•
•	•	01	N-9	shi	ell	B	eth	es	sta	tes	S		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	T	(Z`)\ū	:>	5	Z((= \	ידי י)\ī	<i>⊾</i> >	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	0	•	•	0	•	•	•	•	•
	•		•			•	•			•	•		•	•	•	٠	•	•		•			•	•	•	•	•	•		•	•	•		•	•	
•	•	•	*	•		•	•			•	•		•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•		•	0	•
•	•	•	•	•		0	•	0	0				•	•	0	0	0	0	0	•	0	0	•	•		0	•	0	•	0	0	•	•	•	•	
. 0	•								•	•		•	•	•	٠	•	•	•	۰		•			•	•			•	•	•			•	•		
•		•	*	•	•	•		•	•	•	•		÷	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
																								•												•

transfer matrix $T(\omega) = \sum_{i=1}^{n} T_{i,i} G_{i,i}$ twist matrix $G \in GL(2)$ $(J \in GL(2)$ $i \int [K,G] = 0$ on-shell Bethe states $T(z) \overline{u} \rangle = 2(\overline{u} \overline{u}) \overline{u} \rangle$ $(\psi \overline{u}\rangle \neq 0$	•	C	Ç	V	L-	-5	51	Ń	e	Ll		Li	Ì	U	ĺ	t	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
on-shell Bethe states $T(z) \overline{u}\rangle = 2(\overline{z} \overline{u}) \overline{u}\rangle$ non-vanishing on-shell overlaps $\langle \psi \overline{u}\rangle \neq 0$	•	•	t ~	rai rai	۸S (۱)	fer Z		rat	trí, j G	X ³ j.i	•		•	tw (vist ze	: n	nat	zri,	X	•	•	•	•	•	•	•	•	· ·	(+)	۰ ۲	(u`)=	۲		ľ	(- u	.)
on-shell Bethe states $T(z) \overline{u}\rangle = 2(\overline{u} \overline{u}) \overline{u}\rangle$ non-vanishing on-shell overlaps $\langle \psi \overline{u} \rangle \neq 0$	•	•	•	•	•	•	•		•	•	•	•	•	•	•	0	0	•	0	0	•	•	iŞ	f	•	[K	, G]=	0	•	•	•	•	•	•	0	•
on-shell Bethe states $T(z) u\rangle = z(z u) u\rangle$ non-vanishing on-shell overlaps $\langle \psi u\rangle \neq 0$	•	٠	٠	•	۰	•	0		•	. 0		•		۰	٠	0	0	0	۰	٥	•	٠	٠	•	•	•	٠	٠	.0	0.1	•	•	0.	٠		•	
$T(z) u\rangle = \mathcal{L}(z u\rangle) u\rangle$ on-shell overlaps $\langle \psi u\rangle \neq 0$	•	•		۰ ۸ – ۹	chi	211.	R	0+)/		c+n	$i + \rho$	•	•	V	lov	レーレ	av/	rís	shi	ng)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
$\int (z) (u) = \mathcal{L}(z u) u \rangle $ (4) $u > \pm 0$	•	•	\sim									- `	٠	0	n-	sh	ell	ÖV	ler/	lat	S	•	•	•	•	•	.**	•		۰	•		•			•	•
1 1				(2))[v	·>	1	E (()))ī	~~	•	•	<	Ψl	ず	}	- 0)	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•
i i				•	0											•		•			•	•					•		•		•		•				
· ·										•															•		•	•		•	•	•	•		•		•
· · · · · · · · · · · · · · · · · · ·	•	•	•		•	•	٠	•	٠		•		٠	•	٠		•		•			•		•	•		•		•			•	•	•	•		٠
	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		0	٠		. 0	٠			0	0			0	۰	۰	0	0	0	٥	0		٠	۰	۰	• 1	•	•	•	.0		•	٠		•	•	٠	
			•				•	•	•	•	•	•		*	•	•		•		٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•

•	C	0	Ż	L-		51	1	e	ll		lí	V	V	í	t		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	t ~	rai Mu	۸S. (۱	fer Zi		cat Fii	cri;	X Sj.i	•	•	•	tw (vist Ja e	tn G	nat	trí, (2)	X		•	•	is	ť	0 0 1 0 1	•	→ ,G		(4) 0	•	(u) _=	•	۲ ۲	r T	(- J	-) -
•	•	01 7	∧9 (Z)	sha)lu	ell 、>	Be =	eth C(e s (z \	sta Ju	tes)\ī	5		V 0	iov n-	ν-ν sh ΨΙ	/av ell v	νίς νοι γ †	shí /er = (ng lag	y SS	•		•	£ (-	5 1 1	تر)	= T	;(-;	zľū	· · ·	•	•	•	•	•	•
•	•						•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•	
•	•		٠	٠	•		٠	•	•	۰	•		•	•	•	•	•	•	•	•	*	•	•	•	٠	•	•	۰	•	•	٠	٠	•	•	•	•
•	•		•		•	•		•		•	•	•	•	•		•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•		•	•								•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•		•

 $T(z)|u\rangle = f(z|u)|u\rangle$

without twist

Dn-shell limit		• •	•	•	•	• •	•	•	•	•	•	•	•	•	•
transfer matrix $T(u) = \sum_{i=1}^{2} T_{i,i} G_{i,i}$ $G \in GL(2)$	íx)	i	ťť	• • • •	• " • " • "	÷ G]	\\	• • •	(u)=	۲		T (- e	•
on-shell Bethe states T(z)(む)= て(まいむ)) む> くりいう	shing overlaps +0			E (7	E \ J	ເ)=	T(-	zIJ	•	•	•	•	•		•
paír structure	• • •	•••	•	•	•	• •	•	•	•	•	•	•	•	•	•
víthout twíst $\longrightarrow \{u_i\}_{i=1}^{r} \{-u_i\}_{i=1}^{r}$		•	•	•	•	• •	•	•	•	•	•	•	•	•	•
$Q(z) = (z)^2 Q(z)^2$			•	•	•		•	•	•	•	•	•	•	•	•

without twist

on-shell liv	uit :	• • • • •		•
transfer matrix $T(u) = \sum_{i=1}^{2} T_{i,i} G_{i,i}$	twist matrix GeGL(2)	ist [k	$ \rightarrow \langle \psi \Upsilon(\omega) = \langle \psi \Upsilon(-G] = 0 $	•
on-shell Bethe states て(こ)に、= そ(=に)に、	non-vaníshíng on-shell overlaps (4127 + 0	→ ℃(₹\5	こ)=て(-ぇいむ)	•
víthout twíst \longrightarrow [u;]	structure $= \{-i, j\}_{i=1}^{i}$ $= (-i) (Q(-z))$	with twist	Two sets of roots $ \begin{array}{c} & & \\ & &$	

Untwisted on-shell limit Bethe ansatz equations

$$\begin{split} \Rightarrow_{j} := \frac{\lambda_{i}(u_{j})}{\lambda_{l}(u_{j})} \prod \frac{u_{j}-u_{l}-i}{\lambda_{l}(u_{j})} = 1 \\ \lambda_{l}(u_{j}) \neq_{j} u_{j}-u_{l}+i \end{split}$$
10

 $\dot{P}_{j} := \frac{\lambda_{i}(u_{j})}{\lambda_{2}(u_{j})} \prod \frac{u_{j} - u_{2} - i}{\lambda_{2}(u_{j})} = 1$ $\lambda_{2}(u_{j}) = 1$ 10

Untwisted on-shell limit Bethe ansatz equations Gaudín matrix on-shell norm Lain?~ .

	•		•	•	•	•	•	•		•	•		•	•	•	•	•	•
	•	•	•	•	•	•	٠	٠	•	٠	•	•	•	•	•	•	•	
	*	•	•	٠	•	•	٠	•	•	•	•		•	•	•	•		٠
•	•	0	ک	· ^	. .)		•	u -	- (4		-	•	٠	•	٠	•	•	•
र	•	•		·/L'				<u> </u>		· <u>z</u>		2,		•		•	•	•
	•	0	•	عدل	N j) 2	Ŧſ	u J			• •				•	•	•	
1	29	Ф;	•			•		•	•	•		•	•	•	•	•	•	
	•	.7	•	•	•	•	•			•	•							
	•	•	~		•	• ;	•	•	•	•	•		•			•	•	
	d	et	G			•												
		•																
				•		•		•		•	•							
		Ĭ	Ť	, T			Ť	Ť				ľ		, in the second				
	•	0	•	۰	•	•	•	•		•	•	•	•	•	•	•	•	•
	•	•	•	0	•	•	0	0	•	•		0		•	•	•	•	
	•	٠	•	٠	•	•	•		•	•	•		•	•	•	•	•	•
	•							•						•	•		•	

•	L	11	rt	W	ís	te	ed	0	N	,-S	sh	el	l	li	M	ít	•	•
•	•	•	B	etl	ne	an	sa	tz	eo	เนเ	atí	on	Ś	•	•	•	e	4
•	•	•	•				•			•			•				÷	•
•	•		•	•	Ga	uc	liv	i n	лa	tri	X	•	•	G	i.b	2	ର୍	
•	•	•	•		•	٠	٠				•	•	•	•	3, -	•		•
•		•	•		•	•	•			•			•	•	•	•		۰
•		•			on	-SI	nel	ln	lor	m	•	•	•	4		L.		•
•	•	•				•				•	•	•	•	Ť	oro	Ve	dk	いふ
•	•	•			•		•	•	•	٠	•	•	٠	۲		•	•	5
	٠	•		•	٠		٠	•	•		•	•	٠	•	٠	۰	•	۰
•	•	•	•	•		•			•	•	•		•	•	•	0	•	•
•	•	•	•	•		•	•	٠		•	•		•		•	•	•	
•	•	•	•	•	•	•	•			•	•	•	•	•		٠	•	
•	•	•	•	•							•	•	•	•	•	٠	•	۰
	•	•									•	•	•	•	•	•	•	•
•		•	•							•								

.

	•	•	٠	٠		•	•	•	•	٠	•	•	•	•	•		•	•
		•	•	*	•	•	•		•	•	•		•	•	•	•		•
	•	•	• 0)	•	u :	- 0		 1.		•	•	•	•	•	•
٠ ج	•	0	-	<u>vic</u>	<u> </u>					-2		2,	1-		. 0.		•	•
	•		•				.+(~J				0	•	٠	•	•	•	•
l	၁၅	\$	•		+		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•			•	•		•	•	•	÷	•	•
	•	_+	- `C	٠	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•
	C			•	•	•	•			•	•				٠			•
1	Ka	ve	Dίι	へ'さ	SC	rít	er	ía	•	•	٠		•	•			•	•
)	•	•	•		•	•	•	•		•	٠	•			•	•	•	
	•	•	0	•	•	0	0	0	0	•	0				.0		•	•
		•					•	•	•			•			•			
	•				÷	•	•	٠	•	•	•	•	•	•				•
	÷	•	•		•		•		•	•	•		•		•	•		•
	•	•	•	•	•	•	•		•	•	•			•	•		•	•
	•	•		•	•	0.	•	•	•	•		•			•			
			•	•	•	•	•	0	•	•	•	•		0	0			
		•							•						•			

•	L	4	rt	W	ús	te	ed	0	N	-S	h	el	LI	lí.	M	ít	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	B	etl	nec	an	sa	tz	eq	цС	ití	on	S	•	•	•	e	4		•		2,(2,(2,)	uj) .uj) 	T . +i	u; u;	-u -u	2- 2-	i 	2.		•	•	•	•	•
•	•	•	•	•	Ga	ио	lín	l N	rat	trí,	X	•	•	લુ	ن مح		Su	ري ا دي	၁၅	ф;		•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•		on-	-sV	nell	ln	or	т	•	•	•	ζζ	えし	- 2	7 '	ر م	d	et	Ē		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	P	ro	vec	d b)y	Ka	re	píi	ん'さ	5°C	rít	erí	a	•	•	•	•	•	•	•	•	•	•
•	•	•	•	7	sai	rs	tri	rct	τur	e	•	Ī		ū	۲U) प	-	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•
•	•	•		٠		•				•	•		•		•	•	•	•	•	•		•			•	۰	•	•	•	•	•		•	•		•
0	•	۰			٠			٠	٠	•		•	•	•		•	•	•		•			٠	•		•	•	•			•	•	•	٠	•	۰
•	•	•	•	٠	•	•	•			•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•		•	•	•	•	•	٠	•	•	•
	•	•	. •		•				•	•		•	•	•	•	•	•	•	•	•	۰	٠	•	•	•	•	•		• :	•	٠	•	•	•	•	•
•		۰	•			۰		•	•		•	•	٠	٠	•	•	•			•	•	٠	•	٠	•	0	•	•	•	•		•	0		•	•
•	•						•					•									٠				•	•				•			•		•	•

• •

•	L	11	rt	W	ús	te	ed	0	n	,-S	sh	el	l	li	т	ít	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	B	etl	ne	an	sa	tz	eo	111	atí	on	Ś	•	•	•		ф.	 5	•	2		vj.	> -		u;	- u	اي-	ĩ	•		•	•	•	•	•	•	•	•
																	e					751	.u;) 4	٤ + j	uj	- 1	le t	· ż	_ /									
0	•				Ga	uc	dív	r n	ra [.]	trí	X	•	•	G	ي مح	2	ଚ୍	الع	09	φ	•	0		•	•	•	•	0		0	•	•	0		•		•	•	
•	•	٠	•	٠	٠	•			•	•	•	•	•	٠	•	*	٠	0	•	•	•	•	۰	•	•			•			٠		•	*			•	•	
•	•	•		. (on	-sl	nel	ln	lor	m	•	•	•	4	エ	i v	7	\sim	9	let	- C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•			•	•			•	•		•	•	•	†	oro	ve	dk	sy	K	ore	píi	ん'ら	5°C	rit	ter	ía	•	•	•	•	•	•		•	•	•	•	•	•
•	•			•	•			•	•	•	•		•	•	•	•	۰	•	•	•	•	•	•	•	•	•		•	•	•	•		•		•		•	•	
•	•	•	0	Ŧ	sai	rs	stru	nct	tu	re		Ū	i =	ū	+ L) 		•	(۲ م زلد	الع	-[J	ut	<u>+</u>	D u	-		j f	t S	0	•	•	•	•	•	•	•	•	•
				0		•																0		•			•	•	•	ū	= -	ūt					•	•	
•								•							•	•	•	•			•							•			•						•	٠	•
•	•	•				•		0					•	0	•	٠	۰	0	٠	٠	٠	0	•	•	•	٠		0	•	0		•		•	•	0		•	
. 0	•									•					•	•	٠	٠		•	•			• 1		•			•	٠			•	•	•		•	•	
			•																												•		•						•
													•													•		•				•	•			•		10	2

 $\frac{u_2 - i}{k + j} = 1$ 42.9 log Q; det G Korepín'S critería logej (Jj l'out

•	L	V	rt	wisted on-sh	ell limit	• • • •	• • •	• •	• •	• •	•	•	• •	•	•	•	•
•	•	•	B	ethe ansatz equati	ions et	$s := \frac{\lambda_{1}}{2}$	$\frac{v_{i}}{1}$	<u>u;-u</u>	2-2 =	- ↓	•	•	• •	•	•	•	•
•	•	•	•	Gaudín matríx	Cite = Que	log¢;			et.	•••	•	•	• •	•	•	•	•
•	•	•	•				• •	•	•	•	•	•	• •	•		•	0
•	•	•	•	on-shell norm	troved hu	KORPTIN!	Scriter	ía	• •	• •	•	•	• •	•	•	•	•
•		•	•		proven og	Norcpurve			• •	• •	•	•	•		•	•	•
•	•	•	•	paír structure	ぃ゠ぃ゙ヽ゚ヷ゚゚゙゙゙	ليان ه =[(Dut ± 0	~ <u>~</u>]log	₽ţ J	• •	•	•	• •	•	•	•	•
•	•	•	•	factorisation	$det G = det G^+$	det G	• • •	• •	• • •	i =	U,	•	• •	•	•	•	•
•	•	•	•		• • • • • • •	• • • •	• • •	• •	• •	•••	•	•	• •	•	•	•	•
•	•	•			• • • • • • •	• • • •	• • •	• •	• •	• •	•	•	• •		•	•	•
	•	•									•	•			•	10	•

 $\frac{u_2 - i}{k + j} = 1$ log Q; det G Korepín'S critería og \$t Gj,

• •	•			
• •		Б	ethe ansatz equati	ons et
• •	•	•	Gaudín matríx	Gjre = Quz
• •	•	•	on-shell norm	くむしむう ~
• •	•	•	• • • • • • • •	proved by
• •	•	•	paír structure	な= む ひ む
• •	•	•	factorisation	det G = det G ⁺
• •	•	•	Korepín's criterio	

 $\frac{1}{\lambda_2(u_i)} = 1$ $\frac{1}{\lambda_2(u_i)} = 1$ log Q;det G Korepín'S critería og \$t GJ, · dute

Untwisted on-shell limit Bethe ansatz equations Gaudin matrix Gije = Quz on-shell norm Lain/~ proved by pair structure $\overline{u} = \overline{u}^{\dagger} U \overline{u}^{-}$ factorisation $\det G = \det G^+$ Korepin's criteria -> <4127~ det G 10

	•	• •		•	•	•	•		•
• • • • • •	• •	• •	٠	• •	٠	•	•		•
• • • • •	• •	• •	•	•			•	•	•
γ	т и:·	-U,-	 L	• •	•	٠	•	0	•
$S := \frac{\lambda_2(N_j)}{\lambda_2(N_j)} k$	+j Uj	- UE1	= - i	= X	•	•	•	•	•
$log \Phi; \cdot \cdot \cdot$	• •	• •	•	• •	•	•		•	•
	•	•		• •		•	•	٠	•
/ det G	• •	• •	•	• •	•	•	•	•	•
J Korepín'S crít	cería	• •	•	• •	•	•		•	•
	· · ·		• + • \	•	•	•		•	•
Cite=lout	Quin]	109 ¢	5	• •				•	•
datic	• •	• •		ī	ū,	•	•	•	•
	•	•	•	•		•	•		•
$ \sum_{i=1}^{n} \frac{1}{i} + \frac$	• •	•	•	• •	•		•	•	•

Normalized on-sl

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	0		•	•	•	•	•	•	•	•	•	•	•	0.	0	•	•
•	•	•	•	•	•	•	•		•	•	•	•		0	•	•	•
•	•		•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•		٠		•	•	•	٠	٠		•	•
0	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
	•												•	•		•	

•				Ì	· V	U	.0	11	í	Ż	e	.0		Ò	Ż	L-	-5	5)	1	el	l	•	01		e		.0	71	53	S	•	•	•	•	•	•
•	•	•	•	•	•	へて	ド 1	<u>に</u> い		•		-(IJ	ر ب ا		et (;† G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
						•	•		•		•	•	•	•		•	•	•	•	•	•		•			•		•			•		•		•	
						•						0	•	0	•	•			•		•				•						•		•			
				•										•		•								•	•			•								
															٠						•						•							•	•	
		•			•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• *		•		•	•	•		•	
•		•											•		•				•			•	•		•			•	• 1				•		•	•
	•					•									•	÷		•	•						•	•		0		•	•	•			•	
٠	•		•	٠			٠	٠					•		۰	•	•	•	•	•	•	•		•	•	٠	•	٠	•	•	•	•	•		•	•
٠	•	•	•	•	•		•	•		•	•	•	*	•		•	•	•			•		•				•	•	•	•	•	•	•	•	.*.	•
•	•	•	•	٠							•		٠	٠	٠	•	•	•	•	•	•	•	٠	•	•		•	•	•	•	•	•	•	•	٠	•
. 0	•				٠	.0		0	0		0	0	۰	0	0	٠	٠	٠	٠	•	٠	۰	0	•	•	0	•	.0,		•	•	٠	•	•		
•		•	•	٠	•	٠		•		•	•		•	•	٠	•	•		•	•		•	•	•	•	•	•	٠	•	•	•	٠	•		•	•
																										•										

Normalized on-sl

universal part	det G ⁺ det G	•	d	epe	enc	sk	on
	2 2 2				2		

•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	e,	•	•
•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•
0	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•
•														•	•	•	

•	 			ľ	· V	Ņ	.0	11	í	Ż	e	0	•	Ò	Ņ	•	-5	51	10	el	l	•	D 1		e		.0	11	53	S	•	•	•	•	•	•
	•	•	•	•	•	へて	<u> と </u>	<u>に</u> い			Ŧ	·(ū	3		et C Lot	;+ G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	L	in	í∨e	ers	al	pa	rt		de de	t t		•	d	epe	enc	sk	on	, th	ne T	Be	the	es	tat	e	•	•	•	•	•	•	•	•	•	•	•
•	0	•	•		•	•	•			•			•	0	•	•	•	•	• •	•	•		•	•	•	•	•	•	•	•	•	0	•	•	0	•
•		•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•				•				0				•	•		•		•	•	•	•	•	•	•		•						
•	•	٠	٠	٠	•	•	٠	•	•	•	٠		٠	٠	•	•	٠		٠	•		٠	•	•	٠	٠	•	٠	0	٠	•	•	•	•	•	•
•	•			•		•			•	•		•	•	•		•	•	•	•	•	•		•	•		•	•	•				•	•	•	•	•
	0.	•	. •.		0				0		. 0		0	0	•	•	•	0	0	•	•		•	•	•	0			0	•			•	•	0	
			•						•		•		0	•	•	•	•		•	•	•	•		•	•	•	0	•	•			0	•			•

Normalized on-s $\frac{\langle \Psi | u \rangle}{\langle \overline{u} | \overline{u} \rangle} = \frac{\mathcal{F}(\overline{u})}{\operatorname{det} G}$ universal part depends or boundary part $\mp(\overline{u}) = \underbrace{\pi}_{=1} \mp(u_{1}) de$

•			0	ľ	Ż	N	.0	l	ĺ	Ż	e	0		Ò	Ż	L	- 5	51	1	el	.1	•	01		ei		.0	1	25	S	•	•	•	•	•	•
•	•	•	•	•	•	へて	<u>۲۱</u> ت ۱	<u>に</u>)	, , ,			·(J	ک		et (;† G		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	U	ini	íve	ers	al	pa	rt		de de	t t	+ 2 3	•	d	epe	enc	ds	on	. tl	ne	Be	th	est	tat	e	•	•	•		•	•	•	•		•	•
•	•	Ь	ои	.nc	dai	ry	pa	irt	•	Ŧ	رت	(¢	יא דו ק		FC	· (1)	•	def	sev	rds	50	nt	the	26.	S.	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•	•	•	•						•	•	•	•	•	•	÷	•	•		÷	•	•	•	•			•	•	•	•	•	•	
•	•		•	•	•	•		•	.*	•		•	•	•		•	•			•	•		•				•	•	•	•	•		•			
•	•	•	•	0		•	•		•	•	•	•	•	۰	0	•	•	•	•	•	۰	•	•	•	•	•	•	0	0	•	•	•	•	•	•	0
													•						•	•				•									•			
																																				0

Normalized on-s $\frac{\langle \Psi | u \rangle}{\langle \overline{u} | \overline{u} \rangle} = \overline{T}(\overline{u})$ universal part depends ou boundary part $\mp(\overline{u}) = \frac{\pi}{\pi} \mp(\underline{u}) de$ • DY

•			0	V	Ż	U	.0	11	i	Ż	e	0	•	Ò	Ņ	L	-5	51	10	el	l	•	21		e		.0	11	5.	S	•	•	•	•	•	•
•	•	•	•	•	•	へて	<u> と </u>	<u>に</u> ふ			•	(ū	<u>ب</u>		et (;† G		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	U	cni	ive	ers	al	pa	rt		de	t t		•	d	epe	enc	sk	on	, th	1e -	Be	the	e s	tat	te	•	•	•	•	•	•	•	•	•	•	•
•	•	6	ои	nc	dai	ry	pa	irt	•	Ŧ	(ت	¢)=			FC	()		def	sen	lds	s 0	n 1	the	26	.S	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	• (or i	equ	ú	/al	.en	tl	9	K	(n)	•	•	•	•	•	•	•	•	•	•
•	•					•	•							•	•	•		•			•	•			•	•	•	•	•		•			•		
•	•	•	•	•		•		•		•		•	•	٠	•	•	•	•	•		•	•	•	•			•	•	•	•	•		•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•			•				•				۰	۰	•	•	•	•	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	0	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•

Normalized on-s $\frac{\langle \Psi | \overline{u} \rangle}{\langle \overline{u} | \overline{u} \rangle} = \frac{\mathcal{F}(\overline{u})}{\int \frac{det G^{\dagger}}{dv G}}$ universal part det depends of boundary part $\mp(\overline{u}) = \frac{\pi}{\pi} \mp(\underline{u}) de$ general solution of the reflection equ $K(u) = \frac{\alpha}{u} + A$ 2

		•	•	•	•	•	•	•	
NELL OVERL	U	55		•		•	•		•
	••	•	•	•	•	•	•	•	•
	• •	•	•		•	•	•	•	
• • • • • • • •	• •	•	•	•	•	•	•	•	•
• • • • • • • •	•	•	•	•	•	•	•	•	•
n the Bethe state						•	•		
									•
pends on the b.s.	•	•	•		•	•	•	•	•
equivalently K(w)	• •	•	•	•	•		•	•	•
ation	• •		•	•	•	•	•	•	•
• • • • • • •	• •		•	•		•	•		•
b12									
	• •	•	•		•	•	•		
r=-detA	• •		•	•	•	•	•		

Normalized on-s $\frac{\langle \Psi | \overline{u} \rangle}{\langle \overline{u} | \overline{u} \rangle} = \frac{\mathcal{F}(\overline{u})}{\int \frac{d d d G}{d \overline{u}}}$ universal part depends of boundary part $F(\overline{w}) = \frac{\pi}{F} F(w)$ de general solution of the reflection equ $K(u) = \frac{\alpha}{u} + A$ $A^2 = \times 4$

hall andard	01			•	•	•	•	•	
	И.			٠	•	٠	•	•	٠
• • • • • • • •	•	•	•	0	0	•		•	•
	• •	•	•	•	•	•	•	•	
	• •					•	•	•	
			•						•
n the Bethe state	• •	•	•	•		•	•		
	• •	•	•	•	•			•	
epends on the b.s.	•	•	•	•	•	•	•	•	•
equivalently K(w)	•	•	•	0	•	•		•	
ation	• •	•	•	•	•	•	•	•	
	• •	•				•		•	
b12	干()		<u>_ K</u>		2-	ન્ટ	8		
	• •	•	5			2+	·/~		
v=-detA	•	•	0	•	0	0		•	•

•	t	Ż	V.	15	Sit	56	20	k	Ċ		16	Ì	-L	a	P	•	•	
•	•	fa	or s	spí	n	1/	21	chi	aív		•	. 6	D , ((Ŧ))~	Q	2 (-	7
•	•		•											•				
•	•		•		•				•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	٠	٠	
•	•	•			•	•	•	. •		•			•	•	•	٠	٠	
•	٠	•	•	•						•			•	•	٠			
•	•		•		•	•	•	•			•	•	•		•	٠	•	
•	•	•		.*	•			•	0	٠	•	•	٠	•	•	۰	۰	
•	•	•	•		•	•		•	•			•	•	•	•	•	•	
•	•		•	•	•	٠	0	0	0	•	•	٠	•	•	•	0	•	
•	•	٠	•	•	•	•	•	•		•	•		٠	٠	•	•	٠	1
•	•		•	•	•	•		•	. •	•	•	•	•	•		۰	•	1
•	٠	•	•	•		•						•	•	•	•	۰	۰	
	•	•			•	•			•			•	•	•	•	٠	•	
•	•		•	•		•		•	•	•	•		•		•	•	•	
•												•						

	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	٠
	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	٠
	۱, ۱	7	#	لد ب	= #	5	•	र :	• #	ō	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		۰	•	•	٠		٠	•	•		•	•	•	•	•	•	0	•
	•	•	•	•	•	•	•			•	•		•		•	•		
	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		
	•				•	•	•	•	•	•	•	•	•	•		•	•	•
			•					÷	•	•					÷		•	
	•	•	•			•	•	•	•	•							•	
		•	•	•				•	•	•	•				•			
					•			•		•		•	•			•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	ě.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•

	t	Ż	V	, LS	St	56	20	k	C	Ň	16	Ż	-L	a	P	•	•	
•	•	fa	or s	spí	N	1/	2	chi	aiv	1 .	•		2,	(Z))~	Q	2 (-	7
•	•	•	•		•	•	•	•		•		٠	•	•	•	•	•	
•	*										•			•				
•	•	•	•	• \	/ai	nd	eri	MC	n	de	m	atr	íx	•	•	*	•	
•		•	•		•	•		. •					•	•	•	•	•	
	•	•			•		•	•	•	•		•	•	•	•	•	•	
•	•		•	•	•		•	•			•	•	•	•	•	•	•	
•					•		•	•	•	•	•	•	٠	•	•	•	•	
•	•	•			٠	•	•	•			. •	•	٠	•	٠	٠	•	
•		•	•	•	•	•	•		•		•		•	•	•	•	•	
•	٠	•	•	•	•	•	۰				٠		•		•	•		
•	•	•	•	•	•	•		٠		•			•	•	•	٠	•	
•	٠		٠	•		•						•	٠	٠	٠	٠	٠	
		•			•				0				٠	٠	٠	٠	٠	
		•	•			•		٠	0		•	٠		•	•		•	

	•	٠	٠	۰		•	•	•	•	٠	•	•	٠	0	٠	•		•
	•	•	•	*	•		•	•	•		•		•	•	٠			•
•	•	•		-			•		-	5	•	•		0	•		0	٠
)	•			- U	- 4	•	• .		• #		•				•			
	•					•	•			•	•	•		•	•	•		
	•				b-1	•		•	•		•	•	•	•			•	
/: 1	k	=	0;t	'n	•	Q,	(ଚ	1	ん)(32	(8)	1.	ん)	•	•			
•	•	•	G: -	- • 6	k -1	ຄ	.(6): + '	د ام	Q	(8):4	5					
					•				• • •									
														•			•	•
	•																	
		•					•		•	•	•				•			
	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•

.

twisted overlap for spin 1/2 chain $Q_1(z) \sim Q_2(-z)$ vandermonde matrix Off-shell scalar product .

	•	٠	٠	*	•	•	•	۰	•	٠	٠	۰	۰	٠	•	•	٠	•
	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•		•		• "			う	•	•	•	•	•	•	•	•
	. –				•	•	•		•		•	•	•	•	•	•	•	
	•	•	•	•	•	•	•			•					•	•	•	•
	•			*	2-1		•	•		•	٠	•	•	•	•	•	•	
/; j	k	-(6	2;+	'⁄८)	•	Q	(ଚ.	; `/	')(ઝેટ	(8)		h)	•			•	•
	•	• (6);-	·h	k-1	Q.	(0	;+ ⁱ	·6)	Qr	.(ə	; 4	·/2	•	•	•		
	•	•	•		•	•			•	•		•			•	•	•	•
		•				م م	<i>t</i> \	/	•		•	•		•		•	•	•
	σι	L					- (•	•	•	•	•	•		•	•	•	
	•	•	•	0	•	.0	•	0	•	•	0	٠	0	٠	•		٠	•
	•	•	•	0	•	0	•	•	•		0	•			•		•	
	•	•	•	0		•	•	۰	•	•	•	•	•	٠	•	•	٠	•
		•			٠	٠	•	•	•	•		•	•	•	•	•	•	
	•	•	•	0	•	•	•		•	•	0	•	٠	•		•	•	•
	•	•	•	•	•	•	•	0	•			•		•	• 1	•		
	•	•		•				•	•					•				•
		•							•									

•	t	V	V	19	st	<i>:E</i>	20	ł	C	Ň	10	ľ	-L	a	P	•	•	
•	•	fa	or s	spí	N	1/	2 (cha	ิล่เข		•	. 6	D '((Z)	م	Q	2 (-	7
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	• \	/ai	rd	eri	nc	n	de	m	atr	íx	٠	•	•	•	
•	•	•			•	•		. •		٠		•	٠	۰	۰	۰	٠	
•	٠	•	•	•	•	•	•	•	٠	•		•	٠	٠	٠	٠	٠	
•	•	•	•		>f1	f-s	he	ll s	sco	ala	rţ	oro	du	lct	•	•	•	
•	•	•	•	F	sai	rs	tri	rct	tu	re	. •	•	j.	7 =	T			
	•		•			•	•			•	•				•			
	•	•			•									•		٠	•	
•					•	•	•				•	•	•	•	•	•	•	
•	•	•			•								•	•	٠	۰	•	
•						•			•			•		•	•	i,	•	
														•				

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
7) 7		7	#	- u	= 4	‡ ፓ		Z	= #	ē	•		•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•	٠
V	1.k	=(0;1	ι'n	k-1	Q,	(ଚ	; ; 1	ん)(Qı	(8	;_`; ;_`	h)	-	•	•	•	•		•	•
	•	• (. 0;	- [:] h	<u>k</u> -1	Q	.(6	, ,+'	بر بر	Qr	-(8);+	·h	•	•	•	•				•
÷	•	•			•	•	•		•	•		•	•	•	•	•	•	•	•		•
	5		:7	~	ر	de	+	V	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•	•		•	•		•	•			•		
>	6	$\mathbf{S}^{\mathbf{v}}$	(~) =	(-	η ³ (22	(- 2	<u></u>			•									
•		•		•	•			•	•			•	•		•	•				•	
			•		•	•			•	•	•	•	•	•	•	•			•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	٠
•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	
	•	0	٠	٠	٠	٠	•	•	•	•	٠	•	•	٠	•		•	٠	0	•	•
		•			+			•		•		•			•					1.	2

twisted overlap for spin 1/2 chain $Q_1(z) \sim Q_2(-z)$ vandermonde matrix Off-shell scalar product pair structure . - = ب factorisation detV = detV. 12

		• •				•		•	
:) =7 #ū	= #	र = #	Ō	•					
	-1 · ·							•	
$V_{j,k} = (O_j + i_k)$	ି ପ୍ର(ଚ	;-'h)($\mathcal{J}_2(\partial$	j-`h	.)-				
(O :-*/)	k-1 D.(6);+ ⁽ 6)	Qr(e); + i	,) ·		•		
					••••			•	•
	·		• •	•	•		•	•	•
くいし/~	Cer	V	• •	•	•	•	•	•	•
$\sim \Omega (-) -$	137	(- \	0	•	• •	•	•	•	•
(z) =	(-1) (X ₂	(- Z)	• •	•	•	•	•	•	•
dativ	• • •	•	• •	•	•	٠	•	•	•
Gerv	• •		• •	•	•	•	•		•
• • • •	• • •	•	• •	•	• •	•	٠	•	•
	• • • • •	• · • • :		•	• •	•	•	•	•
	• • •	• •	• •	•	• •	٠	•	•	•

	t	:V	V	isted or	lerlap.
•	•	f	or :	spín 1/2 chaín	$Q_1(z) \sim Q_2(-z)$
•	•	•	•		• • • • • • •
•	•	•	•	vandermonde	matríx
•		٠			
•		•	•		
•	•		•	Off-shell scala	rproduct
•	•	•	•	paír structure	び゠‐ひ =>
					· · · · · · · ·
•				factorisation	$det V = det V^{+}$
•	•	•	•	• • • • • •	
			0		

· •. ·											
•	• •										
+		_ #+	ō	0	۰	0	0	٠	•	•	•
++ ·	- 3	• #-		•	•	•	•	•	•	•	
•	• •	٠	۰	۰	0	•	•	•	0	٠	•
Q.(0;-`	لم) (32	(8	; _ `	h)	•	•	0	•	
		:	0		•	:	•	•	•	•	
	.θ ′ +	・な)	Un .	.(8	54	`た			0		
det	V	•	•	•	•	•	•	•	•	•	•
-13 ³ Q	2(-7	Z)	•	•	•	•	•	•	•	•	
•	• •	•	•	•	•	•	•	•	•	•	•
	• •		•			•	•		•		
	# J 4 0,(1 0,(1 0,(1 0,($#\overline{\sigma} = \overline{3}$ $Q_{1}(\overline{0}_{j})^{2}$ $det V$ $-\sqrt{3}Q_{2}(-\overline{3})^{2}$	$#\overline{J} = \overline{J} = #$ $Q_{1}(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}, \overline{\lambda})(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}, \overline{\lambda}))(\overline{O_{j}}$	$#\overline{r} = \overline{3} = \#\overline{2}$ $Q_{n}(\overline{2}; -i\lambda)Q_{2}$ $U_{n}(\overline{2}; +i\lambda)Q_{n}$ $U_{n}(\overline{2}; +i\lambda)Q_{n}$ $U_{n}(\overline{2}; +i\lambda)Q_{n}$ $U_{n}(\overline{2}; +i\lambda)Q_{n}$ $U_{n}(\overline{2}; +i\lambda)Q_{n}$	$#\overline{v} = \overline{3} \cdot \#\overline{o}$ $Q_{4}(\overline{o_{3}} \cdot \frac{i}{\lambda})Q_{2}(\overline{o_{3}})Q$	$\#\overline{\sigma} = \overline{3} = \#\overline{0}$ $Q_{4}(\overline{0}_{j} - \frac{1}{2})Q_{2}(\overline{0}_{j} - \frac{1}{2})Q_{1}(\overline{0}_{j} + \frac{1}{2})Q_{2}(\overline{0}_{j} + \frac{1}{2})Q_{2}(\overline{0}_{j} + \frac{1}{2})Q_{2}(\overline{0}_{j} - \frac{1}{2})$ $det V$	$#\overline{\sigma} = \overline{3} \cdot \#\overline{\phi}$ $Q_{4}(\overline{\phi_{3}}, \frac{i}{\hbar})Q_{2}(\overline{\phi_{3}}, \frac{i}{\hbar})Q_{1}(\overline{\phi_{3}}, \frac{i}{\hbar})Q_{2}(\overline{\phi_{3}}, \frac{i}{\hbar})Q_{2}$	$#\overline{r} = \overline{3} \cdot \#\overline{2}$ $Q_{4}(\overline{e_{3}}, \frac{1}{2})Q_{2}(\overline{e_{3}}, \frac{1}{2})Q_{1}(\overline{e_{3}}, \frac{1}{2})Q_{2}(\overline{e_{3}}, \frac{1}{2})Q_{2}(\overline{e_{3}}, \frac{1}{2})Q_{2}(\overline{e_{3}}, \frac{1}{2})Q_{2}(-\overline{2})$ $det V$ $-i)^{\overline{3}}Q_{2}(-\overline{2})$	$\#\overline{\sigma} = \overline{3} = \#\overline{2}$ $Q_{A}(\overline{2}, -i\lambda)Q_{2}(\overline{2}, -i\lambda) - \frac{1}{Q_{1}(\overline{2}, +i\lambda)Q_{2}(\overline{2}, +i\lambda)}$ $det V$ $-i\sqrt{2}Q_{2}(-z)$	$ \#\overline{\sigma} = \overline{3} = \#\overline{\partial} $ $ \stackrel{i}{Q}_{A}(\overline{\partial_{j}} \cdot \overset{i}{h}) Q_{L}(\overline{\partial_{j}} - \overset{i}{h}) - \frac{1}{Q}_{A}(\overline{\partial_{j}} + \overset{i}{h}) Q_{L}(\overline{\partial_{j}} + \overset{i}{h}) $ $ det V$ $ -i)^{\overline{3}} Q_{L}(-\overline{2}) $	$ \begin{tabular}{l} \label{eq:product} & \mbox{\sharp} = \end{tabular} = t$

	•	٠	•	•	•			•			•	•	*	•		*	•		•		•	•	•	*	•	•	•	•	•	•				•	•	•	•	•	•
	•		•	٠	•		٠		٠	•	٠		٠	•			٠			٠	٠	•		•	٠		•	٠	٠		٠	٠	٠	•	٠	•		•	•
•		0	•	•		•	•				•			•	•	0			•	۰		٠	•	•	•	٠	•		•		•		.0	•	•	•	•	•	
		٠			٠				٠		٠	•	•	٠	•	•	٠	•	٠	٠	۰		۰	٠	•	٠	•	•	•	•	•	0		•	•	•	•	•	
•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	• 1	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•		•	•	•	•	•	•		•			•		•	٠	•	•	•	•	•		•	•	•		•	•	•	•	•		•	•
•			•	•	•	•		•	•	•	•	•		•	•	•		÷	•		٠		•		•	•	•	•	•	•	•	•	•		•	•		•	
	•	٠	•	•	•	•	1.0	•		•	•	•	•	•	•	٠	٠	٠	•	٠	٠	•	٠	0	•						•	•	•			•	•	•	•
	•	0		•	٠	0	. 0						0	\mathcal{O}		ן כ	•	٠	٠	•			1.0		•	0	٠	•	.0.1	•	0	0.	0	٠		•			•
	•	0	•	•	•		0			•	•		•	S	0 (0	~)				•	•	5			•	٠	•	•	•	•	0	•	•	•	•	•	•	•	
٠	•	٠	•	•	•					•	•	٠	*	٠	•	٠	٠		٠	٠	٠	٠		٠	٠	٠	•	•	0	•		0		٠	٠	•	•	•	•
	•		•	٠	٠			•	•	٠	•	•		۰	0	0	•	٠	•	٠	•	0-	-0-	-0-	-0-	·O -	-0	-1							٠		•	•	
	•	.0			٠	. 0		٠				•	0	٠	ū	0	•	٠	٠	۰	0	ũ'	ū	٦	8	• •	u "	•	0				.0.		٠	•		•	٠
	•		•	•	•			•	•	•		•		•	. – 、		•	•	•	•				1.51	- 2	•		J-1e	•	•	٠	٠		÷	•	•		•	
•	•		•	•	•	0	0	٠		٠	٠		0		[1,7	•		•	•	٠	٠	1 m	/=		, u-	1	, u	.,	0	•	•	•	•	٠	٠	•			٠
•	•		•	٠	٠			•		٠		٠	٠	٠	•	0		*	1	٠	۰	٠	•	٠		٠	•	٠		•	٠	•	۰	•	٠	•		•	
	•		٠	٠						٠	•		0	۰	٠	0	٠	٠	٠	۰	۰	۰	0	0	0		•		0	•	٠	•	. 0	٠	٠	•		•	
		0					. 0		•	•			0	٠	٠	0	٠	٠	٠	٠	0	۰	0	0	0.1	•	•	•		•			•	٠	٠		•	•	
•	•		•		•	•		٠	٠	•	•	•	0		•		•			÷	•	•	•	•	•	•	•	•	•	•	٠	٠	•		•	•		•	•
	•													•		•				•						•				•		•	•		•			13	3

•	•	•	•	•	*	•	•		•		•		•	•	•		
•	•					•	•	•	•	•	•	•		•	•	•	
	•	•	•	•	٠	•	•	•	•	٠				٠	•		٠
•	٠	•	•		•	•	•	0		0	•		•	.0.	•	•	
•		•	•	•	• .	•	•		•	•				•			
		•			•	•			•		•			•		•	
							•	•	•	•			•	0	•	•	
•	•	•		•	•	•						•		•			
	•	٠	•				•				•	•.		•	•		
	•	-	9		N)	•											
		•				•		•									
•	•	•	0-	-0-	-0-	-	.	-0		•							
			ū1	ū٦	ធរ	. •	•.	ūN	-1	• 1							
											•						
			ות	ンミ	lû ',	ū2	۰۰۰	,ū'	۶-,۶								
												•					
		•	•			•											
0	•	•			0.							0		0			

Generalisation to gl(N) spin chains two types of KT-relations 14

Generalisation to gl(N) spin chains non-crossed K(u) (4) = (4) (-u) K(u)two types of KT-relations $K(u) \langle \psi | T(u) = \langle \psi | \hat{T}(-u) K(u)$ 14

Generalisation to gl(N) spin chains non-crossed K(u) (4) = (4) (-u) K(u)two types of KT-relations Crossed $K(u)\langle \psi|T(u) = \langle \psi|\hat{T}(-u)K(u)$ ínverse monodromy matrix $\widehat{T}^{t}(\omega) T(\omega) = 1$ 14

Generalisation to c two types of KT-relations inverse monodromy matrix R12 (4-1 compatibility conditions

3l	()	4		S	P	i	N	•	Ċ	h	a	i	N	Ś	•	•
ssed	l k	(u	<u>ک</u> ک	41		(n)	• • • =	۲	Ψ.(-	τ(-u) (/	((a	.)	•	•
ed	k	((u	-) k	(+)	•	(u)) =	ん	+ I	î	(- w) 	((च	r)	•	•
<u>רָ</u> +	u)-	T (م)	• • • • •	Ł	•	•	•	•	•	•	•	•	•	•	•
r)Kľ	-~)	Rn	(u	tv)	K	とで)=	- K	<ړ. و	-v)	Rn	L (u	st v-))K4	(-u))R
2)K(-~)	Rn	<u>(</u> u	tv)	K	26	r) =	= • 	<_(<u>(</u>	R	_ (u	(† 0 ⁻)K	(-u)R
•	• •		•	•			•	•	•	•	•	•	•	•		•
•	• •	•	•	0	•	•	•	•		•	•	•	•	•	•	•

Symmetries and Non-crossed K-matrices .

•		S		j	Ň	Ľ	Ņ	i	e	tı	í	e	Ś	•	2	Ņ		k	1	50	21			Ś	t		U	Ċ	t	Ŭ	ĽY	-e	S			•
•	•	•		N		· 10			e d	・ レ-	-104	n+	víc.	PC	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•			•	•	•	•	•	
•	٠	•	•		100		10.	33(•	•	۰	•	•	•	•	•	0	•	•	•	•	•	۰	0	۰	•	•	•	•	•
•	•			•			•	•	•	٠	•	٠	•	•	•	•	*	۰			٠	•	٠		٠	•	•	0	•	٠		•	•		•	•
•	•		•	•	•	•	1.0			•	•	•	•	٠	•	*	٠	•	٠	•		٠	۰	•						.0	0	•				
•					•	0		. 0					•	٠	٠	•	•	٠	•	٠	•	•		• ;	٠	0	٠	.0		•	•	•	•	•		
•				•					•					•	٠	•			٠	•				•	•							•	+	•	+	•
•					•	•		•					•		•				÷	•	•	•	÷	•	•		•						+		•	•
•								٠	•	•		•		•	•	•		۰	•	•	•	•			•	0				•	•	•	+			
					•								•	•	•				•			•		•	•		•	•	•				•		•	
																														•						
			•																									•		•	•					
															•																				•	
																				•																
																																44				
			•																														•			
				•												•				•	•					•	•						•			

Symmetries and Non-crossed K-matrices K(n

•		·		j	Ň		Ń	i	e	t.	í	e	S	•	Â	Ņ		k	Ţ	50	21		•	Ś	ť		V	Ċ	t	Ŭ	ĽY	-e	Š	•	•	•
•	•	•	•	۲.	lov	r-c	vro:	ss(ed	K-	-M	at	ríc	es	•	•	k	(v))=	92	- 1 -	+	Å	•	•	Å2	= <u>\</u>	•	•	•	•	•	•		•	•
	•			•	•				•	•	•	•		٠	•	•		÷	•	•						•					•	•	•		•	
	•	•	•	•	•	•	•		•	•	•	٠	•	٠	•		•	٠	٠	٠		•	•		•			•	•				•			
		•		•	•	•		. •	•	•			0	۰	٠	•	٠	۰	٠	0	٠	٠	•	•	•	0		.0		•	• 1	•	•	•		
•		•				•		•	•	•			•	٠	•	•	•		٠	•			•	•	•		•		٠	•	•	•	•	•	•	•
٠	•			•			•	•		•		•	•	٠	*	•		•	÷	*	•	•		•	•		•		•	•		•	•	+	٠	۰
		•	•	•	٠			٠	•	•	•			•	•	•	•	0	•		•	•	٠	•	•	•	•	•		•					•	•
•	•	•		•	•	•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	• 1	•	•	•	•		•	
		•	٠	•	•	•	•		•	•			•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•	•	•	•	•	•
٠	0		٠	•	۰	•	٠	۰	•	٠	٠		•	0	٠	•	•	0	٠		٠	٠	٠	•	٠	۰	•	۰	•	٠	٠	•	•		٠	•
•	٠	*	*	•				•		•	•	٠	٠	٠		٠		•		۰	٠	•	٠	•	•	٠	•	٠		•		•	•	•	*	•
•	٠	•	•	•		•	•		•		•	•	٠	٠	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
	0.	•	. 0	•	0			0	•			•	0	0	٠	٠	٠	۰	۰	۰	٠	٠	٠	•	•	0	•	.0		•	٠	•	•	•	•	
•		٠	•			•		•	•	•	•	٠			•	•	•		•		٠	•	•	*	•	0	•	•	۰	•	•	•	•		•	•
						•	•														+															٠

Symmetries and pair structures $K(u) = \frac{2}{2}I + A$ $A^2 = \mathbf{1}$ Non-crossed K-matrices A~ $diag(+,+,\dots,+,-,-1,\dots,-)$ N-M M

Symmetries and pair structures A² = <u>↓</u> resídual symmetry $K(n) = \frac{2}{n}I + A$ Non-crossed K-matrices $A \sim diag(+,+,\dots,+,-,-1,\dots,-)$ gl(M) \oplus gl(N-M)

Symmetries and pair structures A² = <u>↓</u> resídual symmetry $K(n) = \frac{2}{3}I + A$ Non-crossed K-matrices $A \sim diag(+,+,...,+,-,-,\dots,-)$ gl(M) \oplus gl(N-M) Crossed K-matrices

Symmetries and pair structures A² = <u>1</u> resídual symmetry $K(u) = \frac{2}{2}I + A$ Non-crossed K-matrices $A \sim diag(+,+,...,+,-,-,-) gl(M) \oplus gl(N-M)$ N-M M K(u)=V $\vee^{t}=\pm \vee$ Crossed K-matrices

Symmetries and pair structures $K(n) = \frac{2}{3}I + A$ $A^2 = I$ residual symmetry Non-crossed K-matrices $A \sim diag(+,+,\dots,+,-,-1,\dots,-)$ gl(M) \oplus gl(N-M) N-M M K(u) = V $V^{t} = \pm V$ SP(N)Crossed K-matrices

Symmetries and pair structures $K(n) = \frac{1}{2} I + A$ $A^2 = I$ residual symmetry Non-crossed K-matrices $A \sim diag(+,+,\dots,+,-,-1,\dots,-)$ gl(M) \oplus gl(N-M) N-M M K(u) = V $V^{t} = \pm V$ SP(N)Crossed K-matrices Non-crossed KT $(41\pi) \neq 0 \iff \mathcal{I}(21\pi) = \mathcal{I}(-21\pi)$

Symmetries and pair structures $K(n) = \frac{n}{2} 1 + A$ $A^2 = 1$ residual symmetry Non-crossed K-matrices A~ diag(+,+,...,+,-,-,) gl(M)@gl(N-M) N-M M K(u) = V $V^{t} = \pm V$ SP(N)Crossed K-matrices Non-crossed KT $(41\overline{u}) \neq 0 \iff 7(21\overline{u}) = 7(-21\overline{u})$ achiral pair structure $\overline{u}^{\nu} = -\overline{u}^{\nu-\nu}$

Symmetries and pair structures $K(n) = \frac{n}{2} 1 + A$ $A^2 = 1$ residual symmetry Non-crossed K-matrices $A \sim diag(+,+,\dots,+,-,-,\dots,-)$ gl(M) \oplus gl(N-M) N-M M K(u) = V $V^{t} = \pm V$ SP(N)Crossed K-matrices Non-crossed KT $(41\overline{u}) \neq 0 \iff 7(21\overline{u}) = 7(-21\overline{u})$ achiral pair structure $\overline{u}^{\nu} = -\overline{u}^{\nu-\nu}$ Crossed KT $(41\pi) \neq 0 \ll 2(21\pi) = \hat{2}(-21\pi)$

Symmetries and pair structures $K(n) = \frac{n}{2} 1 + A$ $A^2 = 1$ residual symmetry Non-crossed K-matrices $A \sim diag(+,+,\dots,+,-,-,\dots,-)$ gl(M) \oplus gl(N-M) N-M M K(u) = V $V^{t} = \pm V$ SP(N)Crossed K-matrices Non-crossed KT $(41\overline{u}) \neq 0 \iff 7(21\overline{u}) = 7(-21\overline{u})$ achiral pair structure $\overline{u}^{\nu} = -\overline{u}^{\nu-\nu}$ Crossed KT $(41\pi) \neq 0 \ll 2(2\pi) = \hat{2}(-2\pi)$ chiral pair structure $\overline{u}^{\prime} = -\overline{u}^{\prime}$ **O**______15

Symmetries and pair structures residual symmetry K(n)= = + A $\mathbb{A}^2 = \mathbb{I}$ Non-crossed K-matrices $A \sim diag(+,+,\dots,+,-,-,\dots,-)$ gl(M) \oplus gl(N-M) N-M M K(u) = V $V^{t} = \pm V$ Sp(N)Crossed K-matrices with twist Non-crossed KT 人1112 キロ 〈=〉 2(212)=2(-212) [G,K]=0 achiral pair structure $\overline{u}^{\nu} = -\overline{u}^{\nu}$ $\overline{o} = -\overline{o} - \overline{o} - \overline{$ $Q_{a}(z) \sim Q_{1...\hat{a}...N}(-z)$ Crossed KT (412) +0 (=> 2(212)= 2(-212) $Q_{a}(z) \sim Q_{a}(z)$ chiral pair structure $\overline{u}^{\mu} = -\overline{u}^{\mu}$ $Q_{ab}(z) \sim Q_{\overline{a}\overline{b}}(-z)$ 15

off-shell overlaps List of criteria for off-shell overlaps

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•				•	•	•	•	•	•	•		•	•	•	•	•

 $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{r} | \bar{u}_{r}) \prod_{\nu=1}^{N-1} \lambda_{\nu}(\bar{u}_{r}^{\nu}) \lambda_{\nu_{n}}(\bar{u}_{r}^{\nu})$

																																						16	5
0	0	•	0	0	•	•	•	0	•	•		0	0	0	•	•	0	0	0	0	•	•	•	•	•	0	0	•	•	•	•	0	0	•	•	0	•	0	•
0	0	•	٠	0	•	•	•				° • .	0	0	0	٠	0	۰	0	۰	0	٠	۰	٠	•	0	0	0	•	•	•	۰	•		٠	٠	0	•		
•	٠			•		•		•		•			٠	٠		•		•			•		•			٠	٠	•	•		•	٠	•	•		•	•	•	•
						•	٠				•		0			0	•	0	•							•				•	•	•	•	•		٠	•	0	•
•	•		•				•	•	•	•	. •		•	•	•		•	•	•	•	•	•	•		•	•				•	•	•	•		•		•	•	
•	٠	•	٠		•			•	•		. •	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	•		•	٠	•	•	•	•	•	٠			•	•	•	•	•
•	•				•	•		•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	
•	•	×						٠					•	٠	•					•	•	•		•	•	*	• .			•		•			•	•	•	٠	•
٠	٠					•	•	•		•			•	•	•				٠	•			•	•	•					•	•		•	•			•		
•	•		•		•	•	•	. •		•			٠	٠	•	•	٠	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•								•	•	•		•		•	•	•
۰	*			•		•				•	*		*	*	*	+	*	*	*		*	*	*	1		*			•	•	•	•	•	•	*	*	•		

off-shell overlaps List of criteria for off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{I} | \bar{u}_{I}) \prod_{\nu=1}^{N-1} \lambda_{\nu}(\bar{u}_{I}) \lambda_{\nu \nu}(\bar{u}_{I})$ 1) KT-relation: creation to annihilation (4) Tij > 4) The 2>1 16

٠	٠	٠	٠		•		•	٠			•	•		٠		•	
۰					•	•			•	•	•	•			•		
0	•	٠	٠	•		٠		٠		•	•		٠		•	•	٠
•	٠	•	٠	٠	•		•	•	•	•	•					•	
0	٠	•	•	0	0	0	•	•	0.	•	•	•	•	0.1		0	•
0	•			ė	•	•	•	•	6		•					•	
•	•				•	•	٠	•	•	•	•	•	•	•			
		•		•				•	•	•		•		•	•		
٠	•	•	•	•	•	•	•	•	•	•	•		•		•		•
•		•	•	•	•	•	•	•	•	• 1	•			•	•		
	i.		•					•						•			

off-shell overlaps 1)KT-relation: creation to annihilation 2) recurrence formula $|\{z,\bar{u}\},\bar{u}^2,...\} = Z(...)T_{ij}(z)|\bar{u}',\bar{v}^2,...\}$ 16

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠		•	•	•	•	•	•	•	•		•	•	•	•	•	•

List of criteria for off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{I} | \bar{u}_{I}) \prod_{y=1}^{N-1} \lambda_{y}(\bar{u}_{I}') \lambda_{y_{1}}(\bar{u}_{I}')$

<+ITing >> <+ITing

off-shell overlaps List of criteria for off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{I} | \bar{u}_{I}) \prod_{j=1}^{N-1} \lambda_{j}(\bar{u}_{I}) \lambda_{j}(\bar{u}_{I})$ 1) KT-relation: creation to annihilation (4) Tij > 4) The 2) recurrence formula $|\{z, \bar{u}\}, \bar{u}^2, ... \rangle = Z(..., T_{ij}(z)|\bar{u}', \bar{v}^2, ... \rangle$ 3) action formula $T_{i,j}(z)|u\rangle = Z(...)|w\rangle$

• • • • • •	

Off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{\chi} | \bar{u}_{\chi}) \prod_{\nu=1}^{N-1} \lambda_{\nu}(\bar{u}_{\chi}) \lambda_{\nu_{\eta}}(\bar{u}_{\pi})$ List of criteria for off-shell overlaps 1) KT-relation: creation to annihilation (4) Tij > (4) The 2>1 2) recurrence formula $|\{z,\bar{u}\},\bar{u}^2,...\} = Z(...,T_{ij}(z)|\bar{u}',\bar{v}^2,...\}$ 3) action formula $T_{i,j}(z)|u\rangle = \sum (...)|w\rangle$ $|\bar{\mathbf{u}}\rangle = \sum (...) |\bar{\mathbf{u}}_{\mathbf{r}}\rangle^{(n)} \otimes |\bar{\mathbf{u}}_{\mathbf{r}}\rangle^{(2)}$ 4) co-product formula 16

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{\chi}) = \sum W(\bar{u}_{\chi}) = \sum_{\mu_{\chi}} \sum_{\mu_{\chi}$ List of criteria for off-shell overlaps 1)KT-relation: creation to annihilation <+ITing >> <+ITing **2**>1 2) recurrence formula $|\{z,\bar{u}\},\bar{u}^2,...\} = Z(...)T_{ij}(z)|\bar{u}',\bar{v}^2,...\}$ $T_{i,j}(z)|u\rangle = \sum_{i,j}(...)|w\rangle$ з)action formula Ragoucy, Slavnov '16, '17, '20 $|\overline{u}\rangle = \sum (...) |\overline{u}_{r}\rangle^{(n)} \otimes |\overline{u}_{r}\rangle^{(2)}$ 4) co-product formula 16

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Hutsalyuk, Liashyk, Pakuliak,

Off-shell overlaps List of criteria for off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{\chi}|\bar{u}_{\chi}) \prod \lambda_{\nu}(\bar{u}_{\chi}) \lambda_{\nu\nu}(\bar{u}_{\chi})$ 1)KT-relation: creation to annihilation <+1 This >> <+1 There 2>1 2) recurrence formula $|\{z,\bar{u}\},\bar{u}^2,...\rangle = Z(...)T_{A;j}(z)|\bar{u}',\bar{v}^2,...\rangle$ $T_{ij}(z)(\bar{u}) = \sum_{i=1}^{n} (...)(\bar{w})$ з)action formula Hutsalyuk, Liashyk, Pakuliak, **Ragoucy, Slavnov '16, '17, '20** $|\bar{\mathbf{u}}\rangle = \sum (...) |\bar{\mathbf{u}}_{\mathbf{r}}\rangle^{(n)} \otimes |\bar{\mathbf{u}}_{\mathbf{r}}\rangle^{(n)}$ 4) co-product formula $(+)_{\{z_1, z_1\}, z_{1...}} = Z_{(...)}_{(+)_{i_1}} |z_{i_1}, z_{i_{...}} \rangle = Z_{(...)}_{(+)} |w', w_{i_{...}} \rangle$ Recursion:

	•	•	•	•	•	•	•		•	-	N	-1	•	•	•	-	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Off-shell overlaps $S_{\chi}(\bar{u}) = \sum W(\bar{u}_{I} | \bar{u}_{I}) \prod_{\nu=1}^{N-1} \lambda_{\nu}(\bar{u}_{I}^{\nu}) \lambda_{\nu_{1}}(\bar{u}_{I}^{\nu})$ List of criteria for off-shell overlaps 1)KT-relation: creation to annihilation <+ITing >> L+ITing **L>1** 2) recurrence formula $|\{z,\bar{u}\},\bar{u}^2,...\rangle = Z(...)T_{A;j}(z)|\bar{u}',\bar{v}^2,...\rangle$ $T_{i,j}(z)|u\rangle = \mathcal{D}(...)|w\rangle$ з)action formula Hutsalyuk, Liashyk, Pakuliak, **Ragoucy, Slavnov '16, '17, '20** $|\bar{\mathbf{u}}\rangle = \sum (...) |\bar{\mathbf{u}}_{\mathbf{r}}\rangle^{(n)} \otimes |\bar{\mathbf{u}}_{\mathbf{r}}\rangle^{(n)}$ 4) co-product formula $(+)_{\{z, z, z\}}, z_{\{z, z\}} = Z(...)_{\{+|T_{i_{j}}|z_{i_{j}}, z_{j_{j_{j}}}, ...)} = Z(...)_{\{+|w', w'_{i_{j_{j}}}, ...)}$ Recursion: $\#\overline{w}' \leq \overline{u}' \Rightarrow we can eliminate \overline{u}'$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠		0	•	•	•	•	•	•	•	•	•	•	•	•	•	•

On-shell overlaps without twists Korepin's criteria $\longrightarrow \qquad \langle 4|\overline{u}\rangle = TTF(\overline{u}) \int \frac{\det G}{\det G}$ 17

On-shell overlaps without twists Korepín's crítería $\longrightarrow \qquad \frac{\langle \psi | \overline{u} \rangle}{\langle \overline{u} | \overline{u} \rangle} = \frac{T}{y} F_{(\overline{u})} \frac{\det G}{\det G}$

 G^{\pm} depends on the pair structure

•	•	•	•	•	•	•			•	•	•	•	•	•	•		•
•	0	•	•	0	0.	0	0	0	0	0.	•	•	0	0	•	•	•
•	•	•		•	• :	•	•	•	٠	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
0	0	•	•	0	0	0.	0	0	0	0	•	•	0	.0	0	•	•
•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	ě		•		•	•	•	•	•	•	•	•	•				

17

•	C)v	U -	sl	ne	ll	0	Vŧ	erl	La	P٩	S N	νί	t	10	n	t	t
•	•	•	K	Cor	rep	ín	'S (crí	ter	ía	-		⇒	•	•	<u>ر</u> ب رب		
•	*	.*	•	•		•		•			•	•	•	•				
•		•	•	•	•	•	•		•	•	0	•	•	•	•	Ŧ	, (u	2
•			•	•	•					6			•	•	٠			•
•	•	•	•	•	•	•	•	•					•	•	•	•	•	
•	٠	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•
•	•	•	•	•	•	•		•	•			•	•	•	•	٠	•	•
•	•	•	•	•	•	•	•		•		. •	•		•	•	•	•	•
•	•		•	•	•	•	٠	٠	•		٠		•		•	•	•	•
•	٠	•	•	•	•	•	•	•	.*	٠		•	•	•		•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•
•	0.	٠	. •		٠		. 0		٠				٠	۰	٠	۰	•	•
•		•	•		•	•	•		٠	•	•	•	٠	•	•	٠	•	

On-shell overlaps without twists Korepín's crítería $\longrightarrow \qquad \frac{\langle \psi | \overline{u} \rangle}{\langle \overline{u} | \overline{u} \rangle} = \prod_{v} \overline{F_{v}(\overline{u}^{v})} \sqrt{\frac{\det G^{T}}{\det G}}$ $\frac{Q_{m}(\alpha)}{Q_{n}(b)Q_{n}(\frac{1}{2})} \det G^{+}$ · g(M)@g((N·M)

On-shell overlaps without twists Korepín's criteria —> $\frac{Q_{m}(\alpha)}{Q_{n}(\beta)Q_{n}(\frac{1}{2})} \det G^{+}$ • g(M)@g((N-M)

On-shell overlaps without twists G^{\pm} depends on the pair structure $\frac{\langle \psi | \overline{u} \rangle}{\langle \overline{u} | \overline{u} \rangle} = TF T_{J}(\overline{u}) \int \frac{\det G}{\det G}$ Korepín's critería ----> F, (w) given by the K-matrix $Q_{\nu}(z) = \prod_{j=1}^{r_{\nu}} (z - u_{j}^{\nu})$ $\frac{Q_{m}(\alpha)}{Q_{n}(b)Q_{n}(\frac{1}{2})} \det G^{+}$ $N = \frac{N}{2}$ achival $\vec{u} = -\vec{u}^{\nu-\nu}$ · g(M)@g((N·M)

On-shell overlaps without twists G[±] depends on the pair structure Korepín's critería - $\frac{\langle \psi | \overline{u} \rangle}{\langle \overline{u} | \overline{u} \rangle} = \frac{T}{v} F_{v}(\overline{u}) \frac{\det G}{\det G}$ F, (w) given by the K-matrix $Q_{y}(z) = \prod_{j=1}^{r_{y}} (z - u_{j}^{y})$ $Q_{n}(a)$ $detG^{\dagger}$ $Q_{n}(b)Q_{n}(\frac{1}{2})$ $detG^{\dagger}$ achival $\vec{u} = -\vec{u}^{\nu}$ $N = \frac{N}{2}$ · g1(M)@g1(N·M) M-1 Qu() U=1 Qu() detG⁺ detG⁺ • 0(N) detGt $Q_{2\nu}(3)Q_{2\nu}(\frac{i}{2})$

On-shell overlaps without twists Korepín's critería $Q_n(a)$ $detG^+$ $Q_n(b)Q_n(z)$ $detG^-$ · g1(M)@g1(N·M) • 0(N) $Q_{2\nu}(3)Q_{2\nu}(\frac{i}{2})$

						-)		0	•		~		A		•	74		
•	C		V	し -		>/		CI			U.	V	C		1	1	5	
•	•	d	ía	go	na	lt	wi	st	•	•	G) -	qi	مو	(7		221	•••
		•								•	•				•	•		
٠	0	•	•			•	٠	٠	•	٠	•	٠	٠	0	•	٠	٠	
•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	
		•		•	•	•				•			٠	۰	٠	٠	0	
•		•	•	•		•		•	•	÷,	•		•	•	٠		٠	
٠			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•		•	•	*	•			•	•	•	•	•	٠	•	٠		٠	
	۰	•			•	•	٠	٠	•	•		•	•	•	٠	٠	۰	
•	۰	•	•		•				•	•		•		0	•	0	۰	
•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	1
•	0	•	•		•	٠		۰		•		•	٠	۰		۰	0	
•	•	•	•	•		•		•	•	•	•	•	•	۰	•	•	•	•
	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

s with twist

2.	_)																
•		•	۰	۰	•				•				•	•			
•	•	•			٠	•	٠		•		•			•	٠		•
•	•	•		٠			•	•	•	•		•	•	٠		•	
•	•	•	•	•	•		.**		•	•		•	•			•	•
•	•	•	•	•	• ;		•	•	•		•	•	•	•	•		•
•	•	•		•	• ;	•		•	•	•	•	•	•	•		•	
•	•	•	÷			•		•		٠	•		٠		•	•	•
•	•		٠			•	0	0	•	•	•		•			٠	
•	•	•	0	0	0	0.	0	0	0.	0			0	.0.1			•
•	•	•		0	0		0	•	•					•	•	•	
•	•	•			•	٠	٠	•	٠	•	•	•	•	٠		•	
	•	•		٠		•		•	•					•			•
•	•	•	٠	۰	•	•	•		•	•	•		•		٠		
•	•	•		•	•		•	•	•	•	•		•	•			
•	•				•	•	•	•		•	•	•		•			
					•									•		•	

•	C	Ç	V	Ľ-	- 5	51	1	el) • •	0		e			21	5.5	S
•	•	d	ía	go	na	lt	wi	st	•	•	Ċ		qi	مع	(2		221	••••
•	•	C	om	pa	tík	sili	íty).	•	Ĺ	G,	K]=	Ø	. T	7	ĸ	,
•	•	٠	۰	•	•	•	•	•		•	•		0	0	0	0	•	•
•				•	•	•	•			•		•	•	•	•	•	•	•
•			0	•	•	•			•	•	•		•	0	0	0		
•		÷		•	•	•	•	٠	•		•	•	*	•	•	٠	•	
•	٠				•		•	•	•	•	•	1	٠	•	•	٠	•	•
•	•	•		•	•		•	•	•			•	٠	•	•	٠	•	•
•	•	•	٠	•	•	•	•		•	•	•			٠	•	•	•	•
•	٠		٠	•	•	•	٠	٠	•	٠	•		•	0	0	0	٠	•
•	•	*	•	•	•	•	•	٠		•	•	٠	٠	٠		•	*	
•	٠	•	٠	•	•	•	•		•	•	•	•	۰	۰	۰	۰	٠	•
•	0.	•	. 0						٠				۰	0	0	۰	0	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

with twist

	-																	
	2.	5	, in the second se	Ť	Ť	Ť		Ť		Ť		Ť	Ť		Ť	,		, i
•	•		٠		•	•				•				•			•	
	\cdot		· ,		dic					•	•	•				•	•	•
vv					Λυ				•	•			•				•	
	•	•			•	•	•		•		•				•		٠	
	•			•		•	•	•					•		0	•		
	-	Ť		, č	Ť	~ .		, in the second s	Ŭ				Ŭ	Ŭ			, in the second s	Ŭ
	•	•	•	•		•	•		•		•	•		•	•		•	•
	•	•	•	*	•		•	•		•	•	•	•		•		•	
	•	•	۰	۰	۰	0	•	۰	0	• -	•			0	.0.		0	•
							•	•	•		•	•						
							•											
	•																•	
	0		•	•	•	•	•	•	•	•		•			•	•	•	
	•	ě.	•	•	•	•	•		•	•	•	•	•	•	۰		•	•

•	2		Ż	Ľ-		51	Ň	el			01		ė		.0	71	55	S	Ņ	V	ít	-1	1	t	Ŵ	ί		t	•	•	•	•	•	•	•	•	•	•	•
•	•	d	ía	go	na	ılt	wi	st	•	0	G	, =	di	مع	(2	17	221	••• \	2	2)	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	CC	om	pa	itil	oili	íty	j.	•		G,	K]=	Õ		7	ĸ	L-n	лa	tri	хí	s C	dia	igo	onl	al	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	N	lov	l-C	vro:	SSE	ed	cas	se	•	K	.(u)=	di	69	(a	- 7		•		· ~ Z		- 2	۱ ~	- \-	2+'	₹)	•	•	9		M);	Ð		N-	m)	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	M	•	•	•	•	•	N-	M	•	•	•	•	•		9.				J.	•	•	•
•	•							•	•					•	•	•				•	•	•	•	•		•	•	•	•	•		•	•			•			0
•			۰	•	•	•	•		•			0	•	۰	•	•	•	•	•	•	•	0	ė	•	•	•	•	•		•	•	•		•	•	•	•	•	
•	٠		٠	٠	٠	•	٠	٠					•	0	0	0	•		•	٠	٠	0	0		0	•	•	٠	•	•	•	۰	٠	0		•	•	•	
•			٠	•		•		•	1	٠		•	•	•		•		•		*	•		٠	٠			•	•		•	•		•				•	•	
•	٠	*	•	•		•							•	•	•	•	•	٠	•	٠	•	٠	۰	٠	•	•			•	•	•	•		•	•	•	•	•	٠
•		•	. 0		0	•			•	•	·	0	٠	0.	0	۰	٠	•	٠	•	٠	•	0	•	•	•	٠			•	•	0	•	•			•	•	•
•	•	•	*	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
•							•				•			•						•					•	•		•	•	•	•	•	•	•	•			- L- C	•

with twist

N-M

) gl(M) DJ(N-M) symmetry

On-shell overlaps with twist $G = diag(z_1, z_2, \dots, z_N)$ diagonal twist [G,K]=O => K-matrix is diagonal compatibility non-crossed case $K(u) = \operatorname{diag}\left(\frac{a-z}{z}, \dots, \frac{a-z}{z}, \frac{a+z}{z}, \dots, \frac{a+z}{z}\right)$ N-M M=0 K(~)≈1 18

gl(M) JI (N-M) symmetry

On-shell overlaps with twist diagonal twist $G = diag(z_1, z_2, \dots, z_N)$ [G,K]=O => K-matrix is diagonal compatibility non-crossed case $K(u) = \operatorname{diag}\left(\frac{a-z}{z}, \dots, \frac{a-z}{z}, \frac{a+z}{z}, \dots, \frac{a+z}{z}\right)$ N-M K(u) 21 (4) ū7 is given by the functional Sov M=O

 $g(M) \oplus g(N-M)$ symmetry

Ekhammar, Gromov, Ryan '24

															•															
																			-											
		•					•		•	•	•	•					•	•										,		
0.	•	. •		 		·		٠	٠	٠	٠	۰	•	•	٠	٠		٠	•	•	•			•	•	•	•			
		•								•		•								•		•	•	•	•	•			•	•
																													18	3

On-shell overlaps with twist $G = diag(z_1, z_2, \dots, z_N)$ diagonal twist [G,K]=O => K-matrix is diagonal compatibility $K(u) = \operatorname{diag}\left(\begin{array}{c} u - z \\ \overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \\\overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \\\overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \end{array}\right), \quad$ non-crossed case M····N-M· M=O $K(w) \approx 1 \quad (4) = 7$ is given by the functional Sov general M $(\Psi_{m}|\pi) = Q_{m}(a)(\psi_{o}|\pi)$

gl(M) Jl (N-M) symmetry

Ekhammar, Gromov, Ryan '24

my off-shell sum formula

On-shell overlaps with twist $G = diag(z_1, z_2, \dots, z_N)$ diagonal twist [G,K]=O => K-matrix is diagonal compatibility $K(u) = \operatorname{diag}\left(\begin{array}{c} u - z \\ \overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \\\overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \\\overline{z} \end{array}\right), \quad \left(\begin{array}{c} u - \overline{z} \end{array}\right), \quad$ non-crossed case M····N-M· M=O $K(w) \approx 1 \quad (4) = 7$ is given by the functional Sov general M $(\Psi_{m}|\pi) = Q_{m}(a)(\psi_{o}|\pi)$ crossed case? $K(z) = diag(1, ..., 1, \pm 1, ..., \pm 1)$ O(N) or sp(N) symmetric cases N Z

gl(M) Jl (N-M) symmetry

my off-shell sum formula

Generalisation to MPS $\bigwedge \land \land \land \Rightarrow \overset{\circ}{} \overset{}$

		•														<u> </u>		<u> </u>																						
						t	WO	-Si	íte	st	at	e			V	NO	itri	íx.	pro	odi	rct	5 5	tat	e																
	•	•	•	•	•		•	•				•	•	•		•	*	•	1.	•	•	•	*	•						•	•	٠				•		•	•	•
2	•	•	•			•	•		. •					•	•	٠	•	•	•	•	•	•		•	•	•	•	•		. • .	•	•	•	•			•		•	
	•	•	•	•	•				•		6		•	•	•		•	•	•		•			•	•	•	•		٠	•	•	•		•	•		•	٠	•	
		•			•			•	•				•	•		•	•	•		÷	•	•			•	•		•	•	•			•		•	•	٠	•	•	•
	•		•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•			•	•		•	•	•		•	•	
	•	•	•	•		•			•				•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•		•	•	•	•	•	•
	•			•	•		•						•		•			•	•	•	•	•	•	•	•	•	•		•	•	•		•		•	•		•	•	•
	•	•		•	•		•	•	•	•		•		•	•	•	•	•	•	•		•		÷	•	•	•	•	•	•	•	•	÷		•	•	•	•	•	
	•	•	•	•	•				٠		•		•	•	•		•	•	•	•	•	•		•		•		•	•		•	•	÷	•	•		•	•	•	
	• •	•	•	•	•			•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
	•	•	•		•	•				•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•			•													÷						4				•										•
	•	•	•				0				0			•												•			•		•						•	•	20	>.

Generalisation to MPS $\chi + _{L_{p}} = \sum_{i=1,i_{23}} (M.(\Theta_{i}) M.(\Theta_{i})) \chi_{i_{1},i_{2}} \chi_{p}$

Generalisation to MPS $\chi_{\mu} = \sum_{i=1,i_{23}} (M_{i}(\Theta_{i}), M_{i}(\Theta_{i})) \chi_{i_{1},i_{2},\dots,i_{23},\dots,i_{3}} M_{i_{3}}(\Theta) \in End(S_{B})$ $i = 1,\dots,d$ 20

Jl=[Cd]or

Generalisation to MPS $\chi_{\mu} = \sum_{i=1, i_{23}} (M_{i}(\Theta_{i}), M_{i}(\Theta_{i})) \chi_{i_{1},i_{2},\dots,i_{25},\dots,i_{3}} M_{i_{3}}(\Theta) \in End(\mathcal{Y}_{0})$ $i = 1, \dots, d$ LYI= ZLY_{x,β} l⊗ exβ∈ fet ⊗ End(H) ili 20

Generalisation to MPS $\chi + \chi_{\beta} = \sum_{i_{23}-1,i_{23}} (M_{i}(\Theta_{i})) \chi_{i_{1},i_{2}} \chi_{\beta} \chi_{i_{1},i_{2}} \chi_{\beta} \chi_{\beta} \chi_{\beta} = M_{i_{1}}(\Theta) \in End(Se_{\beta}) \quad \dot{\chi} = \chi_{1,...,d}$ LYI= ZLY SE CLEESt SENd(H) ilig K(u) E End (CN & K)

fl=[C]

Generalisation to MPS $\begin{array}{l} \left\langle \Psi_{\mathcal{L}\beta} \right\rangle = \sum_{i=1}^{n} \left(M_{i}(\Theta_{i}) \atop i_{23}} M_{i}(\Theta_{i}) \right) \\ \left\langle \Psi_{\mathcal{L}\beta} \right\rangle = \sum_{i=1}^{n} \left(M_{i}(\Theta_{i}) \atop i_{23}} M_{i}(\Theta_{i}) \right) \\ \left\langle \Psi_{\mathcal{L}\beta} \right\rangle = \sum_{i=1}^{n} \left\langle \Psi_{\alpha_{1}\beta} \right\rangle \\ \left\langle \Psi_{\alpha_{1}\beta} \right\rangle \otimes e_{\mathcal{L}\beta} \in \mathcal{F}^{*} \otimes \operatorname{End}(\mathcal{H}_{\beta}) \\ \left\langle \Psi_{\beta} \right\rangle \\ \left\langle \Psi_{\alpha_{1}\beta} \right\rangle \otimes e_{\mathcal{L}\beta} \in \mathcal{F}^{*} \otimes \operatorname{End}(\mathcal{H}_{\beta}) \\ \end{array}$ K(u) E End (CNORB) Kij (u) E End (RB)

Generalisation to MPS $\begin{array}{l} \mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}} = \sum_{i=1}^{1} \left(M_{i} \left(\Theta_{3} \right) \dots M_{i} \left(\Theta_{i} \right) \right) \\ \stackrel{i_{1},i_{2}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}}{\overset{i_{1},i_{2}}{\overset{i_{1},i_{2}}}{\overset{i_$ K(u) E End (CNORB) Kij (u) E End (RB) KT-relation $\sum_{j=1}^{N} K_{ij}(z) \langle Y|T_{j}(z) = \sum_{j=1}^{N} \langle Y|T_{ij}(-z) K_{j}(z) = \int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \int_{1}^{2} \langle Y|T_{ij}(-z) K_{j}(z) = \int_{1}^{1} \int_{$

Integrability condition

íf the twist is symmetry of the K-matrix

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•		•	•	•		•		•		•	•	•	•	•	•	
•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•		•	•	•	٠	•	•	•	•	•		•	•	•	•	•	
	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	
•	•			•	•								•	•	•	•	•	
	• .	•		•		•				•		•	•	•	•	•	•	
		•	•		•	•	•		•		•						•	

Ŭ.	Ŭ.	Ť	- -	Č.						, in the second s		-		- -			
•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	
•	•	•	•	•	• .	0	•	•	•		0	•	0	•	•	•	
•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	-
÷	•		•	•	•	•		•		•		•	•			•	-
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	
	•		•	•	•	•	•	•	•	• "							
	•					•	•	•	•			•	•	•		•	
																	-
•	0	•	•			•							•				
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Integrability condition if the twist is symmetry of the K-matrix $[G \otimes \mathcal{G}, K] = 0$. 21

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•		•	•	•		•		•		•	•	•	•	•	•	
•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•		•	•	•	٠	•	•	•	•	•		•	•	•	•	•	
	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	
•	•			•	•								•	•	•	•	•	
	• .	•		•		•				•		•	•	•	•	•	•	
		•	•		•	•	•		•		•			•			•	

Integrability condition íf the twist is symmetry of the K-matrix $\frac{1}{1} \frac{1}{1} \frac{1}$ => <mps|= 21

[G&<u></u>,K]=0

Integrability condition íf the twist is symmetry of the K-matrix $\Rightarrow \langle MPS|T(u) = \langle MPS|T(-u) \text{ or } \langle MPS|T(u) = \langle MPS|\hat{T}(-u) \rangle$

[G@<u></u>,K]=0

Integrability condition íf the twist is symmetry of the K-matrix $\Rightarrow \langle MPS| = \frac{1}{11} + \frac{1}{11} + \frac{1}{11} = \sum_{\alpha \beta} \langle \Psi_{\alpha \beta} | \mathcal{G}_{\beta \alpha}$ $\Rightarrow \langle MPS|T(u) = \langle MPS|T(-u) \text{ or } \langle MPS|T(u) = \langle MPS|\hat{T}(-u) \rangle$ homogeneous límít 21

 $[G \otimes \mathcal{C}, \mathbb{K}] = 0$

Integrability condition [G@ 5, K]=0 íf the twist is symmetry of the K-matrix $\Rightarrow \langle MPS|T(u) = \langle MPS|T(-u) \text{ or } \langle MPS|T(u) = \langle MPS|\hat{T}(-u) \rangle$ homogeneous limit

Integrability condition íf the twist is symmetry of the K-matrix $[G \otimes \mathcal{G}, \mathbb{K}] = 0$ $\Rightarrow \langle MPS|T(u) = \langle MPS|T(-u) \text{ or } \langle MPS|T(u) = \langle MPS|\hat{T}(-u) \rangle$ homogeneous límit

classification of

compatibility of the KT with RTT -

•	•	•	•	•	•	•	٠	•	1	•	•	•	•		•			
•				•	•	•							•	۰	0	٠	0	
							•	•						•	•	•		
•													•					
•			•					•	•	•	•			•	•	•		
								٠		. 0		0	0	0.	0	٠	0	
									•							•	•	
	•		•	•		•	•						•	•	•	•		
											•			•		•	•	

.

۰	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•
+-	Ż	Ó	°.	Ľ	*.	in		n	+	Ż			Ó (•	•	
L		C			•	V . (ľ							•
•	٠	•	•	٠	•	•	•	• 1	•	•	•	•	•	•	•	•	•
		•	•	٠	•	• 1	•		•		•		٠	•	•	•	
7.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		٠	•		•	•	•	•	•	•	٠	•	٠	•	•	•	•
•	٠		٠	•	•	•			•		٠	•			•		
٠	۰	٠	•	٠	•	٠	•	٠	•		•	•		٠		•	•
٠	•			•	•	•	•	•	٠	٠	•	•		•	٠	٠	•
•	•	•	•	•	•	•	•	•		•	•		٠	•	•	•	٠
•	•	•	•	٠	•	•	•	•	•	•	•		•	•		•	
٠	٠	٠	٠	٠	•	•	٠	•	•	•	•	٠	۰	•		٠	•
•		•	•	•	•	•	•	•	•		•		٠	•		•	
•		•	•	•		•	•	•	•	•	•	•	٠	•			•
				•	•			•	•			•		•			•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
			•		•	•	•	•	•	•	•	•	•	•		•	•

classification of

compatibility of the KT with RTT –

•	•	•	•	•	•	•	٠	•	1	•	•	•	•		•			
•					•	•							•	۰	0	٠	0	
							•	•						•	•	•		
•													•					
•			•					•	•	•	•			•	•	•		
								٠		. 0		0	0	0.	0	٠	0	
									•							•	•	
	•		•	•		•	•						•	•	•	•		
					•						•			•		•	•	

.

•	•	•	•		•	•	•	•	•	•		•	•	•			•
t	N	e		<	•	N	N	.0	It	Y		CI	e.	S		•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
L Tr	> p-f	Flei	rtí		P.C		atí	.010	•	•	•	٠			•	٠	•
						() ()	ŊΥ	Be)	•	•	•	•	•	•	•	•
		•		•	•	•	•			•	•	•	•	•	•	•	
•	•		•	•	•	•			•	•	•	•	•	•			•
•	٠	•	•	•	•	•	•	٠	٠	•	•	•		٠	•	•	•
•	•	•		•	•	•	•	•	•	٠	•	٠	٠	٠	0	٠	•
*	*	٠	•		•	*		•		•	•		٠		٠	٠	•
•	•	•	•		•	•	•	•	٠	•	•					٠	
•	•	•	٠	•	•	•	•	•	•	•	•		٠	•		•	•
•	•	•	•		•	•	•	•	٠		•	•	•	•		•	•
•		•	•		•	•	•	•	•	•	•	•		•			
•		•	•		•		•	•	•	•	•	•	•	•	•		•
٠		•	•				•	•		•	•					•	•
		•	•		•	0.1	•	•	•		•			•			
	•				•				•					•			

Classification of the K-matrices compatibility of the KT with RTT \rightarrow Reflection equation (by Be) (by Be) 22

•	•	•	•	•	•	•	٠	•	1	•	•	•	•		•			
•					•	•							•	۰	0	٠	0	
							•	•						•	•	•		
•													•					
•			•					•	•	•	•			•	•	•		
								٠		. 0		0	0	0.	0	٠	0	
									•							•	•	
	•		•	•		•	•						•	•	•	•		
											•			•		•	•	

compatibility of the KT with RTT \rightarrow Reflection equation k = k R k R k = k R k R k = k R k R

•	•	•	•	•	•	•	•	•	•	•	•	•	•	K-matr

•	•	•	•		•	•	•		•	•			•	•	•	•	•	÷	•	•	•	÷		•	•	•	•	•	•	•	•		•	•	•	•
	•		•										٠		•		•			•	•			•	•	•	•	•	•	•		+		•	•	•
	•				٠			•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•			•		•	
•	•			. •	•			•				0	٠	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•			•	•
•	•				•	•					. •			•	•	•	•			•				•		•	•			•	•	•		•	•	
•	•		•			•	•		•				•			÷			•					•	•	•	•	•	•	•	•	•		•	•	
•	•	•		•	•	•		٠		•	•	•		•	•	•	•	•	•	•	•				÷		•	•	•	•	•			•		•
	•		•		•		•		•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•		•		•	•	
	•				•				•		•		•	•	•	•	•		•	•	•	•		• 1	•	•	•	•	• 1	•		•	•	•	•	
	•		•		•	•					•		÷	÷			÷		÷					•	•		•	•	•	•	•					

íces are representations of reflection algebras

compatibility of the KT with RTT \rightarrow Reflection equation \downarrow (by Be) RKRK = KRKR

K-matrices are representations of reflection algebras

•						•		•	•	÷,			•	•	•	•	•	•		•			•	•	•	•		•	•		•		•			•
٠	n	0N	c	ros	sse	d	bÝ	Be			• —>		R		Ň.	M)	a	lar	e. br	-D	•		•	•	•	•					•	•	•	•	•
					•				•	•		•				•	J	•		•	•	•		•	•	•		٠	•		•				٠	
•	•	•			•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	•	•	•			•	•
	•		٠						•					•	•			•	•	•	•	•		•	•	•	٠			•	•	•			•	
•	•		٠	•	•	•			•	•	٠		•		•	•	•	•	•	•			÷	•	•	•	•	٠	•	•	•	÷	•	•		
•		•			•	•				•		•		•	•	•	•	•	•	•	•			•			•	•	•				•			
•	0		٠		•	•				•	· • .		0	•	•	٠	٠	•	•	•	٠	•		•	•	•		0	•		•				•	•
	•	•	. •								· , •		•		•	•			•	•	•			•	•	•				•			•			
											•																	•	•	•			•			

compatibility of the KT with RTT -> Reflection equation

K-matrices are representations of reflection algebras

\rightarrow B(N,M) algebra non-crossed by Be -

•	•	•			•			•	•	•		•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•						•			•	•			

RKRK = KRKR R R (bybe)

residual symmetry: g1(M) Ðg1(N-M)

compatibility of the KT with RTT -> Reflection equation

K-matrices are representations of reflection algebras

non-crossed by Be $\longrightarrow B(N,M)$ algebra

 \rightarrow Reflection equation (by Be) RKRK = KRKR \overline{R}

algebra → resídual symmetry: gl(M)⊕gl(N-M)

>Y(N)

K-matrices are representations of reflection algebras

\rightarrow B(N,M) algebra \rightarrow non-crossed by Be

compatibility of the KT with $RTT \rightarrow Reflection$ equation RKRK = KRKR(bybe)

> residual symmetry: $g(M) \oplus g(N-M)$

Examples for Yt .

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		٠	•	•	•	•	•	•	٠	•	•	•	•	•		•	•
N	1	•	•	•		•	•	•	•	•		•	•	•	•	•	•
•	•	•	0	0	•	• 1	•	•	•	•	•	•	•	•	•	•	•
•		٠	0	•	•	•			• ;	•	•	•	•	•	•	•	•
•	0	۰	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•
•	0	•	0	۰		•	•	•		•	•	•	•	•	•	•	•
•	•	•	•	0	0	•			٠		•	•	•	•	•		•
•	0	•	0	0	•	•	0	•		•	•	•	•	•	•	•	•
•	•		0	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	٠	•		•	•	•	•	•	•	٠	•
•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	*	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
•	ě.	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•				•		•	•	•		•		•	•	•	•	•

Examples for Yt(N)

algebra homomorphisms between

•	•	•	•	•	•	•		•	•	•	•	•	•	٠	•	÷	÷	•	*	÷	•	,	•	÷	•	•	•	•	•	•	•,	•	•	•	•	+
•	•	•	•	٠	•	•	•	•	1	•	•	•	٠	٠	•		•	٠	•	•	•	•	٠	•				•	•		٠		•	•	•	
		0			٠	•		. 0.				.0	0	0	٠	٠	٠	۰	٠	٠	٠	0	0	•	•	0	0				•	•	٠	0	•	•
	•	٠	٠		•	•	•			•			۰	0	•	•			•		•		٠	•	•	٠	0		•	•	•	•	•	•	•	•
٠	•		٠		•			•				•	•	٠	•	•			÷	•	•	•		•	٠	•	•		•			•	•	٠	٠	•
•	•			.*	•		•	•	•	•	•	•	۰	•	•	•	•	٠	•	•	•	•	٠	•	•	•	0			•			•		•	•
•	•	•	•		•			•	•			•	٠	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•		•	•
•			٠	•	•		•	•	•	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	٠	•	•	•	•	•		•		÷	•	•	÷	•	•	•		•	•	+	•	*	•	•	•	•	•	•	÷	•	•	•	•
•	•	•		٠	•	•	•	٠		٠		•		٠		•	•	•			•		٠			•	•	•	•		•	•	•	•	•	•
						•	•					•	٠	•	•	•	٠	•	٠	٠	•	•		•	•	•			•	•	•	•		٠	•	•
	•	• 0,		- 0	•						0	. 0	0	0.	٠	٠	٠	•	٠		٠	0	0	•	•	•		0		•		•	•	•	٠	
		•	•		•	•			•	•	0		0	0	•	•	•		•	•	•	•	0	•	•	•	0	•	•	•	•	•	•		•	•
													•	•																						

(N)

Examples for Yt(N)

algebra homomorphisms between

			, T		, T		Ĩ					Ť.	Ť	Ť.	Ť	Ť	Ť.	Ĩ
•	P\/			tir	•	ho		• • • • •		тh	íci	•	0	•	۰.	٠	٠	•
•						VID	•			pri	1031		۰	۰	٠	•	٠	٠
•	•	•	٠	•	•					•			٠	•	٠	٠		
•	•	•		٠	٠	•		•					*	٠		٠	•	
•	•	•	•	•	۰			٠	•	•		•	0	•	٠	۰		٠
•	•	•			•			•	•			٠	•	•	٠	٠	•	•
•		•	•		•	•		•	•	•			•	•	•	÷	•	•
•	•	•	٠			•	٠	•			•				•		•	•
•	•	•	۰					•		٠		•	٠	٠		•	•	
•	•	•	•									•	۰	۰	٠	٠	•	•
•	•	•		•	•							•	•	•	•	•	•	•
•		•	•		•						•			•	•			

.

•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	٠		•		•	•	•	•	•	•	•	•	•	•
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•				• .	•	•			•	•					•	•
•	•	•	•	•		•	•	•		•		•			•	•	•
•	•			•												•	•
•	•	•	•	•	•	•		•	0	•	•	•			•	•	•
			0	•							•	•					
					č.												
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•

Examples for Y algebra homomorphis evaluation homomorphism .

		•		•	•
	R	í (N			
sms between		•	•		•
	•••	•	•	•	•
$N) \lim_{n \to \infty} (u) = \partial_{i,j} + \overline{u} - \Theta^{-1} F_{j,i}$					

Č	Ť	Č.	÷	Ĭ		Ť		×					- -	Ť			
•	•	•	•	•	• .	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•	•	•	•		0	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	ĕ	•	•	•	•	•	•	•	•	•	•	•	•			•	•

Examples for Yt(N) algebra homomorphisms between evaluation homomorphism $O_N \rightarrow$ 23

- $g_{N} \rightarrow Y(N)$ $T_{ij}(u) = S_{ij} + \frac{1}{u-\Theta}E_{ji}$
 - $K_{iij}(u) = S_{iij} + \frac{1}{u+1/2} + \frac{1}{1/2}$

Examples for Y algebra homomorphisr gIN->) evaluation homomorphism

Ň	· · · · · · · · · · ·	J)	, ,	•	•	•	•	•	
NS	between	•			•	•	•	•	•
• J)	$T_{i,j}(u) = \delta_{i,j} + \frac{1}{u-\Theta}E_{j,i}$	•	•	•	•	•	•		_(>
N)	$K_{iij}(u) = S_{iij} + \frac{1}{u+1/2} + \frac{1}{1/2}$	•	•	•	•	•	•		· ()

Examples for Y algebra homomorphisr $g_N \rightarrow)$ evaluation homomorphism Coproduct

Ň	· · · · · · · · · · ·	J)	, ,	•	•	•	•	•	
NS	between	•			•	•	•	•	•
• J)	$T_{i,j}(u) = \delta_{i,j} + \frac{1}{u-\Theta}E_{j,i}$	•	•	•	•	•	•		_(>
N)	$K_{iij}(u) = S_{iij} + \frac{1}{u+1/2} + \frac{1}{1/2}$	•	•	•	•	•	•		· ()

Examples for Yt(N) algebra homomorphisn gln evaluation homomorphism $\Upsilon(N) \rightarrow \Upsilon$ NOY Coproduct

			•									•	•		•	•	•	•	•	•		•	•	C			•	•	•	7	ſ	(N))	•	•	•	•
		•	•	•	•	0	0	•	•	al	.ge	br	a V	101	no	M	orf	shi.	SW	IS	bet	tWi	eev	L •	•			ļ,	·µ N		•	•	•	•	•	•	0
			•				•		•			•	•	•		•	•		· · · · ·	•	т	(_ \$	•			·E	•	•	•	•	•	•	•	•	
	6	ev	al	иO	iti	on	ho	m	ow	ior	ph	ísi	м	•		5'N	•			•					1	•	u-E		[· 3	•	•	•	•	•			- (~
•		•	•				•	•			•		•	•	O	N	→	Y	r(N).	K	iij (u) :	= S	új.	+ -	L+'/2	Ŧ,	Ś.		•	•				V	' (m
•		•	•	•	•	•	•		•	•		•	Y	(N)	<u>ک</u> ۲	(N)©	· Y	(N)	Ţ		c)⊢	→ 2	л Г. Т	آهرز ((u)Q	5		(u)	•	•	•	•	•	•	•
		•	•			Co	pro	odi	rct				•	•	0	0	•	0	0	•	0		0			•	•	•	0	•	•	•	•	•	•		0
		•	•	•		•				•		. •	•	•	۰	٠		٠	٠		•	•	•	٠	•	•	•	•	٠	•	•	•	•		•		•
•		•		•	٠	•	•	•	٠	٠	•	•		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
	0	•	•	•	٠		•	•	٠		٠		•	•	٠		•		•	1	٠	*		•			•	•	•	*	•	•	•	•	•		•
		•	•	•	•	0	•	•		•	•	•	•	•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
		•	•		•		•			•			•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•
		•	•	•	•	•	•	•	•		٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	
		•						•			÷.,	•		•	•		•			•	•	•					•	•				•	•			•	•

· · · · 7

Examples for Yt algebra homomorphisn $g_N \rightarrow Y(N)$ evaluation homomorphism $Y(N) \rightarrow Y$ Coproduct $\rightarrow \Upsilon(N) \otimes \Upsilon$.

•		•	Ň	0	IV	U	1	31	e	Ś	•	e Fe	21	•	•	·			Ņ		•	•	Ċ		•	7	•		J)	•	•		•	•	•	•
•	•	•	•	•	•	•	•	•	al	.ge	br	a V	101	no	m	orf	shí	SM	is I	bet	W	eev	r		R	•	۰ ۲	N	/			•	•	•	•	•
	ev	/al	С	ití	on	ho)M	ow	LOY	ЪИ	ÍSI	M			31 _N	-\$	Y	(い)	•	T,	., (u):	= 8	S., j	+	<u> </u> u-(5E	jıi	•	•	•	•	•		L	-(X
•		•								F.' '			•		N-	<u>></u>	Y	r(N	•).	K	ij (u) :	= 5	ij.	+ .	<u>}</u> L+'/2	,Ŧ,	is.	•	•	•	•	•	•		((ju
•	•	•	•	•	Co	pra	odi	rct	•	•	•	Y	(N)	א א	- (N)©	· (N)	T,	; (v	r)⊢	~		من	(u) (2	1. i, k	(u)	*** **	•	•	•	•		•
•		•	•	•	•			•	•		Y	+(N	ر) –	÷	Y(N)	⊗`	Y *((N)	ŀ	<	j (n)) – ,	Z	Ţ	i, e((v)	lj,e	(-u)	8	K,	2,e(u)	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	٠	•	۰	•	•	•	•	•	•		•	٠	٠	•	•	٠	٠	•	۰	0	•	۰	۰	•	•	•	•	•	•	•	•	•	٠	٠	•	•
•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Examples for Y^t(N) algebra homomorphisms between $g_{N} \rightarrow Y(N)$ $T_{ij}(u) = \delta_{ij} + \frac{1}{u-\Theta}E_{ji}$ L(10) evaluation homomorphism $O_N \rightarrow Y^+(N) \quad K_{iij}(u) = S_{iij} + \frac{1}{u+1/2} F_{ij}$ $(\mathbf{u}) \vee$ $\Upsilon(N) \longrightarrow \Upsilon(N) \otimes \Upsilon(N) \quad T_{ij}(\omega) \mapsto \sum_{ij} T_{ij}(\omega) \otimes T_{ijk}(\omega)$ Coproduct $\Upsilon^{\dagger}(N) \to \Upsilon(N) \otimes \Upsilon^{\dagger}(N) \quad K_{ij}(u) \mapsto Z_{ijk}(u) T_{jk}(u) T_{jk}(u) \otimes K_{k,k}(u)$ $\otimes V$ 23

Examples for Yt algebra homomorphism gln evaluation homomorphism $\Upsilon(N) \rightarrow \Upsilon$ (N)®Y Coproduct $(^{+}(N) \rightarrow \Upsilon(N) \otimes \Upsilon)$ gln irreps 23 and On irrep M $\Upsilon^{+}(N)$ rep. $L(\lambda^{*}(\varsigma_{k})\otimes\ldots\otimes L(\lambda^{*}(\varsigma_{k})\otimes V(\rho)))$

Ń		•	•	Ċ	. K		7		•		K Y	(N)	•	•	•	•
ns I	oet	Wŧ	eev			Ř,	•	31	N		•		•	•		•	•
•	Τ.,	i (•	r):	= 8). j	•• +;;	<u> </u> u-(5E	i. j.i	•	•	•	•	•	•	L	_(>
J)	K;		u)=	= S	~; j -		<u> </u> .+'/	,Ŧ,	j	•	0	0	0	•	0		(y
-(N)	Τ.,	; (v	Ç)⊢	» Z			u)(27		(w)	•		•	•	•		-16
+ (N)	K	-ij	(u)	ب	Z	T,		(v)	Fj.e	(-u)	Ø	K,	2,e ⁽	u)	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
u)	•	•	٠	•	•	•	•	•	0	0.	•	•	•	•	•		•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Examples for Y^t(N) algebra homomorphisms between $g_{N} \rightarrow Y(N)$ $T_{ij}(u) = \delta_{ij} + \frac{1}{u-\Theta}E_{ji}$ L(XID) evaluation homomorphism $O_N \rightarrow Y^+(N) \quad K_{ij}(u) = S_{ij} + \frac{1}{u+1/2} F_{ij}$ $\mathcal{V}(\mathbf{\mu})$ $Y(N) \to Y(N) \otimes Y(N) \xrightarrow{T_{ij}} (u) \mapsto \xrightarrow{T_{ij}} (u) \otimes \xrightarrow{T_{ijk}} (u)$ Coproduct $\Upsilon^{\dagger}(N) \to \Upsilon(N) \otimes \Upsilon^{\dagger}(N) \quad K_{ij}(u) \mapsto \sum_{k,k} T_{ijk}(u) T_{jik}(u) \otimes K_{k,k}(u)$ V S gln irreps 23 and ON irrep M -> $\Upsilon^{+}(N)$ rep. $L(\Lambda^{*}(S_{k})\otimes ...\otimes L(\Lambda^{*}(S_{k})\otimes V(\mu)) = 1$

Examples for Y^t(N) algebra homomorphisms between evaluation homomorphism Coproduct gln irreps 23 and On irrep M $\Upsilon^{+}(N)$ rep. $L(\Lambda^{*}(S_{k})\otimes \ldots\otimes L(\Lambda^{*}(S_{k})\otimes V(\mu))$

•	•	•	•	•		•	•				•		•			•	
j.	Ċ	•+	- 0	+	0	Ċ	•	•	٠	•	•	•	•	•	•	•	٠
1	2		.01			3	•	•				•				•	۰
•	۰	٠	٠	٠	•	•	•	•	•	•	•		0	.0	•	•	•
۰	•	٠	٠	٠	0	•		٠	•				۰		•	٠	•
•	•	٠	•	•	0	٠	٠	٠	•			•	٠	•	٠	•	•
•		٠	•	٠		•	۰	•	0	٠	•		۰	0	٠	•	*
٠	•	٠	•	٠	0	•					.0	0		0	•	٠	
۰	•	۰	۰	٠	0	٠	0	۰	0		0	•		0	•	•	•
٠	•	٠		•	0	•	۰	٠	•	٠	•	0	۰	•	٠	•	•
٠		٠	•		٠	٠	۰	٠		٠			۰		٠	•	٠
•	•	•	•	٠		•	•		0	•	•	•			•	•	
٠	۰	•	0	•	•	•	٠	0	0	0		٠	٠	.0	•	•	
•	•	•	•	•	٠	•	•	•	•	•	•	*	•	٠	*	•	•
٠	•	•		•	•	•	•	•	٠	•	٠	•	*	•	•	•	•
	•	•		•	*		*	•	•	•	•	•		•	•		٠
٠	۰	•	۰	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠
•	٠	•	۰	•	•	•	•	•		•	•	•	•	•	•	•	
•	÷		•	•	•	•	*	•	٠	٠	•	*	*	•	•	•	٠
	•						•	•	•				•	•			

Dressed boundari . . . $K(u) \qquad \langle \psi \rangle \qquad \langle \psi \rangle$.

•	•	•	•	•		•	•				•		•			•	
j.	Ċ	•+	- 0	+	0	Ċ	•	•	٠	•	•	•	•	•	•	•	٠
1	2		.01			3	•	•				•				•	۰
•	۰	٠	٠	٠	•	•	•	•	•	•	•		0	.0	•	•	•
۰	•	٠	٠	٠	0	•		٠	•				۰		•	٠	•
•	•	٠	•	•	0	•	٠	٠	•		0	•	٠	•	٠	•	•
•		٠	•	٠		•	۰	•	0	٠	•		۰	0	٠	•	*
٠	•	٠	•	٠	0	•					.0	0		0	•	٠	
۰	•	۰	۰	٠	0	٠	0	۰	0		0	•		0	•	•	•
٠	•	٠		•	0	•	۰	٠	•	٠	•	0	۰	•	٠	•	•
٠		٠	•		٠	٠	۰	٠		٠			۰		٠	•	٠
•	•	•	•	٠		•	•		0	•	•	•			•	•	
٠	۰	•	0	•	•	•	٠	0	0	0		٠	٠	.0	•	•	
•	•	•	•	•	٠	•	•	•	•	•	•	*	•	٠	*	•	•
٠	•	•		•	•	•	•	•	٠	•	٠	•	*	•	•	•	•
	•	•		•	*		*	•	•	•	•	•		•	•		٠
٠	۰	•	۰	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠
•	٠	•	۰	•	•	•	•	•		•	•	•	•	•	•	•	
•	÷		•	•	•	•	*	•	٠	٠	•	*	•	•	•	•	٠
	•						•	•	•				•	•			

K(u) (41) (MPS)dressed MPS (MPSITy(S)...Tx(Sx)

Recursion for off. for crossed KT .

•		•	•	•		•	•		•	•	•	•	•		•	•	•
	•	Ċ.	0				1	Ø	i l	•	7-	Ň	Ċ	۰		•	•
	> /						V	C			1		>	•	•	•	٠
٠	•	•	0	0	•	0	٠	•	٠	•	•		0		•	•	۰
٠	•	٠	0	۰	0	•	•	.0	•			•	٠			•	•
•	•	٠	۰	۰	٠		٠	٠	•				٠	•	٠	•	•
*		٠		۰		۰	۰	•	0		٠		۰	0	•	•	*
٠	•		0	0	0	0		0				0	0	0			
•	•	٠	0	0	•	0	0	•	•		•	0	0	0		•	•
•	•		0	۰	•	•		٠	•	۰	•	0		•	0	٠	
	•	•	•		٠	٠	•	•	•	٠	•		٠		•	٠	٠
•	•	•	0	0	•		•	• *	•	٠	•	0				•	
٠	•	•	0	0		0	۰	•	•	• .	•	0	•	.0.1		٠	
•	•	•	•	•	٠	•	•	•			•		•	٠	•	•	•
•	•	•	•		•	٠	٠	٠	٠	٠	٠	•	٠	٠	•	•	٠
	•	•		٠	*			•	•		•	•		٠			٠
•	•	•	۰	۰	٠	٠	٠		•	•	٠	•	•	•	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•		٠	•	•	•	•

Recursion for off. for crossed KT -> .

•		•	•	•		•	•		•	•	•	•	•		•	•	•
	•	Ċ.	0				1	Ø	i l	•	7-	Ň	Ċ	۰		•	•
	> /						V	C			1		>	•	•	•	٠
٠	•	•	0	0	•	0	٠	•	٠	•	•		0		•	•	۰
٠	•	٠	0	۰	0	•	•	.0	•			•	٠			•	•
•	•	٠	٠	۰	٠		٠	٠	•				٠	•	٠	•	•
*		٠		۰		۰	۰	•	0	•	٠		۰	0	•	•	*
٠	•		0	0	0	0		0				0	0	0			
•	•	٠	0	0	•	0	0	•	•		•	0	0	0		•	•
•	•		0	۰	•	•		٠	•	٠	•	0		•	0	٠	
	•	•	•		٠	٠	•	•	•	٠	•		٠		•	٠	٠
•	•	•	•	0	•		•	• *	•	٠	•	0				•	
٠	•	•	0	0		0	۰	•	•	• .	•	0	•	.0.1		٠	
•	•	•	•	•	٠	•	•	•			•		•	٠	•	•	•
•	•	•	•		•	٠	٠	٠	٠	٠	٠	•	٠	٠	•	•	٠
	•	•		٠	*			•	•		•	•		٠			٠
•	•	•	۰	۰	٠	٠	٠		•	•	٠		•	•	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•		٠	•	•	•	•

Recursion for off. for crossed KT -> assuming K

•	•	•	•	•	•	•	•	٠	•		•		•		٠		•
	C	Ń	Ó	•	•	Ň	1	Þ	V		7-	Ň	Ċ	٠		•	•
					•	U	V	6			1		>			*	•
٠	۰	٠	٠	۰	٠	•	•	•	•	•		•	•	•	٠	•	•
•	٠	٠	٠	٠	•	•	•		٠	•	٠	•	•	٠		•	
ís	in	ver	tíl	ble	•	•	•	•	•	•				•	*	•	•
•		*	*	•		•	•	•	•	•	•	•,	•	•	•	•	•
•	•	۰	٠	۰	•							۰			0		•
۰	•	۰	۰	۰		•	۰	۰	.0	.0.1	0	•	0	0	0	•	•
•	•		•	•	•	•	•			•	•	٠	•	•	٠	*	•
	•	٠		•	•	•	.*	•	٠	•		•	•		•	•	•
•	•		٠			•	۰			•	•	•				•	
۰	•	•	•	0	0	•	•	0	0	0	0		•	.0.	. 0	٠	•
•	•		•	*		•	•		*		•	•			•	•	

Recursion for off-shell overlaps for crossed KT -> assuming Kin

ís	invertible	-recursion for	ū1	roots

•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•						•	•	•			•	•	•			

•	•	٠	•	•	•	•	۰	0	0	•	•	•	•		•	
•	•				•	•	•	•	6		•			•	•	

9		٠		•	٠		•	•	•		•	•	•	•	٠		•
•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Recursion for off-shell overlaps for crossed $KT \rightarrow assuming K_{M}$ is invertible \rightarrow recursion for \overline{u}^{1} roots $\langle \psi | \overline{\omega}^{*}, \overline{\omega}^{*}, \dots \rangle = \sum (\dots) \langle \psi | \psi, \overline{\omega}^{*}, \dots \rangle$

Recursion for off for crossed KT -> assuming K $\langle \Psi | \overline{\omega}^{*}, \overline{\omega}^{*}, \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{\omega}^{*}, \dots$. 25

•	S	•	e		•	Ö	· V	ė	· ·		21		Š	•	•	•	•
ís	ín	ver	tíl	ole	•	7 r	eci	rs	sío	N -	for	•	ū	•	ro	ots	5
.>	•	≯	3		J – 1		ov	erl	.ap	S	•	•	•	•	•	•	•
•	•				• .	•			•		•	•				•	•
	•	•	•	•	•	•		•	•	٠		•	•			•	٠
•	•		•	۰	•	٠	•	•	0	•	•	•			•	•	
•	۰	٠	۰	۰	0	•	٠	•	0	0		٠	•	.0.1	•	•	•
•		•	•	٠	٠	•	•	•	0		•		•	۰	•	•	•
•	•	•	٠	•		•	•	•	٠	٠	•	*	•	٠	•	•	•
				•	•			•	٠			۰	•	۰		.*.	
٠	•	٠	۰	۰	•	•	٠		•	0	0	۰	•	•	۰	0	۰
•	0	•	•	٠	•	•	•	•			•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•			0		٠	.0		•	•

Recursion for off . for crossed KT -> assuming K $\langle \Psi | \overline{u}^{\prime}, \overline{u}^{\prime}, \dots \rangle = \sum (\dots) \langle \Psi | \mathscr{A}, \overline{u}^{\prime}, \dots$ gl(N-1) KT-relation? .

•	F	Ś	e	Ċ	i V i	ĊY	S	5i	-0	•	Ċ		- - C) /	•	Ö	•	e F e		51	•	el		• •	Ċ.	•	ė	•		i	D.	Š	•	•	•	•	•	•	•
•	•	•	fo	rc	ros	sse	d f	KT	-	→	as	SU	m	ín	ġ	•	ζι,		ís	ín	vei	tíl	ole		7 r	eci	٢S	ío	n 1	for	•	ū	•	ro	oots	5.	•	•	
•	•	•	•	•	\	+ ;	تد^ر	~~~ ~~~	۱	>	=Z	2(.)	4	4	かい	بر بر	•	>	•	⇒	3		J – 1)	ov	erl	.ap	S	•	•	•	•	•	•	•	•	•	•
•	•	•	•	gl	(N	-1)) K	2 T -	- ri	ela	itic	oni	?	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•		•	•	٠		•	٠	٠		•	•	•	٠	٠	٠	٠	٠	•	٠	•	•	0		•	٠	•	•	•	•	•	٠	•				•		
•	•	•	•		÷	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		
						•	•														•																		
•	•			•		•	•			•	•		•	•		•		•		0	•		•				•	•		•	•		•	•		•	•	•	
•	•	•	٠	٠			•					•	٠	•	٠	٠	•	0	0	0	0	٠	۰	•	•	۰	0	•	•	•	٠	0		٠	•	•			•
	•	0			٠		•	· ; 0	•	•	•	•	•	•	٠	٠	•	0	0	۰	۰	٠	•	•		•	•	•		•	•		•	•	٠		•	•	
•	•	•	•	•	•	۰	۰	•	۰	•	٠	•	۰	٠	•	•	۰	0	0	0	۰	•	۰	٠	•	•	•	•	•	•	•	0	٠	•	٠	۰	۰	23	5
	100								100		1.1				1										1	1.1		1								1.1	1.0		

Recursion for off for crossed KT -> assuming Kin $\langle \Psi | \overline{\omega}^{\prime}, \overline{\omega}^{\prime}, \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{\omega}^{\prime}, \dots$ gl(N-1) KT-relation? $K = \begin{bmatrix} K_{11} & K_{12} & \dots & K_{1N} \\ - & - & - & - & - \\ K_{11} & K_{22} & \dots & K_{2N} \end{bmatrix}$

Recursion fo	roff-shel	loverlap	
for crossed KT → assumi	íng Km ís ínvertíbl	.e –recursíon for	il roots
$\langle \Psi \overline{u}^{4}, \overline{u}^{2}, \rangle = \Sigma()$	$\langle \psi \phi_1 \bar{w}_1^2 \dots \rangle \longrightarrow \Im(0)$	N-1) overlaps	
gl(N-1) KT-relation?	· · · · · · · · ·	• • • • • • •	· · · · · · · ·
K., K., K.			
$K \approx \begin{bmatrix} - & - & - & - \\ K_{21} & K_{22} & \dots & K_{2N} \end{bmatrix}$	· · · · · · · · ·		· · · · · · · ·
KNNIKNE KNN			· · · · · · · ·
			· · · · · · · ·

Recursion for off for crossed KT > assuming K $\langle \Psi | \overline{u}^{\prime}, \overline{u}^{\prime}, \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{w}^{\prime}, \dots$ gl(N-1) KT-relation? K.2...K.N F - - - - K.N K.2...K.N

Recursion for off-shell overlag	•••• •••••••••••••••••••••••••••••••••	
for crossed KT → assuming 🧑 Kin is invertible → recursion for		roots
$\langle \Psi \overline{u}^{*}, \overline{u}^{*}, \rangle = \sum () \langle \Psi \not = \langle \overline{u}^{*}, \rangle \longrightarrow g (N-i) \text{ overlaps}$		• • •
K_{11} , K_{12} , K_{10} , K_{1	• • •	· · ·
$K = \begin{bmatrix} - & - & - & - \\ K_{11} & K_{22} & \dots & K_{2N} \end{bmatrix}$	• • •	• • •
IKNAIKOL KNN	• • •	• • •

Recursion for off for crossed KT -> assuming K $\langle \Psi | \overline{u}^{\prime}, \overline{u}^{\prime}, \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{w}^{\prime}, \dots$ gl(N-1) KT-relation?

Recursion for off-shell overlaps	· ·	
for crossed KT → assuming KM is invertible → recursion for	ū 1.	roots
$\langle \Psi u^{*}, u^{*}, \rangle = \sum () \langle \Psi \varphi_{1} u^{*}, \rangle \longrightarrow g(N-1)$ overlaps al (N-1) K.T relation?	• •	• • •
$\left \begin{array}{c} K_{11} \\ K_{12} \\ K_{12$	• •	· · ·
$K = \begin{bmatrix} \\ K_{a_1b} \\ K_{a_1$	• •	• • •
KNAIKOL KAN	• •	· · ·
	• •	

Recursion for off for crossed KT -> assuming K $\langle \Psi | \overline{u}^{\prime}, \overline{u}^{\prime}, \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{w}^{\prime}, \dots$ gl(N-1) KT-relation? ---- Kin ---- Kin K

Recursion for off-shell ove	rlaps .
for crossed KT → assuming KM is invertible → recurs	ion for ū ¹ roots
$\langle \Psi \overline{\omega}^{*}, \overline{\omega}^{*}, \dots \rangle = \sum () \langle \Psi \mathscr{A}, \overline{\omega}^{*}, \dots \rangle \longrightarrow g(N-i)$ overl	aps
gl(N-1) KT-relation?	· · · · · · · · ·
$K = \begin{pmatrix} K_{i_1} & K_{i_2} & \dots & K_{i_N} \\ - & - & - & - & - \\ K_{i_1} & K_{i_2} & \dots & K_{i_N} \end{pmatrix} \qquad $	$[K_{1,1}(u), K_{a,b}^{(2)}(v)] = 6$

Recursion for off. for crossed KT > assuming K $\langle \Psi | \overline{\omega}', \overline{\omega}', \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{\omega}', \dots$ gl(N-1) KT-relation? nesting:

•	51	•	el		•	Ö	· V	ė	ľ	L	7	D.	Ś	•	•	•	•
ís	ín	ver	tíl	ole	•	7 Y	eci	٨rs	sío	n -	for	•	ū	•	ro	ots	•
. >	•	⇒	3		1 - 1)	ov	erl	.aț	S	•	•	•	0	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-		Ķ	-1	K,	•	•	•	•	•		•	(u), I	< (1 < a	с» (ч	v)]	- {
N-)	K	- 6	νą	++;	×	•	•	•	•	•	•	•	•	•		•
•	•	•	0	0	•	•	•	•	•	•	•	•	•	0	•	•	•
	ő		•		•	•		•			•			•			•

Recursion for off for crossed KT -> assuming K $\langle \Psi | \overline{u}', \overline{u}', \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{w}', \dots$ gl(N-1) KT-relation? nesting: $g(N) \rightarrow g(N-1) \rightarrow ... \rightarrow g(I)$ $K_{(n)} \equiv K \longrightarrow K_{(r)} \rightarrow \cdots \rightarrow K_{(n)}$

•	51	•	el		•	Ö	· V	ė	ľ	L	7	D.	Ś	•	•	•	•
ís	ín	ver	tíl	ole	•	7 Y	eci	٨rs	sío	n -	for	•	ū	•	ro	ots	•
. >	•	⇒	3		1 - 1)	ov	erl	.aț	S	•	•	•	0	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-		Ķ	-1	K,	•	•	•	•	•		•	(u), I	< (1 < a	с» (ч	v)]	- {
N-)	K	- 6	νą	++;	×	•	•	•	•	•	•	•	•	•		•
•	•	•	0	0	•	•	•	•	•	•	•	•	•	0	•	•	•
	ě.		•		•	•		•			•			•			•

Recursion for off for crossed KT -> assuming K $\langle \Psi | \overline{u}', \overline{u}', \dots \rangle = \sum (\dots) \langle \Psi | \varphi, \overline{w}', \dots$ gl(N-1) KT-relation? nesting: $g(N) \rightarrow g(N-1) \rightarrow ... \rightarrow g(I)$ $K_{(n)} \equiv K \longrightarrow K_{(r)} \rightarrow \cdots \rightarrow K_{(N)}$

-shell o	ve	rli	7P	S	• •	•	•
ís ínvertíble -> r	ecurs	ion•	for	ī1	rc	oots	•
·>-> 31(n-i)	overl	aps	• •	•	• •	•	•
-Kai Kii Kiis N-i) K-matrix		. (,	۲	د) <mark>ا</mark> لا	(2) (a,b(ر می ا	- - {
$G^{(k)} \equiv K^{(k)}_{k_{l}}$	· ·	• •	• •	•	• •	•	•

Recursion for off-shell overlaps for crossed KT \rightarrow assuming K_{i} is invertible \rightarrow recursion for \overline{u}^{1} roots $\langle \Psi | \tilde{\omega}', \tilde{\omega}', ... \rangle = \Sigma(...) \langle \Psi | \phi, \tilde{\omega}', ... \rangle \longrightarrow g(N-i)$ overlaps gl(N-1) KT-relation? $K = \begin{pmatrix} K_{11} & K_{12} & \dots & K_{1N} \\ - & - & - & - & - \\ K_{21} & K_{22} & \dots & K_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ K_{N1} & K_{N2} & \dots & K_{NN} \end{pmatrix}$ $K_{a,b}^{(2)} = K_{a,b} - K_{a,i} K_{i,i} - K_{i,b}$ $[K_{1,1}(u), K_{a,b}^{(2)}(v)] = 0$ y g(w-i) K-matrix $G^{(\mathbf{b})} = K_{\mathbf{b},\mathbf{b}}^{(\mathbf{b})} \implies \left[G^{(\mathbf{b})}(u), G^{(\mathbf{c})}(v)\right] = 0$ nesting: $g(N) \rightarrow g(N-1) \rightarrow ... \rightarrow g(I)$ $K_{(n)} \equiv K \longrightarrow K_{(r)} \rightarrow \cdots \rightarrow K_{(n)}$

Other recursions K_{11} exists for $Y^+(N)$.

•		•	•	0		•	•		0	۰			٠		۰	•	٠
•			٠			٠		•	•	٠			٠	•	•		
•	٠	•	٠	•	٠	•		•								•	•
•	•	•		•	•	• 1	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•			•	•		•	•	•			
•		•		٠	•	•							•	•			
•				٠			•	•	•			•	•	•		•	
•	•		•	•		•			٠			•	•	•			
•	0	۰	0	0	0.1	0	0	•	.0	.0.1	•	0	0.	•		•	
	0	•			•	•				0	•	•			0		
÷		٠	•			•	•	•	0	0			0		•	•	
•		•	٠		0		•		0	0	•		•			٠	
•	0	٠	0	0	0	0.	0	•	0	0		0	0	•	. 0	•	•
	0	•	•	ò	•	•	•	•	0						•	•	
•			•		•	•	•	•	•	•	•	•	•				
•	•	•		٠				•	•	•		•	•		•	•	
•	•	•	•	•	•	•		•	•	•			•		•		•
•	•			•	•	•	•	•		•			•	•			
•	è				•	•	•	•		•	•	•		•			
					•								•			•	

Other recursions K_{11}^{-1} exists for $Y^{+}(N)$ $\Upsilon^{-}(N) \longrightarrow$ other recursion 22 .

•		•	•	0		•	•		0	۰			٠		۰	•	٠
•			٠			٠		•	•	٠			٠	•	•		
•	٠	•	٠	•	٠	•		•								•	•
•	•	•		•	•	• 1	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•			•	•		•	•	•			
•		•		٠	•	•							•	•			
•				٠			•	•	•			•	•	•		•	
•	•		•	•		•			٠			•		•			
•	0	۰	0	0	0.1	0	0	•	.0	.0.1	•	0	0.	•		•	
	0	•			•	•				0	•	•			0		
÷		٠	•			•	•	•	0	0			0		•	•	
•		•	٠						0	0	•		•			٠	
•	0	٠	0	0	0	0.	0	•	0	0		0	0	•	. 0	•	•
	0	•	•	ò	•	•	•	•	0						•	•	
•			•		•	•	•	•	•	•	•	•	•				
•	•	•		٠				•	•	•		•	•		•	•	
•	•	•	•	•	•	•		•	•	•			•		•		•
•	•			•	•	•	•	•		•			•	•			
•	è				•	•	•	•		•	•	•		•			
					•								•			•	

Other recursions K, exists for Y+(N) 26

Other recursions K, exists for $Y^+(N)$ it also gives operators $G^{(b)}$ for k=1,...,N26

Other recursions K_{11} exists for $Y^+(N)$ $\Upsilon^{-}(N) \longrightarrow$ other recursion $\circ \circ \circ \circ \circ$ it also gives operators G for .

																			•							•				•						
•	•	ŀ	<,,	- \	ex	úst	s.	for	•	Y		- [2		•	•	•	•	•	•	•	•	•	• . •	•	•	•	•	•	•	•	•	•	•	•	•
•	•		, ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		٢.	()	1)	•	>	ot	the	er v	rec Z	ur:	sic	n	•	0 -	0 ū ²	0-	0 -	•••	•	>	0 ū'	0 ū			•••	•	•	•	•	•	•	•	•	•
•	•	•	•	Ĺ	ta	lso	, g	íve	2S	оре	era	to	Ś	Ç .	6)	fa	or	ļ	2=	١, .	1	N	•	•	[G	('E) S	(u)		- . (e	د) (ت	<u>ار</u>	= (D	•	•	•
							•		•			•	•		•	•								•				•	•			•	•			
	•				•	•						•	•		•	•	•			•			٠			•	٠	•		•	•	•				•
٠	•		•	•	•	•	•	•		•	٠			•	•	•	•			•			•	•		•	•	٠	•	•	•	•	•		•	
٠	٠		٠		٠	•	•	٠		٠		•	•	٠		٠	•	•		0		٠	•			٠	•	۰			•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
		0			•				•	•		•	•	٠	•	٠	٠	•	٠	۰	۰		•	•	•	•	•			•	•	•	•	•	•	
•		0	•		•	•	•	٠	۰	•	0	•	٠	0	•	•	٠		۰	ö	•	۰	٠	•	0	•	•	0	•	0	٠	•	٠		•	•
•							•					•		+						•						•						•	•			

Other recursions K_{11} exists for $Y^+(N)$ $\Upsilon^{-}(N) \longrightarrow$ other recursion \circ it also gives operators G for untwisted by Be

		0							•		•		0	•	•				•		•				•	0		•							•	•
•	•	k	<,,	- 1 1.	ex	úst	ts ·	for		Y			5)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•	•			()	J)	•	→	0	the	er v	rec	ur:	sic	n	•	0-	0 ū ²	-0-	-O -	•••	•	→	0 ū`	0 ū			•••	•	•		•	•	•	•	•	0
•	•		•	í	ta	lsc) g	iv	es	ора	era	itor	Ś	Ċť	(6)	f f	or	ļ	2°	١, .	1	N	•	•	[C	('b) 5	(u)		- - (e	د) د)	<u>ار،</u>	-	D	•		•
. 0	0	0	•	0	0	•	0	٠	•	•	. 0	۰	0	•	٠	0	0	0	0	0	۰	۰	0	0	0	0	۰	0.	•	•	0	0		٠	•	•
•	L	in	tw	íst	ed	67	PB	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
0	•	•	•	•				٠		•	· .	•	٠	٠	•	•		0	0		•		÷	٠		0	•	•	•			٠	•	•	, e 1	
•	٠		•		•	•	•	•	•	•	•	•	۰	•	•	۰	۰	۰	۰	•	•	•	٠	•	•		•	•	•	•	•	•	•	•	٠	٠
		٠			0	٠	0	•	۰	•		•	•	۰	٠	۰	0	0	0	•	۰	۰	۰	0	0.1	0	٠	•		•	0	0	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Other recursions K_{11} exists for $Y^+(N)$ $\Upsilon^{-}(N) \longrightarrow$ other recursion $\circ \circ \circ \circ \circ$ it also gives operators G for untwisted by Be a'

		-1 ex	íst	s fo	r r			+ (•	•	0	0	0	0	0	0	•	0	0	•	•	•	•	0	•	•	•	•	•	•	0
•		• •	•	• •	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		(N)		> 0	oth	er I	rec Z	urs	sic	n	•	O -	0 ū ²	-0-	0 -	•••	•	>	0 ūʻ	0 ū	-0- 	•	•••	•	•	•	•	•	•	•	•	
•	• • •	ít a	lso	gív	'es	opi	era	itor	Ś	Ç.	6)	f	or	ļ	2 ⁼	۱.	1	N	•	•	[C.	('b) 5	(u)		- (e') (ن	<u>ک</u>		D	•	•	•
•	• • •		•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	untw 0-0-0-	risted	0Υ •••	Be	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	a' 0-0-		0	ū ^{n.} !	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	• • •	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Other recursions K_{11}^{-1} exists for $Y^{+}(N)$ it also gives operators $G^{(n)}$ for k = 1, ..., N $[G^{(n)}(w), G^{(n)}(w)] = 0$ $g(N) \rightarrow g(N-2) \rightarrow \cdots \rightarrow g(2) \rightarrow g(1)$ untwisted by Be $K^{(1)} = K K^{(2)} K^{(1)} K^{(1+1)}$

On-shell overlaps without twist $\mp^{(k)} = \left[G^{(k)} \right]^{-1} G^{(k+1)} \longrightarrow \left[\mp^{(k)} (\omega) \right] \mp^{(l)} (\omega) = 0$ 27

On-shell overlaps without twist $\mp^{(k)} = \left[G^{(k)} \right]^{-1} G^{(k+1)} \longrightarrow \left[\mp^{(k)} (\omega) \right] \mp^{(l)} (\omega) = 0$ choosing diagonal basis $F^{(b)} = diag(F_{1}, \dots, F_{d_B}^{(b)})$ 27

On-shell overlaps without twist $\mp^{(k_{\alpha})} = \left[G^{(k)} \right]^{-1} G^{(k+1)} \longrightarrow \left[\mp^{(k)} (\omega) \right] \mp^{(l)} (\omega) = 0$ choosing diagonal basis $F^{(b)} = diag(F_{1}, \dots, F_{d_B}^{(b)})$ $\langle MPS | \overline{u} \rangle = \begin{bmatrix} d_B \\ \sum T \\ s \\ \zeta \overline{u} | \overline{u} \rangle \\ det G \end{bmatrix} \times \begin{bmatrix} det G^{\dagger} \\ det G \end{bmatrix}$ 27

On-shell overlaps without twist $\mp^{(k)} = \left[G^{(k)} \right]^{-1} G^{(k+1)} \longrightarrow \left[\mp^{(k)} (\omega) \right] \mp^{(\ell)} (\omega) = 0$ choosing diagonal basis $F^{(b)} = diag(F_{1}, \dots, F_{d_B}^{(b)})$ $\langle MPS | \overline{u} \rangle = \int_{d=1}^{d_e} T \widetilde{T}_{\chi}^{(s)}(\overline{u}^{*s}) \times \frac{det G}{det G}$ Non-crossed Crossed $\widetilde{T}_{\chi}^{(5)}(u) = T_{\chi}^{(5)}(u-i\frac{s}{2})\sqrt{\frac{u^{2}}{u^{2}+1}/t_{F}} \qquad \widetilde{T}_{\chi}^{(5)}(u) = \begin{cases} T_{\chi}^{(5)}(u-c_{5}) \\ T_{\chi}^{(\frac{w}{2})}(u-c_{\frac{w}{2}})\sqrt{\frac{u^{2}}{u^{2}+1}/t_{F}} \\ T_{\chi}^{(\frac{w}{2})}(u-c_{\frac{w}{2}})\sqrt{\frac{u^{2}}{u^{2}+1}/t_{F}} \end{cases}$ 27

Other spin chains

. . .

The on-shell overlaps are extended to other rational spin chains without proofs

symmetry of the spin chain	Type of refl.	Resídual symmetry	Paír structure
	AI	0(N)	Chíral
gl(N)	AII	sp(N)	Chíral
		gl(M)+gl(N-M)	Achiral
0(2n+1)	BI .	o(M) + o(N-M)	- Chiral -
cn(2u)	CI	sp(2m)+sp(2n-2m)	Chíral
Sp (~70)	CII	gl(n)	Chiral
	L L	$\alpha(\lambda A) + \alpha(2\mu - \lambda A)$	n-M=0 (mod 2) chíral
n(2n)		$O(1^{+}() + O(2^{-})^{+}())$	n-M=1 (mod 2) achría
0(~~~)		$c_{1}(a)$	n=0 (mod 2) chíral
	• • • • •	90(00)	n=1 (mod 2) achrial

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Other spin chains

The on-shell overlaps are extended to other rational spin chains without proofs

symmetry of the spin chain	Type of refl.	Resídual symmetry	Paír structure
	AI	0(N)	Chíral
gl(N)	All	sp(N)	Chíral
		gl(M)+gl(N-M)	Achiral
0(2n+1)	BI	o(M) + o(N-M)	Chiral
$c \uparrow (\Box \downarrow A)$	CI	sp(2m)+sp(2n-2m)	Chíral
Sp(~///)	CII	gl(n)	Chiral
		$a(hA) \pm a(a_{hA})$	n-M=0 (mod 2) chíral
		$U(1 \times 1) + U(2 \times 1 \times 1)$	n-M=1 (mod 2) achríal
0(~~/~)			$n=0 \pmod{2}$ chiral
		$g_{l}(n)$	n=1 (mod 2) achríal

The overlaps are also conjectured for graded spin chains, including gl(m|n) and osp(m|2n)

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•		•	•	٠		٠	٠		٠	٠			٠		•	•	٠
	•		•	•		•		•	•	٠				•	•		
•	٠	•	•	•	٠	0	۰	٠								•	۰
0	٠	•	•		•	0	0	•	•		•		•	•	•	•	0
epi	res	en	tat	tio	N	of	aç	gín	len	l ri	efl	ect	ÍO	nl	alg	zek	ra
epi	res	en	tat	tio	<i>N</i>	of	aç	gír	len	l ri	efl	ect	í0	n l	alq	zek	ra
epi	res	en	tat	tio	<i>N</i> .	of	aç	gír	len	l ri	efl	ect	τίο I	n (alq	yek	ra
epi	res	en	tat	tio	<i>N</i>	of	a (gín	/en		efl	ect		N 6	alq	yek	ra

•	2		Ò	Ņ		:1		1	Si)/	i	Ś	•	•	•	•	
•••	•	•	•		•	Mī	PS	•	•	•	K-	M	atr	íx	•	0	•	ħ
•	•	•	•	•		Ca	rto	in	su	160	ılg	eb	ra	•		۴	^{\$)} (•	
•	•		•		•	•	٠		•	•	•	•	•		•		•	•
		•				•							•	•	•	•		
•	•	•				•	۰.	•		•			•	•	•	•		
•	٠		•		•	•	•		•		•		•	٠	•		•	
•					•		•	•	•	•	•	•	•	•	•	•	٠	
	•	٠	•	•	•			•	•			•	•	•	•	٠	٠	
•	•		•	•	•	•	•		•	•	٠	•	•	•	•	*	•	
•	٠		٠	•	•	٠	٠	•	•	•	٠				•	•	•	
	•	٠	•	•	•	•	•	•	.*	•		•	•	•		•		
•	•	٠	•	•	•	•		•	•	•	•	٠	•	٠	•	٠	۰	
	•	•		•	•				•	•			٠	•	٠	٠	•	
•	•	•	•	•	٠	•	•	•		•	•		•	•	•	•	٠	

	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		0	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•
			•			•	• 1	•	•	•	0	•	•	•		•	•	•
Ŀ	pri	ese	nt	at	íov	r o	fo	19	íve	en	re [.]	fle	ctí	.ON	la	lge	ebr	a
							•					•		•			•	
						•		•	•	•			•	•		•	•	
		•					•	•		•	•		•	•	•			
	•					•						•	•			•	•	•
							•											
																	•	
		•						•	•	•					•	•		
		•				•		•		0	•	•	•			•		
						•												
		•	•					•										
														•				
	•	•								•								
	1			-									1.1			1		

•		•	•				•		•		•	•	•					
•	C	-	0	N		い	.1	1.5	SI)/	N	S	•	•	•	•	•
•	•	•	•	•	•	• • 47		•	•	•	•	•	• •	•	•	٠	•	•
•	•	•	•	•	•	/~()	-3		0		K-	M	uti	1X		•		15
		•			(Ca	rto	in	su	<i>ba</i>	ılg	eb	ra	•	7	F (\$;) (·	
							\sim	0,-1	7	<u> </u>		ína	+0		ahl	0	14	><
		•			>VIC	ماما ,			мр	5 (Ur			9ri			* (†	•
•	٠	•	•	•						•			•	•		•		•
•	•		•	•			•				•		•	•	•	•	•	
•	•	•		•	•			٠	•	•	•	•	٠	•	•	٠	•	0
•	•	•	•	•	•	•		•	•			•	•	•	•	•	•	
•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•
														•				
		•																

•	•	•	•			•	•		•			•	•	•	
*	•	•	*	٠	٠	•		٠			•				٠

Representation of a given reflection algebra

•	(Ö	N	1	:1		6	si	-0)V	Ń	S	•	•	•	•	•
•	•		•	•	•	Mi	PS	-	•	•	K-	m	atr	íx	-	•	•	T
•	•	•	•	•	(Ca	rta	n	รน	ba	lg	eb	ra	•	7	- (S	s) (•	(م
•	•	•	Ov	∿- ≤	she	ll	ove	erl	aps	s f	for	ín	teg	grl	abl	.e 1	MF	><
٠				•	•	•							•	٠	٠	٠	•	•
•			•	1.4	001	<u> </u>	€(s),		•	•	+)0			• •	· · / ∩	•	20
•			•	VV	ME	E	T d		<u>(u)</u>	V	irc	CM		.ug	en	-V U	in	62
•	•	•		•	•		1	•	•	•	•	•	٠	•	•	•	٠	•
•	•	•			•	•		•	•	•		•	•	•	•	•	•	•
•			•		0	•			•			•		•	•	0		
٠			•			•				•								
•		•		•	•					•	•		•			•	•	
•			•	•		•					•	•	0	0	٠	0	0	•
	0.	•			0					. 0			0	0	•	0	0	•
			•						•		•							

•		•	•		•	•		•		•	•	•	•	•	
									×.,					Ť	
•	•			•	•		•								

Representation of a given reflection algebra

s of the operators $F^{(s)}(u)$

	(Ò	Ņ	.(:1	i	6	si	-1	NNS
•	•	•	•	•	•	Mī	>S	•	•	•	K-matrix 🔶 R
•	•	•	•	•		Ca	rta	in	รน	60	nlgebra $F^{(s)}(u)$
	•	•	01	∿- S	she	ll	ovi	erl	aps	s (for integrable MPS
	•	•	•	W	her	re	₹Ç	(\$)	u)	0	are the eigenvalues
•	•	P	ro	of	ís	р0.	ssí	ibl	e í	f	1)KT-relation: ci
•	•	•	•	•	•	•	•	•		•	2) recurrence for
•	•	•	•	•	•	•	•		•	•	з)action formula
•	•	•		•	•	•	•	•	•	•	4) co-product for

zepresev	rtation of a given reflection algebro
· · · · · · · · / M1	$P < I = \sum \left[\frac{d_B}{d_B} \right] = \sum \left[\frac{d_B}{d_B} \right]$
হ হ	$\frac{ \sum_{i=1}^{n} - \sum$
s of the	operators F ^(s) (u)
reation	to annihilation
mula	$\{z,\bar{u}\},\bar{u}^2,, \rangle = Z()T_{i,j}(z) \bar{u}',\bar{v}^2, \rangle$
7	$T_{i,j}(z)(\bar{u}) = \sum_{i=1}^{\infty} ()(\bar{w})$
mula	$ \overline{u}\rangle = \sum () \overline{u}_{r}\rangle^{(n)} \otimes \overline{u}_{\underline{n}}\rangle^{(2)}$

