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Abstract This article is an extended version of the minicourse given by the second
author at the summer school of the conference Interactions of quantum affine
algebras with cluster algebras, current algebras and categorification, held in June
2018 in Washington. The aim of the minicourse, consisting of three lectures, was to
present a number of results and conjectures on certain monoidal categories of finite-
dimensional representations of quantum affine algebras, obtained by exploiting the
fact that their Grothendieck rings have the natural structure of a cluster algebra.

1 A Forerunner: Chari and Pressley’s Paper on Uq(ŝl2)

In [3], Chari and Pressley launched a systematic study of tensor categories of finite-
dimensional representations of quantum affine algebras by investigating in detail
the case of Uq(ŝl2). They gave a classification of simple objects, as well as a
concrete description of them as tensor products of evaluation modules. They also
gave a necessary and sufficient condition for such tensor products to be irreducible,
and they described the composition factors of a reducible tensor product of two
evaluation representations.
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In retrospect, these results may be seen as providing a cluster algebra structure
on the Grothendieck ring of this category, predating by 10 years the invention of
cluster algebras by Fomin and Zelevinsky [14]. We will therefore start our lectures
by reviewing these results.

1.1 The Hopf Algebra Uq(ŝl2)

Throughout the paper, we fix q ∈ C∗ not a root of unity. The algebra Uq(ŝl2) is
generated over C by

E0, F0, K0, K
−1
0 , E1, F1, K1, K

−1
1 ,

subject to the following relations:

KiK
−1
i = 1, (1.1)

KiKj = KjKi, (1.2)

KiEiK
−1
i = q2Ei, (1.3)

KiEjK
−1
i = q−2Ej , (1.4)

KiFiK
−1
i = q−2Fi, (1.5)

KiFjK
−1
i = q2Fj , (1.6)

EiFi − FiEi =
Ki − K−1

i

q − q−1 , (1.7)

EiFj − FjEi = 0, (1.8)

E3
i Ej − (q2+1+q−2)E2

i EjEi+ (q2+1+q−2)EiEjE
2
i −EjE

3
i = 0, (1.9)

F 3
i Fj − (q2+1+q−2)F 2

i FjFi+ (q2+1+q−2)FiFjF
2
i −FjF

3
i = 0, (1.10)

where i $= j are indices in {0, 1}. Moreover Uq(ŝl2) is a Hopf algebra, with
comultiplication ! given by

!(Ei) = Ei ⊗ Ki + 1 ⊗ Ei,

!(Fi) = Fi ⊗ 1+K−1
i ⊗ Fi,

!(Ki) = Ki ⊗ Ki.

It follows that a tensor product of finite-dimensional Uq(ŝl2)-modules is again a
Uq(ŝl2)-module.
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1.2 Simple Finite-Dimensional Uq(ŝl2)-Modules

Let E, F , K , K−1 denote the generators of Uq(sl2). (They are subject to the same
relations as (1.1), (1.3), (1.5) and (1.7).)

For every a ∈ C∗, we have a surjective algebra homomorphism eva : Uq(ŝl2) →
Uq(sl2) such that

eva(E1) = E, eva(F1) = F, eva(E0) = q−1aF, eva(F0) = qa−1E.

Hence, every simple finite-dimensional Uq(sl2)-module M becomes a finite-
dimensional Uq(ŝl2)-module M(a) by pull-back through eva .

It is well-known that the simple finite-dimensional Uq(sl2)-modules1 are classi-
fied by their dimension: for every n ∈ Z≥0 there is a unique (up to isomorphism)
simple module Vn with dimension n+ 1. Therefore, pulling back by the evaluation
morphisms eva , we get for all n ∈ Z≥0 a one-parameter family of simple Uq(ŝl2)-
modules Vn(a) (a ∈ C∗) with dimension n + 1. The representations V0(a) are all
equal to the trivial representation. Otherwise, for n ≥ 1, the simple modules Vn(a)

and Vn(b) are non-isomorphic if a $= b. The modules Vn(a) are called evaluation
modules.

Theorem 1.1 ([3]) Every non-trivial simple finite-dimensional Uq(ŝl2)-module M
is isomorphic to a tensor product of evaluation modules, that is,

M ( Vn1(a1) ⊗ · · · ⊗ Vnk (ak)

for some k ∈ Z>0, n1, . . . , nk ∈ Z>0, and a1, . . . , ak ∈ C∗.

Note that tensor products of evaluation modules are not always irreducible.
The next task is therefore to find some necessary and sufficient condition of
irreducibility. In order to formulate this condition we introduce the notion of a
string. This is a subset of C∗ of the form:

"(n, a) := {aq−n+1, aq−n+3, . . . , aqn−1}, (n ∈ Z≥0, a ∈ C∗).

(In fact, "(n, a) is nothing else than the set of roots of the Drinfeld polynomial of
Vn(a).) We say that two strings "1 and "2 are in general position if and only if

(i) "1 ∪"2 is not a string, or
(ii) "1 ⊆ "2 or "2 ⊆ "1.

1In these lectures, we will only consider type I representations of quantum enveloping algebras.
All representations can be obtained from the type I representations by twisting with some signs,
see e.g. [4, §10.1].
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Theorem 1.2 ([3]) The tensor product Vn1(a1) ⊗ · · · ⊗ Vnk (ak) is irreducible if
and only if for every (i, j) ∈ {1, . . . , k}2 the strings "(ni, ai) and "(nj , aj ) are in
general position.

Two strings which are not in general position are called in special position. What
can we say about the tensor product Vn1(a1) ⊗ Vn2(a2) when the strings "1 :=
"(n1, a1) and "2 := "(n2, a2) are in special position? It turns out that in this case
the tensor product always has two non-isomorphic composition factors. These two
irreducible modules are, by Theorems 1.1 and 1.2, parametrized by two collections
of strings in general position. Here is how to obtain them from "1 and "2.

Because of Theorem 1.2 (i), "3 := "1 ∪"2 is a string. Clearly, "4 := "1 ∩"2
is also a string, contained in "3. Removing from "3 the points of "4 together with
its two nearest neighbours, we are left with the union of two strings "5 and "6.
It is easy to see that the two pairs of strings ("3,"4) and ("5,"6) are in general
position. For instance, if

"1 = {1, q2, q4, q6, q8}, "2 = {q6, q8, q10, q12, q14, q16},

then

"3 = {1, q2, q4, q6, q8, q10, q12, q14, q16}, "4 = {q6, q8}

and

"5 = {1, q2}, "6 = {q12, q14, q16}.

We can then state:

Proposition 1.3 ([3, Proposition 4.9]) Let "1 and "2 be two strings in special
position. With the above notation, in the Grothendieck ring the following relation
holds:

[V ("1) ⊗ V ("2)] = [V ("3) ⊗ V ("4)] + [V ("5) ⊗ V ("6)]. (1.11)

Here, V ("i ) denotes the evaluation module whose associated string is "i .

1.3 Relation with Cluster Algebras

A reader familiar with the definition of a cluster algebra will recognize in (1.11) an
exchange relation. Let us make this more precise. First note that if two strings are
in special position, all their points belong to the same class in C∗/q2Z, that is, they
all are of the form aqk for some fixed a ∈ C∗ and some k ∈ 2Z. This motivates the
following definition:
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Definition 1.4 ([22]) Let a ∈ C∗ and # ∈ Z>0. Let Ca,# be the full subcategory of
the category of finite-dimensional Uq(ŝl2)-modules whose objects V satisfy:

Every composition factor of V is of the form Vn1(a1) ⊗ · · · ⊗ Vnk (ak) where all
strings "(ni, ai) are contained in S := {a, aq−2, . . . , aq−2#}.

The category Ca,# depends only on # up to isomorphism.We can therefore restrict
ourselves to the case a = 1, and write C1,# = C#. Then Theorems 1.1, 1.2 and
Proposition 1.3 yield the following reformulation:

Theorem 1.5 ([22]) The category C# is a monoidal category, and its Grothendieck
ring K0(C#) has the structure of a cluster algebra of finite type A# in the Fomin–
Zelevinsky classification. More precisely, the cluster variables of K0(C#) are the
classes of the evaluation modules contained in C#, the class [V#+1(q

−#)] being the
only frozen variable. The cluster monomials are equal to the classes of the simple
modules in C#. Two cluster variables are compatible (i.e. belong to the same cluster)
if and only if the corresponding strings are in general position. Otherwise they form
an exchange pair with exchange relation given by (1.11).

1.4 How Can We Generalize?

In an attempt to extend these results from Uq(ŝl2) to other quantum affine algebras,
Chari and Pressley introduced in [7] the notion of a prime module: this is a simple
finite-dimensional module that cannot be factored as a tensor product of modules of
smaller dimension. It follows from Theorem 1.1 that the prime Uq(ŝl2)-modules are
precisely the evaluation modules. This is no longer true for Uq(ŝl3), and Chari and
Pressley have constructed an infinite class of prime Uq(ŝl3)-modules which are not
evaluation modules, see [7]. In view of this, the following problems naturally arise.

Let g be a simple Lie algebra over C, and let Uq(̂g) denote the corresponding
untwisted quantum affine algebra.

(P1) What are the prime Uq(̂g)-modules?
(P2) Which tensor products of prime Uq(̂g)-modules are simple?

It is known that Kirillov–Reshetikhin modules (see below Definition 2.6) are
prime. The minimal affinization modules introduced by Chari and Pressley [5] as
replacements for evaluation modules which do not exist outside type A, are also
prime. But this is not a complete list as we shall see below. Problem (P2) is also
completely open. In [22] we proposed to use cluster algebras to shed new light on
these questions.
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2 Reminder on Finite-Dimensional Uq(̂g)-Modules

2.1 Cartan Matrix

Let C = (cij )i,j∈I be the Cartan matrix of g. There is a diagonal matrix D =
diag(di | i ∈ I ) with entries in Z>0 such that the product

B = DC = (bij )i,j∈I

is symmetric. We normalize D so that min{di | i ∈ I } = 1, and we put t :=
max{di | i ∈ I }. Thus

t =






1 if C is of type An,Dn,E6, E7 or E8,

2 if C is of type Bn,Cn or F4,

3 if C is of type G2.

Example 2.1 The Lie algebra g = so7, of type B3 in the Cartan–Killing classifica-
tion, has Cartan matrix

C =




2 −1 0

−1 2 −1
0 −2 2





We have D = diag(2, 2, 1) and the symmetric matrix B is given by

B =




4 −2 0

−2 4 −2
0 −2 2





We denote by αi (i ∈ I ) the simple roots of g, and by%i (i ∈ I ) the fundamental
weights. They are related by

αi =
∑

j∈I
cji%j . (2.1)

2.2 Classification

By Cartan–Killing theory, the simple finite-dimensional g-modules are in one-to-
one correspondence with their highest weight, an element of the positive cone of
integral dominant weights:
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P+ :=
⊕

i∈I
N%i .

We denote by L(λ) the simple g-module with highest weight λ ∈ P+.
Chari and Pressley have obtained a similar classification of simple finite-

dimensional Uq(̂g)-modules. To formulate it, we introduce the cone

P̂+ :=
⊕

i∈I, a∈C∗
N(%i , a)

of dominant loop-weights.

Theorem 2.2 ([4]) Up to isomorphism, the simple finite-dimensional Uq(̂g)-
modules are in one-to-one correspondence with their highest loop-weight, an
element of P̂+. ,-
We denote by L(̂λ) the simple Uq(̂g)-module with highest loop-weight λ̂ ∈ P̂+.

Example 2.3 Let g = so8, of type D4. Thus I = {1, 2, 3, 4}, where we denote by 3
the trivalent node of the Dynkin diagram. Then the g-module L(%3) =

∧2 C8 is of
dimension 28.

For a ∈ C∗, the Uq(̂g)-module L(%3, a) has dimension 29. This is a minimal
affinization of L(%3) in the sense of [5].

2.3 q-Characters

Finite-dimensional g-modules M are characterized by their character

χ(M) :=
∑

µ∈P
dim(Mµ)e

µ,

where P := ⊕i∈IZ%i is the weight lattice, M := ⊕µ∈PMµ is the weight
space decomposition of M , and eµ is a formal exponential. So χ(M) is a Laurent
polynomial in the variables yi := e%i , (i ∈ I ).

Similarly, finite-dimensional Uq(̂g)-modules M̂ have a loop-weight space
decomposition

M̂ := ⊕µ̂∈P̂ M̂µ̂,

where P̂ := ⊕i∈I, a∈C∗Z(%i , a). Frenkel–Reshetikhin introduced the q-character

χq(M̂) :=
∑

µ̂∈P̂
dim(M̂µ̂)e

µ̂,

a Laurent polynomial in the variables Yi,a := e(%i ,a), (i ∈ I, a ∈ C∗).



44 D. Hernandez and B. Leclerc

Theorem 2.4 ([13]) Let M̂ and N̂ be two finite-dimensional Uq(̂g)-modules. The
following are equivalent:

(i) χq(M̂) = χq(N̂);
(ii) [M̂] = [N̂ ] in the Grothendieck ring K0(-mod(Uq (̂g)));
(iii) M̂ and N̂ have the same composition factors with the same multiplicities.

In particular, q-characters characterize simple Uq(̂g)-modules up to isomorphism.

Note also that, because of Theorem 2.4, χq descends to an injective ring
homomorphism fromK0(-mod(Uq (̂g))) to the ring of Laurent polynomials Z[Y±1

i,a |
i ∈ I, a ∈ C∗].
Example 2.5 Let g = sl2, of type A1. Then, as is well-known, we have

χ(L(%1)) = χ(V1) = y1 + y−1
1

χ(L(2%1)) = χ(V2) = y21 + 1+ y−2
1

. . . . . .

On the other hand, for any a ∈ C∗,

χq(L(%1, a)) = χq(V1(a)) = Y1,a + Y−1
1,aq2

χq(L(2(%1, a))) = Y 2
1,a + 2Y1,aY−1

1,aq2 + Y−2
1,aq2

χq(L((%1, a)+ (%1, aq
2)) = χq(V2(aq))

= Y1,aY1,aq2 + Y1,aY
−1
1,aq4 + Y−1

1,aq2Y
−1
1,aq4 .

This shows that L((%1, a) + (%1, aq
2)) is a minimal affinization of L(2%1), but

L(2(%1, a)) is not.

Definition 2.6 For i ∈ I , k ∈ N, a ∈ C∗, set

λ̂
(i)
k,a :=

k−1∑

j=0

(%i , aq
2dij ) ∈ P̂+.

The simple Uq(̂g)-module L
(
λ̂
(i)
k,a

)
is called a Kirillov–Reshetikhin module. We

often write for short W(i)
k,a = L

(
λ̂
(i)
k,a

)
. The modules W(i)

1,a = L((%i , a)) are the
fundamental Uq(̂g)-modules.
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2.4 T -Systems

With the quantum affine algebra Uq(̂g) is associated a system of difference
equations called a T -system [33]. Its unknowns are denoted by

T
(i)
k,r , (i ∈ I, k ∈ N, r ∈ Z).

We fix the initial boundary condition

T
(i)
0,r = 1, (i ∈ I, r ∈ Z). (2.2)

If g is of type An,Dn,En, the T -system equations are

T
(i)
k,r+1T

(i)
k,r−1 = T

(i)
k−1,r+1T

(i)
k+1,r−1 +

∏

j : cij=−1

T
(j)
k,r , (i ∈ I, k ≥ 1, r ∈ Z).

(2.3)

If g is not of simply-laced type, the T -system equations are more complicated. They
can be written in the form

T
(i)
k,r+di

T
(i)
k,r−di

= T
(i)
k−1,r+di

T
(i)
k+1,r−di

+ S
(i)
k,r , (i ∈ I, k ≥ 1, r ∈ Z), (2.4)

where S(i)k,r is defined as follows. If di ≥ 2, then

S
(i)
k,r =

∏

j : cji=−1

T
(j)
k,r

∏

j : cji≤−2

T
(j)
dik, r−di+1. (2.5)

If di = 1 and t = 2, then

S
(i)
k,r =






∏

j : cij=−1

T
(j)
k,r

∏

j : cij=−2

T
(j)
l,r T

(j)
l,r+2, if k = 2l,

∏

j : cij=−1

T
(j)
k,r

∏

j : cij=−2

T
(j)
l+1,rT

(j)
l,r+2 if k = 2l + 1.

(2.6)

Finally, if di = 1 and t = 3, that is, if g is of typeG2, denoting by j the other vertex
we have dj = 3 and

S
(i)
k,r =






T
(j)
l,r T

(j)
l,r+2T

(j)
l,r+4 if k = 3l,

T
(j)
l+1,rT

(j)
l,r+2T

(j)
l,r+4 if k = 3l + 1,

T
(j)
l+1,rT

(j)
l+1,r+2T

(j)
l,r+4 if k = 3l + 2.

(2.7)
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Example 2.7 Let g be of type B2. The Cartan matrix is

C =
(

2 −1
−2 2

)

and we have d1 = 2 and d2 = 1. The T -system reads

T
(1)
k,r+2T

(1)
k,r−2 = T

(1)
k−1,r+2T

(1)
k+1,r−2 + T

(2)
2k,r−1, (k ≥ 1, r ∈ Z),

T
(2)
2l,r+1T

(2)
2l,r−1 = T

(2)
2l−1,r+1T

(2)
2l+1,r−1 + T

(1)
l,r T

(1)
l,r+2, (l ≥ 1, r ∈ Z),

T
(2)
2l+1,r+1T

(2)
2l+1,r−1 = T

(2)
2l,r+1T

(2)
2l+2,r−1 + T

(1)
l+1,rT

(1)
l,r+2, (l ≥ 0, r ∈ Z).

It was conjectured in [33], and proved in [39] (for g of type A,D,E) and [21]
(general case), that the q-characters of the Kirillov–Reshetikhin modules of Uq(̂g)
satisfy the corresponding T -system. More precisely, we have

Theorem 2.8 ([21, 38]) For i ∈ I, k ∈ N, r ∈ Z,

T
(i)
k,r = χq

(
W

(i)
k,qr

)
,

is a solution of the T -system in the ring Z
[
Y±1
i,qr | (i, r) ∈ I × Z

]
. Equivalently, by

Theorem 2.4,

T
(i)
k,r =

[
W

(i)
k,qr

]
,

is a solution of the T -system in the Grothendieck ring K0(-mod(Uq (̂g))).

Remark 3.9

(i) For g = sl2, Theorem 2.8 is a particular case of Proposition 1.3.
(ii) Theorem 2.8 allows to calculate inductively q-characters of Kirillov–

Reshetikhin modules in terms of q-characters of fundamental modules. Note,
however, that it is not straightforward to compute the q-characters of the
fundamental modules in type E8 or F4, say. An algorithm has been obtained
by Frenkel and Mukhin [12]. Another one, based on cluster mutation, is
described in [23].

(iii) The T -system in the Grothendieck ring comes from a non-split short exact
sequence

0 → S
(i)
k,r → W

(i)

k,qr−di
⊗ W

(i)

k,qr+di
→ W

(i)

k−1,qr+di
⊗ W

(i)

k+1,qr+di
→ 0,

where the module S(i)k,r is defined as the tensor product of Kirillov–Reshetikhin

modules associated with the factors of S(i)k,r above (it does not depend on the

order of the tensor product up to isomorphism). The representationW(i)

k,qr−di
⊗
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W
(i)

k,qr+di
is of length 2. By a general result of Chari on tensor products of

Kirillov–Reshetikhin modules [2], it is cyclic generated by the tensor product
of the highest weight vectors and so it is indecomposable.

3 Quivers, Subcategories, and Cluster Algebras

Following [25], we attach an infinite quiver to Uq(̂g), and we define some sub-
categories of the category of finite-dimensional Uq(̂g)-modules. We then introduce
cluster algebras corresponding to finite segments of this infinite quiver.

3.1 Quivers

Put Ṽ = I × Z. We introduce a quiver (̃ with vertex set Ṽ . Recall the symmetric
matrix B = (bij )i,j∈I of Sect. 2.1. The arrows of (̃ are given by

((i, r) → (j, s)) ⇐⇒ (bij $= 0 and s = r + bij ).

It is easy to check that the oriented graph (̃ has two isomorphic connected
components. We pick one of them and call it (. The vertex set of ( is denoted
by V . Examples in type A3 and B2 are shown in Fig. 1.

3.2 Subcategories

First, using the vertex set V , we introduce

P̂+,Z :=
⊕

(i,r)∈V
N(%i , q

r+di ),

a discrete subset of the positive cone P̂+ of loop-weights.

Definition 3.1 Let CZ be the full subcategory of the category of finite-dimensional
Uq(̂g)-modules whose objects M satisfy:

Every composition factor of M is of the form L(̂λ) with λ̂ ∈ P̂+,Z.

By [23], CZ is a monoidal subcategory, i.e. it is stable under tensor products.
Moreover, it is known that every simple finite-dimensional Uq(̂g)-module can be
written as a tensor product of simple objects of CZ with spectral shifts. Therefore it
is enough to study the simple objects of CZ.
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(1, 2)
..
. (3, 2)

(2, 1)

(1, 0) (3, 0)

(2,− 1)

(1,− 2) (3,− 2)

(2,− 3)

(1,− 4) (3,− 4)

(2,− 5)

(1,− 6)
.
..

(3,− 6)

.

..
.
..

(2, 6) (1, 6)

(1, 4) (2, 6)

(2, 2) (1, 2)

(1, 0) (2, 0)

(2,− 2) (1,− 2)

(1,− 4) (2,− 4)

(2,− 6) (1,− 6)

(1,− 8) (2,− 8)

...
...

...

Fig. 1 The quivers ( in type A3 and B2

In order to relate CZ with cluster algebras of finite rank, we need to “truncate” it,
as we did in Sect. 1.3 for g = sl2. Fix # ∈ N, and put

P̂+,# :=
⊕

(i,r)∈V,−2#−1≤r+di≤0

N(%i , q
r+di ).

Definition 3.2 Let C# be the full subcategory of the category of finite-dimensional
Uq(̂g)-modules whose objects M satisfy:

Every composition factor of M is of the form L(̂λ) with λ̂ ∈ P̂+,#.

Again by [23], C# is a monoidal category and its Grothendieck ring is a polynomial
ring in finitely many variables, namely, the classes of the fundamental modules
contained in C#:

K0(C#) = Z
[
[L
(
(%i , q

r+di )
)
] | (i, r) ∈ V, −2#− 1 ≤ r + di ≤ 0

]
.



Quantum Affine Algebras and Cluster Algebras 49

3.3 Cluster Algebras

We refer the reader to [16] and [19] for an introduction to cluster algebras, and for
any undefined terminology.

Let (# denote the full subquiver of ( with vertex set

V# := {(i, r) ∈ V | −2#− 1 ≤ r + di ≤ 0}.

Let z# := {z(i,r) | (i, r) ∈ V#} be a set of commuting indeterminates indexed by V#.
The pair (z#,(#) can be regarded as a seed, in the sense of [16].

Definition 3.3 Let A# ⊂ Q(z#) be the cluster algebra with initial seed (z#,(#),
where we consider the variables zi,r with r − di < −2#− 1 as frozen variables. ,-

4 Main Conjecture

4.1 Statements and Examples

The category C# and the cluster algebra A# are related as follows:

Theorem 4.1 ([23]) For (i, r) ∈ V# put mi,r := max{k | r + (2k + 1)di ≤ 0} + 1.

The assignment zi,r 4→
[
W

(i)

mi,r ,q
r+di

]
extends to a ring isomorphism ι# : A# →

K0(C#).

We can now formulate our main conjecture from [22, 23].

Conjecture 4.2

(i) The isomorphism ι# maps the subset of cluster monomials ofA# into the subset
of classes of simple objects of C#.

(ii) The isomorphism ι# maps the subset of cluster variables of A# into the subset
of classes of prime simple objects of C#.

In the situation of Theorem 4.1 and Conjecture 4.2, we say that C# is a monoidal
categorification of the cluster algebra A# [22]. We illustrate the conjecture with
simple examples.

Example 4.3 We take g = sl4, of type A3, and we choose # = 1. The isomorphism
ι1 is displayed in Fig. 2, which shows the image of the initial seed of A1. For
instance, ι1(z2,−1) =

[
W

(2)
1,q0

]
. The 3 frozen variables are marked with a box.
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(2,−1)

(1,−2) (3,−2)

(2,−3) −→

(1,−4) (3,−4)

W
(2)
1,q0

W
(1)
1,q−1 W

(3)
1,q−1

W
(2)
2,q−2

W
(1)
2,q−3 W

(3)
2,q−3

Fig. 2 The isomorphism ι# in type A3 for # = 1

The cluster variable z∗
2,−1 obtained by mutating z2,−1 in this initial seed is given

by the exchange relation:

z2,−1z
∗
2,−1 = z2,−3 + z1,−2z3,−2,

which translates under ι1 into the T -system equation:

[
W

(2)
1,q0

] [
W

(2)
1,q−2

]
=
[
W

(2)
2,q−2

]
+
[
W

(1)
1,q−1

] [
W

(3)
1,q−1

]
.

Thus, ι1(z∗
2,−1) =

[
W

(2)
1,q−2

]
.

In this case, A1 is a cluster algebra of finite type A3 in the Fomin–Zelevinsky
classification, and Conjecture 4.2 is proved [22]. Moreover, sinceA1 has finite type,
the inclusions of Conjecture 4.2 are in fact bijections. The algebra A1 has 9 cluster
variables plus 3 frozen variables. The prime simple modules of C1 corresponding to
cluster variables are

W
(1)
1,q−1 = L((%1, q

−1)), W
(2)
1,q−2 = L((%2, q

−2)), W
(3)
1,q−1 = L((%3, q

−1)),

W
(1)
1,q−3 = L((%1, q

−3)), W
(2)
1,q0 = L((%2, q

0)), W
(3)
1,q−3 = L((%3, q

−3)),

L((%1, q
−3)+ (%2, q

0)), L((%1, q
−3)+ (%2, q

0)+ (%3, q
−3)),

L((%2, q
0)+ (%3, q

−3)).

There are 6 fundamental modules, and 2 minimal affinizations, but the 70-
dimensional module L((%1, q

−3) + (%2, q
0) + (%3, q

−3)), which restricts to
L(%1 +%2 +%3) ⊕ L(%2) as a Uq(sl4)-module, is not a minimal affinization.

By [15], there is a bijection between the set of cluster variables of A1 and the set
of almost positive roots of a root system of type A3. A natural bijection was given
in [22]:
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L((%1, q
−1)) ↔ −α1

L((%2, q
−2)) ↔ −α2

L((%3, q
−1)) ↔ −α3

L((%1, q
−3)) ↔ α1

L((%2, q
0)) ↔ α2

L((%3, q
−3)) ↔ α3

L((%1, q
−3)+ (%2, q

0)) ↔ α1 + α2
L((%2, q

0)+ (%3, q
−3)) ↔ α2 + α3

L((%1, q
−3)+ (%2, q

0)+ (%3, q
−3)) ↔ α1 + α2 + α3

Following [15] and using this bijection one can read the 14 clusters ofA1 ∼= K0(C1)

from the associahedron of Fig. 3. Every cluster variable corresponds to a face,
indicated by the attached almost positive root (the negative simple root −αi labels
the unique rear face parallel to the face labelled by αi). Every cluster corresponds to
a vertex and consists of the 3 faces adjacent to it. For instance, there is a cluster

{α1,α3,−α2} ≡ {L((%1, q
−3)), L((%3, q

−3)), L((%2, q
−2))}.

The neat final result is that every simple module of C1 is a tensor product of
prime simple modules belonging to a single cluster, and of frozen simple modules
(corresponding to the frozen variables of A1).

Example 4.4 We take g = so5, of type B2, and we choose # = 2. The isomorphism
ι2 is displayed in Fig. 4, which shows the image of the initial seed of A2. For
instance, ι2(z2,−2) =

[
W

(2)
1,q−1

]
. The 3 frozen variables are marked with a box.

Fig. 3 The associahedron in
type A3

α2

α1 + α2

α2 + α3

α1+α2+α3

α1

α3
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(2,−2) (1,−2)

(1,−4) (2,−4) −→

(2,−6) (1,−6)

W
(2)
1,q−1 W

(1)
1,q0

W
(1)
1,q−2 W

(2)
2,q−3

W
(2)
3,q−5 W

(1)
2,q−4

Fig. 4 The isomorphism ι# in type B2 for # = 2

Again, A2 has finite cluster type A3. So C2 has 12 prime objects, namely, the 6
Kirillov–Reshetikhin modules of the initial seed, together with

W
(1)
1,q−4 , W

(2)
1,q−3 , W

(2)
1,q−5 , W

(2)
2,q−5 , L((%1, q

0)+ (%2, q
−5)),

L((%1, q
0)+ (%2, q

−3)+ (%2, q
−5)).

A bijection between the highest loop-weights of the unfrozen primes and the almost
positive roots of type A3, allowing to determine the clusters using the associahedron
as in Example 4.3, is for instance:

(%1, q
−4) ↔ −α1

(%2, q
−3)+ (%2, q

−1) ↔ −α2
(%2, q

−1) ↔ −α3
(%1, q

0) ↔ α1
(%2, q

−5) ↔ α2
(%2, q

−3) ↔ α3
(%1, q

0)+ (%2, q
−5) ↔ α1 + α2

(%2, q
−3)+ (%2, q

−5) ↔ α2 + α3
(%1, q

−0)+ (%2, q
−3)+ (%2, q

−5) ↔ α1 + α2 + α3.

Example 4.5 We take g of type G2, and we choose # = 3. The isomorphism ι3 is
displayed in Fig. 5, which shows the image of the initial seed of A3. There are 4
frozen variables. A3 has finite cluster type A4. So C3 has 18 prime objects, namely,
the 8 Kirillov–Reshetikhin modules of the initial seed, together with

W
(1)
1,q−6 , W

(2)
1,q−3 , W

(2)
1,q−5 , W

(2)
2,q−5 , W

(2)
2,q−7 , W

(2)
3,q−7 , W

(2)
1,q−7 ,

L((%1, q
0)+ (%2, q

−7)), L((%1, q
0)+ (%2, q

−5)+ (%2, q
−7)),

L((%1, q
0)+ (%2, q

−3)+ (%2, q
−5)+ (%2, q

−7)).
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(2,−2)

(1,−3) (2,−4)

(2,−6) (1,−5) −→

(2,−8) (1,−7)

(1,−9)

W
(2)
1,q−1

W
(1)
1,q0 W

(2)
2,q−3

W
(2)
3,q−5 W

(1)
1,q−2

W
(2)
4,q−7 W

(1)
1,q−4

W
(1)
2,q−6

Fig. 5 The isomorphism ι# in type G2 for # = 3

Remark 4.6

(i) There is a similar Conjecture in which the finite quiver (# is replaced by the
semi-infinite quiver (− with vertex set

V − := {(i, r) ∈ V |r + di ≤ 0},

and the category C# is replaced by the category C− of finite-dimensional
Uq(̂g)-modules whose composition factors are of the form L(̂λ), λ̂ ∈⊕

(i,r)∈V−
N(%i , q

r+di ), see [23].

(ii) There is also a similar Conjecture in which the finite quiver (# is replaced
by the doubly-infinite quiver (. In that case, the corresponding category is no
longer a subcategory of the category of finite-dimensional Uq(̂g)-modules. We
have to consider a certain subcategory of the category O of (possibly infinite-
dimensional) representations over a quantum Borel subalgebra Uq(̂b) of Uq(̂g),
see [26]. The category CZ of Definition 3.1 can be regarded as a subcategory
of this category of Uq(̂b)-modules. The initial seed consists of the classes of
prefundamental representations, which are simple infinite-dimensional modules
of Uq(̂b) which cannot be extended to Uq(̂g)-modules.

4.2 What Is Known?

4.2.1 Part (ii)

The difficult part of Conjecture 4.2 is (i). If (i) is known, then (ii) follows from a
result of [17] which says that if a cluster algebra is a factorial ring, then every cluster
variable is a prime element of this ring.



54 D. Hernandez and B. Leclerc

4.2.2 First Evidences

As explained in Sect. 1, when g = sl2 Conjecture 4.2 follows from [3].
In [22], (i) was proved for type An and D4 when # = 1. The proof was algebraic

and combinatorial, and certain parts of the proof were more general.
In [38], Nakajima proved (i) for types A,D,E and # = 1, using the geometric

approach to Uq(̂g) via quiver varieties. (An introduction to this proof is presented
in [35].)

A variant of Conjecture 4.2 for type An and Dn when # = 1 was proved in [23].
This involves finite subquivers of ( different from (#. Very recently Brito and Chari
[1] generalized the results of [23] in type A using purely representation theoretic
methods.

4.2.3 Proof in Simply-Laced Cases

In [40], Qin gave a proof of (i) for types A,D,E and arbitrary #. The proof also
relies on the geometric approach, and uses the t-deformation of K0(C#) introduced
by Varagnolo–Vasserot and Nakajima in terms of quiver varieties.

4.2.4 Connection with Quiver Hecke Algebras

In type A,D,E, for # = h/2 − 1, where h is the Coxeter number supposed to be
even, there is another approach as follows. In [24], we have shown that there is a
ring isomorphism

i : C ⊗Z K0(Ch/2−1) −→ C[N ],

whereN is a maximal unipotent subgroup of a simple Lie groupGwith Lie(G) = g.
The ring of polynomial functions C[N ] has a well-known cluster algebra structure,
and the isomorphism i transports the cluster structure ofAh/2−1 ∼= C⊗ZK0(Ch/2−1)

to the cluster structure of C[N ]. We have shown that the isomorphism i maps
the basis of C ⊗Z K0(Ch/2−1) consisting of classes of simple objects to the dual
canonical basis (or upper global basis) of C[N ]. Therefore to prove (i) in this case
amounts to prove:

(i’) The cluster monomials of C[N ] form a subset of the dual canonical basis
of C[N ].

This was proved by Kang et al. [30]. They used the categorification of the dual
canonical basis of C[N ] by simple objects of a category H of graded modules
over quiver Hecke algebras. This raises the question of a relation between the two
categories H and Ch/2−1. In [28], Kang, Kashiwara and Kim constructed a functor
fromH to Ch/2−1 inducing the isomorphism i−1 at the level of Grothendieck rings.
In type A this can be regarded as a variant of the quantum affine Schur–Weyl
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duality of Chari–Pressley and Ginzburg–Reshetikhin–Vasserot [6, 18]. Recently,
Fujita [10, 11] proved that the KKK-functor is in fact an equivalence of categories.

4.2.5 Non-Simply-Laced Cases

For non-simply-laced types, let us start with the example of the category C2 in type
B2 discussed in Example 4.4. Comparing with the category C1 in type A3 discussed
in Example 4.3, we observe that not only the cluster algebras A1 in type A3 and A2
in type B2 have the same cluster type A3 and the same numbers of frozen variables,
but also the quivers in Figs. 3 and 4 are mutation-equivalent. This is illustrated
in Fig. 6 with the mutation sequence at nodes (3,−2), (2,−1), (1,−2). Arrows
between frozen vertices may be omitted as this does not change the cluster algebra
structure. Hence we get a distinguished isomorphism between Grothendieck rings

K0(C1, A3) ( K0(C2, B2)

which is compatible with the cluster algebra structures. This last point is the most
important since we know already that the two rings are isomorphic to the polynomial
ring in 6 variables.

This example is the first instance of a family of isomorphisms of cluster algebras

K0(Ch/2−1, A2n−1) ( K0(C
′
Bn
)

obtained by the first author in a joint work with Hironori Oya [27]. These are
distinguished isomorphisms between the Grothendieck rings of the type A2n−1
categories Ch/2−1, A2n−1 already mentioned in Sect. 4.2.4 above, and remarkable
subcategories C′

Bn
of finite-dimensional representations in type Bn. The proof is

established at the level of quantum cluster algebras, in order to demonstrate a
conjecture on quantum Grothendieck rings and related analogs of Kazhdan–Lusztig
polynomials formulated in [20].

Using a completely different method based on functors from categories of
representations of quiver Hecke algebras, Kashiwara–Kim–Oh and Kashiwara–
Oh [31, 32] constructed isomorphisms of Grothendieck rings in types A2n−1/Bn

preserving the classes of simple modules. In fact, these match the distinguished
isomorphisms obtained from cluster algebra structures in [27]. Hence the cluster
algebra isomorphisms also preserve classes of simple modules. For instance, in the
example above, the bijection between prime simples can be directly written from
the bijection with almost positive roots in Examples 4.3 and 4.4. Consequently,
combining these results, the analogue of Conjecture 4.2 for the subcategories C′

Bn

holds.
It is expected that this approach will be extended to larger categories and to more

general types.
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(2,−1)

(1,−2) (3,−2)

(2,−3)

(1,−4) (3,−4)

(2,−1)

(1,−2) (3,−2)

(2,−3)

(1,−4) (3,−4)

(2,−1)

(1,−2) (3,−2)

(2,−3)

(1,−4) (3,−4)

(2,−1)

(1,−2) (3,−2)

(2,−3) =

(1,−4) (3,−4)

(3,−2) (2,−1)

(3,−4) (1,−2)

(2,−3) (1,−4)

Fig. 6 Mutations : from A1 in type A3 to A2 in type B2

4.2.6 Real Modules

When the cluster algebra A# is not of finite cluster type, cluster monomials do not
span the vector space C ⊗ A#. This raises the question of describing the simple
objects of C# whose class in the Grothendieck ring is a cluster monomial.

Conjecture 4.7 ([22, 23]) The class of a simple object S of C# in the Grothendieck
ring is a cluster monomial if and only if S is a real simple object, that is, if and only
if S ⊗ S is simple.
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Let us assume that Conjecture 4.2 (i) holds. Then one direction of Conjecture 4.7
is obvious: the square of a cluster monomial is clearly a cluster monomial. The
converse is wide open.

Real Uq(̂g)-modules have interesting properties. For instance Kang, Kashiwara,
Kim and Oh proved the following theorem, which was conjectured in typeA in [34].

Theorem 4.8 ([29]) If S1 and S2 are two simple Uq(̂g)-modules, and one of them
(at least) is real, then S1 ⊗ S2 has a simple socle and a simple head. Moreover the
socle and the head are isomorphic if and only if S1 ⊗ S2 is simple.

Classification of real simple modules (in terms of their highest loop-weight) is
a difficult open problem. Recently Lapid and Minguez [36] classified in type A all
real simples satisfying a certain regularity condition. Surprisingly, this classification
is related to the classification of rationally smooth Schubert varieties in type A flag
varieties.

5 Geometric Character Formulas

An important obstacle for proving Conjecture 4.2 in general is the absence of
Nakajima’s geometric theory in the non-symmetric casesBn,Cn, F4,G2. It turns out
that, applying the results of Derksen, Weyman and Zelevinsky [8, 9] to the cluster
algebrasA#, one can define projective varieties whose Euler characteristics calculate
the q-characters of the standard Uq(̂g)-modules in all types. These varieties can
be seen as generalizations of the Nakajima graded varieties L•(V ,W) for types
A,D,E. We shall now review this theorem of [23].

5.1 Quiver Grassmannians and F -Polynomials

Let Q be a quiver with vertex set I . Let M be a representation of Q over the field
C of complex numbers. Let e = (ei)i∈I ∈ NI be a dimension vector, and write
e := ∑

i∈I ei . The variety Gr(e,M) is the closed subvariety of the Grassmannian
Gr(e,M) of e-dimensional subspaces of M whose points parametrize the sub-
representations of M with dimension vector e. Thus, Gr(e,M) is a projective
complex variety, called a quiver Grassmannian.

Definition 5.1 The F -polynomial of the representation M of Q is

FM(v) :=
∑

e∈NI

χ(Gr(e,M))ve,

where v := (vi)i∈I is a sequence of commutative variables, ve :=∏
i v

ei
i , and χ(V )

denotes the Euler characteristic of a complex projective variety V .
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5.2 The Algebra A

Recall that in Sect. 3.1 we have associated with Uq(̂g) an infinite quiver (. Recall
also the notation of Sect. 2.1 for the Cartan matrix. For every negative entry cij < 0
of the Cartan matrix and every (i, r) ∈ V , the graph ( contains an oriented
cycle γi,j,r :

(i, r)

(i, r − bii)

... (j, r + bij )

(i, r + 2bij + bii)

(i, r + 2bij )

(5.1)

We define a potential S as the formal sum of all these oriented cycles γi,j,r up to
cyclic permutations, see [8, §3]. This is an infinite sum, but note that a given arrow
of ( can only occur in a finite number of summands. Hence all the cyclic derivatives
of S, defined as in [8, Definition 3.1], are finite sums of paths in (. Let R be the list
of all cyclic derivatives of S. Let J denote the two-sided ideal of the path algebra
C( generated by R. Following [8], we now introduce

Definition 5.2 Let A be the infinite-dimensional C-algebra C(/J .

Example 5.3 Let g = sl3, of type A2. The quiver ( is displayed in Fig. 7. We
slightly abuse notation using the same letter α for every arrow of the form (2, r) →
(1, r − 1), and similarly for β, γ , δ. All cycles γi,j,r are of length 3, and are either
of the form (γ ,β,α) or of the form (β, δ,α). Therefore the potential is

S =
∑

(γ ,β,α)+
∑

(β, δ,α),

and the relations obtained by taking its cyclic derivatives are of the form:

derivative with respect to α ! γβ + βδ = 0,

derivative with respect to β ! αγ + δα = 0,

derivative with respect to γ ! βα = 0,

derivative with respect to δ ! αβ = 0.
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..

.

(2, 5)

α

(1, 4)
β

(2, 3)

α

γ

(1, 2)
β

δ

(2, 1)

α

γ

(1, 0)

δ

β

(2,−1)

α

γ

(1,−2)

δ

.

..

Fig. 7 The algebra A in type A2

So A is the algebra defined by the quiver ( of Fig. 7, subject to the above 4 families
of relations.

5.3 Some A-Modules

The algebra A is infinite-dimensional. For every (i, r) ∈ V there is a one-
dimensionalA-module S(i,r) supported on vertex (i, r). Let I(i,r) denote the injective
hull of S(i,r), an infinite-dimensional indecomposable A-module.

Example 5.4 We continue Example 5.3. The injective module I(1,2) is represented
in Fig. 8. Each vertex occurring in the picture carries a one-dimensional vector
space, and all occurring arrows are nonzero. The β arrows are all zero and therefore
not represented. The infinite socle series of this module is

...

S(1,−2) ⊕ S(2,1)

S(1,0) ⊕ S(2,3)

S(1,2)
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(2, 3)

α

(1, 2)

(2, 1)

α

γ

(1, 0)

δ

(2,−1)

α

γ

(1,−2)

δ

.

..

...

Fig. 8 The injective A-module I(1,2) in type A2

Note that we have a short exact sequence of A-modules

0 → K(1,2) → I(1,2) → I(1,0) → 0,

where K(1,2) is the two-dimensional module:

(2, 3)

α

(1, 2)

Proposition 5.5 For every (i, r) ∈ V there is a unique submodule K(i,r) of
I(i,r) such that I(i,r)/K(i,r) is isomorphic to I(i,r−di ). The module K(i,r) is finite-
dimensional.

5.4 Geometric q-Character Formula

The next theorem gives a geometric description of the q-character of the fundamen-
tal Uq(̂g)-module L((%i , q

r−di )) in terms of the F -polynomial of the A-module
K(i,r). To state it we need some more notation. To every (i, r) ∈ V we attach a
commutative variable z(i,r), and we set

ŷ(i,r) :=
∏

(i,r)→(j,s)

z(j,s)
∏

(k,l)→(i,r)

z−1
(k,l),
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where the first product runs over all arrows of ( starting at vertex (i, r), and the
second product over all arrows of ( ending in vertex (i, r).

Theorem 5.6 ([23]) The F -polynomial FK(i,r) (̂y) of the A-module K(i,r) evaluated
in the variables ŷ(i,r) can be expressed as a Laurent polynomial in the new variables

Y
j,q

s−dj :=
z(j,s−2dj )

z(j,s)
, ((j, s) ∈ V ).

Then we have

χq(L((%i , q
r−di ))) = Yi,qr−di FK(i,r) (̂y),

where in the right-hand side FK(i,r) (̂y) is expressed in terms of the variables Yj,qs−dj .

Example 5.7 We continue Example 5.4. TheA-moduleK(1,2) has exactly three sub-
modules: {0}, S(1,2), andK(1,2). So there are three nonempty quiver Grassmannians,
each reduced to a single point, hence each having Euler characteristic 1. It follows
that

FK(1,2) (v) = 1+ v(1,2) + v(1,2)v(2,3).

On the other hand

ŷ(1,2) =
z(2,1)z(1,4)

z(1,0)z(2,3)
, ŷ(2,3) =

z(1,2)z(2,5)

z(1,4)z(2,1)
.

Hence

FK(1,2) (y) = 1+ z(2,1)z(1,4)

z(1,0)z(2,3)
+ z(1,2)z(2,5)

z(1,0)z(2,3)
= 1+ Y−1

1,q Y
−1
1,q3Y2,q2 + Y−1

1,q Y
−1
2,q4,

and

Y1,qFK(1,2) (y) = Y1,q + Y−1
1,q3Y2,q2 + Y−1

2,q4 = χq(L((%1, q))).

Example 5.8 We take g = so5, of type B2. The A-modules K(1,0) and K(2,0) are
displayed in Fig. 9. In this case too, the nonempty quiver Grassmannians are reduced

Fig. 9 The A-modules
K(1,0) and K(2,0) in type B2

(2, 2) (1, 2)

(1, 0) (2, 0)

(2, 4)

(1, 2)

(2, 0)
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to points, and we can calculate easily:

χq(L((%1, q
−2)) = Y1,q−2

(
1+ ŷ(1,0) + ŷ(1,0)ŷ(2,2) + ŷ(1,0)ŷ(2,2)ŷ(2,0)

+ ŷ(1,0)ŷ(2,2)ŷ(2,0)ŷ(1,2)

)
,

χq(L((%2, q
−1)) = Y2,q−1

(
1+ ŷ(2,0) + ŷ(2,0)ŷ(1,2) + ŷ(2,0)ŷ(1,2)ŷ(2,4)

)
.

To express these q-characters in terms of variables Yj,qs one uses the formulas:

ŷ(1,r) =
z(1,r+4)z(2,r−2)

z(1,r−4)z(2,r+2)
=

Y2,qr−1Y2,qr+1

Y1,qr+2Y1,qr−2
,

ŷ(2,r) =
z(1,r−2)z(2,r+2)

z(1,r+2)z(2,r−2)
= Y1,qr

Y2,qr−1Y2,qr+1
.

5.5 Comments on Theorem 5.6

5.5.1 Kirillov–Reshetikhin Modules

In [23] we give a similar q-character formula for every Kirillov–Reshetikhin
module. One only needs to replace the A-modules K(1,r) by some larger finite-
dimensional submodules of the injective modules 1I(i,r).

5.5.2 Standard Modules

Classical properties of Euler characteristics imply that, given two finite-dimensional
A-modules M and N , we have

FM⊕N(v) = FM(v)FN(v).

On the other hand, q-characters are multiplicative on tensor products. So Theo-
rem 5.6 readily extends to tensor products of fundamental Uq(̂g)-modules, that is,
we have a similar geometric q-character formula for standard Uq(̂g)-modules (or
local Weyl modules), in which one uses quiver Grassmannians of direct sums of
A-modules K(i,r).

5.5.3 Relation to Nakajima’s Theory

If g is of type A,D,E it follows from results of Lusztig [37] and Savage–Tingley
[41] that the quiver Grassmannians
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G(e, a) := Gr



e,
⊕

(i,r)∈V
K

⊕a(i,r)
(i,r)





are homeomorphic to Nakajima varieties L•(V ,W), where the graded dimension of
V is encoded in the dimension vector e, and the graded dimension ofW is given by
the multiplicity vector a = (a(i,r)). One can therefore regard the varieties G(e, a)
in non-simply-laced types B,C, F,G as natural candidates for replacing the graded
Nakajima varieties L•(V ,W).

5.5.4 Beyond KR-Modules and Standard Modules

By the Derksen–Weyman–Zelevinsky theory, every cluster monomial of A# has an
expression of the form

m = zg FK(̂y)

for an appropriate A-module K . So, if Conjecture 4.2 is true, all the simple Uq(̂g)-
modules corresponding to cluster monomials (all the real modules, if Conjecture 4.7
is true) have a similar geometric q-character formula in terms of quiver Grassman-
nians.
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Soc. Series of Congress Reports, 2011, 117–152.

36. E. LAPID, A. MINGUEZ, Geometric conditions for "-irreducibility of certain representations
of the general linear group over a non-Archimedean local field, Adv. Math. 339 (2018), 113–
190.

37. G. LUSZTIG, On quiver varieties, Adv. Math. 136 (1998), 141–182.
38. H. NAKAJIMA, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine

algebras, Represent. Theory 7 (2003), 259–274.
39. H. NAKAJIMA, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71–126.
40. FAN QIN, Triangular bases in quantum cluster algebras and monoidal categorification

conjectures, Duke Math. J. 166 (2017), 2337–2442.
41. A. SAVAGE, P. TINGLEY, Quiver Grassmannians, quiver varieties and preprojective algebras,

Pacific J. Math. 251 (2011), 393–429.


	Preface
	Acknowledgments

	Publications of Vyjayanthi Chari
	Preprints
	Book
	Edited Volumes

	Students of Vyjayanthi Chari
	Contents
	Part I Courses
	String Diagrams and Categorification
	1 Introduction
	2 Strict Monoidal Categories and String Diagrams
	2.1 Definitions
	2.2 Examples
	2.3 String Diagrams

	3 Monoidally Generated Algebras
	3.1 Presentations
	3.2 The Symmetric Group
	3.3 Degenerate Affine Hecke Algebras
	3.4 The Braid Group
	3.5 Hecke Algebras
	3.6 Wreath Product Algebras
	3.7 Affine Wreath Product Algebras
	3.8 Quantum Affine Wreath Product Algebras

	4 Pivotal Categories
	4.1 Duality
	4.2 Mates
	4.3 Pivotal Categories

	5 Categorification
	5.1 Additive Categories
	5.2 The Grothendieck Ring
	5.3 The Trace
	5.4 Action of the Trace on the Center
	5.5 The Chern Character
	5.6 Idempotent Completions

	6 Heisenberg Categories
	6.1 Categorification of Symmetric Functions
	6.2 Base Category
	6.3 Affine Oriented Brauer Category
	6.4 Heisenberg Categories

	References

	Quantum Affine Algebras and Cluster Algebras
	1 A Forerunner: Chari and Pressley's Paper on Quantum Affine sl2
	1.1 The Hopf Algebra U_q(Lsl2)
	1.2 Simple Finite-Dimensional U_q(L sl2)-Modules
	1.3 Relation with Cluster Algebras
	1.4 How Can We Generalize?

	2 Reminder on Finite-Dimensional U_q(g)-Modules
	2.1 Cartan Matrix
	2.2 Classification
	2.3 q-Characters
	2.4 T-Systems

	3 Quivers, Subcategories, and Cluster Algebras
	3.1 Quivers
	3.2 Subcategories
	3.3 Cluster Algebras

	4 Main Conjecture
	4.1 Statements and Examples
	4.2 What Is Known?
	4.2.1 Part (ii)
	4.2.2 First Evidences
	4.2.3 Proof in Simply-Laced Cases
	4.2.4 Connection with Quiver Hecke Algebras
	4.2.5 Non-Simply-Laced Cases
	4.2.6 Real Modules


	5 Geometric Character Formulas
	5.1 Quiver Grassmannians and F-Polynomials
	5.2 The Algebra A
	5.3 Some A-Modules
	5.4 Geometric q-Character Formula
	5.5 Comments on Theorem 5.6
	5.5.1 Kirillov–Reshetikhin Modules
	5.5.2 Standard Modules
	5.5.3 Relation to Nakajima's Theory
	5.5.4 Beyond KR-Modules and Standard Modules


	References


	Part II Surveys
	Work of Vyjayanthi Chari
	References

	Steinberg Groups for Jordan Pairs: An Introduction with OpenProblems
	1 Introduction
	2 Elementary Linear Groups and Their Steinberg Groups
	2.1 Elementary Linear Groups
	2.2 Why Is En(A) Important?
	2.3 The Steinberg Groups Stn(A) and St(A)
	2.4 Central Extensions
	2.7 Another Look at Stn(A) and St(A): Using Root Systems
	2.8 Another Look at StN(A): Fewer Generators
	2.9 Another Look at StN(A): Fewer Relations
	2.10 The Steinberg Group St(MIJ(A),R)
	2.12 Another Look at EN(A)

	3 Generalizations
	3.1 Locally Finite Root Systems lfrs
	3.2 Classification of Root Systems
	3.3 3-Graded Root Systems
	3.4 Jordan Pairs
	3.5 Examples of Jordan Pairs
	3.6 Root Graded Jordan Pairs
	3.7 The Steinberg Group St(V,R)
	3.8 Theorem A
	3.9 Highlights of Our Approach
	3.10 The Tits–Kantor–Koecher Algebra and the Projective Elementary Group of a Jordan Pair
	3.11 Theorem B
	3.12 The Tits–Kantor–Koecher Algebra of a Rectangular Matrix Pair
	3.13 The Projective Elementary Group of a Rectangular Matrix Pair

	4 Some Open Problems
	4.1 The Normal Subgroup Structure of PE(V)
	4.2 Central Closedness of St(V,R) in Low Ranks
	4.3 Centrality of Ker(π)

	References

	On the Hecke-Algebraic Approach for General Linear Groups Over a p-Adic Field
	1 Introduction
	2 From p-Adic Groups to Affine Hecke Algebras
	2.1 Bernstein Decomposition
	2.1.1 Equivalences of Categories
	2.1.2 Parabolic Induction

	2.2 The Case of Type A
	2.2.1 Hecke Algebras

	2.3 Classification of Irreducible Representations
	2.4 Alternative Type-Theory Approach

	3 From Affine Hecke Algebras to Quantum Groups
	3.1 A Quantization
	3.2 Standard Modules and Underlying Geometry
	3.3 Dual Canonical Basis
	3.3.1 KLR-Algebras

	3.4 Kazhdan–Lusztig Polynomials

	4 Quantum Affine Algebras
	4.1 Quantum Affine Schur–Weyl Duality
	4.2 Irreducibility and Cyclic Modules

	References


	Part III Papers
	Categorical Representations and Classical p-Adic Groups
	1 Introduction
	2 Quiver-Hecke and Affine Hecke Algebras of Type C
	2.1 Quiver-Hecke Algebras
	2.1.1 Symmetric Quivers
	2.1.2 The Quiver-Hecke Algebra of Type C
	2.1.3 Induction and Restriction
	2.1.4 The Mackey's Theorem
	2.1.5 Example: The Case of Rank 1 or 2

	2.2 Affine Hecke Algebras

	3 Reminder on Representations of p-Adic Groups
	3.1 Generalities
	3.2 The Bernstein Center
	3.2.1 Bernstein's Blocks
	3.2.2 Bushnell–Kutzko Types

	3.3 Level 0 and Unipotent Modules

	4 Categorical Representations and Classical p-Adic Groups
	4.1 Generalities on Representations of p-Adic Classical Groups
	4.1.1 The General Linear Group
	4.1.2 Classical Groups

	4.2 Categorical Representations in Characteristic Zero
	4.2.1  Categorical Action for GL
	4.2.2 Categorical Action for SO

	4.3 Categorical Representations in non-Natural Characteristic

	5 Appendix: Geometric Realization of the Quiver-Hecke Algebra
	5.1 The Convolution Algebra
	5.1.1 Preliminaries
	5.1.2 The Convolution Algebra

	5.2 The Theorem
	5.2.1 Definition of the Generators
	5.2.2 The Theorem


	References

	Formulae of i-Divided Powers in U_qsl_2, II
	1 Introduction
	2 The -Divided Powers tev(n) for Even Weights and Even κ
	2.1 The Quantum sl2
	2.2 The Coideal Subalgebra U
	2.3 Definition of tev(n) for Even κ
	2.4 Polynomials pn(x) and p(n)(x)
	2.5 Formulae for tev(n) with Even κ
	2.6 The -Canonical Basis for ev for Even κ
	2.7 Proof of Theorem 2.5 

	3 The -Divided Powers todd(n) for Odd Weights and Even κ
	3.1 Definition of todd(n) for Even κ
	3.2 Formulae of todd(n) with Even κ
	3.3 The -Canonical Basis for odd for Even κ
	3.4 Proof of Theorem 3.2 

	4 The -Divided Powers tev(n) for Even Weights and Odd κ
	4.1 Definition of tev(n) for Odd κ
	4.2 Polynomials pn(x) and p(n)(x)
	4.3 Formulae for tev(n) with Odd κ
	4.4 The -Canonical Basis for ev with Odd κ
	4.5 Proof of Theorem 4.3 

	5 The -Divided Powers todd(n) for Odd Weights and Odd κ
	5.1 Definition of todd(n) for Odd κ
	5.2 Formulae for todd(n) with Odd κ
	5.3 The -Canonical Basis for odd with Odd κ
	5.4 Proof of Theorem 5.1 

	6 On the -Divided Powers for Generic κ
	References

	Longest Weyl Group Elements in Action
	1 Introduction
	2 The Group W"426830A n "526930B 
	2.1 Definition and a Projective System
	2.3 Relations in W"426830A n "526930B 
	2.4 The Dual Picture
	2.5 Reduced Burau Representation
	2.6 W"426830A n "526930B  as Complex Reflection Groups

	3 The Identity w"426830A n "526930B 0 = - zc θ
	3.1 The Statement
	3.2 Proof of Proposition 3.1: Type A
	3.3 Proof of Proposition 3.1: Type B
	3.4 Proof of Proposition 3.1: Type C
	3.5 Proof of Proposition 3.1: Type D
	3.6 Proof of Proposition 3.1: Type E6
	3.7 Proof of Proposition 3.1: Type E7, E8, and F4
	3.8 Proof of Proposition 3.1: Type G2

	4 An Explicit Description of w0*"426830A n "526930B w v
	4.1 A Characterization
	4.2 Formula in Type A
	4.3 Formula in Type D
	4.4 An Algorithm to Compute B"426830A n "526930B w

	References

	Dual Kashiwara Functions for the B(infinity) Crystal in the Bipartite Case
	1 Introduction
	1.1 Root Data and Kac–Moody Lie Algebras
	1.2 The Crystal B(infinity)
	1.3 Adjoining Faces to Trails
	1.4 Comparison with Crystal Operators

	2 Coxeter Elements
	2.1 Coxeter Elements in Finitely Generated Groups
	2.2 Bipartite Coxeter Elements

	3 The Kashiwara Functions
	3.1 Preliminaries
	3.2 Kashiwara Functions
	3.3 A Crystal Structure on B_J
	3.4 Dual Kashiwara Operators
	3.5 Berenstein–Zelevinsky Trails
	3.6 The Initial Driving Trail
	3.7 Trail Functions
	3.8 Faces and the Parametrization of Trails
	3.8.1 Faces and Face Functions
	3.8.2 Parametrization of Trails

	3.9 The Positivity Condition

	4 Adjoining Faces to Trails
	4.1 Preliminaries
	4.1.1 S-Graphs
	4.1.2 The Inductive Construction and -Minimal Trails
	4.1.3 False Trails
	4.1.4 Z-Skins and Trails

	4.2 Assumptions
	4.3 Some Computations
	4.4 The Crystal B(w_t) as a Subcrystal of B(infinity)
	4.5 The Map Theta
	4.6 Corollary of Lemma in Sect.4.5
	4.7 A Comparison Lemma
	4.8 The Importance of Periodicity: An Example
	4.9 The Image of Z-Skin of an S-Set in the Periodic Case
	4.10 Corollary of Proposition in Sect.4.9
	4.11 Concluding Remarks

	5 Demazure Crystals
	5.1 Demazure Modules
	5.2 The Crystal Analogue
	5.3 The Demazure Property
	5.4 A Question Coming from Trails

	6 Main Theorem
	6.1 An Upper Bound on Coefficients
	6.2 Corollary of Lemma in Sect.6.1
	6.3 The Statement of the Main Theorem
	6.4 The Induction
	6.5 False Trails Revisited
	6.6 Adjoining Faces to Trails
	6.6.1 One Non-zero Value
	6.6.2 Two Consecutive Non-zero Values
	6.6.3 General Case
	6.6.4 A Corollary of Sects.6.6.1–6.6.3
	6.6.5 Comparison with Crystals

	6.7 The Last Step of the Proof of Theorem in Sect.6.3
	6.8 The Case When cn-1≠0
	6.9 Reduction to the Case When cn-1≠0
	6.9.1 Orthogonal Simple Roots
	6.9.2 Non-orthogonal Simple Roots
	6.9.3 A Condition for K(d) and K(d) to be Trails
	6.9.4 The Case When the Coefficient Set Is Described by Sect.6.6.1
	6.9.5 The Case When the Coefficient Set Is Described by Sect.6.6.3

	6.10 Concluding Remarks
	6.11 Exceptional Types
	6.12 The Difficulty

	7 Examples
	8 Index of Notation
	References

	Lusztig's t-Analogue of Weight Multiplicity via Crystals
	1 Introduction
	2 Generalized Exponents
	2.1 Background
	2.2 Classical Types
	2.3 Stable Versions

	3 Stabilized Generalized Exponents and Crystal Graphs of Type A_+infinity
	3.1 Crystal of Type A_+infinity
	3.2 Combinatorial Preliminaries
	3.3 A Combinatorial Description of the Series K_lambda,0 Cinfinity(t)
	3.4 Distinguished Tableaux and Zero Weight King Type Tableaux

	4 Type C_n Generalized Exponents via the Kwon Model
	5 Three Applications of Theorem 4.1
	5.1 Growth of Generalized Exponents
	5.2 Reducing a Type C Generalized Exponent to One of Type A
	5.3 The Smallest Power of t in KC_n_lambda0(t)

	6 The Atomic Decomposition: Definitions and Basic Facts
	6.1 Characters and t-Deformations
	6.2 The Definition of the Atomic Decomposition
	6.3 Atomic Decomposition of Finite Crystals

	7 The Partial Order on Dominant Weights
	7.1 Type A_n-1
	7.2 Types B_n, C_n, and D_n

	8 Modified Crystal Operators on Classical Crystals
	8.1 Definition of the Modified Crystal Operators
	8.2 Properties of the Modified Crystal Operators

	9 Atomic Decomposition of Crystals in Classical Types
	9.1 Type A_n-1
	9.2 Types B_n, C_n, and D_n

	10 Atomic Decomposition: Additional Facts and Perspectives
	11 Geometric Interpretation of the Atomic Decomposition
	12 Atomic Decomposition for 1-Dimensional Sums
	12.1 Background on 1-Dimensional Sums
	12.2 Bi-Crystal Structure and Atomic Decomposition in Type A
	12.3 Atomic Decomposition of the Stable 1-Dimensional Sums

	References

	Conormal Varieties on the Cominuscule Grassmannian
	1 Introduction
	2 Dynkin Diagrams and Weyl Groups
	2.1 Finite Type Dynkin Diagrams
	2.2 Extended Dynkin Diagram and Root System
	2.3 Bruhat Order and Reduced Expressions
	2.4 The Weyl Involution
	2.5 Semi-Direct Product Decomposition
	2.6 Support
	2.7 Minimal Representatives
	2.8 The Group G
	2.9 The Loop Group
	2.10 The Adjoint Group G
	2.11 Nilpotent Set of Roots
	2.12 Tits' Functor for Kac–Moody Groups
	2.13 Parabolic Subgroups
	2.14 The Bruhat Decomposition
	2.15 Affine Schubert Varieties
	2.16 The Opposite Cell
	2.17 The Demazure Product

	3 The Cominuscule Grassmannian
	3.2 The Cominuscule Grassmannian
	3.3 The Cotangent Bundle
	3.5 Bilinear Form
	3.10 Action on W
	3.11 The Co-Weight q

	4 The Conormal Variety of a Schubert variety
	4.1 The Conormal Variety

	5 Determinantal Varieties
	5.1 The Weyl Group of D_n
	5.2 The Involution i for D_n
	5.3 Skew-Symmetric Determinantal Varieties

	References

	Evaluation Modules for Quantum Toroidal gl_n Algebras
	1 Introduction
	2 Quantum Groups
	2.1 Quantum Algebra U_q gl_n
	2.2 Quantum Affine Algebra U_q(hat gl_n)

	3 Quantum Toroidal gl_n
	3.1 Definition of E_n
	3.2 Fused Currents
	3.3 The Subalgebra A

	4 Quantum Affine Evaluation Map
	4.1 The Definition of the Quantum Affine Evaluation Map
	4.2 Proof

	5 Evaluation Modules
	5.1 Evaluation Modules
	5.2 Highest Weight Evaluation Modules
	5.3 Wakimoto Evaluation Modules

	6 Proof of Theorem 5.3
	6.1 The Plan of the Proof
	6.2 Projection
	6.3 Action of Ki+-=(z) on GZ0
	6.4 Action of K+-=(z) on GZ0: The First Components
	6.5 Action of Kpm=(z) on GZ0: The General Case
	6.6 The End of the Proof

	References

	Dynamical Quantum Determinants and Pfaffians
	1 Introduction
	2 Dynamical Analogue of the Quantum Algebra M(n)
	3 Quasideterminants and Dieudonné Determinants
	4 Dynamical Quantum Pfaffians
	References



