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Ingredients
• The theory has 3 complex scalars , 4 complex fermions  and the 4d gauge field . All in the adjoint rep. of SU(N)


• Bosonic symmetries: 4d conformal symmetry SO(2,4) ~ SU(2,2), R-symmetry SO(6) ~ SU(4)


• Together with SUSY generators: PSU(2,2|4)


• We focus on the single-trace operators, e.g. 


• Ultimate goal: to find conformal data  at finite coupling in the planar limit


• Kolya and Simon’s talks: . Today: 

(X, Y, Z) Ψa Aμ

𝒪 = Tr(ZZX𝒟μΨ1ZZ)

(Δj, Cjkl)

Δj Cjkl



Ingredients
• At weak coupling, anomalous dimensions of single-trace operators are mapped into energies of spin-chain states


• The two-point function can be mapped to a cylinder partition function via state-operator correspondence:

𝒪 = Tr ZZZXZZZXZX
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Ingredients
• To classify the excitations of the theory, look at symmetries of two-point function 


• Symmetry group: PSU(2|2) x PSU(2|2) + central extension (all dependence on the coupling is inside the central charges)


• Bosonic part is clear: SO(1,3) in spacetime and SO(4) rotations in the scalars


• Magnons:  , where 


• e.g. , 


• Magnons scatter with PSU(2|2) x PSU(2|2) S-matrices, fixed by symmetry. 


• The energy and momentum of each magnon are given by 


• Where  is the Жуко́вский variable, given by 


• There’s a crossing transformation that sends  and, consequently, 

⟨Tr(ZL)(0) Tr(Z̄L)(∞)⟩
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Ingredients
• Of course the S-matrix only makes sense at infinite volume, where one can have asymptotic states


• We need then to decompactify the cylinder by inserting a complete basis of mirror states along the dotted lines


• These virtual particles account for the finite size effects and are called wrapping effects


• The resummation of the finite size corrections is the TBA and can be upgraded to the QSC
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Making pair of pants
• In the same spirit, we can represent the three-point function as a pair of pants


• Then, the idea is to construct the three-point function by sticking together two hexagons, summing over the ways of 
distributing the physical magnons


• This is analogous to the cutting of the cylinder in the two-point function

ℓij =
Li + Lj − Lk
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“closed string = (open string)^2”



Making pair of pants
• In the same spirit, we can represent the three-point function as a pair of pants


• Then, the idea is to construct the three-point function by sticking together two hexagons, summing over the ways of 
distributing the physical magnons


• This is analogous to the cutting of the cylinder in the two-point function


• When the bridge lengths are finite, we also need to sum over virtual magnons propagating from one operator to the other


• Concretely, this is realized by adding a virtual magnon and its antiparticle in each of the hexagons and identifying them 
by integrating over all rapidities and summing over all flavors

ℓij =
Li + Lj − Lk
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“closed string = (open string)^2” [Basso, Komatsu, Vieira, Gonçalves, …]



Making pair of pants
• Each hexagon is pictorially represented as


• Each white dot represents a factor  where  is the PSU(2|2) S-matrix and  is fixed by symmetry. 


• Putting everything together we can compute three-point functions at any coupling except by wrapping corrections.

h(u, v) × 𝒮(u, v) 𝒮 h



Wrapping pair of pants
• Consider the term in the hexagon expansion given by 


• We immediately encounter a problem, since there’ll be a term of the form  inside the double 

integral in  and 


• It’s necessary to regularize the prescription. Idea: shift rapidities in the left/right hexagon by +/- 


•
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Wrapping pair of pants
• This contribution corresponds to a propagating bound state of virtual particles wrapping around one of our operators:


• Some of these corrections are present in the two-point function and are taken into account by TBA (or the more powerful 
QSC) and some of them are new. How to re-sum them systematically?


• Some results for the full re-summation are available [Basso, Georgoudis, Klemenchuk-Sueiro] but we’d like to understand 
what’s a regularization scheme that works for any number of wrapping magnons.


• In what follows, we are going to move to a twisted theory where the three-point functions of vacuum states is non-trivial 
and it contains wrapping corrections in order to understand better what’s happening and to check our understanding 
against known results.



Twisting pair of pants

• We consider now a Z2 orbifold of  SYM. In this theory we have now a gauge group  

instead of .


• In particular, the scalar  is broken into two pieces  and we have a twist . 


• This twist acts on the right PSU(2|2) of the fundamental magnons as follows: 


• As a consequence, 


• Now we have two different vacua:  and . 


• This model is still integrable! Many observables computed using supersymmetric localization.
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Twisting pair of pants
• Among the observables one can compute, there is the (extremal) three-point function:


• The result nicely factorizes and we can recognize the two numerators as the contributions coming from summing the 
bridge magnons on the two bridges with the twist


• All the other terms should come from wrapping and we should be able to reproduce them with hexagonalization


• In these formulas,  is the octagon kernel, given by the semi-infinite matrix: Kl
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Wrapping twisted pair of pants
• For concreteness, we'll take  and try to compute only one of the two wrapping terms


• As expected, wrapping does not lead to divergences since the energies of the vacua are protected


• Wrapping corrections take the form 

k, p ≫ 1

W1 =
1
2 ∑

a≥1

(4a)∫
∞

−∞

du
2π
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Wrapping twisted pair of pants
• We can go on and compute the diagram with two magnons in each edge


• Simply shifting hexagons fails in this case


• Good way: start with a finite four-point function and go to OPE limit


• Hard to do in practice in  SYM, but we can get some intuition from Fishnets


• With the intuition, we came up with a regularization prescription that reproduces the two-wrapping part of the result!

𝒩 = 4



Future directions
1. How do the wrapping magnons nicely resum to ?


2. How general is our regularization procedure? Can we test it in other setups?


3. Can we understand the results in [Basso, Georgoudis, Klemenchuk-Sueiro] from this regularization, without going to 4pt functions?


4. Can we write this very simple three-point function in an SoV-like form?


5. Or with Q-functions from QSC?

1
det(1 − Kk) det(1 − Kk+2)



To be continued…

Thank you!


