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Transport out of equilibrium

time correlations in integrable models

intégrable ⇒ analytic results? difference with nonintegrable?

interesting quantity:

Spin correlations.

Charge transport.
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transport

[Marco Znidaric PRL, 2011]

Transport of spin current in XXZ chain
Infinite temperature transport:

Ballistic for ∆ < 1

Anomalous for ∆ = 1

Diffusive for ∆ < 1

Infinite temperature transport of magnetization in Landau Lifshitz: the
same.
[Ziga Krajnick, Tomaz Prosen PRL, 2019]



Discrete time evolution boxball

The vertex, time goes up:

n n + 1,

1

0

n n − 1

0

1

Figure: Time evolution

The carrier has n ≥ 0 balls. It passes through the ball configuration
and picks up a ball when there is one, leaving a ball when there is
none.

Cyclicity. One must make sure that after the last step, the number
of balls of the carrier coincides with its initial load.
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Toda evolution

Toda evolution: N particles interact via exponential potential:

d2qj
dt2

= eqj+1−qj − eqj−qj−1

Connection with many mathematica-physics topics including cluster
algebras.



Discrete time evolution Toda

The vertex, time goes up:

si ,Si si+1,Si+1

xi ,Xi

x̄i , X̄i

Figure: Time evolution

The carrier has DST(discrete self trapping) variables S , s. It passes
through the Toda configurations and updates the Toda variables
xi ,Xi .

Cyclicity. One must make sure that after the last step, SN+1 = S1
and sN+1 = s1



Discrete time evolution Toda

How to define the vertex?

use lax matrices: for Toda

L(u) =

(
u + X −x

1
x 0

)

for DST

r(u) =

(
u + Ss −s

S −1

)

Solve for Darboux transform:

Li (u)ri (u − τ) = ri+1(u − τ)L̄i (u)
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Discrete time evolution Toda

Obtain the solution (Suris, Sklyanin):

Xj = −τ +
xj
x̄j

+
sj+1

xj

X̄j = −τ +
xj
x̄j

+ x̄jSj

sj = x̄j , Sj+1 =
1

xj

τ is the time step.



Discrete time evolution Toda

Newton equation:

xj
x j
−

x j
xj

=
xj

x j−1
− x j+1

xj

τ → 0 and xj = eqj :

d2qj
dt2

= eqj+1−qj − eqj−qj−1

Toda chain equations.
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Landau Lifshitz

dS

dt
= S × d2S

ds2

where S(s) is a unit vector S2
1 + S2

2 + S2
3 = 1.

Classical equation of motion for XXX spin chain.

Local induction approximation for a filament in a superfluid. The
filament is parametrized by its curvilinear abscissa M(s), dM

ds = S , its
motion is then:

dM

dt
=

dM

ds
× d2M

ds2
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Discrete time evolution Landau Lifshitz

How to define the vertex?

use lax matrices of XXX chain

L(u) = u + S.σ

Solve for Darboux transform:

Li (u)Li (u − τ) = Li+1(u − τ)L̄i (u)

This time carrier has the same lax matrix as for the dynamical
variables.
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Discrete time evolution Landau Lifshitz

Obtain the solution :

S̄j =
1

σ2 + τ 2
(τ 2Sj + σ2Vj − τSj ∧ Vj)

Vj+1 =
1

σ2 + τ 2
(τ 2Vj + σ2Sj − τVj ∧ Sj)

τ is the time step.

Vi Vi+1

Si

S̄i

Figure: Time evolution
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Integrability?

Why is it integrable?

T (u) = trace(L(u,SN)L(u,SN−1) · · · L(u,S1))

is the generating function of conserves quantities.

L(u,Sk)rk = rk+1L̄(u,Sk)

inserting this equality in the definition of T (u), we get:

T (u) = T̄ (u)

Thus T (u) is conserved under discrete time evolution.
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Difficulty with periodicity

Why is it difficult to make analytical predictions?

The main difficulty is to impose periodicity: ciclicity of the carrier
configuration at site one and N + 1.

For Boxball, it suffices to pick up the configuration after the first run
(Kuniba).

For Toda, This amounts to solve a secon order equation which can
have complex (non physical) solutions.

For LL (and Toda) can use a perron Frobenius argument to select a
physical solution: repeat

r1(S1, s1)TK (u) = TK+1(u)rN+1(SN+1, sN+1)

untill SN+1 = S1, sN+1 = s1. For long chains once is enough.
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Initial condition

We define integrable deterministic dynamical models. We want to
study them at finite temperature. So all the randomness is in the
weight given to the initial configurations which we can take
stationary (temperature state):

For boxball, i.i.d. configurations weighted by ball density:

P(n1, · · · , nN) =
∏
j

eµnj

1 + eµ

For LL, and Toda configurations weighted by Bolzmann Weight:

P(S1, · · · ,SN) =
∏
j

(1 + Sj .Sj+1)−βdSi

dSi being the area measure.

in particular infinte temperature state β = 0 is a bona fide stationary
state (Liouville thm.). We conjecture the ”non physical”
configurations which cannot be periodized have a zero measure.
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Correlations in boxball

With Gregoire Misquich and Atsuo Kuniba.

We want to compute the time dependant correlation density in the
BBS model.

〈b(0, 0)b(r , t)〉

where b(r , t) is one if there is a ball at position r , t and zero if not.

In the Boxball model solitons are made of k consecutive balls and
travel at a speed vk , so a density fluctuation at the origin will split
into k density peaks, each travelling at speed vk . So, we expect the
density density correlation to decompose in a sum of k delta
function ckδ(x − vkt). Indeed this is the case and it is possible to
evaluate the weights ck analytically.
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TBA for Boxball

Thermodynamics of Boxball model can be formulated in the same
way as for the delta bose gas although this is a classical model. The
equation (Kirillov Reshetikin) relates the density ρk of soliton k to
their hole density σk :

σk = 1− 2
∑
l

min(k , l)ρl

The conserved quantities are the energies:

Ek = 2
∑
l

min(k , l)ρl

The entropy is given by the logrithm of the binomial factors:

eS =
∏
k

(
ρkL
σkL

)
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TBA for Boxball

Conserved quantities=Action variables:

  

angle variables can also be defined (Kirillov-Reshtikin)



TBA for Boxball

Minimizing the free energy F =
∑

k βkEk − S with respect to the
densities ρk enables to obtain all the densities ρk .

define:
Yj =

σj
ρj

= eε

Y system:∑
j

min(k , j)βj = ln(1 + Yk)− 2
∑
j

min(k , j) ln(1 + Y−1j )

The ball fugacity is just µ∞ all other fugacities are set to zero.



TBA for Boxball

The soliton speed can be obtained by solving the GHD equation
(also El in the solitonic context)

vk = k − 2
∑
l

ρl(vk − vl)min(k , l)

where as can easily be verified, k is the bare speed of soliton k and
2min(k, l) the shift of the trajectories of solitons k and l after a
collision.



TBA for Boxball

An important tool of TBA is the dressing which in BBS takes the
form:

Adr
i = Ai −

∑
k

2min(i , k)
ρk
σk

Adr
k

Then it can be verified that the equation for the effective speed of
the soliton writes:

vk =
kdr

1dr
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Correlations Boxball

Identify normal modes:

eεk =
σk
ρk

Free energy fluctuations (βk fixed) are diagonalized by the normal
modes:

F (εk) =
∑
k

σk
1 + eεk

ε2k
2

+ o(ε2)

Normal modes fluctuations propagate ballistically with the solitonic
effective speed:

∂tδεk + vk∂xδεk = 0

Thus correlations of normal modes can be obtained:

〈δεk(0, 0)δεj(x , t)〉 = δj,k
1 + eεk

σk
δ(x − vkt)
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Correlations Boxball

Density correlations are then obtained

〈ρ(0, 0)δρ(x , t)〉 =
∑
k

(∂εkρ)2〈δεk(0, 0)δεj(x , t)〉

With the expression of ∂εkρ = −ρkσkvk we finally get:

ck = σkρk(σk + ρk)v2
k

by construcion: ∑
k

ck = p(1− p)
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correlation



correlation

k theory numerics

1 0.055 0.055
2 0.049 0.049
3 0.0305 0.031
4 0.015 0.015

Table: Wk for p = .2

k theory numerics

1 0.0312 0.0312
2 0.0392 0.0392
3 0.0394 0.0394
4 0.0334 0.0334

Table: Wk for p = .3



Spin correlations in Landau Lifshitz
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Conclusion and perspective

We have succeeded in obtaining time correlations in a simple model:
BBS. The tool was GHD and explicit expression of the TBA kernel:
2 min(i , j) which is the skeleton of the XXZ spin chain kernel for
TBA.

we have not succeeded in computing correlation function in Landau
Lifshitz, not even understood 2/3 ! nevertheless, there are strong
indications they are related to correlations of KPZ: Prähofer Spohn
curve. pause

one possible direction of research is the equivalence between Landau
Lifshitz and attractive nonlinear Schrödinger equation. or in the
discretized case with Ablowitz-Ladik.
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