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Towards understanding Quantum Dynamics

e Inspirations from holography
o Warped AdSs (WAdS) - generalization of AdSs string solutions
o propperties of CFT dual to WAdS - WCFT

e Dynamics on the bdy and corresponding bulk processes/reconstruction

@ Integrable or chaotic behavior?
- in flat & curved spaces (highly nontrivial)

@ Minimal knowledge to (almost) completely describe a system

e Complexity of (quantum) integrable systems & strongly interacting
compact objects
- example: for Krylov spaces

by ~n’, §>1-chaotic, 0<d<1- integrable
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Notion of Complexity

@ Understanding qualitative change in behavior = need of minimal
amount of information

e Informally, complexity, Cr(X), quantifies the "information content”
Cr(X) = min{[p| : F(p) = X},

p = sequence of information/program, F' = a computational
process/algorithm generating X.

@ Due to its universality = many concepts and methods about how to
precisely define and measure complexity.

@ In our context - the naive notion of complexity C(t): as a correlator
for some time dependent operator A(t) (autocorrelation function)

C(t) = (A@)|4),  (AIB) = Tr(ATp1Bps) (1)



Complexity= Volume conjecture

1403.5695, 1411.0690

e Complexity=Volume [see for instace: 1500.07876, 1512.04993 ]

- AAdS/CFT: duality between a black hole in asymptotically anti de-Sitter
spacetime and a thermal state of a CFT, in which the entropy of the black
hole is dual to ordinary thermal entropy

- Susskind: the computational complexity of the state of the CFT, which
continues to grow, after statistical equilibrium is reached, for a time that is
exponential in the entropy



Complexity= Volume conjecture

1403.5695, 1411.0690

e Complexity=Volume [see for instace: 1500.07876, 1512.04993 ]

- AAdS/CFT: duality between a black hole in asymptotically anti de-Sitter
spacetime and a thermal state of a CFT, in which the entropy of the black
hole is dual to ordinary thermal entropy

- Susskind: the computational complexity of the state of the CFT, which
continues to grow, after statistical equilibrium is reached, for a time that is
exponential in the entropy

Conjecture: Le.t Ap is the area of horizon and the rate of change of
Complexity is C ~ kA /G.

—
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Complexity=Action conjecture

e Complexity=Action in holography [see for instance 1509.07876]

- The rate of quantum complexity for the boundary quantum state is
exactly equal to the growth rate of the gravitational action on shell in the
bulk region in the WDW patch at the late time approximation. Then the
complexity-action duality can be defined by

=

- C is the complexity in quantum information theory, whose meaning is
that the minimum numbers of quantum gates are required to produce the
certain state from the reference state, and S is the total classical
gravitational action in the bulk region within the WDW patch.
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Geometric Complexity

e The allowed transformations U (o) - as path ordered exponentials

dU —i [TV (s)ds
V=iZU =TV — U(o)=Pe Jy, v

-
- s parametrizes progress along a path, starting at s; and ending at sy and
o € [s;, 5¢] is some intermediate value of s. The path-ordering P is
required for non-commuting generators T,, V(s) = VTy,.
e bi-invariant metric

dsi_iny = Tr(VIV)dr? (2)

- The length of a path from s; to s¢ going through |¥(0))
sf
(won) = [ ds(o).
- Define the complexity C as the minimal length/geodesics between states
driven by generators G(s)

C(IW(s)), [U(s5))) = L (19(0)))-



Geometric Complexity

e Nielsen's complexity of the evolution operator corresponds to the length
of the path with b.c. and velocity that minimizes the length

- penalty factors 1, —  the metric (for low cost directions g = 1)

0
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Cn(t) = mvin/ dr <Z Te(ToV)? + fia Tr(TaV)2> ,



Geometric Complexity

e Nielsen's complexity of the evolution operator corresponds to the length
of the path with b.c. and velocity that minimizes the length
- penalty factors 1, —  the metric (for low cost directions g = 1)

; 1/2
Cn(t) = mvin/ dr <Z Te(ToV)? + fia Tr(TaV)2> ,

0

e Objective: geodesics connecting the identity to a target unitary
Utarget = exp{—iHt} at a chosen moment t, with H being the physical
Hamiltonian.

- ambiguity:

2
H—>H+7ﬂ/{, K € 7.

- ambiguity in the spectrum

2
E, —- E, — %/{n = 27y, /t.



Geometric Complexity

e accounting for penalties in the metric

\/Z[Tr(Tav)z + Ha Tr(TaV)Q] = VYnQnmYm
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Geometric Complexity

e accounting for penalties in the metric

\/Z[Tr(TaW T o TE(TaV)?] = onGomtim
= Qum =Y pa(n|Taln)(m|Ti|m), (3)

where 11, =1 for low cost directions and Tr(7,,1) = dagp-
® a pure state in theory with gauge symmetry — “generalized length” :
curve 7y(t) on the group manifold (A; is the gauge connection):

Cy= [ arlsl - [ arai o)

— the state complexity of |i)7): the equivalence class of some Gaussian
transformation M € G (group manifold) — the length of the geodesic
connecting 1 to the point where the equivalence class [M] intersects

exp(staby (N)).
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Spread states and Operator growth

e Unitary evolution mixes the initial state [¢)) with other quantum states
as time evolves

) = M) = 3 Ty = 32 E )

n=0 n=0 n

= understanding the states |¢,,) = H"|¢).

e The Gram—-Schmidt procedure applied to generate an ordered,
orthonormal basis K = {|Kjy), | K1), ... }.

- consider a basis B = {|B;)i =0,1,...} and def cost finction

£) = cal(nl B2, ca positive increasing, |Bo) = [i(to))

- def Complexity

C(t) = mgn Cp(t)




Spread states and Operator growth

e Operator growth
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As time progresses, a simple operator O(t) “grows” in the space of
operators of the theory becoming more “complex”.
- the idea: use O,, to construct states of the basis {|0,,(0))}



Spread states and Operator growth

e Operator growth

O(t) = ™M O(0) e = i (1:3" On, (3)
n=0 :
where 3 ~ ~
OCo=0, 01=[H,0], Oy=I[H,[H,O]... (6)

As time progresses, a simple operator O(t) “grows” in the space of
operators of the theory becoming more “complex”.

- the idea: use O, to construct states of the basis {|0,,(0))}

e Notion of Liouvillian (superoperator)

L:=[H,*x = 0O,=L"00) = O)=_¢e*00). (7)

o Subtlety: the states |0,,(0)) = O,|0) may not be orthogonal (and the
set {|0,,(0))} may not define a basis)
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Constructing Krylov spaces

e The algorithm of orthogonalization (Arnoldi iteration)
Q@ setbp=0 and |O_1)=0
@ Define |0)g = ——~—0)

(0]0)

© Forn=1:

- [A1) = £|Oo)

- b1 = [|A4]|

- If by # 0 define|0y) = %\Al)
Q Forn >1:

- |An) - E|On_1) - bn—llon—Q)

- by, = ||An]| = v (An|An)

- If b, = 0 stop the procedure; if not, define |O,,) = é|An) and go to
step 4.



e The Krylov subspace: spanned by {P,(£)|O)}; Krylov basis is

10p) = |Po(£)D), n=0,1,...

o If (O,,]£]|0,,) is a Hermitian matrix

0 b 0 O
by 0 b O
Enm = 0 bz 0 b3

0 0 b3 O

— a three-term recurrence relation

LP,(L) =bpt1Pnt1(L) + b Pr—1(L)

= by Favard's theorem 3 measure wrw P, (L) are orthogonal.



Moments and Hankel determinant

e A key quantity containing equivalent information is the moment matrix
M defined by

J2ldw  [zdw - [2"dw Lo 1 n
My = fmdw f:c2dw f:z:"*ldw N Mo “tr Mnl

Jzrdw [2"Tldw - [2?dw Ln  fng1r e fon



Moments and Hankel determinant

e A key quantity containing equivalent information is the moment matrix
M defined by

J2ldw  [zdw - [2"dw o p1 hn
My — fmdw f:c2dw f:z:"*ldw |l L2 41
0 - . . DY - . .
Jzrdw [2"Tldw - [2?dw Wn  Mnil 0 Hon
e Hankel determinant D,,
Ho M1 Hn
_ oy — M1 M2 o Hagd

Hn Hn+1 - Hon



Orthogonal polynomials

e Moments, Hankel and orthogonal polynomial D, (x)

[2%w  [fzdw -+ [z"dw
[xdw  [x%dw --- [x"Hldw
Dn(z) = . . (11)
f2" ldw [z"dw --- [2? ldw



Orthogonal polynomials

e Moments, Hankel and orthogonal polynomial D, (x)

[2%w  [zdw - [2"dw
[xdw  [2%dw --- [z"Mldw
Da(z) = . . , (11)
f2" ldw [z"dw --- [2? ldw
1 T "

e Using D,, and D(x) = define an orthogonal polynomial

D, (z)
VDn-1D,,

e Using recurent relations one finds the relations to Lanczos coefficients

Dn—an+1 an = In Dn

2 _
S

(13)

n—1




Krylov complexity

e Decomposition of O(t) in terms of the Krylov elements:

K-1
0(t) = D ¢u(t)|On). (14)
n=0
e The Liouvillian in Krylov basis
K-1
L= Z bnt1 HOn)(On-&-l‘ + |On+1)(on|] (15)

n=0
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Krylov complexity

e Decomposition of O(t) in terms of the Krylov elements:

K-1
0(t) = D ¢u(t)|On). (14)
n=0
e The Liouvillian in Krylov basis
K-1
L= bar1[10n)(On41] +[Ons1)(Onl] (15)
n=0

e The equation for ¢, (t)

K-1
_Z.d)n = Z an¢m(t) = bn+1¢n+1 (t) - bn¢n—1(t)a an(o) = 571,0-

m=1

e Krylov Complexity and K-entropy (Shannon)

K@) =) nlga®)?,  St) =) |a(t)]* log|en(t)|? (16)
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operator - translations and dilatations are enhanced to an
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Warped geometry and warped CFT

e 3D TMG w/ a negative cosmological const & positive G: admits an
AdS3 for any value of the graviton mass u.

@ The symmetry (for left/right movers ) under
ot 4t 2t o\t

+ unitarity, locality & a bounded below spectrum of the dilatation
operator - translations and dilatations are enhanced to an
infinite-dimensional symmetries.

o For every value of ul # 3: 3 other solutions - SL(2, R) x U(1)
W AdSs geometries. It is achieved by multiplying the fiber metric
with a constant warp factor.

— breaks SL(2,R)r x SL(2,R)g to SL(2,R) x U(1).



o AdS5 deformation

2

ds? = %[— cosh? odr? + do? + (du + sinh od7)?] —

62 2

4
— cosh? odr? + do? + Y

— : 2
—m V2+3(du+smhad7') o

ds?

(17)

{u, 7,0} € [~00, 00|, v? > 1 - spacelike stretched AdSs; v? <1 -
spacelike squashed AdSs.



o AdS3 deformation

€2
ds® = Z[_ cosh? odr? + do? + (du + sinh od7)?] —
als2—L — cosh? odr? + do? + v (du + sinh odr)?
= 213 oar o 213 aat )

(17)

{u, 7,0} € [~00, 00|, v? > 1 - spacelike stretched AdSs; v? <1 -
spacelike squashed AdSs.
@ Detournay, Hartman and Hofman [1210.0539]: transl. inv. only +
chiral scaling symmetry = one Vir and a U(1) current algebra.
@ Holographically: a WCFT can be described as a SL(2,R) x U(1)
Chern-Simons theory in 3d [Castro, Hofman, Igbal] .

Comments: Recently: the Kerr BH background a hidden SL(2, R) x U(1)
(“Love") symmetry in the near zone approximation.



Warped Conformal Symmetry

e The BH solutions, asymptotic to warped AdS3

ds* =dt? + s i —2(m"—i—1 ryr—(3 4+ v2))dtde
IR R I G V7T

n 2[3@2 —)r 4+ (B4 ) (g + ) + doySrar_ (3 + 12)|dg?




Warped Conformal Symmetry

e The BH solutions, asymptotic to warped AdS3

ds* =dt? + s i —2(m"+1\/7“ r_(3+ v?))dtd¢
- 3+ 12 (r—r_)(r—ry) o Vit

2

n 2[3@2 e+ (34 ) (ry + ) + doSrpr_ (3 + 12)]do

e The asymptotic algebra

C
[Lun, Ln] = (m — 1) Linsn + gm%ﬁmp
(L, Jn] = —nJman, (18)
cy
[Jm7 Jn] = ﬁmém—i—n,ﬂ = §m5m+n,07
50243 1 2431

= = - = . ]-
v v(?2+3)G’ “J v G /6 (19)




Symmetries and operators

e Transformations of local operators under global scaling symmetry
x — Az and translational symmetry z — x4+ a, y — y + b,

®i(Ax +a,y +b) = A" Di(,y), (20)

e Infinitesumally
[Ln, Oz, y)] =[z"*18; + (n + 1)2"h]O(z,y), (21)
[, O(a,y)] =i2"0,0(z,y) (22)
=—2"Q0(z,y), (23)

e The standard basis

O}y — pNipN MM (A, Q)



A new basis of operators

e U(1) Sugawara

Tsug(z):Z%v Ly® = ( Z ImIn—m + Z In—m m)a

m<—1 m>0
(24)
——
1
L35, LE2¥] = (n = m) L% + —5n(n® — Dbm
[Lzug’ Jm] = _mJn+m (25)
& 1
(Lo L308] = (0 — )%, + (12 — Doimo. (26)
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A new basis

e Define spectral flow invariant Virasoro generators

Lo=Li—L% = L= (Y Jnducm+ Y Jucmdn) . (20)

k m<—1 m>0

The key point: £,, and J, generators provide a basis that factors the
algebra into separate Virasoro and U(1) sectors:

c—1
[Ena Em] = (n - m)ﬁn-&-m + ?N(TLQ

[['m Jm] =0. (28)

- 1>5n+m,0 y

—> states |¢) that are primary with respect to the L,,'s and J,,'s, with
weight h and charge g4, are primary under £,, as well, with weight
Q2
RO _p_ F¢ 29
o (29)



Primaries

e The primary state |A, @) under £, and 7,

LO|A5Q> = Ainv|A7Q>7 \70|Aa Q> = _Q|A7Q> ) (30)
LaAQ) =0, JulA,Q) =0, Yn>0, (31)

e The conformal weight



Primaries

e The primary state |A, @) under £, and 7,

L0|A5Q> = Ainv|A7Q>7 \70|Aa Q> = _Q|A7Q> ) (30)
LaAQ) =0, JulA,Q) =0, Yn>0, (31)

e The conformal weight

e Remark: The advantage of using {L,, J} basis:

- orthogonality of the corresponding descendant states

- factorization of the norm of mixed states including both, Vir & U(1)
descendants



e A descendant operators for |A, Q)

|OWNMYy = pNipNe | gMigM A Q), N=Np,---&M=M, -
e The spectral invariant conformal weight and charge
LoloWAThy — <N"” +3 nNn> oA}y, (33)
n>0
FoO) = —QOTA1)
e The conformal weight

2

h:A+ZnNn+ZmNm—%. (35)



SL(2, R) subsector of Virasoro

e The action of SL(2, R) on a Fock state

Lolh,n) = (h+mn)|h,n), L_qlh,n) =+/(n+1)2h+n|h,n+1) (36)
Lilh,n) = \/n(2h +n —1)|h,n — 1) (37)
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SL(2, R) subsector of Virasoro

e The action of SL(2, R) on a Fock state

Lolh,n) = (h+n)lh,n), L_1lh,n)=+/(n+1)2h +nlh,n+1) (3
Lilh,n) = \/n(2h +n —1)|h,n — 1) (37)

e Perelomov construction
oI = 2" n!I'(2h 4+ n)
e“"=1\h) :nz::oaL,ﬂh Z 7\h,n>. (38)

e The explicit form of a state

12, ) Z M\h n). (39)




SL(2, R) subsector of Virasoro

e The state generated by Liouvillian £ =L_1 + 14

|0(t)) = e E1FLOt By — |2 = itanh(at); h = 1/2) (40)



SL(2, R) subsector of Virasoro

e The state generated by Liouvillian £ =L_1 + 14
|0(t)) = e E1FLOt By — |2 = itanh(at); h = 1/2) (40)
o |dentification between the Krylov basis and the basis vectors
0()) = [h),  |On) = [, n).
e The Lanczos coeffcients (from (37)):

b, = ay/n(2h +n —1). (41)

= the wavefunctions are just coefficients of the coherent state.
e Krylov Complexity for SL(2, R)

Ko = (O(t)|O(t)) = 2hsinh?(at). (42)



Other subsectors of Virasoro

e Virasoro algebra

[Ln, Lm] = (n = )Ln+m + En( 2 1)6m+n,0, (43)

- construct SL(2,R) from Ly and Ly = LT_k using

c
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Other subsectors of Virasoro

e Virasoro algebra
[Ln, Lin] = (n — m) Ly ym + En( n’ 1)5m+n,07 (43)
- construct SL(2,R) from Ly and Ly = LT_k using
[Ly, L] = 2kLo + 1—62/{(1@2 ~1),  [Lo,Lix] = FkLep.  (44)

- redefine the genertors
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+ = ks 0 k<0+12( )) (45)
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Other subsectors of Virasoro

e Virasoro algebra

[Lny Lin] = (n — m) Ly + En( n? — 1)dm-+n,0, (43)
- construct SL(2,R) from Ly and Ly = LT_k using
[Lk, L,k] =2kLg + TCZk(kQ = 1), [LOaLik] = FkLip. (44)

- redefine the genertors

- 1 = 1 c
Lo = =k Lo==(Lo+ —=k(k>-1)). 4
+ = ks 0 k<0+12( )) (45)
= Di¢) = egLfk*ng
_ ez(bta"h(kT)L ke—flog(cosh(lm‘))(Lo—s—10216(162 1)) L“h(kr)L (46)

e Autocorrelation function for SL case

Ct) = (Ubo(t) = ——

cosh?(at)



e In oscillator basis o, = %%, a_p = —iv2nuy, n >0
n

(fILnlu) = (u|L—n|f) = lnf(u) = lnf(u). (47)

e A generic descendant state at level N =}, jm; is a sum of monomials

uy g Pug e ..

e Operators (c = 1+ 24p2, h = p? + \?)
= 0

lo=nh nao

0 +Znu B,

n=1

= Znun

2

(e

G k>0 (48)

Z 8un

aun+k Oug—p

> o = .
b= Z(n + k) Un+h g~ = Z n(k — n)upug—n + 2k(p — i\)ug, k>

n=1 w n=1



The action on descendants

e A generic descendant in oscillator basis is

= the orthogonal descendants are labeled by integer partitions of the
descendant level V.



The action on descendants

e A generic descendant in oscillator basis is

= the orthogonal descendants are labeled by integer partitions of the
descendant level V.
e The action of £ on an arbitrary descendant

WL@pny) = €01 + 1)y = D bpmpor(r} o ()
> jry=N+1
2 b)) (51)
> jsj=N-1



Lanczos coefficients

e Elements of the Lanczos matrix

bimy—{r;} = (Pqmy (1), El-1@gp 3 (u))

N
> l_1<I>{mk} = Z \/n(n + 1)mn(mn+1 + 1)(1)...,mn—1,mn+1+1,...(u)

n=1

+ (= iA) 2(m1 + )Py 11,ms,...(u). (52)

= two types Lanczos coefficients (Caputa & Datta 2021")

Type 1: bl = a\/n(n + )mp(mpi1 +1)  (53)

{mk}%{"'vmn_l7mn+l+17'

Type 2: b0 iyt tmgy = (1 — iA)/2(ma + 1), (54)



e Dimensions

) Nesoo 627”/2N/3
dimygnezos [b{m}—>{7~j}] =p(N)xp(N+1) ~ N2
o0 s 2N/3
) N—oo €™V ] . —m\/2N/3
dimy;, N/ d ~~ ———— . suppression by ~ e
1M)inks i np(n) \/ﬁ pp Y



e Dimensions

dimrgncz0s [b{m}—»{r]}] = p(N) X p(N + 1) ~

= w : suppression by ~ e "V el
V2N

- An example: descendants resulting from the action of Ly; on [1!3!)

1‘4‘}5:\:\:‘ \2'3‘)53:‘ 23t n
“, f ]

o {1,01}-3{0,1,1}

113! \,Bj:l
/(r/
R

| K
{10 ”TM 1} ‘o

®rT “‘”’Hj

& N—
dimlinksN/O dnp(n) =~




Lanczos coefficients for typical descendants

* Lanczos coefficients for typical high-level descendants of a heavy primary
@ states with (¢, h) dependence, n < N
Dt {omn—tlmntl,.} = bn~ VN
e states without (c, h) dependence, n < N

bmis{mitlma, ) = bn~¥m



Expansion over normalized descendants

Vo (t) = (ule™ 1= 0(0)|0)
:ea()h 1+ Z Z So{mz}(t)q){ml}(u) ) (55)
N=1Zimi:N

e ‘wavefunctions’, ¢y,,.1(t), of the primary operator are given by
M —iNEm™ Sy — N
, m; =N .
cosh2h(at) VILTim; ; I

with z = itanh(at), oy = —2hlogcosh(at), Tj., = (2j)"m;!
@ The probabilities

(56)

B o tanh®N(at) [4R)2™
Pim;}(8) = legm,y (O] = cosh®(at) TI;(2¢)™im;!




Vir contribution

e Krylov complexity (see also Caputa,Datta 21")
Ko®)=> N > |¢m[*(t) =2hsinh*(at) (57)
N=0 Zimi:N

= exponential growth of Kp(t) at late times
h 2at
Ko(t — o0) ~ 5€

e Normalized variance

o) = — ot — o0) ~

V2h'



U(1) contribution

e Rescaling of J,,:

2
Jn — jn— \/;Jn

=—> the algebra

[jm jm] = n5n+m-
ePI-1
e States |kn> = WK))
e Autocorrelation function
1
cY(t)



Virasoro-Kac-Moody Character

e Virasoro-Kac-Moody character - product of U(1) and Vir conttributions



Virasoro-Kac-Moody Character

e Virasoro-Kac-Moody character - product of U(1) and Vir conttributions
o the contribution of the U(1) descendants

ﬁ o 1/24 n(7)
T+ 1 e
n=1

@ the contribution of the Vir descendants

s 1

1
1—6© =g/ ——(1-60y).
( q) n|:|1 4 77(T)( q)

@ the full Virasoro-Kac-Moody character

1
h+2/24—c/24 (1 —60yq).
T E

- This character is independent of the basis used for the Vir descendants!

Xh,n(T7 K) =dq



The warped system

@ Autocorrelation functions

1 1

cY(t) ~
cosh?(at) cosh?? (B kt)

@ Krylov complexity
Ky (t) ~ 2hQ cosh?(at) cosh2(ﬁgt)

- Operator growth
KW(t) ~ e(2a+,3k)t

@ Normalized variance

St = 00) ~ —me

V2hQ

@ Information metric

Q QAP+ 2h(1 — |z?)
—— —dz1d
R G PR B

ds® =
1-— |22|

dzodzo




Conclusions

* Considerations of the operator growth in 2d WCFT's show:

@ Lanczos coefficients essentially depend on the details of descendant
states

@ a subset of them does saturate the upper bound of linear growth (as
conjectured)

@ K-complexity: universal but is not sensitive enough to distinguish
WCFT from SL(2,R) x U(1) case

o K-complexity defined for subclasses of vertices (as in
Caputa,Datta’21)

* Future directions:

@ Lanczos coefficients for W; doo they still obey the maximal bound?
relations to dipole deformations?
embedding in higher dimensional cases

study complexity of multi-gluonic compound states in QCD?



THANK YOU!
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