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Towards understanding Quantum Dynamics

• Inspirations from holography
Warped AdS3 (WAdS) - generalization of AdS3 string solutions
propperties of CFT dual to WAdS - WCFT

• Dynamics on the bdy and corresponding bulk processes/reconstruction
Integrable or chaotic behavior?
- in flat & curved spaces (highly nontrivial)
Minimal knowledge to (almost) completely describe a system

• Complexity of (quantum) integrable systems & strongly interacting
compact objects
- example: for Krylov spaces

bn ∼ nδ, δ ≥ 1 - chaotic, 0 < δ < 1 - integrable
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Notion of Complexity

Understanding qualitative change in behavior =⇒ need of minimal
amount of information
Informally, complexity, CF (X), quantifies the ”information content”

CF (X) = min
p

{|p| : F (p) = X},

p = sequence of information/program, F = a computational
process/algorithm generating X.
Due to its universality =⇒ many concepts and methods about how to
precisely define and measure complexity.
In our context - the naive notion of complexity C(t): as a correlator
for some time dependent operator A(t) (autocorrelation function)

C(t) = ⟨A(t)|A⟩, ⟨A|B⟩ = Tr(A†ρ1Bρ2) (1)
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Complexity= Volume conjecture

• Complexity=Volume [see for instace: 1403.5695, 1411.0690
1509.07876, 1512.04993 ]

- AAdS/CFT: duality between a black hole in asymptotically anti de-Sitter
spacetime and a thermal state of a CFT, in which the entropy of the black
hole is dual to ordinary thermal entropy

- Susskind: the computational complexity of the state of the CFT, which
continues to grow, after statistical equilibrium is reached, for a time that is
exponential in the entropy

Conjecture: Let AH is the area of horizon and the rate of change of
Complexity is Ċ ∼ κAH/G.
=⇒

C ∼ (D − 3)V
GrH

.
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Complexity=Action conjecture

• Complexity=Action in holography [see for instance 1509.07876]

- The rate of quantum complexity for the boundary quantum state is
exactly equal to the growth rate of the gravitational action on shell in the
bulk region in the WDW patch at the late time approximation. Then the
complexity-action duality can be defined by

C = S

πℏ
,

- C is the complexity in quantum information theory, whose meaning is
that the minimum numbers of quantum gates are required to produce the
certain state from the reference state, and S is the total classical
gravitational action in the bulk region within the WDW patch.



Geometric Complexity

• The allowed transformations U(σ) - as path ordered exponentials

V = i
dU

dτ
U † = TαV

α =⇒ U(σ) = Pe−i
∫ σ

si
V (s)ds

- s parametrizes progress along a path, starting at si and ending at sf and
σ ∈ [si, sf ] is some intermediate value of s. The path-ordering P is
required for non-commuting generators Tα, V (s) = V αTα.
• bi-invariant metric

ds2
bi−inv = Tr(V †V )dτ2 (2)

- The length of a path from si to sf going through |Ψ(σ)⟩

ℓ(|Ψ(σ)⟩) =
∫ sf

si

ds(σ).

- Define the complexity C as the minimal length/geodesics between states
driven by generators G(s)

C(|Ψ(si)⟩, |Ψ(sf )⟩) = min
V (s)

ℓ(|Ψ(σ)⟩).
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Geometric Complexity

• Nielsen’s complexity of the evolution operator corresponds to the length
of the path with b.c. and velocity that minimizes the length
- penalty factors µα → the metric (for low cost directions µα = 1)

CN (t) = min
V

∫ t

0
dτ

(∑
α

Tr(TαV )2 + µα Tr(TαV )2
)1/2

,

• Objective: geodesics connecting the identity to a target unitary
Utarget = exp{−iHt} at a chosen moment t, with H being the physical
Hamiltonian.
- ambiguity:

H → H + 2π
t
κ, κ ∈ Z.

- ambiguity in the spectrum

En → En − 2π
t
κn ≡ 2πyn/t.
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Geometric Complexity
• accounting for penalties in the metric√∑

α

[Tr(TαV )2 + µα Tr(TαV )2] =
√
ynQnmym

=⇒ Qnm =
∑

α

µα⟨n|Tα|n⟩⟨m|T †
α|m⟩, (3)

where µα = 1 for low cost directions and Tr(TαTβ) = δαβ.

• a pure state in theory with gauge symmetry → “generalized length” :
curve γ(t) on the group manifold (Ai is the gauge connection):

Cγ =
∫ 1

0
dτ ||γ̇(t)|| −

∫ 1

0
dτAi(γ(t))γ̇i.

→ the state complexity of |ψT ⟩: the equivalence class of some Gaussian
transformation M ∈ G (group manifold) → the length of the geodesic
connecting 1 to the point where the equivalence class [M ] intersects
exp(stab⊥(N)).
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Spread states and Operator growth

• Unitary evolution mixes the initial state |ψ⟩ with other quantum states
as time evolves

|ψ(t)⟩ = e−iHt|ψ(0)⟩ =
∞∑

n=0

(−iHt)n

n! |ψ⟩ =
∞∑

n=0

(−it)n

n! |ψn⟩. (4)

⇒ understanding the states |ψn⟩ ≡ Hn|ψ⟩.
• The Gram–Schmidt procedure applied to generate an ordered,
orthonormal basis K = {|K0⟩, |K1⟩, . . . }.
- consider a basis B = {|Bi⟩ i = 0, 1, . . . } and def cost finction

CB(t) =
∑

n

cn|⟨ψn|Bn⟩|2, cn positive increasing, |B0⟩ = |ψ(t0)⟩

- def Complexity
C(t) = min

B
CB(t)
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Spread states and Operator growth

• Operator growth

O(t) = eiHt O(0) e−iHt =
∞∑

n=0

(it)n

n! Õn, (5)

where
Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]] . . . (6)

As time progresses, a simple operator O(t) “grows” in the space of
operators of the theory becoming more “complex”.
- the idea: use Õn to construct states of the basis {|On(0))}

• Notion of Liouvillian (superoperator)

L := [H, ∗] =⇒ Õn = LnO(0) =⇒ O(t) = eiLtO(0). (7)

• Subtlety: the states |On(0)) = On|0⟩ may not be orthogonal (and the
set {|On(0))} may not define a basis)
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Constructing Krylov spaces

• The algorithm of orthogonalization (Arnoldi iteration)
1 set b0 ≡ 0 and |O−1) ≡ 0
2 Define |O)0 = 1√

(O|O)
O)

3 For n = 1:
- |A1) = L|O0)
- b1 = ||A1||
- If b1 ̸= 0 define|O1) = 1

b1
|A1)

4 For n > 1:
- |An) = L|On−1) − bn−1|On−2)
- bn = ||An|| ≡

√
(An|An)

- If bn = 0 stop the procedure; if not, define |On) = 1
bn

|An) and go to
step 4.
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• The Krylov subspace: spanned by {Pn(L)|Ô)}; Krylov basis is

|Ôn) := |Pn(L)Ô), n = 0, 1, . . .

• If (Ôm|L|Ôn) is a Hermitian matrix

Lnm ≡


0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·
0 0 b3 0 · · ·
...

...
...

... . . .

 . (8)

=⇒ a three-term recurrence relation

LPn(L) = bn+1Pn+1(L) + bnPn−1(L) (9)

=⇒ by Favard’s theorem ∃ measure wrw Pn(L) are orthogonal.



Moments and Hankel determinant

• A key quantity containing equivalent information is the moment matrix
M defined by

M0 =


∫
x0dω

∫
xdω · · ·

∫
xndω∫

xdω
∫
x2dω · · ·

∫
xn+1dω

· · · · ·∫
xndω

∫
xn+1dω · · ·

∫
x2ndω

 =


µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
· · · · ·
µn µn+1 · · · µ2n



• Hankel determinant Dn

Dn = det
1≤i,j≤N

(µi+j) =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
· · · · ·
µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣ (10)
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Orthogonal polynomials
• Moments, Hankel and orthogonal polynomial Dn(x)

Dn(x) =

∣∣∣∣∣∣∣∣∣∣∣

∫
x0dω

∫
xdω · · ·

∫
xndω∫

xdω
∫
x2dω · · ·

∫
xn+1dω

· · · · ·∫
xn−1dω

∫
xndω · · ·

∫
x2n−1dω

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
. (11)

• Using Dn and D(x) =⇒ define an orthogonal polynomial

Pn(x) = Dn(x)√
Dn−1Dn

(12)

• Using recurent relations one finds the relations to Lanczos coefficients

b2
n = Dn−1Dn+1

D2
n

, an = ln Dn

Dn−1
. (13)
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Krylov complexity
• Decomposition of O(t) in terms of the Krylov elements:

|O(t)) =
K−1∑
n=0

ϕn(t)|On). (14)

• The Liouvillian in Krylov basis

L =
K−1∑
n=0

bn+1 [ |On)(On+1| + |On+1)(On| ] (15)

• The equation for ϕn(t)

−iϕ̇n =
K−1∑
m=1

Lnmϕm(t) = bn+1ϕn+1(t) − bnϕn−1(t), ϕn(0) = δn0.

• Krylov Complexity and K-entropy (Shannon)

K(t) =
∑

n|ϕn(t)|2, S(t) =
∑

|ϕn(t)|2 log |ϕn(t)|2 (16)
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Warped geometry and warped CFT

3D TMG w/ a negative cosmological const & positive G: admits an
AdS3 for any value of the graviton mass µ.

The symmetry (for left/right movers ) under

x± → x± + c±, x± → λx±

+ unitarity, locality & a bounded below spectrum of the dilatation
operator - translations and dilatations are enhanced to an
infinite-dimensional symmetries.
For every value of µℓ ̸= 3: ∃ other solutions - SL(2, R) × U(1)
WAdS3 geometries. It is achieved by multiplying the fiber metric
with a constant warp factor.
=⇒ breaks SL(2, R)L × SL(2, R)R to SL(2, R) × U(1).
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operator - translations and dilatations are enhanced to an
infinite-dimensional symmetries.
For every value of µℓ ̸= 3: ∃ other solutions - SL(2, R) × U(1)
WAdS3 geometries. It is achieved by multiplying the fiber metric
with a constant warp factor.
=⇒ breaks SL(2, R)L × SL(2, R)R to SL(2, R) × U(1).



AdS3 deformation

ds2 = ℓ2

4 [− cosh2 σdτ2 + dσ2 + (du+ sinh σdτ)2] =⇒

ds2 = ℓ2

ν2 + 3

[
− cosh2 σdτ2 + dσ2 + 4ν2

ν2 + 3(du+ sinh σdτ)2
]
,

(17)

{u, τ, σ} ∈ [−∞,∞], ν2 ≥ 1 - spacelike stretched AdS3; ν2 ≤ 1 -
spacelike squashed AdS3.

Detournay, Hartman and Hofman [1210.0539]: transl. inv. only +
chiral scaling symmetry =⇒ one Vir and a U(1) current algebra.
Holographically: a WCFT can be described as a SL(2, R) × U(1)
Chern-Simons theory in 3d [Castro, Hofman, Iqbal] .

Comments: Recently: the Kerr BH background a hidden SL(2, R) × U(1)
(“Love”) symmetry in the near zone approximation.
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Warped Conformal Symmetry

• The BH solutions, asymptotic to warped AdS3

ds2 = dt2 + l2

3 + ν2
dr2

(r − r−)(r − r+) − 2(νr + 1
2

√
r+r−(3 + ν2))dtdϕ

+ r

4[3(ν2 − 1)r + (3 + ν2)(r+ + r−) + 4ν
√
r+r−(3 + ν2)]dϕ2

• The asymptotic algebra

[Lm, Ln] = (m− n)Lm+n + cV

12m
3δn+m,0

[Lm, Jn] = −nJm+n, (18)

[Jm, Jn] = cJ

12mδm+n,0 = k

2mδm+n,0,

cV = 5ν2 + 3
ν(ν2 + 3)

l

G
, cJ = ν2 + 3

ν

l

G
= k/6. (19)
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Symmetries and operators

• Transformations of local operators under global scaling symmetry
x → λx and translational symmetry x → x+ a, y → y + b,

Φi(λx+ a, y + b) = λ−hiΦi(x, y) , (20)

• Infinitesumally

[Ln,O(x, y)] =[xn+1∂x + (n+ 1)xnh]O(x, y) , (21)
[Jn,O(x, y)] =ixn∂yO(x, y) (22)

= − xnQO(x, y) , (23)

• The standard basis

|O{N⃗,M⃗}⟩ = LN1
−1L

N2
−2 . . . J

M1
−1 J

M2
−2 . . . |∆, Q⟩



A new basis of operators

• U(1) Sugawara

T sug(z) =
∑

n

Lsug
n

zn+2 , Lsug
n = 1

2k

 ∑
m≤−1

JmJn−m +
∑
m≥0

Jn−mJm

 ,
(24)

=⇒

[Lsug
n , Lsug

m ] = (n−m)Lsug
n+m + 1

12n(n2 − 1)δn+m,0,

[Lsug
n , Jm] = −mJn+m (25)

&
[Ln, L

sug
m ] = (n−m)Lsug

n+m + 1
12n(n2 − 1)δn+m,0. (26)



A new basis

• Define spectral flow invariant Virasoro generators

Ln ≡ Ln − Lsug
n = Ln − 1

k

( ∑
m≤−1

JmJn−m +
∑
m≥0

Jn−mJm

)
.. (27)

The key point: Ln and Jn generators provide a basis that factors the
algebra into separate Virasoro and U(1) sectors:

[Ln,Lm] = (n−m)Ln+m + c− 1
12 n(n2 − 1)δn+m,0,

[Ln, Jm] = 0. (28)

=⇒ states |ϕ⟩ that are primary with respect to the Ln’s and Jn’s, with
weight h and charge qϕ, are primary under Ln as well, with weight

h(0) = h−
Q2

ϕ

2k . (29)
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Primaries

• The primary state |∆, Q⟩ under Ln and Jn,

L0|∆, Q⟩ = ∆inv|∆, Q⟩, J0|∆, Q⟩ = −Q|∆, Q⟩ , (30)
Ln|∆, Q⟩ = 0, Jn|∆, Q⟩ = 0, ∀n > 0 , (31)

• The conformal weight

∆inv = ∆ − Q2

k
(32)

• Remark: The advantage of using {Ln,Jm} basis:
- orthogonality of the corresponding descendant states
- factorization of the norm of mixed states including both, V ir & U(1)
descendants
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Descendants

• A descendant operators for |∆, Q⟩

|O{N⃗,M⃗}⟩ = LN1
−1LN2

−2...J
M1
−1 J M2

−2 . . . |∆, Q⟩ , N⃗ = N1, · · ·&M⃗ = M1, · · ·.

• The spectral invariant conformal weight and charge

L0|O{N⃗,M⃗}⟩ =
(

∆inv +
∑
n>0

nNn

)
|O{N⃗,M⃗}⟩, (33)

J0|O{N⃗,M⃗}⟩ = −Q|O{N⃗,M⃗}⟩ . (34)

• The conformal weight

h = ∆ +
∑

n

nNn +
∑
m

mNm − Q2

k
. (35)



SL(2, R) subsector of Virasoro

• The action of SL(2, R) on a Fock state

L0|h, n⟩ = (h+ n)|h, n⟩, L−1|h, n⟩ =
√

(n+ 1)2h+ n|h, n+ 1⟩ (36)

L1|h, n⟩ =
√
n(2h+ n− 1)|h, n− 1⟩ (37)

• Perelomov construction

ezL−1 |h⟩ =
∞∑

n=0

zn

n!L
n
−1|h⟩ =

∞∑
n=0

zn

n!

√
n!Γ(2h+ n)

Γ(2h) |h, n⟩. (38)

• The explicit form of a state

|z, h⟩ = (1 − |z|2)h
∞∑

n=0
zn

√
Γ(2h+ n)
n!Γ(2h) |h, n⟩. (39)
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SL(2, R) subsector of Virasoro

• The state generated by Liouvillian L = L−1 + L1

|O(t)) = eiα(L−1+L1)t|h⟩ = |z = i tanh(αt);h = η/2⟩ (40)

• Identification between the Krylov basis and the basis vectors

|O(t)) = |h⟩, |On) = |h, n⟩.

• The Lanczos coeffcients (from (37)):

bn = α
√
n(2h+ n− 1). (41)

=⇒ the wavefunctions are just coefficients of the coherent state.
• Krylov Complexity for SL(2, R)

KO = ⟨O(t)|O(t)⟩ = 2h sinh2(αt). (42)
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Other subsectors of Virasoro
• Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δm+n,0, (43)

- construct SL(2,R) from L0 and Lk = L†
−k using

[Lk, L−k] = 2kL0 + c

12k(k2 − 1), [L0, L±k] = ∓kL±k. (44)

- redefine the genertors

L̃± = 1
k
L±k, L̃0 = 1

k

(
L0 + c

12k(k2 − 1)
)
. (45)

=⇒ Dk(ξ) = eξL−k−ξ̄Lk

= eiϕ
tanh(kr)

k
L−ke− 2

k
log(cosh(kr))(L0+ c

12 k(k2−1))e−iϕ
tanh(kr)

k
Lk . (46)

• Autocorrelation function for SL case

C(t) = (1|ψO(t)) = 1
cosh2h(αt)
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• In oscillator basis αn = i√
2

∂
∂un

, α−n = −i
√

2nun, n > 0

⟨f |Ln|u⟩ = ⟨u|L−n|f⟩ = l−nf(u) = l−nf(u). (47)

• A generic descendant state at level N =
∑

j jmj is a sum of monomials
um1

1 um2
2 um3

3 . . . .

• Operators (c = 1 + 24µ2, h = µ2 + λ2)

l0 = h+
∞∑

n=1
nun

∂

∂un
,

lk =
∞∑

n=1
nun

∂

∂un+k
− 1

4

k−1∑
n=1

∂2

∂un∂uk−n
+ (µ+ iλ) ∂

∂uk
, k > 0 (48)

l−k =
∞∑

n=1
(n+ k)un+k

∂

∂un
−

k−1∑
n=1

n(k − n)unuk−n + 2k(µ− iλ)uk, k > 0,



The action on descendants

• A generic descendant in oscillator basis is

Φ{m}(u) ≡ um1
1 um2

2 . . .

N{m}
, N{m} =

√√√√ ∞∏
j=1

mj !
(2j)mj

. (49)

⟨Φ{m},Φ{m}⟩ = 1, (Φ{m}, l0Φ{m}) = h+
∑

j

jmj = h+N. (50)

=⇒ the orthogonal descendants are labeled by integer partitions of the
descendant level N .

• The action of L on an arbitrary descendant

⟨u|L|Φ{m}⟩ = ξ(l−1 + l1)Φ{m} =
∑∑

jrj=N+1

b{m}→{rj}Φ{rj}(u)

+
∑∑

jsj=N−1

b{m}→{sj}Φ{sj}(u) (51)
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Lanczos coefficients

• Elements of the Lanczos matrix

b{m}→{rj} =
(
Φ{m}(u), ξl−1Φ{rj}(u)

)

=⇒ l−1Φ{mk} =
N∑

n=1

√
n(n+ 1)mn(mn+1 + 1)Φ...,mn−1,mn+1+1,...(u)

+ (µ− iλ)
√

2(m1 + 1)Φm1+1,m2,...(u). (52)

=⇒ two types Lanczos coefficients (Caputa & Datta 2021’)

Type 1: b(1)
{mk}→{...,mn−1,mn+1+1,... } = α

√
n(n+ 1)mn(mn+1 + 1) (53)

Type 2: b(2)
{m+k}→{m1+1,m2,... } = α(µ− iλ)

√
2(m1 + 1). (54)



• Dimensions

dimLanczos

[
b{m}→{rj}

]
= p(N) × p(N + 1) N→∞∼ e2π

√
2N/3

N2

dimlinks ∼
∫ ∞

0
dnp(n) N→∞∼ eπ

√
2N/3

√
2N

: suppression by ∼ e−π
√

2N/3

- An example: descendants resulting from the action of L±1 on |1131⟩
|1141⟩ |2131⟩ |1231⟩

|1131⟩

{{
1,
0,
1}
→{2

,0
,1
}

>>
{1,0,1}→{1,0,0,1}

bb

{1,0,1}→{0,1,1}

OO

{1,0,1}→{0,0,1}

��

{1,0,1}→{1,1,0}

!!

|31⟩ |1121⟩

1
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Lanczos coefficients for typical descendants

⋆ Lanczos coefficients for typical high-level descendants of a heavy primary

states with (c, h) dependence, n ≪ N

b{mi}→{...,mn−1,mn+1,... } =⇒ bn ∼
√
N

states without (c, h) dependence, n ≪ N

b{mi}→{m1+1,m2,... } =⇒ bn ∼ 4√n



Expansion over normalized descendants

ΨO(t) := ⟨u|eiαt(l1+l−1)O(0)|0⟩

= eα0h

1 +
∞∑

N=1

∑∑
imi=N

φ{mi}(t)Φ{mi}(u)

 , (55)

‘wavefunctions’, φ{mi}(t), of the primary operator are given by

φ{mi}(t) = zN

cosh2h(αt)
[2(µ− iλ)]

∑
mj√∏

i Ti,mi

,
∑

j

jmj = N . (56)

with z = i tanh(αt), α0 = −2h log cosh(αt), Tj,m = (2j)mmj !
The probabilities

p{mj}(t) = |φ{mj}(t)|2 = tanh2N (αt)
cosh4h(αt)

[4h]
∑

mj∏
i(2i)mimi!

.



V ir contribution

• Krylov complexity (see also Caputa,Datta 21’)

KO(t) =
∞∑

N=0
N

∑∑
imi=N

|ϕmi |2(t) = 2h sinh2(αt) (57)

=⇒ exponential growth of KO(t) at late times

KO(t → ∞) ∼ h

2 e
2αt.

• Normalized variance

δ2
O(t) = ⟨N̂2⟩ − ⟨N̂⟩2

⟨N̂⟩2
=⇒ δO(t → ∞) ∼ 1√

2h
.



U(1) contribution

• Rescaling of Jn:

Jn −→ Jn =
√

2
k
Jn

=⇒ the algebra
[Jn,Jm] = nδn+m.

• States |kn⟩ = eβJ−1√
⟨0|Jn

1 Jn
−1|0⟩

|0⟩

• Autocorrelation function

CU (t) ∼ 1
2 cosh2Q(β k

2 t)



Virasoro-Kac-Moody Character

• Virasoro-Kac-Moody character - product of U(1) and Vir conttributions

the contribution of the U(1) descendants

∞∏
n=1

1
1 + qn

= q1/24 η(τ)
η(2τ) .

the contribution of the Vir descendants

(1 − δ(0)q)
∞∏

n=1

1
1 − qn

= q1/24 1
η(τ)(1 − δ(0)q).

the full Virasoro-Kac-Moody character

χh,n(τ, κ) = qh+2/24−c/24 1
η(2τ)r

n(1 − δ(0)q).

- This character is independent of the basis used for the Vir descendants!
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the contribution of the Vir descendants

(1 − δ(0)q)
∞∏
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The warped system

Autocorrelation functions

CW (t) ∼ 1
cosh2h(αt)

1
cosh2Q(β k

2 t)
Krylov complexity

KW (t) ≃ 2hQ cosh2(αt) cosh2(βk2 t)

- Operator growth
KW (t) ∼ e(2α+βk)t

Normalized variance

δW (t → ∞) ∼ 1√
2hQ

.

Information metric

ds2 = Q

1 − |z2|2
dz1dz̄1 + Q|z1|2 + 2h(1 − |z2|2)

(1 − |z2|2)3 dz2dz̄2



Conclusions
⋆ Considerations of the operator growth in 2d WCFT’s show:

Lanczos coefficients essentially depend on the details of descendant
states
a subset of them does saturate the upper bound of linear growth (as
conjectured)
K-complexity: universal but is not sensitive enough to distinguish
WCFT from SL(2, R) × U(1) case
K-complexity defined for subclasses of vertices (as in
Caputa,Datta’21)

⋆ Future directions:
Lanczos coefficients for W2; doo they still obey the maximal bound?
relations to dipole deformations?
embedding in higher dimensional cases
study complexity of multi-gluonic compound states in QCD?
. . .



END

THANK YOU!
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