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Long-range interacting integrable models

+ The best studied integrable models are those with nearest-neighbour interaction,
solved by Algebraic Bethe Ansatz

- Long range integrable deformations of Heisenberg-like models are important for
various applications (e.g. AAS/CFT, 2d CFT, QHE, TTbar deformations, etc)

+ The algebraic structure and general construction are not yet well understood (e.g.

wrapping corrections, separation of variables), except for a class of models with
trigonometric interaction

The trigonometric models I will present here have somme common characteristics:

- no Bethe Ansatz: the scattering phase is very simple
* no bound states

- extended symmetry: Yangian or quantum affine symmetry



Plan

- 1sotropic, XXX-like model: spin-Calogero-Sutherland model and Haldane-

Shastry model

- construction of the monodromy matrix; inhomogeneous XXX model with dynamical
inhomogeneities; diagonalisation of the transfer matrix in terms of an effective spin
chain arXiv:2308.16865

- anisotropic, XXZ-like model: Uglov-Lamers model as a quantum-deformed version

of the Haldane-Shastry model arXiv:2004.13210

- g=i limit of g-Haldane-Shastry, or the long-range version of the XX model

- definition and solution of the model in terms of non-unitary fermions as a long-
range gl(1|1) spin chain arXiv:2404.10164



The isotropic Haldane-Shastry Hamiltonian

[Haldane, 88; Shastry, 88]

N su(2) spins 1/2 on a circle with periodic boundary conditions z; — w’ = >/

Hps = — ZV(ZiaZj) =
]

2% 1 spin

1
V(ZZ,Z): — ; . . P = = ‘o 1
g ziizi Asin®w(i —j)/N k9 (03 Tk T ) permutation

- Simplified version of the XXX model (idealised magnons and spinons)

« Yangian symmetry and 2dCFT limit: [Haldane, Ha, Talstra, Bernard, Pasquier, 92]

algebraic structure:  [Bernard, Gaudin, Haldane, Pasquier, 93]

 Yangian and spinon description of su(2)k=1 CFT:

[Bernard, Pasquier, D.S. 94; Bouwknegt, Ludwig, Schoutens, 94|



The spectrum of the Haldane-Shastry Hamiltonian

[Haldane, Ha, Talstra, Bernard, Pasquier, 92; Bernard, Gaudin, Haldane, Pasquier, 93]

+ the spectrum is given in terms of a collection of integers  {u..} called motifs
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each motif comes with a high degeneracy and corresponds to a Yangian representation

- Inozemtsev model interpolates between XXX and Haldane-Shastry; the spin interaction 1s
given by the Weierstrass function (%) with periods N and in/k

- bound states in the XXX model evolve into descendants of Haldane-Shastry highest weight
states when < — 0



The solution of the Haldane Shastry Hamiltonian

- to solve the Haldane-Shastry model (and its cousins) it 1s useful to solve first the spin
Calogero-Sutherland model [Bernard, Gaudin, Haldane, Pasquier, 93]
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- when 5 — oo the positions of the particles freeze at their equilibrium positions and the
Hamiltonian becomes that of Haldane-Shastry

i _2mij/N
[Polychronakos, 93; Lyashik, Reshetikhin, Sechin, 24] zj —rw) =V /

- the model 1s solved using the degenerate double affine Hecke algebra (DDAHA)
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- the model is also solvable for higher spin symmetric su(p) representations
[Dorey, Tong, Turner, 16; Gaiotto, Rapcak, Zhou, 23; Bourgine, Matsuo, 24]



The solution of the Haldane Shastry Hamiltonian
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1s diagonalised on functions completely (anti)symmetric by permutations of spins and
coordinates
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partially (anti)symmetric in the two groups of variables

on these spaces of functions we can define a projection 7 r(... Kij) = £rp r(. .. Pj)

N
- conserved quantities in terms of Dunkl operators  Hpr = 7mpr (Z d2.>



The algebraic structure of the Calogero-Sutherland
Hamiltonian

 build a monodromy matrix with Dunkl operators as dynamical inhomogeneities
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- the integrals of motion of the model are generated by the quantum determinant
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and they commute with the elements of 7,(u) (Yangian symmetry)

- the eigenvalues of Dunkl operators are known from the theory of Macdonald (Jack)
polynomials
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with ki1, k2,...,kny  integers such that ki >k > ... 2>



Extra integrals of motion of the Calogero-Sutherland model
[Ferrando, Lamers, Levkovich-Maslyuk, D.S., 23] [Uglov, 95]

- the twisted trace t.(u) = kA(u) + ' D(u) commutes with the integrals of motion Hj

* 1t commutes with the quantum determinant so it can be diagonalised inside each
of the Yangian multiplets (labelled by the motifs)

- the Yangian multiplets are determined by the eigenvalues of the Dunkl operators
(dynamical inhomogeneities)

5j:kj+§(w_2j+1) 5 =ip0,

- if kj=kj;1 = 0;;1—0; =1 the Yangian representation is reducible but
indecomposable (block triangular structure)

- the invariant component corresponds to spins at the sites j and j+/ fusing into a singlet

— cffective reduced length of the spin chain N — N —2



The hybrid Calogero-Sutherland model

- the spectrum of the effective model 1s given by a set of Bethe Ansatz equations for the

spin chain of reduced length
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the multiplet is characterised by the positions of the repeated £’s, jr={j1...,iu}

- the reference state |Q)) is replaced with the Yangian highest weight state |£1, k2, ..., k)

example for N=2 highest weight : ki > ky , k1, ko) = (21 — 22) P]fl_l’k;Q(Zla z2) [11)
ki1 =k, k1, ko) = (z122)™ (1)) — 1))

the Bethe states are built using the B operator Bl . . B Wl . . . ki)



The Haldane-Shastry limit

+ Inthe limit 5 — oo we get back a Haldane-Shastry-like spin chain, zj — Wl = e2mii/N
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« each pair of repeated k’s corresponds to a reversed spin (magnon)

- the reference states are the Yangian highest weight states

ko, ki = Y T i = 20)? P zas o zi) iz, i)

11<12<...<lpr m<n
again, the Bethe states are built using the B operator B(uy) ... B(unr) |k1, ko, ..., kn)m

— a total of M+M’ magnons



Conclusions and open questions (part 1)

- new Integrable long-range spin - with dynamical inhomogeneities

- solvable by (effective) Bethe Ansatz

- the twist ~ interpolates between the Gelfand-Tsetlin bases for < — 0,00 and the
1sotropic states for x =1

- the antiferromagnetic vacuum is the same as for Haldane-Shastry

- what are the excitations?

- how do the generic solutions of the BAE look like?



The q-Haldane-Shastry Hamiltonian (Uglov-Lamers)

[Bernard, Gaudin, Haldane, Pasquier, 93; Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]

The XXZ model can also be deformed to accommodate for long-range interaction,
at the price of introducing multi-spin interaction
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The Uglov-Lamers Hamiltonian

Several new features compared to the case g=1:

- the model is not translationally invariant, but there 1s a g-translation operator, G
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- there exists another Hamiltonian with the opposite “chirality”
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The Uglov-Lamers Hamiltonian

- Both Hamiltonians can be diagonalised simultaneously and the spectrum can be
written 1n terms of motifs, with eigenvalues (not real, for |g|=1)

+ The Yangian symmetry gets deformed to quantum affine symmetry

o N :
0;00002000034@@@@ M magnon motif M1 > fim + 1, I<m<M

one-magnon dispersion relations:

)= —— (V-5 IV) )
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H= % (H" +H") has real spectrum both for q real and |q| =1
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g-number generalisation of HS spectrum



q=i, non-unitary fermions and gl(1(1)

- consider a 1-dimensional lattice with N sites and the fermionic degrees of freedom

bt kG, it a0 = (=i)i¢;, ff = (—i)7ch

- they generate a global gl(1|1) algebra with (anti-)commutation relations

D] = —B., (DB =8 . Sl =E

N N N | al .
=) f FE=38 N=Q UL B2 (D)

=1 1=1
- gl(1]|1) has simple (anti-)commutation relations with the two-site operators

g=fitfir1, 95 =Ff+fL,, 1<i<N



Non-unitary fermions and Temperley-Lieb

- the two-site operators ga=gfitafe. , o=yl l<i< N

can be used to generate the free-fermion Temperley-Lieb algebra
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The Hamiltonians at N odd

eig) = [+ leis il -] €] €lii] = €i
the two chiral Hamiltonians R — % Z his" € g
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- the interaction can be defined in terms of commutators of TL generators

- the quasi-translation operator G=(1+ty_1en_1) - (L+tier), GV =1

|G,H"| = |G,H] = [H",H| =

0

N-1
generalises the XXZ Hamiltonian HEG =—) e;  at
j=1

[Pasquier, Saleur, 90]
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Discrete symmetries

The model has real spectrum in spite of being non-unitary, due to PT symmetry

- Parity P: P(fi) = [Nt+1-i

R — Bl RN RE—C!

- Time reversal T (anti-linear): T(e;) = ¢;

T — —BE, T =4, &BiE) =G p = —ilogG

- Charge conjugation C (anti-linear):

G — L G E (G



The spectrum for N odd

The spectrum becomes very simple at g=1 and N odd

- quasi-momentum p=—ilogG p=2%" lmmod2m

 chiral Hamiltonian

M
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How to solve the model for N odd

We want to solve it in terms of (non-unitary) fermions — use quasi-translations

start with the first site and translate the fermions via
b, = gl f1 g1 : CI>;r =@l f1+ @it 1
- the transformation is periodic due to GV =1
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R
’L—I—N_(I)i

- the price to pay is that the commutation relations are non-local (but translationally invariant)

{(I)’ia (I);_} =—(1+ tj—i)? {(I)ivq)j} o {(I)z—'i_? (I)j} =0



How to solve the model for N odd

next we use the Fourier modes of the quasi-translated fermions
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to get canonical commutation relations we rescaled the Fourier modes

Qe aigh)l — ..., degle.) —dishag! —0
the zero modes are generators of the gl(1|1) algebra
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the other modes are linear combinations of the two-site operators
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How to solve the model for N odd

in these variables the chiral Hamiltonian becomes purely quadratic
N-—1 ~ ~
HE =98 chalohals,
=l

it can be diagonalised on the Fourier Fock space spanned by 1, ) = WU 2)

0<n; < ---<ny <N

compatibility with the motif rule thanks to Ern t+ Eni1l = €34l mod N

the non-chiral Hamiltonian 1s quartic
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eigenvalues statistical repulsion

selection rule: ey +er =er+el



N even

- for N even, N = 2L there are singularities (poles) in the coefficients of the conserved
quantities, which can be regularised as

Tk T(L+o) T o
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- the residues of these poles give a collection of conserved quantities
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the roles the chiral and non-chiral hamiltonians 1s interchanged

- the eigenvalues of these conserved quantities are all zero (with Jordan blocks of size up to L+1)



To do list

- Study the system for even length: spectrum identically zero; Jordan blocks
- Identify the extended symmetry: gl(1|1) Yangian?
- Interpret the staggering & the linear dispersion relations in the odd case

+ CFT limit: gl(1|1) Kac-Moody algebra?

- Free field realisation and vertex operators algebra

- Wave functions in the fermionic representation & Macdonald polynomials

+ Other roots of unity: g"3=1 and gl(2|1) symmetry



